Un1vers1ty

Qf Glasgow

Vanderbauwhede, W. (2008) A formal semantics for control and data
flow in the gannet service-based system-on-chip architecture. In:
International Conference on Engineering of Reconfigurable Systems and
Algorithms, 13-16 July 2008, Las Vegas, USA.

http://eprints.gla.ac.uk/6546/

Deposited on: 24 July 2009

Enlighten — Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

A Formal Semantics for Control and Data flow in the Gannet Senwce-based

System-on-Chip Architecture

Wim Vanderbauwhede
Department of Computing Science, University of Glasgow, UK
wim@dcs.gla.ac.uk

Abstract— There is a growing demand for solutions which
allow the design of large and complex reconfigurable Systermn-
Chip (SoC) at high abstraction levels. The Gannet project po-
poses a functional programming approach for high-abstradion
design of very large SoCs. Gannet is a distributed servicedsed

is impossible; fixed point-to-point connections result ungh
wire overheadsPacket-switched Networks-on-Chip (No(&)
provide a solution because they offer flexible connectigityl
an efficient mechanism for managing wires.

SoC architecture, i.e. a network of services offered by handare
or software cores. The Gannet SoC is task-level reconfigurdd: it
performs tasks by executing functional task description pograms
using a demand-driven dataflow mechanism. The Gannet archi-
tecture combines the flexible connectivity offered by a Netark-
on-Chip with the functional language paradigm to create a
fully concurrent distributed SoC with the option to completely
separate data flows from control flows. This feature is esseiat
to avoid a bottleneck at he controller for run-time control of
multiple high-throughput data flows.

In this paper we present the Gannet architecture and languag
and introduce an operational semantics to formally descrile the
mechanism to separate control and data flows.

I
5] 5

local
memory

configurable
service core

service

manager

trans-
ceiver

[| s
A

service module

NoC
switching
node

tile with
IP core

—\%— NoC switch
(=T

(a) SoC with grid-style NoC topol

y (b) service-based SoC node

Distributed System-on-Chip architecture, Operational Se
mantics, Service-based System-on-Chip, Network-on-Chip
Fig. 1. Gannet service-based SoC with on-chip network
I. THE GANNET SERVICE-BASED SOC ARCHITECTURE

There is a growing demand for solutions allowing to de- For very large SoCsdesign reusés essential [9]. Design
sign complex reconfigurable Systems-on-Chip (SoC) at hig@use is facilitated by the concept of IP cores. These are are
abstraction levels [1], [2]. The Gannet project aims to addr highly complex, self-contained processing units offerangpe-
this need by proposing a novel, task-level reconfigurabﬂ‘éﬁc functionality, such as data acquisition units, audidéo
System-on-Chip architecture which uses a concurrent exe€@decs, cryptography cores, TCP/IP packet filtering et@yTh
tion paradigm based on functional language processing. Té&n be implemented as hardware logic circuits, as embedded
Gannet architecture is a proposed distributed serviceebagnicrocontrollers running specific software, or combinatiof
System-on-Chip architecture which performs tasks throud®th.
the interaction of services offered by heterogeneous dataBecause of their self-contained nature, treating IP blocks
processing cores [3], [4]. as servicesis a logical abstraction. To achieve service-based

The tasks are expressed using a functidaak description behaviour, every tile of a Gannet SoC contains a special
language The Gannet fabric consists of a setsefrvice nodes control unit (theservice managgr which provides a service-
each offering one or morservicesto the system. All nodes oriented interface between the IP core and the system (Fig.
are connected through a flexible interconnect medium. 1(b)). Designing a Gannet SoC reduces to instantiating the

In practice, the Gannet System-on-Chip (Fig. 1(a)) cossidP cores in the Gannet fabric and creating a task description
of a regular matrix of processing unitdil¢s) connected program.
through a network-on-chip (NoC). The architecture is moti-
vated by the growing complexity offered by the latest genera
tion of IC manufacturing technologies. Following Mooregsy,
the complexity of integrated circuits has grown steadilyha We can consider the Gannet SoC as a machine for running
past decades, from ICs with a few components via increasingsannet programs. The Gannet SoC architecture is quite dif-
performant microprocessors to ever more complex Systenfisrent from the familiar von Neumann-style processor-tase
on-Chip [5], [6]. Tomorrow’s SoCs will bevery big (billions SoC architecture: it is a distributed processing systerhauit
of logic gates). The main issues with these very large So@kbal memory. There is no program counter, and the program
are connectivity and design complexity [7]. Traditionalsbu is not executed in a sequential fashion but in a demand-drive
style interconnects are no longer a viable option: syndhromataflow fashion [10], [11]. We introduce a more formalised
sation of hundreds of processing cores over large distandescription of the Gannet machine:

