

Kolberg, M. and Sinnott, R.O. and Magill, E.H. (1999) Engineering of
interworking TINA-based telecommunication services. In: 1999
Telecommunications Information Networking Architecture Conference
Proceedings : TINA '99 : 12-15 April 1999, Turtle Bay Hilton Resort,
Oahu, Hawaii, USA. IEEE Computer Society, New York, USA, pp. 205-
213. ISBN 9780780357853

http://eprints.gla.ac.uk/7235/

Deposited on: 18 September 2009

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Engineering of Interworking TINA-based Telecommunication Services

Mario Kolberg', Richard 0. Sinnot? and Evan H. Magill'

'Dept. of Electronic and Electrical Engineering 'GMD-FOKUS
University of Strathclyde
Glasgow, Scotland
{ m .kolberg, e.magil1 } @eee. strath.ac.uk

Abstract- This paper describes a Service Creation approach
being developed in the EU funded ACTS TOSCA (TINA Open
Service Creation Architecture) project to rapidly develop
validated TINA based multimedia telecommunications services.
The approach is based around object-oriented software
frameworks in SDL which are specialized towards services by
means of graphical paradigm tools.

Further, in TOSCA, the need for service internorking across
service provider domains via federation has been recognized in
order to allow users to join service sessions offered by providers
they are not customers of. However, service interworking may
cause undesired behavior - the so called smvice interaction
phenomenon. This paper focuses on this issue and the
underlying technology of the service creation approach with
emphasis on how service federation has been implemented.

I. INTRODUCTION

To date the work on the Service Architecture within
TINA-C has concentrated mainly on the engineering of
individual services (a standalone offering such as multimedia
videoconference or chatline). In this paper we argue that this
is insufficient, and that interworking between services must
also be addressed. We know from experience in established
architectures that the interworking of services can cause
undesired behaviors [1,15]; a phenomena known as service
interaction. Indeed initial studies have shown that service
interactions are also a potential problem between
interworking TINA-based services [4].

Even though the service interaction problem provides the
motivation for our work, in this paper we will not be
discussing feature interaction as such, but describing our
work on service creation and service interworking. More
precisely, our report will concentrate on the service federation
mechanism [I 13. This work is being carried out in the EU
fkded ACTS TOSCA project.

11. THE TOSCA APPROACH TO SERVICE CREATION

The aim of the TOSCA project is to develop a service
creation environment that enables multimedia-based
telecommunication services to be produced in an effective
manner, that is they are created rapidly but not at the expense
of their reliability [SI. Indeed, the created services are
rigorously validated. Validation of services implies that

0-7803-5785-X/$10.00 0 1998 IEEE

Kaiserin-Augusta-Allee 3 1
Berlin, Germany
sinnott@fokus.gmd.de

formality is introduced into the service creation process. In
TOSCA we used the formal language SDL [5] to model our
services. Few formal techniques have adopted current
techniques in software development as strongly as the ITU-T
Specification and Description Language. As well as
providing a state of the art tool support [IO], SDL offers ODL
[13] and C O M A IDL [2] mappings which are an essential
feature given that the syntactic aspects of TINA-based
systems are expressed in ODL/IDL. An overview of the
advantages and disadvantages of applying SDL to service
creation is given in [9].

The TOSCA project proposes an approach to service
creation which should provide both for rapid service
provisioning and for high service quality. The approach
assumes that for certain categories of services, a flexible and
reliable software framework is developed. The concept of
framework based software engineering has arisen to help
realize the holy grail of software engineering: re-use.
Frameworks are a natural extension of object-oriented
techniques. Whilst object technology provides a basis for re-
use of code, it does not provide features to capture the design
experience as such. Frameworks have developed to fulfil this
need.

A fiamework can be regarded as a collection of pieces of
software or specification fragments that have been developed
to produce software of a certain type or niche [3]. A
framework is only partially complete. Typically, they are
developed so that they have holes or flexibility points in them
where service specific information is to be inserted. This
filling in (specialization) of the flexibility points is used to
develop a multitude of services with differing characteristics.

In TOSCA, this specialization may be done by non-
technical people, e.g. business consultants, through paradigm
tools. Paradigm tools offer a graphical and intuitive means
whereby services can be designed. Thus the service designer
should not necessarily have to consider the lower level
behavior of the service to be able to create one. Nor should
they necessarily be experts in implementation languages such
as C*, distributed architectures such as COMA, or
specification languages such as SDL. Rather, they should be
provided with a high-level representation of the service
components and the ability to tune their behavior and how
they are composed with one another. We show how this
tuning is achieved in section V.

205

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

http://strath.ac.uk
mailto:sinnott@fokus.gmd.de

Once the design of the service is complete, in the first
instance, it is necessary to provide some immediate feedback
to ensure that the service behaviour is as desired. This is
achieved through (graphically) animating the service
behaviour [7]. Once the basic hctionality of the service is
satishctory to the service designer, a more detailed check on
its behaviour is required, i.e. it has to be validated. We do not
address validation in this paper. Instead we fucus on the
development of frameworks and how they can be
subsequently specialised with relation to aspects of service
interworking.

