

Vanderbauwhede, W. (2008) A formal semantics for control and data
flow in the gannet service-based system-on-chip architecture. In:
International Conference on Engineering of Reconfigurable Systems and
Algorithms, 13-16 July 2008, Las Vegas, USA.

http://eprints.gla.ac.uk/6546/

Deposited on: 24 July 2009

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

1

A Formal Semantics for Control and Data flow in the Gannet Service-based

System-on-Chip Architecture

Wim Vanderbauwhede
Department of Computing Science, University of Glasgow, UK

wim@dcs.gla.ac.uk

Abstract— There is a growing demand for solutions which
allow the design of large and complex reconfigurable Systems-on-
Chip (SoC) at high abstraction levels. The Gannet project pro-
poses a functional programming approach for high-abstraction
design of very large SoCs. Gannet is a distributed service-based
SoC architecture, i.e. a network of services offered by hardware
or software cores. The Gannet SoC is task-level reconfigurable: it
performs tasks by executing functional task description programs
using a demand-driven dataflow mechanism. The Gannet archi-
tecture combines the flexible connectivity offered by a Network-
on-Chip with the functional language paradigm to create a
fully concurrent distributed SoC with the option to completely
separate data flows from control flows. This feature is essential
to avoid a bottleneck at he controller for run-time control of
multiple high-throughput data flows.
In this paper we present the Gannet architecture and language
and introduce an operational semantics to formally describe the
mechanism to separate control and data flows.

Distributed System-on-Chip architecture, Operational Se-
mantics, Service-based System-on-Chip, Network-on-Chip

I. THE GANNET SERVICE-BASED SOC ARCHITECTURE

There is a growing demand for solutions allowing to de-
sign complex reconfigurable Systems-on-Chip (SoC) at high
abstraction levels [1], [2]. The Gannet project aims to address
this need by proposing a novel, task-level reconfigurable
System-on-Chip architecture which uses a concurrent execu-
tion paradigm based on functional language processing. The
Gannet architecture is a proposed distributed service-based
System-on-Chip architecture which performs tasks through
the interaction of services offered by heterogeneous data
processing cores [3], [4].

The tasks are expressed using a functionaltask description
language. The Gannet fabric consists of a set ofservice nodes,
each offering one or moreservicesto the system. All nodes
are connected through a flexible interconnect medium.

In practice, the Gannet System-on-Chip (Fig. 1(a)) consists
of a regular matrix of processing units (tiles) connected
through a network-on-chip (NoC). The architecture is moti-
vated by the growing complexity offered by the latest genera-
tion of IC manufacturing technologies. Following Moore’s law,
the complexity of integrated circuits has grown steadily inthe
past decades, from ICs with a few components via increasingly
performant microprocessors to ever more complex Systems-
on-Chip [5], [6]. Tomorrow’s SoCs will bevery big (billions
of logic gates). The main issues with these very large SoCs
are connectivity and design complexity [7]. Traditional bus-
style interconnects are no longer a viable option: synchroni-
sation of hundreds of processing cores over large distances

is impossible; fixed point-to-point connections result in huge
wire overheads.Packet-switched Networks-on-Chip (NoCs)[8]
provide a solution because they offer flexible connectivityand
an efficient mechanism for managing wires.

NoC
switching
node

service module

service
manager

configurable
service core

local
memory

trans-
ceiver

(a) SoC with grid-style NoC topology (b) service-based SoC node

tile with
IP core

NoC switch

Fig. 1. Gannet service-based SoC with on-chip network

For very large SoCs,design reuseis essential [9]. Design
reuse is facilitated by the concept of IP cores. These are are
highly complex, self-contained processing units offeringa spe-
cific functionality, such as data acquisition units, audio/video
codecs, cryptography cores, TCP/IP packet filtering etc. They
can be implemented as hardware logic circuits, as embedded
microcontrollers running specific software, or combinations of
both.

Because of their self-contained nature, treating IP blocks
as servicesis a logical abstraction. To achieve service-based
behaviour, every tile of a Gannet SoC contains a special
control unit (theservice manager), which provides a service-
oriented interface between the IP core and the system (Fig.
1(b)). Designing a Gannet SoC reduces to instantiating the
IP cores in the Gannet fabric and creating a task description
program.

