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Abstract5

The purpose of this note is to study the assumption of “mutual information inde-6

pendence”, which is used by Zhou (2005) for deriving an output-dependent hidden7

Markov model, the so-called discriminative HMM (D-HMM), in the context of deter-8

mining a stochastic optimal sequence of hidden states. The assumption is extended9

to derive its generative counterpart, the G-HMM. In addition, state-dependent rep-10

resentations for two output-dependent HMMs, namely HMMSDO (Li, 2005) and11

D-HMM, are presented.12
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1 Introduction1

Generative models like normal-based discriminant analysis and discriminative2

models like logistic regression are comprehensively investigated and compared3

in the machine learning literature (Rubinstein and Hastie, 1997; Ng and Jor-4

dan, 2001). Amongst the latent (hidden) variable models for structured data5

such as time series, hidden Markov models (HMMs) for discrete-valued hidden6

states and state-space models (SSMs) for continuous-valued hidden states are7

widely used.8

Traditionally, an HMM is generative because it models a distribution P (On
1 |Sn

1 ),9

the data generation process (DGP) of the observed output sequence, On
1 =10

o1, . . . , on, given the hidden state sequence, Sn
1 = s1, . . . , sn, and thus P (On

1 |Sn
1 ),11

a state-dependent term, is included in the criterion for determining a sto-12

chastic optimal sequence of hidden states. Recently, Zhou (2005) proposes13

a discriminative hidden Markov model (D-HMM), which includes output-14

dependent terms P (st|On
1 ), t = 1, · · · , n, in the criterion, based on an assump-15

tion of “mutual information independence”. Meanwhile, Li (2005) presents16

the so-called “hidden Markov models with states depending on observations”17

(HMMSDO), which assumes that the current state st depends not only on18

the last state st−1 but also on the last output ot−1, so that output-dependent19

terms P (st|st−1, ot−1) are included in the criterion.20

Both the D-HMM and HMMSDO show superior performance in determining21

the optimal state sequence for certain applications. Zhou (2005) shows that the22

D-HMM outperforms the corresponding generative hidden Markov model (G-23

HMM) for part-of-speech tagging and phrase chunking; Li (2005) shows that24
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HMMSDO outperforms the standard HMM for prediction of protein secondary1

structures when the training set is large enough.2

In this note, we shall study the assumption of “mutual information indepen-3

dence” that is used for deriving the D-HMM (Zhou, 2005) in the context of4

determining an optimal state sequence, and then extend it to derive its gener-5

ative counterpart, the G-HMM. In addition, state-dependent representations6

for these two output-dependent HMMs will be presented.7

2 Generative HMM8

Following the notation used by Zhou (2005), the definition of the optimal9

hidden state sequence Sn
1 based on the observed output sequence On

1 is that10

of the maximum a posteriori (MAP) estimator S∗ of Sn
1 :11

S∗ = argmax
Sn

1

{log P (Sn
1 |On

1 )} . (1)

The G-HMM rewrites the criterion (1) through applying Bayes’ theorem and12

ignoring the item determined purely by On
1 as13

S∗ = argmax
Sn

1

{log P (Sn
1 ) + log P (On

1 |Sn
1 )} ,

which is further factorised as14

S∗ = argmax
Sn

1

{
log P (Sn

1 ) + log

(
P (o1|Sn

1 )
n∏

k=2

P (ok|Ok−1
1 , Sn

1 )

)}
.

In order to make this formulation tractable, an assumption that On
1 is condi-15

tionally independent given Sn
1 is in general introduced as, for all k ∈ {2, . . . , n},16

P (ok|Ok−1
1 , Sn

1 ) = P (ok|Sn
1 ) , (2)
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and thus based on such a conditional independence assumption, the MAP1

estimator for the G-HMM is simplified to2

S∗ = argmax
Sn

1

{
log P (Sn

1 ) +
n∑

i=1

log P (oi|Sn
1 )

}
. (3)

The G-HMM is regarded as being generative because it directly models the3

DGP P (oi|Sn
1 ) of the observed oi from the hidden Sn

1 .4

In practice, as for the standard HMM, the assumption (2) is further simplified5

to6

P (ok|Ok−1
1 , Sn

1 ) = P (ok|Sn
1 ) = P (ok|sk) , (4)

and thus the MAP estimator of the standard HMM is7

S∗ = argmax
Sn

1

{
log P (Sn

1 ) +
n∑

i=1

log P (oi|si)

}
. (5)

3 Discriminative HMM from Mutual Information Independence8

The D-HMM rewrites the criterion (1) through applying Bayes’ theorem, but9

not ignoring the item determined purely by On
1 , as10

S∗ = argmax
Sn

1

{
log P (Sn

1 ) + log
P (Sn

1 , On
1 )

P (Sn
1 )P (On

1 )

}
.