Il. GANNET MACHINE OPERATION

o The Gannet machine is a distributed computing systefm Syntax

where every computational nod®nsumes packe®nd Gannet syntax is an s-expression syntax (similar to LISP or
produces packetsnd can store state information betweeg-heme [12], [13]) completely free from syntactic sugar. In

transactions. _ BNF, a Gannet expression must always obey
o A Gannet packet consist of a header and a payload. The
payload can either be data or instruction code (SymbolSkervice-expr = (service-symbol '?arg — expr +)

The header consists of following fields: PackBtpe
(code reference data), destination addressiq), return
addressRe), packet identifierIff). We denote a Gannet whereservice-symbotepresents a particular service. Every
packet ao(Type, To, Ret, Id; Payload) service in the system has a correspondsegvice-symboin
Thus in general terms, the semantics of a Gannet service ¢a@ program. There are no other keywords in the language, i.e
be described in terms of the task code and the result packétflow control constructs are provided by services. Theyonl

arg-expr = service-expr | literal — symbol

produced by the task as follows: additional syntactic construct is the quote.
« SC: Store code packet: a service S; receives a Consider as a trivial example a SoC with 4 services: image
codepacketp(Code, S;, S;, Riask; task) wheretask = capture {(ng) from several cameras, creating a composite

(S; ai...a,). The task is stored and referenced By,,. image €onpose), conversion to jpeg format or png for-

« AT: Activate task : the serviceS; in state receives a Mat onvert), compressionqonpress) and encryption
task referencepacketp(Ref, S;, S, Rid; Riask) * (encrypt). Then to obtain a compressed composite of raw
the service activates the task referenced By,,.: image from cameras 1 and 3, the task description would be
(Si aj...ay,). This results in evaluation of the arguments _)

Q1.0 (conpress (conpose (ing canl) (ing canB)))
— DR: Delegate by reference packetthe service To obtain a jpeg-converted, encrypted image from camera 2 it
manager requests activation of subtasks referenc¥guld be
by reference sybols by sending aeferencepacket (encrypt (convert jpeg (ing canR)))
to the corresponding service
— SQ: Store constant symbol:all constantsymbols Control services

(e.g. numbers) in the code ares stored in the local 1, 4ji0w control over the flow of data, Gannet defines a
stor.e. _ number ofcontrol services. The core set consist of the lexical
— SR: Store returned result: result data from sub- scoping constructsgfoup, assign read), the branching con-

tasks are stored in the local store. struct (f) and the function definition and application constructs
o P: Processing:When all arguments of the subtask hav@ambda, apply).

been evaluated, the data are passed on to the service core. 3) | exical scoping:
The core performs processing on the date; the servicgeroup-expr ::= (group '?assign-expr + '?arg-expr)
now in state ’, produces a result packet

assign-expr = (assign’var-symbol arg — expr +
Pres = p(Types, Sj, i, Ria; Payload;) where bothPay- greep B (j, Y g P)
load and the state change &iate’ are the result of read-expr = (read’var-symbol)
processing the evaluated argumemisa,,by the core of b) Conditional branching:
Si. if-expr = (if service-expr '?arg-expr '?arg-expr)
o Dres IS S€Nt t0S; Where Payload; is stored in a location _ o o
referenced byR,,. ¢) Function definition and application:
lambda-expr = (lambda’var-symbol + ' service-expr)

This operation sequence results in a fully parallel executi ,
of all branches in the program tree in an unspecified orde@pply-expr = (apply lambda-expr " arg-expr +)
governed by the processing time of the packets.