II. GANNET MACHINE OPERATION

We can consider the Gannet SoC as a machine for running
Gannet programs. The Gannet SoC architecture is quite dif-
ferent from the familiar von Neumann-style processor-based
SoC architecture: it is a distributed processing system without
global memory. There is no program counter, and the program
is not executed in a sequential fashion but in a demand-driven
dataflow fashion [10], [11]. We introduce a more formalised
description of the Gannet machine:

• The Gannet machine is a distributed computing system
where every computational nodeconsumes packetsand
produces packetsand can store state information between
transactions.

• A Gannet packet consist of a header and a payload. The
payload can either be data or instruction code (symbols).
The header consists of following fields: PacketType
(code, reference, data), destination address (To), return
address (Ret), packet identifier (Id). We denote a Gannet
packet asp(Type, T o, Ret, Id; Payload)

Thus in general terms, the semantics of a Gannet service can
be described in terms of the task code and the result packet
produced by the task as follows:

• SC: Store code packet: a service Si receives a
codepacketp(Code, Si, Sj , Rtask; task) where task =
(Si a1...an). The task is stored and referenced byRtask.

• AT : Activate task : the serviceSi in statei receives a
task referencepacketp(Ref, Si, Sj , Rid; Rtask) 1

the service activates the task referenced byRtask:
(Si a1...an). This results in evaluation of the arguments
a1..an:

– DR: Delegate by reference packet:the service
manager requests activation of subtasks referenced
by reference symbols by sending areferencepacket
to the corresponding service

– SQ: Store constant symbol:all constantsymbols
(e.g. numbers) in the code ares stored in the local
store.

– SR: Store returned result: result data from sub-
tasks are stored in the local store.

• P : Processing:When all arguments of the subtask have
been evaluated, the data are passed on to the service core.
The core performs processing on the date; the service,
now in statei ′, produces a result packet
pres = p(Typei, Sj , Si, Rid; Payloadi) where bothPay-
loadi and the state change tostatei ′ are the result of
processing the evaluated argumentsa1..anby the core of
Si.

• pres is sent toSj wherePayloadi is stored in a location
referenced byRid.

This operation sequence results in a fully parallel execution
of all branches in the program tree in an unspecified order
governed by the processing time of the packets.

III. T HE GANNET LANGUAGE

The tasks performed by the Gannet system are expressed
in a functional task description language. A task description
defines the interactions between the services by mapping every
service to anamed function, and describing the flow of data
between the functions in terms of function calls.

The Gannet language is the equivalent of an assembler
language for the Gannet machine. By this we mean that
a program written in Gannet syntax can be transformed in
machine code in a trivial way. In this section we discuss the
syntax, semantics an compilation of the language.

1The order of arrival is actually irrelevant: if the reference arrives earlier,
activation will occur as soon as the code arrives.

A. Syntax

Gannet syntax is an s-expression syntax (similar to LISP or
Scheme [12], [13]) completely free from syntactic sugar. In
BNF, a Gannet expression must always obey

service-expr ::= (service-symbol ′? arg − expr +)

arg-expr ::= service-expr | literal − symbol

whereservice-symbolrepresents a particular service. Every
service in the system has a correspondingservice-symbolin
the program. There are no other keywords in the language, i.e.
all flow control constructs are provided by services. The only
additional syntactic construct is the quote.

Consider as a trivial example a SoC with 4 services: image
capture (img) from several cameras, creating a composite
image (compose), conversion to jpeg format or png for-
mat (convert), compression (compress) and encryption
(encrypt). Then to obtain a compressed composite of raw
image from cameras 1 and 3, the task description would be

(compress (compose (img cam1) (img cam3)))

To obtain a jpeg-converted, encrypted image from camera 2 it
would be

(encrypt (convert jpeg (img cam2)))

Control services

To allow control over the flow of data, Gannet defines a
number ofcontrol services. The core set consist of the lexical
scoping constructs (group, assign, read), the branching con-
struct (if) and the function definition and application constructs
(lambda, apply).

a) Lexical scoping:
group-expr ::= (group ′?assign-expr + ′?arg-expr)

assign-expr ::= (assign ′ var-symbol arg − expr +)

read-expr ::= (read ′ var-symbol)

b) Conditional branching:
if -expr ::= (if service-expr ′?arg-expr ′?arg-expr)

c) Function definition and application:
lambda-expr ::= (lambda ′ var-symbol + ′ service-expr)

apply-expr ::= (apply lambda-expr ′ arg-expr +)

B. Gannet core language operational semantics

To provide understanding of how the Gannetlanguage
works (as opposed to the Gannetmachine), we present a con-
ventional small-step semantics for the Gannet core language.