I
I s i --! serv ice ession

111. THE TINA ARCHITECTURE AND SERVICE FEDERATION

I

The development of frameworks within TOSCA is based
around the TINA architecture, or more specifically the
Service Architecture [1 11 and Network Resource' Architecture
[I21 of TINA. The Service Architecture introduces the
underlying concepts and provides information on how
telecommunication applications and the components they are
built from, have to behave. Central to the Service
Architecture is the concept of a session. This is defined as:

the temporary relationship between a group of
resources that are assigned to fu&l collectively a task
or objective for a time period.

Three sessions are identified:

0 access session: this represents mechanisms to
support access to services (service sessions) that
have been subscribed to.
service session: includes the fimctionality to
execute and control and manage sessions, i.e. it
allows control of the communication session.

0 communication session: controls communication
and network resources required to establish end to
end connections.

Currently, the service session has been the main area upon
which frameworks are being developed in TOSCA. The
relation between the three sessions is depicted in Fig. 1.

user d o m a i n . prov ider d o m a i n user d o m a i n

access session I I

I I ; - - ! I I

I I I I I

c o m m u j i e a t i o n J 0 8
I session ..

Here the service session user application (ssUAF')
represents the users interface to the service, i.e. it determines
how they may participate in the service. The Service Factory
(SF) is used to create instances of services when requested to
do so by components in the access session: namely user
agents. Broadly speaking, an instance of a service typically
consists a Service Session Manager (SSM) to control the
global service behavior, and a of User Session Managers
(USM); one of each is used to control each users participation
in that service.

A . Service Federation

Implicitly, the scenario above assumes that only users
subscribed to the same retailer can participate in particular
service sessions. This is a serious drawback in a real-life
competitive business environment where potentially many
service providers might exist. In this case, customers of
different service providers would not be able to communicate
with one another through those services. Hence some
mechanism is needed to allow users associated with different
service providers to join 'shared' service sessions. The
federation concept was developed [1 11 to address this issue.
Federation allows users to join services offered by remote
providers, i.e. providers they are not customers of.

A federation can be divided into two stages: firstly the
domain federation and secondly the service federation. The
domain federation establishes an environment for two or
more service providers to transparently offer services across
their domains by setting up an access session. The service
federation in turn establishes a service session across two or
more retailer domains. In hct, two separate service sessions
are set up (one at each location) which interwork. As the
access session is the foundation for a service session, the
domain federation is the base for and governs the service
federation. Since TOSCA is concentrating on the service
session, the work on federation has thus far been focused on
service federation.

In order to allow services to interwork, a new component
is introduced in the TINA Service Architecture [l l] : the
PeerUSM (Peer User Service Session Manager). The
interworking of federated services is achieved through
PeerUSMs. In practice, information which needs to be passed
to a session member associated with a remote domain is sent
to the local PeerUSM which forwards it to the remote
PeerUSM which in turn passes it on to its SSM or the
relevant USM. Fig. 2 illustrates this scenario.

L------i
j stream connections established - - - - - - - I

Fig. 1. Relation between the TINA Sessions.

206

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

user domain A I provider domain A I provider domain B I user domain B

Fig. 2. Federation of two Service Sessions.

While working in a federated service session, each
component in the other domain (SSM or USM or SF) is only
accessible through the PeerUSM. There is no direct
communication between components belonging to different
domains other than the PeerUSMs. The PeerUSM itself
appears as a ‘normal’ USM to other local components, i.e.
local USMs and the SSM.

Using the initial specification of the federation concept in
the TINA Service Architecture we implemented the service
federation concept and hence defined the PeerUSM in more
detail. In the following we discuss this work.

Since the PeerUSM may be an access point to a number
of users in the other domain, the PeerUSM needs to be able to
forward incoming messages, e.g. operation invocations,
terminations or exceptions, to their correct destination. From
this it follows that the PeerUSM needs to be able to
distinguish messages by their final destination. To achieve
this the PeerUSM offers interfaces for each user in the other
domain. These interfaces are created dynamically by the
PeerUSM manager when users join a federated session.
Figure 3 gives an overview of the internal structure of the
PeerUSM.

Paul

USMPeer
Bill

PeerUSM

Service Provider A

Manager

Service Provider B
Fig. 3. Overview of PeerUSM.

Here the solid line indicates the sending of a message
from Peter’s USM in the service provider domain A to Bill’s
USM in the service provider domain B. The dashed line
shows the SSM in service provider domain B accessing
Paul’s USM in service provider domain A. In other words,
messages sent from a local USM or SSM to a remote USM or
SSM are sent via the local PeerUSM to the remote PeerUSM
and finally onto their final destination, i.e. the remote USM
or SSM.