B. Gannet core language operational semantics

To provide understanding of how the Ganrlahguage
~ The tasks performed by the Gannet system are expresgefys (as opposed to the Ganmeaching, we present a con-
in a functional task description language. A task des@ipti yentional small-step semantics for the Gannet core languag
defines the interactions between the services by mappimy eve 1y Notations and DefinitionsWe use a context-sensitive
service to anamed functionand describing the flow of data ey ction semantics as introduced by Felleisen [14] and use
between the functions in terms of function calls. in [15]. Because the Gannet machine is different from a von

The Gannet language is the equivalent of an assemblgL,;mann machine, some minor modifications to the notation
language for the Gannet machine. By this we mean that, required. Full details can be found in [3].

a program written in Gannet syntax can be transformed in - 5y Eyajuation context:The context for evaluation must

machine code i.n a trivial wiay..ln this section we discuss t'}ﬁways be a service expression, unless the given expression
syntax, semantics an compilation of the language. is a service expression. Thds ::= []| (s...C...). Evaluation

1The order of arrival is actually irrelevant: if the referenarrives earlier, of an expression 15 independent of neighbouring or enalpsin
activation will occur as soon as the code arrives. expressions.

IIl. THE GANNET LANGUAGE

b) Store: The Gannet machine does not have a global h) Function definition and applicationThis is the oper-
memory. Rather, every service has its own local memory, witltional semantics for lambda functions in Gannet.
read-only access for the other services. This means that thé&unctions are defined using theembda service:
store() concept must be contextualised. The context of the

store is indicated with a subscript. C[(lambda qz1...qz, geg)]
_) Shorth_and notationTo keep the not_ation concise, we — C[{ x1..xpeq)]
will use following shorthand for the terms introduced above) S)
arg-expr : e service-symbol : s Function application is done by trepply service:
quoted-expr : qe var-symbol : v
value : w _ arg-symbol : x (storeappiy(...)
Furthermore, an expressian always evaluates to a value C[(apply (lambda ¢z1...qz, geq) gei...qey))

Wyt €; — W;

d) Non-control-service semanticsThe operational se-
mantics of a program running on the Gannet machine in the
absence of control services amounts to simpkgpplication:

— (storeappliy(...(z1 €1)...(xn ey)) Clea| zi/ €i])

— (storeapply(...) Clw,])

C. Compilation
Clls erwen)] = Clul; w=0d(s,wr, ..., wn) This section explains how a Gannet program is compiled
e) Control service semantic#s discussed above, the in-iNto packets for running on the Gannet machine.

troduction of language services leads to a number of additio ~ The compilation process is very straightforward:
rules and symbols. We assume all expressions are well-thrme 1) Decompose the nested s-expression into a list of flat

f) Grouping and Variables:The grouping and assign- s-expressions by replacing the nested expressions by
ment services effectively operate as a let-construct. Asyev references
service can only act on a local store, theup, assignand
read services must be provided by a single service core. €root = (Sroot €1..-€;...€5)
The assignconstruct performs the binding: ei = (S; €i1.-€ijCin)

eij = (Si,j €ij1---€ijkCij
(storeassign(...) C(assign qv e)) 5 = (Sig CigLeigih-w€iom)

— (storeassign(...(v w)...) C[v])

2) Every symbol in the expression is replaced by a tuple
(a structured byteword) containing a unique number
mapped to the symbol and iksnd:

Values bound to variables are requested useay:

(storeassign(...(viwi)...) Cl(read qv1)])
— (storeassign(...(viw)...) Clw]) e; = r; = (reference, n,,)

The grouping construgroup performs checks if all assigns Si = s; = (service,ng,)
were successful, and if so, it returns the value of the lagt-ar

ment, otherwise it returns an error symbol. It also dealiesa
the memory for the variables bound by its assign arguments:

The resulting list of bytewords is called anstruc-
tion. Instructions are represented using pointy brackets:
(s; 15.1...1i,n)iS the instruction referenced hy.
3) Create code packets: using the notation introduced
above, a code packet is represented as
(s...(read qu;)...)]) pi = packet(code,ng,, GW,7:;(8; Ti1...Tin))
— (storeassign(...) Clw]) with ng,the name of the servic§;, GW is the “gate-

f th d th L. way”, the interface between the Gannet SoC and the
If the arguments to group are quoted, the semantics is) rside world.

different in that their evaluation is sequential ratherntha 4) Create a reference packet to the root task:
concurrent (similar td et * in Scheme). CW.r t'.T)

g) Conditional branching:The syntax for thef service root? T I Toon 100 .
allows both quoted and unquoted arguments. Semantidadly, Erhf g;’;\dtg\r/vay transfers the packets onto the NoC in no partic
behaviour is the same in both cases; however, as explainecﬁ“i% ’
Subsection V, quoting causes the result of the selecteditserv

(storeagsign(...) C[(group ...(assign quv; €;)...