To make this formulation tractable, an assumption that the mutual informa-11

tion (MI (Sn
1 , On

1 ) = log
P (Sn

1 ,On
1 )

P (Sn
1 )P (On

1 )
) between Sn

1 and On
1 is independent with12

respect to each hidden si was introduced by Zhou (2005) as13

MI(Sn
1 , On

1 ) =
n∑

i=1

MI(si, O
n
1 ) , (6)

or, in more detail,14

log
P (Sn

1 , On
1 )

P (Sn
1 )P (On

1 )
=

n∑

i=1

log
P (si, O

n
1 )

P (si)P (On
1 )

=
n∑

i=1

log
P (si|On

1 )

P (si)
. (7)
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Based on such a representation, the MAP estimator for the D-HMM is sim-1

plified as (Zhou, 2005)2

S∗ = argmax
Sn

1

{
log P (Sn

1 ) +
n∑

i=1

log P (si|On
1 )−

n∑

i=1

log P (si)

}
. (8)

The D-HMM is regarded as being discriminative because the criterion (8)3

includes directly the discriminative process P (si|On
1 ), representing an output-4

dependence of a hidden state si on all the observed outputs On
1 .5

We shall make four observations about the D-HMM.6

First, it is noted that the criterion (8) is simultaneously to maximise the max-7

imum posterior marginal (MPM) estimator
∑n

i=1 log P (si|On
1 ) of log P (Sn

1 |On
1 )8

and to maximise the distance between the state transition model log P (Sn
1 )9

and its independent-based counterpart
∑n

i=1 log P (si).10

Second, in order to satisfy the assumption (7) underlying the D-HMM, it is11

required that12

n∏

k=2

P (sk|Sk−1
1 , On

1 )

P (sk|Sk−1
1 )

=
n∏

k=2

P (sk|On
1 )

P (sk)
.

Since this is valid for any value of sk, it follows that, for all k ∈ {2, . . . , n},13

P (sk|Sk−1
1 , On

1 )

P (sk|Sk−1
1 )

=
P (sk|On

1 )

P (sk)
. (9)

Third, the assumption (7) can be rewritten as14

log
P (Sn

1 , On
1 )

P (Sn
1 )P (On

1 )
=

n∑

i=1

log
P (si, O

n
1 )

P (si)P (On
1 )

=
n∑

i=1

log
P (On

1 |si)

P (On
1 )

. (10)

Based on such a representation, the MAP estimator (8) for the D-HMM can15

be rewritten, with the term
∑n

i=1 log P (On
1 ) determined purely by On

1 being16

ignored, as17

S∗ = argmax
Sn

1

{
log P (Sn

1 ) +
n∑

i=1

log P (On
1 |si)

}
. (11)
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Therefore, the D-HMM can also be represented as being generative because1

the criterion (11) includes a generative-like process P (On
1 |si), representing a2

state-dependence of all the observed outputs On
1 on a hidden state si.3

Fourth, it can be seen that, when the assumption (6) of mutual information4

independence develops from independence between pairs (si, O
n
1 ) into that be-5

tween local pairs (si, oi) such that MI(Sn
1 , On

1 ) =
∑n

i=1 MI(si, oi), the criteria6

(11) and (8) degenerate into the criterion (5), indicating that the D-HMM7

degenerates into the standard HMM.8

4 Generative HMM from Mutual Information Independence9

Furthermore, similarly to the assumption (6) proposed by Zhou (2005), an10

assumption that mutual information between Sn
1 and On

1 is independent with11

respect to each observed oi can be introduced here as12

MI(Sn
1 , On

1 ) =
n∑

i=1

MI(Sn
1 , oi) , (12)

or, in more detail,13

log
P (Sn

1 , On
1 )

P (Sn
1 )P (On

1 )
=

n∑

i=1

log
P (Sn

1 , oi)

P (Sn
1 )P (oi)

=
n∑

i=1

log
P (oi|Sn

1 )

P (oi)
. (13)

Based on such a representation, we can obtain another generative model and14

its MAP estimator, with the term
∑n

i=1 log P (oi) determined purely by On
115

being ignored, as16

S∗ = argmax
Sn

1

{
log P (Sn

1 ) +
n∑

i=1

log P (oi|Sn
1 )

}
. (14)

This estimator is in fact the estimator (3) of the G-HMM, i.e., the G-HMM17

can be derived under the assumption (12), a type of mutual information in-18
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dependence.1

Similarly, we shall make three observations about this G-HMM, which is de-2

rived from mutual information independence.3

First, in order to satisfy the assumption (13) of the G-HMM, it is required4

that, for all k ∈ {2, . . . , n},5

P (ok|Ok−1
1 , Sn

1 )

P (ok|Ok−1
1 )

=
P (ok|Sn

1 )

P (ok)
. (15)

Therefore, under the MAP criterion (1), the conditions (15) and (2) have the6

same effect on determining the optimal hidden Sn
1 .7

Second, the assumption (13) can be rewritten as8

log
P (Sn

1 , On
1 )

P (Sn
1 )P (On

1 )
=

n∑

i=1

log
P (Sn

1 , oi)

P (Sn
1 )P (oi)

=
n∑

i=1

log
P (Sn

1 |oi)