1) Notations and Definitions:We use a context-sensitive
reduction semantics as introduced by Felleisen [14] and used
in [15]. Because the Gannet machine is different from a von
Neumann machine, some minor modifications to the notation
are required. Full details can be found in [3].

a) Evaluation context:The context for evaluation must
always be a service expression, unless the given expression
is a service expression. ThusC ::= [] | (s...C...). Evaluation
of an expression is independent of neighbouring or enclosing
expressions.

b) Store: The Gannet machine does not have a global
memory. Rather, every service has its own local memory, with
read-only access for the other services. This means that the
store() concept must be contextualised. The context of the
store is indicated with a subscript.

c) Shorthand notation:To keep the notation concise, we
will use following shorthand for the terms introduced above:

arg-expr : e
quoted-expr : qe
value : w

service-symbol : s
var-symbol : v
arg-symbol : x

Furthermore, an expressionei always evaluates to a value
wi: ei → wi

d) Non-control-service semantics::The operational se-
mantics of a program running on the Gannet machine in the
absence of control services amounts to simpleδ-application:

C[(s e1...en)] → C[w]; w = δ(s, w1, ..., wn)

e) Control service semantics:As discussed above, the in-
troduction of language services leads to a number of additional
rules and symbols. We assume all expressions are well-formed.

f) Grouping and Variables:The grouping and assign-
ment services effectively operate as a let-construct. As every
service can only act on a local store, thegroup, assignand
read services must be provided by a single service core.

The assignconstruct performs the binding:

(storeassign(...) C[(assign qv e))

→ (storeassign(...(v w)...) C[v])

Values bound to variables are requested usingread:

(storeassign(...(v1w1)...) C[(read qv1)])

→ (storeassign(...(v1w)...) C[w])

The grouping constructgroup performs checks if all assigns
were successful, and if so, it returns the value of the last argu-
ment, otherwise it returns an error symbol. It also deallocates
the memory for the variables bound by its assign arguments:

(storeassign(...) C[(group ...(assign qvi ei)...

(s...(read qvi)...)])

→ (storeassign(...) C[w])

If the arguments to group are quoted, the semantics is
different in that their evaluation is sequential rather than
concurrent (similar tolet* in Scheme).

g) Conditional branching:The syntax for theif service
allows both quoted and unquoted arguments. Semantically, the
behaviour is the same in both cases; however, as explained in
Subsection V, quoting causes the result of the selected service
to be redirected to caller of theif service.

C[(if epqet qef)]

→ C[wtf]; tf = wp 6= 0?t : f

C[(if epet ef)]

→ C[wtf]; tf = wp 6= 0?t : f

h) Function definition and application:This is the oper-
ational semantics for lambda functions in Gannet.

Functions are defined using thelambda service:

C[(lambda qx1...qxn qea)]

→ C[〈 x1...xnea〉]

Function application is done by theapply service:

(storeapply(...)

C[(apply (lambda qx1...qxn qea) qe1...qen])

→ (storeapply(...(x1 e1)...(xn en)) C[ea[xi/ ei])

→ (storeapply(...) C[wa])

C. Compilation

This section explains how a Gannet program is compiled
into packets for running on the Gannet machine.

The compilation process is very straightforward:

1) Decompose the nested s-expression into a list of flat
s-expressions by replacing the nested expressions by
references

eroot = (Sroot e1...ei...en)

ei = (Si ei,1...ei,j ...ei,n)

ei,j = (Si,j ei,j,1...ei,j,k...ei,j,m)

...

2) Every symbol in the expression is replaced by a tuple
(a structured byteword) containing a unique number
mapped to the symbol and itskind:

ei ⇒ ri = (reference, nri
)

Si ⇒ si = (service, nSi
)

The resulting list of bytewords is called aninstruc-
tion. Instructions are represented using pointy brackets:
〈si ri,1...ri,n〉is the instruction referenced byri.