Droot = packet(reference,ng

to be redirected to caller of thié service. D. Services and instruction sets
The Gannet machine has been introduced assaibuted
C[(f epger gey)] processing systetouilt out of tiles connected via a Network-
— Clwgslstf =wy, #07: f on-Chip. Every tile consists of an I€ore providing services,

a service manageand a local store. The service manager pro-

CIGE epey ef)] cesses packets based on their type and processes ingtsuctio
pet ©f (payloads of code packets) using a few simple rules. The

= Clwlstf =wp #07: f instruction set of the Gannet machine is the set of services

offered by the cores. Consequently, the instruction set iSAt any given moment, every servicg can be performing
entirely application-dependent and can be configured agjdesany number of actions. Actions are data-driven. Furtheemor

time or, if the cores are reconfigurable, at run time. all services are operating concurrently in a completelynasy
chronous fashion.
IV. SEMANTICS OF THE GANNET MACHINE 3) Small-step semantic§he semantics expresses an action

In this section we will present an small-step operationgdken by a service. Actions (indicated with the arrews4)
semantics for the Gannatachinebased on operations on theare triggered either by arrival of a packet or by completion
packets which make up a Gannet program and on the conteht computation by the service core. Every expression in the

of the local store. semantics describes the effect of the action in terms of the
state of the service, i.e. of its stores and queues.

A. Notation and definitions lines above the transition expression define items (e.g.

1) Notation: packets) appearing on the LHS, lines below the transition

« The notatios is used to separate a packet from the oth&XPression define items appearing on the RHS.

packets in the queuépeps) denotes a packet at the head,

(ps @ p) a packet at the tail. pi = packet(...); ..
« The notation = ("don’t care") indicates that the value Si(cpi) — Si(epj...)
of a field does not influence the operation. p; = packet(...); ...
o The notation... indicates the presence some non-
specified entities. In general, unspecified entities are lef _)
out unless omitting them would cause ambiguity. B. Packet processing by the services
« The notation _ indicates allocated available storageA service performs a set of actions which result in packets
space being received from and transmitted to other services.
2) Definitions: A subset of actions (thenarshallingset) is performed by

. The Gannet system consists a¥ service nodes the service manager, which is the generic data marshaltiitg u
Si(...),i € 1.N , a packet-switched communicationthrough which every service core interfaces with the system
medium ("Network on Chip") and a gateway to thdt is important to note that the service manager is genesc, i
outside world,G(...). its design and functionality is independent of the desigd an

« The unit of data transfer in the Gannet SBA is the packdtnctionality of the service core. The complementary set of
Depending on the packet®ype, the Payload can be actions (theprocessingset) is performed by the service core.
data or anexpression 1) Packet transfer between serviceBhe set of actions to

« The packet receive and transmit FIFO queues of thensfer packets between services consistd'af (transmit)
services are represented byy andgry. A received a and RX (receive). The semantics are straightforward:
packet is pushed onto the RX queue; a transmitted packet

is shifted off the TX queue. p = packet(x,1, j, ; *)
The RX queue actually consists of four queues multi- Si(grx(peps)) —TX Si(qrx(ps))
I h ket' ;
plexed by the packet'3ype Si(qrx(qs) —BX Si(qrx(qsep))

