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Abstract—Attitude determination is of major importance in
Guidance and Control Systems of the Unmanned Aerial Vehicles
(UAV’s). Supplying wrong or imprecise attitude can very often
be catastrophic for the UAV’s. Vision sensors are nowadays
essential as they provide a rich source of information given as
relative measurements between the vehicle navigation
parameters (position, velocity and attitude) and the environment.
This paper presents a framework for attitude determination from
single camera vector observations. We assume a known
environment in a form of a map and true vehicle positions from
which each observation has been taken.
Two different methods for attitude determination are presented:
an iterative numerical solution based on Gauss Newton's method
and an exact method known as the Davenport q-method. Pros
and cons of the both solutions are presented.
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I. INTRODUCTION

Today UAV’s have become an indispensable ingredient for
many applications where human operation is considered
unnecessary, too dangerous or impossible [1]. These
applications include planetary explorations, environmental and
climate research and monitoring, traffic monitoring, inspection
of man-made structures such as power lines and pipelines,
urban planning, pollution studies and many others. Many of
today’s intelligence gathering, surveillance and
reconnaissance missions cannot be carried out without UAV’s.

All these applications and missions require UAV’s to
operate in a partially known or known environment, where we
have some priori knowledge of the environment.

Typically in these applications and missions the need for
safety arises. Safety here simply implies that the UAV’s are
not damaged or destroyed during the mission [2]. Apart from
factors such as vehicle constraints, environment factors
(strong winds, icing, thunderstorms) and enemy fire, reliable
navigation parameters play a crucial role in the safety of the
UAV’s. Supplying wrong or imprecise navigation parameters
(position, velocity and attitude) to the Guidance and Control
System can, very often, be catastrophic for the UAV’s.

In general the attitude of a rigid body in space is a
representation of the instantaneous orientation of one
coordinate frame (body-fixed coordinate frame) to a second
coordinate frame (inertial coordinate frame). The axes of the
body and inertial frames are related by a linear transformation
commonly given by an orthogonal matrix usually referred to
as matrix of transformation i.e. transformation matrix [3]. This
matrix may be represented by various sets of coordinates:
Euler angles, quaternions, etc. The quaternion approach is
often the preferred implementation as the linearity of the
quaternions, the lack of trigonometric functions, and the small
numbers of parameters that allow efficient implementation.
Quaternion parametrizations are singularity free and are more
computationally efficient then the Euler angles [4]. The only
shortcoming of the quaternions is that they don’t have simple
geometrical representation and because of this can’t be
measured directly.

Vision sensors are essential nowadays, primarily because
they are cost effective, small, compact and reliable passive
sensors and secondarily are capable of providing a rich source
of information about the vehicle environment.

A single camera is the desired hardware setup for UAV’s, it
provides a rich source of information given as relative
measurements between the vehicle navigation parameters
(position, velocity and attitude) and the environment. Because
of their nature of being relative they interconnect the
navigation parameters and the environment. If we have known
environment using the relative measurements we can
determine the vehicle navigation parameters and vice versa, if
we have perfect vehicle navigation parameters we can create a
map of the environment. The major drawback of the single
camera is the absence of the depth information i.e. relative
range to the map points.

In this paper we assume known environment in a form of a
map (set of known map points) and true vehicle positions from
where the single camera vector observations has been taken.
Both the map points and the vehicle positions are given in the
navigation frame which represents an inertial frame. Here we
give proper framework for attitude determination from single
camera vector observations. We show that the single camera
vector observation of a map point and its replica vector
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formed from the vehicle position and the map point are
sufficient for determination of the vehicle attitude.

We use two different methods for determination of the
solution. The first method is an iterative numerical solution
based on Gauss Newton's method and the second is the more
elegant closed form solution known as the Davenport
q-method, solution to the Wahba’s problem.

Section 2 describes the single camera setup on the vehicle.
The camera vector observations presented as vector
application are described here. Section 3 and 4 are devoted to
the Gauss Newton's method and Davenport q-method
respectively. The simulation results are presented in section 5,
where the pros and cons of the both methods are elaborated.
The conclusions and the future work are part of section 6.

II. SINGLE CAMERA SETUP

We assume that the single camera is mounted on such a way

that the camera frame ),,;( ccc zyxP is at the center of

gravity of the vehicle or very near to the center of gravity and
is aligned with the vehicle body frame. The origin of the

camera frame is at the perspective center P of the camera i.e.
the center of gravity of the vehicle.
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Figure 1. Single camera setup (vectors application)

The cx axis is defined in forward direction and is

perpendicular to the horizontal component u of the camera

image. The cz axis is perpendicular to cx axis and is equal to

the focal length of the camera.