Beside supporting some special methods called during
initialization and termination, PeerUSMs offer the same
external interfaces as other USMs. This is necessary to
support distribution transparencies, e.g. masking the
remoteness of location between services. Thus components
should be unaware that they are talking to a PeerUSM and not
to a ‘normal’ USM. Another point worth noting here is that
sending messages from one PeerUSM to its counterpart in the
other domain, rather than directly to the destination
component in the remote domain, potentially allows for
implementing specific PeerUSM-PeerUSM communication
protocols. One such protocol could be the TINA Retailer-to-
Retailer Reference Point (RtR) when this becomes available.
In other words, a local PeerUSM could map the messages it
receives into messages understood by a remote PeerUSM.

TINA states that the services in a federation should be of
compatible types’. However, as we shall see in section VI, the
service interaction problem still exists in this case. As stated,
services in TOSCA are (rapidly) created and subsequently
validated through specializing object-oriented fiameworks
using graphical paradigm tools. Hence, the first steps taken in
TOSCA in investigating the service interaction phenomenon
as it might arise in a TINA environment, has been through the
creation of object-oriented service frameworks. In the
following, after giving some necessary background
information on the structure of the fiamework, we focus on
the design of the PeerUSM in section 1V.B.

Iv . EXAMPLE OF DEVELPOING AN OBJECT-ORIENTED
FRAMEWORK

If developing software is a complex activity then
developing fiameworks is more complex again. Developing a
framework so it removes large parts of the problem of service
design, thus expediting the creation process, whilst still
offering a means to create numerous different kinds of
services is an especially challenging activity. Producing
successhl fiameworks requires that the points where design
decisions can be made, are flexibility points. Using
frameworks to produce services then requires that these
flexibility points are made available so that new design
choices can be taken to produce new services or service
flavors. Perhaps the hardest part of the fiamework
development process is the identification of these flexibility
points [3].

To engineer fiameworks it is thus necessary to have a
core behavior. In TOSCA this core behavior has been based
around the informal description of the behavior of the service
session components, i.e. the ssUAP, USM, SSM and SF; their
ODL (Object Definition Language) description [13] and parts
of an existing TINA-based multimedia-conferencing
implementation [141.

’ In reality this compatibility relationship is given in terms of the PeerUSMs
supporting and requiring the same feature sets. Feature sets themselves are
given through syntactic structures in ODL and IDL.

207

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

The USM and SSM components in the framework are
decomposed into generic and specific parts with the generic
parts being fixed and the specific parts being incomplete in
the framework and thus specializable by the paradigm tool.
Each of the service parts has a manager (UFSmgr, USF’mgr
for the USM and GFSmgr, GSPmgr for the SSM). These
managers are responsible for lifecycle and initial access to the
managed objects, e.g. the managers are able to initialize,
suspend, resume or terminate the objects they manage, or
provide references to the objects they manage on request.
When the manager is told to suspend, resume or terminate, it
also suspends, resumes or terminates the objects it manages
respectively. As we shall see in section IV.A, these manager
operations and the initialization of the manager together with
the objects it is to create (and subsequently manage)
correspond to framework flexibility points.

Typically, users can join services, suspend, resume or
terminate their participation in services. The logic associated
with these requests are processed in the service session, e.g.
whether the user is able to resume themselves in the service at
that time. If successfid, the appropriate connection operations
are made on the communication session, e.g. resume my
previously suspended connections.

It is important to note that the architecture of the
fiamework does not overly constrain the kinds of services
that can be created from it. Rather, it acts as a template for a
multitude of services, e.g. multimedia conferencing services,
chatline services or newsflash services to name but three.
Indeed even within these three services there exist a plethora
of variations. In multimedia conferencing for example, there
might be differing roles, e.g. chairman, observer, participant.
These differing roles might result in differing expected
functionalities, e.g. only chairman can invite (or suspend or
terminate) other users, only participants can vote. Users
might be able to have differing charging (or billing or
accounting) possibilities, e.g. reverse or split charging, or
other variations.

As well as these role specific specializations, numerous
others are possible also, e.g. only start the service if a certain
number of successhl responses to the invite have been
received. Quit the service if the number of users falls below a
certain level (or if the total charges generated from using the
service falls below a certain level). It is precisely these
variations on the general theme that paradigm tools are
expected to capture whilst the general theme itself is
represented by the fiamework.

A . Design of the Framework USM in TOSCA

In TOSCA we focused on a small set of flexibility points.
This set of flexibility points allowed us to produce a
multitude of different services with different types of
behavior. Specifically, we chose the following flexibility
points:

0 the start up, suspension, resumption and termination
of users sessions;

0 the start up, suspension, resumption and termination
of service sessions.