qrx (tasks(...),data(...),refs(...), code(...)).
Thusgrx (psep) is actuallygrx (...pt(psep)...) withpt € Both actions carry the implicit assumption that the system’
{tasks,data,refs, code}. (In the actual desigtasks()is NoC will transfer the packet correctly between nodgsand
not part of the RX queue, but placing it there simplifies;;. Note that the actions don’t happen synchronously: the NoC
the analysis.) is asynchronous and the delay for transmission of the packet
« Packet receive and transmit FIFO queugsy andqrx is unknown.
« Apart from the RX/TX queues, a service nofleconsists 2) Marshalling action setV: On receipt or activation of
of following entities: a task packet, a number of actions can be performed by the
— The data storetorey(...(Label data)...). Label is a service manager, as explained in 11.These are grouped in the
Gannet symboldata is the stored content. Space)/ (“Marshalling”) set. Application of theM set results in
allocated for data to be stored is denoted by evaluation of all arguments of a service call. The actions of
storeq(...(Label _)...) the completeV/ set{SC, AT, DR, SR, SQ} can be expressed
— The task packet storeitores,(...(Label p)...). p is as:
the stored packetabel is the Label field from the
packet’'s header. pi = packet(task, i, ,x; se;); se; = ($; a1...a,)
— The processing coreore(...) which performs the
actual processing of the data.

Thus an explicit notation for a service nodgs:

a; m=qri | 7

Si(grx (pi ® ps), qrx (gs), storeq(...))
—M " Si(grx (ps), qrx (gs),
Si(qrx (tasks(...),data(...), refs(...), code(...)) storeq(...(a1 wry)...(an wry)...))

qrx(...), storeq(...), storeg(...), core(...)) wry n=w; | Ty

This expression describes the evaluation of function argpacket of type tasko illustrate these mechanisms, this section
ments by the Gannet service. For the sake of brevity, tipeesents the semantics for theoup, assi gn,i f,| anbda
actions leading on to the activation of the task packet hasedappl y services.
been omitted. Instead, it is simply assumed that the service a) Lexically scoped variabled-exical scoping is imple-
manager receives a task packet. It is easy to show that thigriented through thgr oup andassi gn services:
equivalent to applying théSC, AT }action set on arrival of a ~ Variables are bound to an expression by thssi gn
reference packet. service:

3) Processing action sé?: The actions of the service core

. . : . . o = ket(task i ; ian);
determine the functionality of the service. This functititya Pra = packet(task, assign, group, ro; €assign);

can be defined as the type, destination and payload content of Cassign = (assignqu; rj); rj — w,
the packet the service produces based on the values marshall Sassign(storeq(...))
by the service manager. —M S ssign(storeq(...(qu; v;) (rj w))...)

The service core implements a functier,which takes P Susiam(storea(on.(v; w;)...))
n arguments with values,...w, and produces a resuib, assugn Al A5G TG)
optionally modifying the state of the store in the process. pre = packet(data, group, assign, 4; v;)

The P set consists of the actiongcall, eval, return}: The r ead service retrieves the value bound to a variable
the values are called from the store; the core performs fi®m the store and returns it:
computation ¢val) and returns a result.

The processing can be expressed as: pra = packet(task,read, i, 7r; €read);

éread = (read qu;)
Si(qrx(qs), qrx (ps), store((s1 w1)...(sn wn) state))

Sread(storeassign (-..(vj wj)...))
—P 5 s), s e p), store(state’)
ot j(arx(p 1’)’) (())’ M S, a(stOreqssign (- (quy v7) (05 10,)..)
p = packet(x, %, 1, % w); (€8; Wy ... wp) — W
rer e —P Sread(storeassign (- (v; w;)-..))

C. Control and non-control service semantics Pea = packet(data, i, x, i ;)
In this section and the next, all actions are combined in tlg?
M and P sets. The combined/ and P action sets result in
the service transmitting a result packet in response taviece
a task packet and potentially modifying the local store. T
semantics of the Gannet services can be described conyple
in terms of the task and result packets and the state of t
store. The aim of the next two sections is to illustrate this

The gr oup service takes as arguments a number of as-
nment expressions and one or more expression that may
call the assigned variables. Theoup andassi gn services
have a shared store. Thyg oup service returns the result of

fie last expression and clears all variables resulting ftioen
esf;ignment expressions from thesi gn store. Consequently,

si gn-variables are lexically scoped.