The negative sign appears when cz axis is pointing to the

center of the camera image. The cy axis completes the right

handed orthogonal coordinate system and is perpendicular to
the vertical component v of the camera image, see figure 1.

In the camera frame we measure the camera vector cr . The

unit vector in the direction cr usually notated as cr̂ may be

evaluated as

c

c
c

r

r
r ˆ . (1)

Vector cr can be transformed in the navigation frame with

nbC 2 , the transformation matrix that transforms body frame

coordinates into navigation frame coordinates:

cnb rCr 2 (2)

where nbC 2 given in quaternion form is [4]:
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After the transformation for vector r the following applies:

a) pbr 

b)
pb

pb
r




ˆ , the unit vector representing the direction.

c) r̂ , the range ( is an unknown parameter).

The range  represents the difference between the map point

vector m and the position vector p and may be written as

pm  . (4)

The unit vector in the direction  notated as r̂ in the

navigation frame also may be evaluated as
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The quaternion vector Tqqqqq ][ 3210 used in the

transformation matrix (3) is with unity norm i.e.
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This nice property of the quaternions can be used for

transformation of the unit vector cr̂ in the camera frame to

the unit vector r̂ in the navigation frame:

cnb rCr ˆˆ
2 . (7)

We assume that we have information about the map point

vector m , the position vector from where the measurement

was taken p and single monocular camera mounted on the

vehicle as described. We take observations with the camera of
the map point and we want to determine the attitude of the
vehicle, see figure 1. Actually we want to compute the

quaternion vector Tqqqqq ][ 3210 . The camera

measurements give the unit vector cr̂ in the camera frame

(body frame) computed from equation (1). Using the map

point vector m and the position vector p we compute the

range  with equation (4). Next we use the range  in

equation (5) to calculate the unit vector r̂ in the navigation

frame (replica of the single camera vector measurement).
Now that we have the two unit vectors, one in the camera
frame (body frame) the other in the navigation frame, we can

determine the quaternion vector q .

Equation (7) written in matrix form is
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III. THE GAUSS-NEWTON METHOD

Since the quaternion vector q is four elements vector

additional equation should be added to equation (8) in order to

solve the four unknowns in q . The property of the quaternion

vector to be with unity norm, equation (6) can be added.
Equation (8) expressed in component form including equation
(6) is:
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The nonlinear system of equations (9) can be written:

nnn ZxfY  ),( (10)

This nonlinear system of equations includes four nonlinear
equations and involves finding a solution, the quaternion

vector q such that every equation in the nonlinear system is

0. Efficient computing methods such as the Gauss-Newton
method can be used for solving this problem.
An approach suggested by Gauss is to use a linear
approximation to the nonlinear function to iteratively improve

an initial guess
0 for  and keep improving the estimates

until there is no change [5]. That is, we expand the nonlinear

function ),( nxf in a first order Taylor series about
0 as
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Incorporating all N cases, we write

)()()( 000  V (14)

where 0V is the NN  derivative matrix with elements

}{ nnv . This is equivalent to approximating the residuals,

)()(  yz , by
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where )( 00  yz and 0 .

We then calculate the Gauss increment
0 to minimize the

approximate residual sum of squares
200 Vz , using
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The point
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should now be closer to y than )( 0 , and so we move to

this better parameter value
001  and perform

another iteration by calculating new residuals )( 11  yz ,

a new derivative matrix 1V , and a new increment. This
process is repeated until convergence is obtained, that is, until
the increment is so small that there is no change in the
elements of the parameter vector [5].
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Convergence implies that the best estimates of the
parameters are obtained. The Gauss-Newton method provides
solution even if the system may not have a zero i.e. it returns a
point where the residual is small. If the Jacobian of the system
is singular the Gauss-Newton method might converge to a
point that is not a solution of the system of equations.

IV. THE DAVENPORT Q-METHOD

Spacecraft attitude determination is perhaps the oldest
application and the attitude determination problem for a
spacecraft from vector measurements was first formulated in
[6]. Wahba formulated the attitude determination problem
using vector observations as follows:

Given two sets of n points },,,{ 21 nvvv  , and

},,,{ 21 nwww  , where 2n , find the rotation matrix R

(i.e., the orthogonal matrix with determinant 1 ) which
brings the first set into the best least squares coincidence with

the second. That is find R which minimizes


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
n

i
ii Rvw

1

2
. (17)

The matrix R is a least squares estimate of the rotation

matrix. In our case the vector iv is the unit vector cr̂ in the

camera frame i.e. body frame and the vector iw is the unit

vector r̂ in the navigation frame (replica of the single camera

vector measurement), see equation (8).
The elegant q-method as solution to the Wahba’s problem was
developed by Davenport [7]. The rational of the q-method is
based on the following identity:
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where the matrix K is a function of the vector measurements.