In producing a framework it is necessary to have fixed
places where the flexibility points are to exist. Flexibility
points cannot simply be placed anywhere in the design of the
framework. Rather, flexibility points may only be filled in
(specialized) at certain fixed times. Thus it is necessary to
represent the points of flexibility directly in the design of the
framework, but the actual behavior associated with these
flexibility points is effectively NULL until they are
specialized. To achieve this we introduced appropriate IDL
operations that were associated with the appropriate objects
in the framework design. As an example we consider the
USM and the representation of the flexibility points
concerned with the start up, suspension, resumption and
termination of users sessions. The simplified ODL for the
USM modeled in the TOSCA framework is:

group USM {
components UFS, ... ;
manager UFSmgr;
contracts i-UFSmgr, i-DynamicWidgets, i-ControlWinHandler, ... ;

1;

The UFSmgr object is responsible for controlling the
objects in the specializable part of the USM. In reality this
means that it should - amongst other things - be able to
terminate, suspend or resume existing all objects it controls,

2 or add new (named) objects to those it currently knows
about. This implies that all objects controlled by the UFSmgr
support this basic lifecycle functionality, i.e. upon reception
of certain signals all objects can suspend, resume or terminate
themselves. To achieve this, all objects inherit from interface
iCO-lifecycle. The IDL for this interface is:

interface i-CO-lifecycle {
void initialiseObject(in PropertyList inithfo, in Object mgrRef);
void suspendobject();
void resumeObject(in Object mgrRef);
void terminateobject();

};

When initialized or resumed, objects need to be made
aware of the reference for their managers. This allows for
later checks on arriving invocations, i.e. to check that they
originated fiom their manager. As well as supporting this
core functionality, the interface to the UFSmgr (i-UFSmgr)
supports other operations. The default behavior for the
UFSmgr is that it allows a user to suspend and terminate their
participation in the current session. The IDL for the
i-UFSmgr interface is:

Typically, the object name and a null reference are passed in and the name
and PId ofthe created object returned.

208

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

interface i-UFSmgr : i-CO-lifecycle {
void suspendSessionRequest0;
void terminateSessionRequest();
void suspendAll(); I/ used to suspend USM and associated objects
void requestObject(in0ut NamedObject obj);

// called to create window handlers
oneway void ufsstarto;

/I not implemented in framework - specialized!

.
11 called to suspend a user
/I called to terminate a user

oneway void ufssuspend0; 11
oneway void ufsresume(); 11
oneway void ufsstop(); 11

1;

We point out here that we define several operations whose
sole purpose is to act as a placeholder in the li-amework
design through which the specialization can be achieved, i.e.
these represent the points of flexibility that enable us to have
different service behaviors. The other behaviors may be
implemented directly.

B. Design of the PeerUSM in TOSCA

The PeerUSM is similar in terms of its interfaces to a
USM. As already stated, it also contains a manager
(PeerUSMmgr) to support startup, termination, suspension
and resumption as well as getting initial access to the other
parts of the PeerUSM. Further it supports an object which
emulates a normal USM (USMPeer). Central to this object is
an interface (i-USMPeer) which supports operations to
suspend or terminate a user, as well as for creation and
deletion of additional objects, e.g. objects used to handle user
(ssUAP) inputs. In short, the PeerUSM encompasses all
operations which can be called on a ‘normal’ USM, i.e. the
interfaces supported by the PeerUSM should allow for
potential inter-domain interactions to be as expressive as
single domain interactions. A simplified ODL description of
the PeerUSM and an IDL description of the interface
i-USMPeer can be found below.

group PeerUSM (
components USMPeer, PeerUSMm gr...;
manager PeerMgr;
contracts i-PeerMgr, i-USMPeer, i-CWHPeer ...;

1;

interface i-USMPeer : i-CO-lifecycle {
void suspendSessionRequest0;
void terminateSessionRequest(); 11 called to terminate a user
void requestObject(inout NamedObject obj);

11 called to create additional objects .. .

11 called to suspend a user

1;

Although the PeerUSM supports roughly the same
interface as a USM, its internal behavior is different. Instead
of performing the actual actions triggered by the arriving
invocations, terminations or exceptions, a PeerUSM forwards
the received messages to its counterpart in the remote domain
which then forwards the message onto the appropriate object.
In order to be able to do so each i-USMPeer in the same
domain as its assigned USM knows the reference to the

manager in the USM. This reference is provided on creation
of the i-USMPeer interface. Similarly, the i-USMPeer
interface in the other domain is initialized with the reference
of its counterpart.

Further, in the TOSCA li-amework, the SSM in a service
session knows about all users and also holds a reference to
their USMs. Consequently, in a federated service session the
SSM knows about all users, both local and remote. On
request it can provide a USM with the reference to a USM of
another user. In order to make the federation hlly transparent
for individual USMs, the SSM returns the reference to the
i-USMPeer interface of the requested user if the associated
USM is located in the remote domain. Thus USMs can access
other USMs in the usual way, regardless of whether they
actually belong to different domains. When a user intends to
joins an already federated service session, the request is
directed to the domain which issued the corresponding
invitation. After checking the invitation and subsequently
joining the user into the session (including the necessary
components in the PeerUSMs) the SSM of the remote session
is notified of the new member.