mechanism. .
= packet(task, group, i, ;e ;
1) Non-control service semanticslon-control services are pgmup_p (s ‘p . group)
services of which the core behaviour can be modelled-as €group = (FOUP -..Tassign.j-- Tk);
application. This type of service includes all third-patfy Tk = (Sk...Tj...) — wiiT; = (read qu;) — w;
cores in the SoC, as these cores have no knowledge of the Sgroup(Storeqssign (-..))
Gannet system. M g store. .. vs ws) (1
. . e\ T W).
The resulting packet will be of typdata and the state of P ngup(" am‘gn((0 w))-))
the storeis not modified by the evaluation. _’ group(st0T€assign (--.))
pr = packet(data, i, group, r;; wy)
.+ = packet(task,i,j,ri;e;); . . . L
Pra =P (Jrr; i) 3) Conditional branching:Conditional branching is imple-
ei = (84..7j...); Tj — w; mented by the f service:
Si(storeq(...))
—M Si(storeq(...(rj wy)...)) pif = packet(task,if, j,rj; eir); eip = (if rpre7ys);
. B
—P S(storeq(...)) Tef = (St f)iTp = Wy
Ptz = paCket(data7 ja i, T35 wz)a Sif(StO?"e())
w; = 0(s4, ..., Wy, ..) —M iy (store(.. (pr) (rewe) (rpwp)...))
—P Sip(store(...))

Note that this does not mean that the IP core is stateless, B
only that it does not affect the state of the service manager pr = packet(data, j,if vy wep); tf = w7t f
stores. With the above semantics, both branches will be evaluated.

2) Control service semanticsControl services provide If the second and third argument are quoted, evaluation is
functional language constructs to the Gannet architectudeferred to the core which will evaluate only one branch
Evaluation of a task by a language service can resuld inpredicated on the value of the first argument. This case is
change of the state of the stoe the creation of aesult covered in Subsection V.

a) Lambda functions:Function definition and applica- ¢ T

tion is implemented through tHeanbda andappl y services: ” "
. , . coptore | Coaze | |Pto | [Mieriace
« Functions are defined by tHeanbda service: J

Plambda = paCket(tGSk, lambdav *, k] 6lambda)§

€lambda = (lambdaqx;...qry); vy = (s;..2;...)

Slambda(storeq(...)) —
—M S ambda(storeq(...(zj x;)... (1;73)...)) Contlroller —| S
—P Slambda(storeq(...)) —

pr = packet(data, x,lambda, ; e,); controller

e = (... Lj...T\ .
< J > -3 Streaming data transfers

« Function application by thappl y service:

Papply = packet(task, apply, j, ; €appiy); Fig. 2. Simple videocam SoC with embedded OS
€apply = (APPLY 7'\ ...qrj...); Tx — ex; qrj — 7T
Sapply (storeq(...)) ¢ T
M
B Sappll/ (Stored(...(r)\ e)\)"' (qrj r]))) video lossy crypto network
P capture codec interface
—" Sappiy(storea(...)) S l ¥J\‘ 7
Dr = paCket(taSka *, j; Tws ew); Ew = ek[mj/rj] é %
i T Y NoC
: . : switch
| | |
1 1 1
! ! !
As can be seen from this semantics, #epl y service Gannet control services

does not bind values but rather substitutes code references

. . . . K R » . data transfers
The reason for this behaviour is explained in the next sectio

Fig. 3. Gannet architecture for simple videocam SoC
V. SEPARATION OF CONTROL FLOW FROM DATA FLOW

In this section we apply the presented small-step semantjcs . .
. S . A combined control service

to an issue of crucial importance for the performance of SoCs]] . o

with multiple high-throughput data flows: the separation of 1he granularity of the control services is quite fine and the

control flows and data flows. implementation is relatively simple compared to the actial
cores. For that reason it makes sense to combine all control
constructs into a single service, as schematically indatéh

A. Background Fig. 3. TheNamefield of the service symbol indicates which

Consider a simple SoC which implements a video webcagfnstruct must be provided for a given call. The difference
The system captures a video stream, compresses it usingith the control services as presented above is limited to
lossy codec, encrypts it and transmits it over a network. TH@e To-field. For example, if we name the combined control
functionality for these four operations is provided by heade Servicecontrol , anassi gn task packet now becomes:

IP cores. Following a conventional SoC design approach, thi
system will be implemented using a microcontroller which Passign = packet(task, control, j, r;; €qssign)
runs an embedded operating system (Fig. 2). €assign = (assign qv)

The OS communicates which the hardware using device - .
The advantages of combining the control services are less

drivers. Data is transferred to and from the central MEMOY, erhead thanks to the shared service manager and local stor

either via the microcontroller or via a direct memory access : . .