3) Create code packets: using the notation introduced
above, a code packet is represented as
pi = packet(code, nSi

, GW, ri; 〈si ri,1...ri,n〉)
with nSi

the name of the serviceSi, GW is the “gate-
way”, the interface between the Gannet SoC and the
outside world.

4) Create a reference packet to the root task:
proot = packet(reference, nSroot

, GW, rroot; rroot)

The gateway transfers the packets onto the NoC in no partic-
ular order.

D. Services and instruction sets

The Gannet machine has been introduced as adistributed
processing systembuilt out of tiles connected via a Network-
on-Chip. Every tile consists of an IPcore providing services,
a service manager and a local store. The service manager pro-
cesses packets based on their type and processes instructions
(payloads of code packets) using a few simple rules. The
instruction set of the Gannet machine is the set of services

offered by the cores. Consequently, the instruction set is
entirely application-dependent and can be configured at design
time or, if the cores are reconfigurable, at run time.

IV. SEMANTICS OF THEGANNET MACHINE

In this section we will present an small-step operational
semantics for the Gannetmachinebased on operations on the
packets which make up a Gannet program and on the content
of the local store.

A. Notation and definitions

1) Notation:
• The notation• is used to separate a packet from the other

packets in the queue:(p•ps) denotes a packet at the head,
(ps • p) a packet at the tail.

• The notation ∗ ("don’t care") indicates that the value
of a field does not influence the operation.

• The notation ... indicates the presence some non-
specified entities. In general, unspecified entities are left
out unless omitting them would cause ambiguity.

• The notation _ indicates allocated available storage
space

2) Definitions:
• The Gannet system consists ofN service nodes

Si(...), i ∈ 1..N , a packet-switched communication
medium ("Network on Chip") and a gateway to the
outside world,G(...).

• The unit of data transfer in the Gannet SBA is the packet.
Depending on the packet’sType, the Payload can be
data or anexpression.

• The packet receive and transmit FIFO queues of the
services are represented byqRX andqTX . A received a
packet is pushed onto the RX queue; a transmitted packet
is shifted off the TX queue.
The RX queue actually consists of four queues multi-
plexed by the packet’sType:
qRX(tasks(...), data(...), refs(...), code(...)).
ThusqRX(ps•p) is actuallyqRX(...pt(ps•p)...) withpt ∈
{tasks, data, refs, code}. (In the actual designtasks()is
not part of the RX queue, but placing it there simplifies
the analysis.)

• Packet receive and transmit FIFO queues:qRX andqTX

• Apart from the RX/TX queues, a service nodeSi consists
of following entities:

– The data store:stored(...(Label data)...). Label is a
Gannet symbol,data is the stored content. Space
allocated for data to be stored is denoted by _:
stored(...(Label _)...)

– The task packet store:storetp(...(Label p)...). p is
the stored packet,Label is the Label field from the
packet’s header.

– The processing corecore(...) which performs the
actual processing of the data.

Thus an explicit notation for a service nodeSiis:

Si(qRX(tasks(...), data(...), refs(...), code(...)),

qTX(...), stored(...), storetp(...), core(...))

At any given moment, every serviceSi can be performing
any number of actions. Actions are data-driven. Furthermore,
all services are operating concurrently in a completely asyn-
chronous fashion.

3) Small-step semantics:The semantics expresses an action
taken by a service. Actions (indicated with the arrow−→A)
are triggered either by arrival of a packet or by completion
of a computation by the service core. Every expression in the
semantics describes the effect of the action in terms of the
state of the service, i.e. of its stores and queues.

lines above the transition expression define items (e.g.
packets) appearing on the LHS, lines below the transition
expression define items appearing on the RHS.

pi = packet(...); ...

Si(...pi...) −→A Si(...pj ...)

pj = packet(...); ...

B. Packet processing by the services

A service performs a set of actions which result in packets
being received from and transmitted to other services.

A subset of actions (themarshallingset) is performed by
the service manager, which is the generic data marshalling unit
through which every service core interfaces with the system.
It is important to note that the service manager is generic, i.e.
its design and functionality is independent of the design and
functionality of the service core. The complementary set of
actions (theprocessingset) is performed by the service core.