As the i-USMPeer interface is the contact point to a USM
in the remote domain, it has to reflect any changes in the
status of the USM in the session, e.g. the LJSM gets
suspended or resumed. Thus, whenever a user (and hence the
corresponding USM) suspends his participation in the session
(or gets suspended by another member) the corresponding
interfaces in the PeerUSMs are suspended also. This allows
for denying any requests which might be sent to a suspended
user fiom the remote domain. Once the user resumes the
participation, the interfaces in the PeerUSMs are resumed
also. Similarly, when a user is terminated 6-om the session,
the interfaces in the PeerUSMs related to him are terminated
as well. Once all members of a local domain in a federated
session are terminated, the whole local session is terminated
as is the pair of PeerUSMs. In other words is the federation is
terminated. However, remaining members in the session in
the other domain are not affected and continue their
participation in the session.

C. Specijjing the Behavior of the Framework Components

The first stage in developing a formal specification fiom
an ODL description is to map the ODL descriptions to the
formal language of choice. We note here that relatively few
ODL to formal specification language mappings have been
made. SDL is one of the few languages that support a
mapping. In TOSCA the Y.SCE tool [16] was used to import
the ODL description and generate the associated SDL stubs
and skeletons. A discussion of the mapping rules and its
advantages to other mappings as well as its shortcomings can
be found in [8].

The following table only gives a very short summary of
the main features of the ODL to SDL mapping used (and
implemented) in TOSCA.

209

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

ODL Structure
Group type
Object type
Interface type
Object Reference I Pid
Oneway Operation I Signal prefixed with @ALL

SDL Mapping
Block type
Block type
Process type

Operation (synchronous) Signal pair. The first signal prefixed I
with pCALL-, the second signal

Through the mapping client stubs and server skeletons are
generated. These act as templates whose behavior is to be
filled in through inheritance. These stubs and skeletons are
placed in two SDL packages (Name-Intet$ace and
Name-Definition). The Name-Interface package contains the
interface specifications in the form of data types, signals,
remote procedures, signallists etc. An example of the contents
of this package is given in Fig. 4.

P a c k a g e N a m e - l a t e r f a c c
s igna l p C A L L - i - U F S m ~ ‘ _ ~ ~ ~ p e n d S e s i i o n R e q u e r f ,
s igna l p C A L L _ i _ U F S m g r - l e r m r n a t e S e s s i o n R e q u e s t ,
s igna l p C A L L _ i _ U F S m g r _ u f s s t a r t ;
s igna l p C A L L _ i _ U F S m g r - r u s p e n d A l l :
I ign a I p C A L L
11 a n d a s s o c i a t e d p R E P L Y - s i g n a l s - b u t not for ufsstart , u f s s t o p e t c (o n e w a y)
signall ist i _ U F S m g r _ I N V O C A T I O N S =

/ / a n d u f s s t o p , u f s r e r u m e . u f s s u s p e o d

i _ U F S m g r _ re q u e s t 0 b j e c l (N a m e d O b j e c 1)

p C A L L - i L U F S m g i - s u s p e n d S c s a i o n R e q u e r t .
p C A L L - 1 - U F S m g r _ t e r m i n a t e S e s s i o n R e q u e s t ,
p C A L L _ i _ U F S m g r _ u f s s t a r t . /I a n d u f s s t o p , u f s r e s u m c , u f s s u s p e n d
p C A L L-1-U F S m g r - s u s p e n d A l l , p C A L L - i - U F S m g r - r c q u e s f o b j e e t ,

signall ist i _ U F S m g r - T E R M IN A T I O N S =
p R E P L Y _ i _ U F S m g r _ s u s p e n d S e s s i o n R e q u e s t .
p R E P L Y _ i _ U F S m g r - t e r m i n a t e S e s s i o n R e q u e E t
p R E P L Y - 8 - U F S m g r - s u s p e n d A l l , p R E P L Y _ i _ U F S m g r - r e q u e s t O b j e c t ... ;

Fig. 4. Example of the Name-Interface Package.

This package is then used3 in the definition of the
NameDefinition package. Fig. 5 gives an example of the
kind of SDL generated focusing on the i-UFSmgr interface of
the UFSmgr object.

That is the SDL ‘use‘ mechanism is applied.

irocess type <<package Name-Definition >> i-UFSmgr ;
oherits i-CO-lifecycle ;

r \

I * / I dcl ... ; I
I

~ - - - - - - - - - - - - -

; forother
; procedure calli
I - - - - - - - - - - - - -

virtual suspendSessionRequest

virtual ufsstart

other virtualprocedures here

Fig. 5. Example of the Name-Definition Package.

The virtual procedure for the ufsstart (and all oneway
operations) consist of a virtual start transition followed by an
immediate exit. In non-oneway IDL operations, the generated
procedures contain apREPLY- signal of the appropriate kind.
Along with the virtual procedure definitions, signals and
(asterisk) states are also generated that result in the
procedures being called.