P (Sn
1 )

. (16)

Based on such a representation, the MAP estimator (14) for the G-HMM can9

be rewritten, with the terms related to log P (Sn
1 ) being combined, as10

S∗ = argmax
Sn

1

{
(1− n) log P (Sn

1 ) +
n∑

i=1

log P (Sn
1 |oi)

}
. (17)

Therefore, in this sense, the G-HMM can also be represented as being dis-11

criminative because the criterion (17) includes a discriminative-like process12

P (Sn
1 |oi), representing an output-dependence of all the hidden states Sn

1 on13

an observed output oi.14

Third, it can be seen that, when the assumption (12) of mutual information15

independence develops from independence between pairs (Sn
1 , oi) into that be-16

tween local pairs (si, oi) such that MI(Sn
1 , On

1 ) =
∑n

i=1 MI(si, oi), the criteria17

(17) and (14) degenerate into the criterion (5), indicating that the G-HMM18

degenerates into the standard HMM.19
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5 Equivalence between G-HMM and D-HMM1

Once we assume a fully independent mutual information between any state-2

output combination (si, oj) as3

MI(Sn
1 , On

1 ) =
n∑

i=1

n∑

j=1

MI(si, oj) , (18)

or, in more detail,4

log
P (Sn

1 , On
1 )

P (Sn
1 )P (On

1 )
=

n∑

i=1

n∑

j=1

log
P (si, oj)

P (si)P (oj)

=
n∑

i=1

n∑

j=1

log
P (oj|si)

P (oj)
=

n∑

i=1

n∑

j=1

log
P (si|oj)

P (si)
,

(19)

this assumption results in two criteria, one generative and the other discrimi-5

native, with the MAP estimators as6

S∗ = argmax
Sn

1

{log P (Sn
1 ) +

n∑

i=1

n∑

j=1

log P (oj|si)} , (20)

7

S∗ = argmax
Sn

1



log P (Sn

1 ) +
n∑

i=1

n∑

j=1

log P (si|oj)−
n∑

i=1

{n log P (si)}


 , (21)

respectively. These two criteria are equivalent.8

In the context of determining an optimal sequence of hidden states, apart9

from the equivalence above, up to now, we find two occurrences of equivalence10

between a discriminative representation of the MAP criterion and its genera-11

tive counterpart: one is for the D-HMM between the criteria (8) and (11), the12

other is for the G-HMM between the criteria (17) and (14).13

We shall further illustrate such equivalence with two simple but related HMMs:14

one is a generative-like state-dependent model, which assumes that the current15

output ot depends not only on the current state st but also on the last state16

st−1; the other is a discriminative-like output-dependent model, the so-called17
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HMMSDO (Li, 2005), which assumes that the current state st depends not1

only on the last state st−1 but also on the last output ot−1.2

The joint distribution of the first generative-like state-dependent model is3

P (Sn
1 , On

1 ) = P (s1)P (o1|s1)
n∏

i=2

P (si|si−1)P (oi|si, si−1) . (22)

This distribution can be rewritten as4

P (Sn
1 , On

1 ) = P (o1, s1)
n∏

i=2

P (si, oi|si−1)

= P (o1)P (s1|o1)
n∏

i=2

P (oi|si−1)P (si|si−1, oi) ,

(23)

which leads to a discriminative-like output-dependent part P (si|si−1, oi) in the5

distribution. In fact, the difference between the probabilistic directed acyclic6

graphs (DAGs) corresponding to the joint distributions (22) and (23) is only7

in that directions of edges from si to oi are reversed.8

Similarly, the joint distribution of the discriminative-like output-dependent9

HMMSDO, with P (si|si−1, oi−1) included, is (Li, 2005)10

P (Sn
1 , On

1 ) = P (s1)P (o1|s1)
n∏

i=2

P (si|si−1, oi−1)P (oi|si) . (24)

This distribution can be rewritten as11

P (Sn
1 , On

1 ) = P (s1)P (on|sn)
n∏

i=2

P (si, oi−1|si−1)

= P (s1)P (on|sn)
n∏

i=2

P (si|si−1)P (oi−1|si, si−1) ,

(25)

which leads to a no longer discriminative-like output-dependence in the dis-12

tribution. In fact, the difference between the DAGs corresponding to the joint13

distributions (24) and (25) is only in that directions of edges from si to oi−114

are reversed. In practice, whether or not P (oi−1|si, si−1) is reasonable needs15

to be justified, because it means that the current output depends on the next16

9



state.1

6 Summary2

This note has suggested that the mutual information assumption (12) resulted3

in the G-HMM, while another mutual information assumption (6) resulted in4

the D-HMM. However, in practice, whether or not the assumptions are reason-5

able and how the corresponding HMMs perform can be data-dependent; re-6

search efforts to explore an adaptive switching between or combination of these7

two models may be worthwhile. Meanwhile, this note has suggested that the8

so-called output-dependent HMMs could be represented in a state-dependent9

manner, and vice versa, essentially by application of Bayes’ theorem.10
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