. . and the potential to factor out common functionality, thus
(DMA) controller. Clearly this memory transfer is a bottle-further reducing the required area. The potential disat
neck: if the number of datapaths or the number of operations 9 q) P

. 'ﬁ due to the lower degree of parallelism and the potentially
per datapath would be very large, the memory access time Wl | . .
limit the datarate. arge number of calls to be handled, i.e. the classic trdtlefo

. . %ﬁ)eed for area. However, the important issue is to make sure
The Gannet architecture allows separation of dataflow fro ; . . L . .
no control service, either combined or individual, is prase

control flow: the data will be transferred directly betweela1e data path
the data processing cores (Fig. 3), eliminating the batt&n '
Consequently the system will be able to support more and S

longer data paths. As the net number of data transfers isrjowe- Redirection of data flows

the system will also consume less power than the conventionaFor optimal performance control flows must be separated
architecture. from data flows, i.e. data should flow between non-control

services while the actual data path is governed by the clontro
service. If this would not be the case, data would have to be
copied to and from the control service’s local memory, cagsi
a performance bottleneck. The Gannet system as presented
solves this issue via a combination déferred evaluation
andresult redirection To explain this mechanism, we use the
control services introduced above as examples.

Consider the expression:

(S1 (group
(assign vl ...) -
(S2 ... (read 'vl) ...)

))
With the semantics as presented in Subsection IV-C.2.a, the
gr oup service receives the result of the evaluation of 82e
call. It then passes this result on$a. However, the behaviour
is different when the last argument is quoted:

Papply = packet(task, control, S1,71; eqppiy);
Capply = (APPLy 1A qTs3); TA — €x; qrgz — T's3
ex = (lambda gz grga..)

rgor = (52 x)

Sapply (store(...))

Sapply(store(...(rx ex)... (qrgs 753)...))
Sapply(store(...))

pe = packet(code, S2, j, Ty €w);

ew = exlz/rss] = (S2 rgs)

pr = packet(reference, S2,S1,r1;7y)

In a similar fashion any other control service can use
the mechanism of deferred evaluation and result redirectio

(st (gm?gssi gn vl .. .) to achieve separation of data flow from control flow. Con-
"(S2 ... (read 'v1) ...) sequently, the Gannet architecture provides fully tasklle
)) configurable data paths without incurring the performance

In this case, evaluation the last expression is deferreth¢o ottleneck resulting from repeated transfers of large ameu
gr oup core. The core dispatches a reference packegtbut data to and from a central memory.

sets the return address &1.:

Dgroup = packet(task,control, S1,r;; egroup);

Egroup = (GroUP ...Tqssign--- 4T59);

VI. CONCLUSION

The Gannet project researches a naeavice-basedrchi-
tecture for very large reconfigurable Systems-on-Chip. The

Tassign = (@ssign quj 1) proposed architecture results in a packet-based distdbut
rgg = (S2..1;...) — wi;r; = (read qu;) — w; processing system that is reconfigurable at task level.

‘ In this paper we have presented a formal semantics for
Sgroup(Storeasszgn(~~)) . .

Mg : (o0 7)o 2)-) control and data flow in the Gannet service-based SoC ar-
- group(storeassign (-..(vj w;) ...(qr s 7'52).. chitecture.This small-step reduction semantics forrealisp-
— Sgroup(storeassign(...)) eration of the machine in terms of packet transfers between

pr = packet(reference, S2,S1,7r;752) services, actions taken by service manager and actiona take

. . . o by service core. We have applied the semantics to demoastrat
Similarly, thei f service performs redirection if the selectechOW the Gannet system can achieve separation between data

argument is quoted.

flows and control flows, thus avoiding the bottleneck present

(SL (if (Sp...) "(S2t ...) '(S2f ...))) by conventional in-path control mechanisms such as memory

So if the Sp call evaluates to true, the result 82t will be
sent directly toS1.

pif = packet(task, control, S1,r1;e;f);

eif = (if epqriqry); ep = (sp...);¢, — true

transfers. The properties of the Gannet system make itlideal
for run-time reconfiguration of SoCs with multiple concurte
high-throughput datapaths.