As an example of the way in which the generated SDL
server skeletons can have their core behavior inserted, i.e. the
behavior before they are specialized, we consider the
implementation of the i-UFSmgr interface (i-UFSmgrImp) of
the UFS object given previously. The default behavior for the
UFSmgr is that it creates a control window handler only. A
simplified example of the structure of this object is given in
Fig. 6.

p a l process type IheUFSmgrlmp.
herits <<package Name_Deftmtmn/block type USMhlock type UFS>> i-UFSmgr

par in FSEPrefobjRef, . 4

createCWH(FSEPref, self),
createdRefs .= createdRefs /I

MkSlnng(cwhRcf), ...

- I

1 - u I

Fig. 6. Structure of Basic UFSmgr.

This process type is parameterized with (amongst other
things) the reference to the user application. When an
instance of this process type is created, initialization of local
variables is done, e.g. the list of created references is set to
empty, and the defsult behavior of creating a control window
handler is made. As discussed, this requires that the necessary
exported remote procedure is imported. Following this
default behavior, the UFSmgr is ready to be specialized, i.e. it
is in a state where it can accept signal
pCA LL-i- UFSmp-ufsstart.

As stated, the specializable procedures have null
behaviors, i.e. start and exit. This allows for the behavior of
the framework as a whole to be checked without necessarily
having any specialization taking place, e.g. the basic USM
behavior (and SSM and SF) behaviors can be checked to

210

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

ensure the fiamework as a whole correctly represents the
informal (textual) requirements. Once the core behavior has
been specified and verified, the m e w o r k can be saved as a
package and used in defining services, i.e. SDL systems.

v. SPECIALISING THE FRAMEWORK TOWARDS SERVICES

As an example of fiamework specialization we focus on a
simple video conference service. This service is characterized
by having two different kinds of user: participants and
guests. There may be up to 5 participants and up to 10 guests
using the service, i.e. in the service session, at a given time.
Audio-video connections exist between all parties in the
session.

In TOSCA, a “kind” of user is represented by a user role
which has a set of privileges and characteristics attached to it.
Each member in a session is assigned a role on joining the
session and hence may only perform the activities associated
with that role. In the case of the video conference service, the
invoking member, i.e. the user who starts up the service is
automatically assigned the role participant. The distinction
between a participant and a guest is that a participant may
invite other participants or guests. A participant may also
suspend any guest in the session. Further, when the last
participant terminates their user session the whole service
session terminates.

As discussed previously, the ti-amework already caters for
session members being able to suspend and resume their
participation in the session. However, in this particular video
conference service we wish to have the additional
hctionality of all participants being able to invite new
members to the session as well as being able to suspend
guests from the session.

To achieve this service specialization we use the SDL
package representing the ti-amework. Both simple and virtual
inheritance are used to specialize the components in the
ti-amework. Simple inheritance is used at the upper block
level, e.g. the USM block level. Subsequent block types, e.g.
the UFS block type as well as process types and procedures
are reused by virtual inheritance. This is necessary since
virtual inheritance allows the communication links, i.e.
channels and signalroutes in the fiamework to be reused (and
possibly extended). Virtual inheritance does not, however, it
allows for multiple redefinitions in one scope. This is needed
for having different types of USMs at system level for being
able to specify multiple roles of users in a session, e.g.
participants and guests in our example. As a result, it is not
possible to use virtual inheritance for the top-level block
types: simple inheritance is used instead.

Creating the role participant and guest requires that the
USM block type in the fiamework is specialized to two new
block types: partUSM and guestUSM.

To realize the cardinality constraints explained above, the
SSM needs to be specialized as well. The SSM knows about
all members and their current state in the session and is
responsible for allowing new users to join the session. The

SSM for this video conference service is thus specialized to
restrict the maximum cardinality of participants to 5 and of
guests to 10 and the minimum cardinality of participants and
guests to 1 and 0 respectively.

As stated previously, the operation uEjstart in a UFSmgr
is executed whenever a new instance of the USM is created,
i.e. a user has joined the session. For the guest role, this
procedure needs to be specialized so that audio-visual
connections to all users are set up when the guest joins. For
this, the SSM is firstly queried to find the users active in the
session, i.e. get the information on all participants and guests.
This is then followed by a call to the SSM to make the
appropriate multimedia connections on the communication
session between the newly joined guest member and all
previously joined users. This is illustrated in Fig. 7.

The specialized ufstart procedure in the partUSM block
creates an invitation window handler to allow participants to
invite other users as well as adding new buttons on the
participant control window, e.g. a button to suspend another
user. Adding buttons dynamically is supported by the control
window and its associated handler by offering special
interfaces to add widgets to the window and also to receive
events fiom the window, i.e. button presses. For brevity we
do not focus on the mechanisms in the fiamework to support
the adding of widgets to the ssUAP. A detailed discussion on
the possibilities of specializing the user interface according to
role specific privileges in the TOSCA fiamework can be
found in [7,8].

It is important to note here that the actual calling of the
ufstart, ufsstop, zrfsresume and ufsuspend procedures
always occurs at fixed points in the overall behavior of the
framework. That is, ufistop, ufuspend, ufsresume are only
called when a valid terminate, suspend or resume request
respectively has been received by the UFSmgr, i.e. when it is
in state readyhuspended, ready or suspended respectively.