The corresponding weights denoted by ia , assume that they

add to one i.e. 1
1
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column matrix z and the scalar  are defined as follows:
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where )(tr denotes the trace operator.

Next the 44 symmetric matrix K of equation (18) is
computed
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Davenport showed that the optimal quaternion estimate
Tqqqqq ][ 3210 is an eigenvector of the matrix K .

However there are four eigenvalues and they each have
different eigenvectors. The eigenvector which corresponds to

the largest eigenvalue of the matrix K is the least squares
optimal estimate of the attitude.

V. SIMULATION RESULTS

In the simulation we assumed that Inertial Measurement
Unit (IMU) is mounted at the center of gravity of the vehicle.
The measurements (angular rates) from the gyros are used to
determine the attitude of the vehicle, the quaternion vector

Tqqqqq ][ 3210 . The instrumentation, computation,

alignment, environment errors make the gyro measurements
diverge slowly from the real measurements with time, so as
the vehicle attitude.

When the Gauss-Newton method was tested the vehicle
flies on a circular path around four map points, see figure 2.
Positions of the map points are

known TM ]3500370[1  , TM ]2550400[2  ,
TM ]3500430[3  and TM ]2480400[4  . The

monocular camera has focal length of 8 mm ( mf 008.0 ).

The observation errors (camera measurements) have variance

of nm5 ( m92 105  ).
From figure 3 to figure 6 the errors in the quaternion

elements of the quaternion vector
Tqqqqq ][ 3210 which represents the vehicle

attitude are shown. We can see the divergent (black line) and
the estimated (gray line) errors.
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Figure 2. Vehicle trajectory around four known map points
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When we used four known map points the problem of
attitude determination becomes overdetermined, thus equation
(9) becomes overdetermined nonlinear system of equations.
The Gauss-Newton method was tested with one map point
estimate but the simulation results turn not to improve much.
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Figure 3. 0q element errors
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Figure 4. 1q element errors
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Figure 5. 2q element errors
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Figure 6. 3q element errors

As this method is very sensitive to the initial guess (here we
have used the divergent attitude determined from the IMU)
using two or more map points are must in order to obtain
satisfactory results, as shown on figure 3 to figure 6.
The camera vector observations are always corrupted by
random errors which may cause divergence of the Gauss-
Newton method. In our case we used observation errors with

variance of nm5 ( m92 105  ).
In the simulation of the Davenport q-method the vehicle

flies on a circular path around same four map points, see
figure 7. The positions of the map points are known. The
monocular camera has the same specifications. From figure 8
to figure 11 the errors in the quaternion elements of the

quaternion vector Tqqqqq ][ 3210 are shown. We

can see the divergent (black line) and the estimated (gray line)
errors. As with the Gauss-Newton method using two or more
map points are must in order to obtain satisfactory results, as
shown on figure 8 to figure 11.
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Figure 7. Vehicle trajectory around four known map points
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Davenport q-method has considerable advantages over the
Gauss-Newton method in that it does not require initial guess
of the attitude, it does not require linearization of some
equation model, the covariance of the estimate can be
calculated and it may be extended to a case where the
measurements have different individual variances.
The notes on the Davenport q-method are as follows. Since it
requires eigenproblem to be solved the solution is numerically
“intensive”.
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Figure 8. 0q element errors
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Figure 9. 1q element errors

0 10 20 30 40 50 60 70 80 90 100
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
q2

t[s]

q
2

e
rr

o
rs

Figure 10. 2q element errors
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Figure 11. 3q element errors

The case when two largest eigenvalues of K are equal is
not a failure of the q-method; it means that the data aren’t
sufficient to determine the attitude uniquely [8].

VI. CONCLUSIONS AND FUTURE WORK

Attitude determination in many means is a complicated
problem. In this paper we have presented a proper framework
for attitude determination from single camera vector
observations in a known environment. The Gauss Newton
method and the Davenport q-method were put on the test. The
simulation results show that the Davenport q-method is a
preferred choice. Based on the Davenport q-method many
algorithms such as the QUEST algorithm [9] provide less
“intensive” way to estimate the solution to the eigenproblem
and will be included in the future research. Also in our future
work we look for a way how to determine attitude from single
camera vector observations when the environment is
unknown. The SLAM theory in particular BOSLAM has taken
our attention.
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