1) Packet transfer between services:The set of actions to
transfer packets between services consists ofTX (transmit)
andRX (receive). The semantics are straightforward:

p = packet(∗, i, j, ∗; ∗)

Si(qTX(p • ps)) −→TX Si(qTX(ps))

Sj(qRX(qs)) −→RX Sj(qRX(qs • p))

Both actions carry the implicit assumption that the system’s
NoC will transfer the packet correctly between nodesSi and
Sj . Note that the actions don’t happen synchronously: the NoC
is asynchronous and the delay for transmission of the packet
is unknown.

2) Marshalling action setM : On receipt or activation of
a task packet, a number of actions can be performed by the
service manager, as explained in II.These are grouped in the
M (“Marshalling”) set. Application of theM set results in
evaluation of all arguments of a service call. The actions of
the completeM set{SC, AT, DR, SR, SQ} can be expressed
as:

pi = packet(task, i, ∗, ∗; sei); sei = 〈si a1...an〉

ai ::= qri | ri

Si(qRX(pi • ps), qTX(qs), stored(...))

−→M Si(qRX(ps), qTX(qs),

stored(...(a1 wr1)...(an wrn)...))

wri ::= wi | ri

This expression describes the evaluation of function argu-
ments by the Gannet service. For the sake of brevity, the
actions leading on to the activation of the task packet have
been omitted. Instead, it is simply assumed that the service
manager receives a task packet. It is easy to show that this is
equivalent to applying the{SC, AT }action set on arrival of a
reference packet.

3) Processing action setP : The actions of the service core
determine the functionality of the service. This functionality
can be defined as the type, destination and payload content of
the packet the service produces based on the values marshalled
by the service manager.

The service core implements a functioncsiwhich takes
n arguments with valuesw1...wn and produces a resultw,
optionally modifying the state of the store in the process.

The P set consists of the actions{call, eval, return}:
the values are called from the store; the core performs its
computation (eval) and returns a result.

The processing can be expressed as:

Si(qRX(qs), qTX(ps), store((s1 w1)...(sn wn) state))

−→P Si(qRX(qs), qTX(ps • p), store(state′))

p = packet(∗, ∗, i, ∗; w); (csi w1 ... wn) → w

C. Control and non-control service semantics

In this section and the next, all actions are combined in the
M andP sets. The combinedM andP action sets result in
the service transmitting a result packet in response to receiving
a task packet and potentially modifying the local store. The
semantics of the Gannet services can be described completely
in terms of the task and result packets and the state of the
store. The aim of the next two sections is to illustrate this
mechanism.

1) Non-control service semantics:Non-control services are
services of which the core behaviour can be modelled asδ-
application. This type of service includes all third-partyIP
cores in the SoC, as these cores have no knowledge of the
Gannet system.

The resulting packet will be of typedata and the state of
the store is not modified by the evaluation.

prx = packet(task, i, j, rj; ei);

ei = 〈si...rj ...〉; rj → wj

Si(stored(...))

−→M Si(stored(...(rj wj)...))

−→P Si(stored(...))

ptx = packet(data, j, i, rj; wi);

wi = δ(si, ..., wj , ...)

Note that this does not mean that the IP core is stateless,
only that it does not affect the state of the service manager
stores.

2) Control service semantics:Control services provide
functional language constructs to the Gannet architecture.
Evaluation of a task by a language service can result ina
change of the state of the storeor the creation of aresult

packet of type task. To illustrate these mechanisms, this section
presents the semantics for thegroup, assign, if, lambda
andapply services.

a) Lexically scoped variables:Lexical scoping is imple-
mented through thegroup andassign services:

Variables are bound to an expression by theassign
service:

prx = packet(task,assign,group, ra; eassign);

eassign = 〈assign qvj rj〉; rj → wj

Sassign(stored(...))

−→M Sassign(stored(...(qvj vj) (rj wj)...))

−→P Sassign(stored(...(vj wj)...))

ptx = packet(data,group,assign, ra; vj)

The read service retrieves the value bound to a variable
from the store and returns it:

prx = packet(task, read, i, rr; eread);

eread = 〈read qvj〉

Sread(storeassign(...(vj wj)...))