Because of the way the PeerUSM is modeled in TOSCA,
it does not require specialization for this example since it
already supports all messages which can be sent to a USM by
an external source (SSM, etc.). Moreover, the internal
behavior of the PeerUSM does not require changing since it
only forwards signals to its counterpart, i.e. the remote

21 1

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

PeerUSM, which then forwards the signals onto the
referenced object. In other words, specialization of USMs
does not necessarily require changes to the PeerUSMs.
Specialization or rather extension of the PeerUSM is only
necessary if the specialization of the fiamework involves
adding new objects to the USM which can be accessed fiom
outside the USM. For example, a conference chairman might
request that a new voting window is created on the ssUAPs of
the session members. This would then require that an
associated voting handler object is created in the USM for the
session member. In this case, the PeerUSM needs to be
extended to intercept and forward the additional signals
between the SSM and USMs. Using virtual inheritance of the
PeerUSM is one way this extension can be achieved.

Once the fiamework has been specialized, in the first
instance, it is animated to give the service creator feedback on
its functionality. As well as animating the user interface
creation, e.g. the new windows and buttons that are being
added to the SSUAP, we are producing graphical animations
of the interface to the communication session. That is,
animations of the connections between users in the session
and how they are modified when new users join, or existing
users suspend or resume their participation in sessions.
Currently, the fi-amework supports Java based G a s . Work is
on-going to support COMA based G u s . A detailed
discussion on the animation activity can be found in [7,8].

VI. ISSUES RELATED TO FEDERATION

The fiamework and a number of services developed fiom
it were used to conduct an initial case study on federation bf
these services. Even though the services created so fhr fiom
the TOSCA fiamework are not extremely rich in terms of
their functionality, a number of issues related to the
interworking of these services have been identified.

For example, even the very basic service created in the
previous section can cause problems if two instances of it are
to interwork. Imagine a scenario where a number of
participants and guests are joined in a non-federated session
of this service. If a participant invites a guest to the session
who is not customer of the service provider used (provider A)
a federation between the current service session and a newly
created service session at the guest’s local provider (provider
B) is set up. However, since the invoking member of the
service automatically becomes a participant, the invitee is not
joined in as a guest as specified by the invitation but as a
participant because he is the invoking member of the local
service session. Furthermore, if during the process of joining
the user, the invitation is checked more rigorously, that is the
role of the new member is compared with the role specified in
the invitation, the user about to join may be denied access to
the session altogether. Clearly, a straightforward solution for
this problem could be to implement a policy by which the
role of the invoking users overwrites the role provided in the
invitation. However this kind of ad-hoc solutions are not

applicable to a broad range of services as is shown in the next
example.

A videophone service specified fiom the fiamework
allows only two members in the session at any one time: a
caller (who starts the service) and a callee (who is invited to
join the service). The caller and callee are automatically
assigned their roles on starting and joining the service
respectively. In other words, a conversation between two
members is only established if the invoking user becomes a
caller and the second user, the invitee, a callee. Clearly, in a
federation of two sessions of this videophone service the
same problem as described in the videoconference service
above exists. If the problem is solved in the same way as
described above, that is by overwriting the role in the
invitation, a second caller (!) is joined in the session.
Obviously, this does not allow for setting up a videophone
conversation. These two examples show that ad-hoc solutions
might be working for a few specific cases, but fail to solve
the service interaction problem generally.

The two examples also demonstrate that even if two
service sessions of exactly the same service are federated
there are potential service interaction problems. Many more
problems are anticipated if a federation between two service
sessions which differ slightly in their hctionality is set up.
For example, consider a slight difference in the maximum
cardinality of a specific member role. A conflict arises if a
service session of service X and service session of service Y
are federated. For instance service X may allow up to 5
participants in a session and service Y up to 10. Imagine the
federated session has currently 5 members. If an invitation
has been sent by a user at provider X, the invitee needs to
direct his request to join the session to service X. In this
case, the validity of the invitation is checked locally, i.e. in
service X, which results in a user maximum cardinality
exception being raised. The outcome of this is that the user is
denied access to the service session. On the other hand, if the
invitation had originated at provider Y (which means that
service Y processes the validity of the invitation reply) then
no maximum cardinality exception would be raised and the
user could join the service session. However, when service X
is notified that a new user has joined this would violate the
maximum cardinality constraint causing an unwanted service
interaction.

A fiyther example occurs in a federation between two
sessions of conference services which differ in their behavior
when the last participant leaves the session. One service may
terminate when this occurs whilst the other may not. Many
more such examples could be imagined.

VII. CONCLUSIONS

This paper has tried to give a flavor of the tools and
techniques currently being applied in the TOSCA project to
develop telecommunication services based around the TINA
architecture. We have seen how it is possible to take a semi-
formal description given in TINA ODL, CORBA IDL and

212

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

informal text to develop an object-oriented fiamework in
SDL. We have also highlighted how this fiamework can be
specialized to create instances of services. We produced an
instance of a video conference service with two role types
having different characteristics, i.e. behaviour.