Acknowledgements

The author acknowledges the support of the UK Engineering
and Physical Science Research Council (EPSRC Advanced

Sif(store(...)) Research Fellowship).

—M Sy (store(...(rp true) (qrore) (qryry)...))
—P Sit(store(...))

REFERENCES

pr = packet(reference, Sor, S1,51;14); [1] C. Kulkarni, G. Brebner, and G. Schelle, “Mapping a domapecific
language to a platform fpga,” iDAC '04: Proceedings of the 41st
Finally, theappl y service uses reference substitution for ~ annual conference on Design automatiofNew York, NY, USA),
; PR pp. 924-927, ACM Press, 2004.
the same reasons. Consider the expression: [2] L. Lavagno, S. Dey, and R. Gupta, “Specification, modglend de-
sign tools for system-on-chip,” iASP-DAC '02: Proceedings of the
(S1 (apply (lambda "x "(S2 x)) "(S3 ...)) 2002 conference on Asia South Pacific design automation/BESign

If apply would bind the evaluated arguments to the (Washington, DC, USA), p. 21, IEEE Computer Society, 2002.

variables, all results would be copied to tappl y service’s

[3] W. Vanderbauwhede, “Gannet: a functional task desorptanguage for
a service-based SoC architecture,”"Hroc. 7th Symposium on Trends in

local store and would have to be requested from there. This Functional Programming (TFPOGApr. 2006.
excessive back-and-forth Copying of potentially |arge ante [4] W. Vanderbauwhede, “The Gannet Service-based SoC: Aicelevel

of data is avoided by substituting thevariables for code

Reconfigurable Architecture,” ifroceedings of 1st NASA/ESA Confer-
ence on Adaptive Hardware and Systems (AHS-2q@8anbul, Turkey),

references instead: pp. 255-261, June 2006.

[5] P. Hofstee and M. Day, “Hardware and software architextufor
the cell processor,” iINCODES+ISSS '05: Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/sgdte code-
sign and system synthes{dlew York, NY, USA), pp. 1-1, ACM Press,
2005.

[6] L. Benini and G. De Micheli, “Networks on Chips: A New SoC
Paradigm,”|IEEE Computer magazine&ol. 35, pp. 70-78, Jan. 2002.

[7] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Ry,
and A. Sangiovanni-Vencentelli, “Addressing the systemaechip in-
terconnect woes through communication-based designDAC '01:
Proceedings of the 38th conference on Design automatidew York,
NY, USA), pp. 667-672, ACM Press, 2001.

[8] W. J. Dally and B. Towles, “Route packets, not wires: Qripcintercon-
nection networks,” irProceedings of the Design Automation Conference
(Las Vegas, NV, USA), pp. 684-689, June 2001.

[9] H.-J. Stolberg, M. Berekovic, S. Moch, L. Friebe, M. Katewski,
S. Flugel, H. Kluszmann, A. Dehnhardt, and P. Pirsch, “Hitsic:
A multi-core soc architecture for multimedia signal prasiag,” The
Journal of VLSI Signal Processingol. 41, pp. 9-20, August 2005.

[10] B. Wilkinson, Computer architecture: design and performancé. 10,
pp. 434-437. Prentice-Hall, 2nd ed., 1996.

[11] A. H. Veen, “Dataflow machine architectureACM Comput. Sury.
vol. 18, no. 4, pp. 365-396, 1986.

[12] J. McCarthy, “Recursive functions of symbolic expiess and their
computation by machine, part iCommun. ACMvol. 3, no. 4, pp. 184—
195, 1960.

[13] G.J. Sussman and J. Guy L. Steele, “An interpreter feerded lambda
calculus,” tech. rep., Cambridge, MA, USA, 1975.

[14] M. Felleisen and R. Hieb, “The revised report on the agtit theories
of sequential control and statelheor. Comput. Sgivol. 103, pp. 235—
271, September 1992.

[15] J. Matthews and R. B. Findler, “An operational semantfor r5rs
scheme,” in2005 Workshop on Scheme and Functional Programming
Sept. 2005.

	citation_temp.pdf
	http://eprints.gla.ac.uk/6546/