We have also shown how the TINA concept of the
PeerUSM component may be specified and used to support
interworking, i.e. federation, of services. However, despite
the hct that TINA is designed to avoid service interaction
problems as experienced in established telecommunication
networks, we have shown by example that some issues do
remain. We note that it is quite possible to resolve service
interactions through refining service models or designs. Some
of the previous service interaction scenarios could be avoided
through changing the service design; that is by ad-hoc
solutions. However, these solutions are not applicable
generally as has been shown by example of the videophone
service. Clearly, it are general solutions which need to be
found if the federation concept is to be applied in an open
competitive market as targeted by TINA. Future work in
TOSCA will concentrate on developing such an approach.

It should be stated that the definition of the TINA
Retailer-to-Retailer Reference Point is crucial if service
interactions are to be avoided. Basing this only on syntactic
considerations, e.g. feature sets represented in ODL or IDL,
is, as we have shown, insufficient. This is true even in the
case of identical services interworking. We note however,
that having a common syntactic basis is an essential starting
point for successful service interworking, i.e. understanding
the messages that are sent and received. The problem of
service interaction can only be resolved when the behavioral
aspects of the services are considered. The next phase of the
TOSCA work is in applying the SDL fiamework together
with the associated SDL tools to investigate these issues.

ACKNOWLEDGMENTS

The authors are indebted to the partners in the TOSCA
project. The TOSCA consortium consists of Teltec DCU,
Silicon & Software Systems Ltd, British
Telecommunications, University of Strathclyde, Centro Studi
e Laboratori di Telecommunicazioni SPA, Telelogic, Lund
Institute of Technology, GMD and Ericsson.

REFERENCES

E.J. Cameron, N.D. Griffeth, Y.-J. Lin, M.E. Nilson,
W.K. Schnure and H. Velthuijsen, A feature interaction
benchmark for IN and beyond, In W. Bouma and H.
Velthuijsen (eds.) Feature Interactions in
Telecommunications Systems, 10s Press, Amsterdam,

The Common Object Request Broker Architecture and
Specification: Revision 2.0, Object Management Group,
Inc., Framingham MA., July 1995.

1994, pp. 1-23.

R. Johnson and V. Russo, Reusing Object-Oriented
Designs,Urbana, Ill., May 1991.
M. Kolberg and E. Magill: Service and Feature
Interactions in TNA.. In K. Kimbler and L.G. Bouma
(eds.) Feature Interactions in Telecommunications and
Software Systems. pp. 78-84, 1 0 s Press, Amsterdam,
1998.
International Consultative Committee on Telegraphy and
Telephony - SDL - Specifcation and Description
Language, CCITT 2.100, International
Telecommunications Union, Geneva, Switzerland, 1992.
R. Sinnott, Frameworks: The Future of Formal So@are
Development, Journal of Computer Standards and
Interfaces, special edition on Semantics of
Specifications, August 1998.
R. Sinnott, M. Kolberg, Business-Oriented Development
of Telecommunication Services with SDL, Proceedings
of OOPSLA-98 Workshop on Precise Behavior
Specifications of 00 Systems and Business
Specifications, Vancouver Canada, October 1998.
R Sinnott, M. Kolberg, Engineering Telecommunication
Services With SDL, in Formal Methods for Open Object-
Based Distributed Systems, P. Ciancarini, A. Fantechi
and R Gomeri (Eds.), pp. 187-203, Kluwer Academic
Publishers, 1999
A. Olsen, D. Demany, E. Cardoso, F. Lodge, M.
Kolberg, M. Bjorkander, R Sinnott, The Pros and Cons
of Using SDL for Creation of Distributed Services,
Proceedings of Sixth International Conference on
Intelligence in Services and Networks (IS&N),
Barcelona, Spain, April 1999, in press.

[101 Telelogic AB, Getting Started Part 1 - Tutorials on SDT
Tools, Telelogic AB, 1997.

[113 TINA-C, Service Architecture, version 5.0, 16 June
1997.

[121 TINA-C, Network Resource Architecture, Version 3 .O,
February 1997.

[13] TINA-C, TINA Object Definition Language Manual,
Version 2.3, July 1996.

[141 TOSCA Consortium, Specifcation of the Service
Session Framework Targeted at the Eri-TIMMAP
Platform, AC237ETLlWP2-4ffUV036lA4.

[15] S. Tsang, E.H. Magill and B. Kelly, The Feature
Interaction Problem in Networked Multimedia Services -
Present and Future, BT Technology Journal, Vol. 15,
NO. 1, Jan~ary 1997, pp. 235-246.

[161 For more information see
http://www.fokus.gmd.de/minos/v.sce.

213

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

http://www.fokus.gmd.de/minos/v.sce

	citation_temp (2).pdf
	http://eprints.gla.ac.uk/7235/