−→M Sread(storeassign(...(qvj vj) (vj wj)...))

−→P Sread(storeassign(...(vj wj)...))

ptx = packet(data, i, ∗, rr; wj)

The group service takes as arguments a number of as-
signment expressions and one or more expression that may
call the assigned variables. Thegroup andassign services
have a shared store. Thegroup service returns the result of
the last expression and clears all variables resulting fromthe
assignment expressions from theassign store. Consequently,
assign-variables are lexically scoped.

pgroup = packet(task,group, i, rl; egroup);

egroup = 〈group ...rassign,j ... rk〉;

rk ⇒ 〈sk...rj ...〉 −→ wk; rj ⇒ 〈read qvj〉 → wj

Sgroup(storeassign(...))

−→M Sgroup(storeassign(...(vj wj) ...(rk wk)...))

−→P Sgroup(storeassign(...))

pr = packet(data, i,group, rl; wk)

3) Conditional branching:Conditional branching is imple-
mented by theif service:

pif = packet(task, if, j, rj ; eif); eif = 〈if rp rt rf 〉;

rt|f ⇒ 〈st|f ...〉; rp → wB
p

Sif (store(...))

−→M Sif (store(...(rp wB
p) (rt wt) (rf wf)...))

−→P Sif (store(...))

pr = packet(data, j, if , rj ; wtf); tf = wB
p ?t : f

With the above semantics, both branches will be evaluated.
If the second and third argument are quoted, evaluation is
deferred to the core which will evaluate only one branch
predicated on the value of the first argument. This case is
covered in Subsection V.

a) Lambda functions:Function definition and applica-
tion is implemented through thelambda andapply services:

• Functions are defined by thelambda service:
plambda = packet(task, lambda, ∗, ∗; elambda);

elambda = 〈lambda qxj ...qrλ〉; rλ ⇒ 〈sj ...xj ...〉

Slambda(stored(...))

−→M Slambda(stored(...(xj xj)... (rj rλ)...))

−→P Slambda(stored(...))

pr = packet(data, ∗, lambda, ∗; eλ);

eλ = 〈...xj ...rλ〉

• Function application by theapply service:
papply = packet(task,apply, j, ∗; eapply);

eapply = 〈apply rλ ...qrj ...〉; rλ → eλ; qrj → rj

Sapply(stored(...))

−→M Sapply(stored(...(rλ eλ)... (qrj rj)...))

−→P Sapply(stored(...))

pr = packet(task, ∗, j, rw; ew); ew = eλ[xj/rj]

As can be seen from this semantics, theapply service
does not bind values but rather substitutes code references.
The reason for this behaviour is explained in the next section.

V. SEPARATION OF CONTROL FLOW FROM DATA FLOW

In this section we apply the presented small-step semantics
to an issue of crucial importance for the performance of SoCs
with multiple high-throughput data flows: the separation of
control flows and data flows.

A. Background

Consider a simple SoC which implements a video webcam.
The system captures a video stream, compresses it using a
lossy codec, encrypts it and transmits it over a network. The
functionality for these four operations is provided by hardware
IP cores. Following a conventional SoC design approach, this
system will be implemented using a microcontroller which
runs an embedded operating system (Fig. 2).

The OS communicates which the hardware using device
drivers. Data is transferred to and from the central memory
either via the microcontroller or via a direct memory access
(DMA) controller. Clearly this memory transfer is a bottle-
neck: if the number of datapaths or the number of operations
per datapath would be very large, the memory access time will
limit the datarate.

The Gannet architecture allows separation of dataflow from
control flow: the data will be transferred directly between
the data processing cores (Fig. 3), eliminating the bottleneck.
Consequently the system will be able to support more and
longer data paths. As the net number of data transfers is lower,
the system will also consume less power than the conventional
architecture.

Fig. 2. Simple videocam SoC with embedded OS

Fig. 3. Gannet architecture for simple videocam SoC

B. A combined control service

The granularity of the control services is quite fine and the
implementation is relatively simple compared to the actualIP
cores. For that reason it makes sense to combine all control
constructs into a single service, as schematically indicated in
Fig. 3. TheNamefield of the service symbol indicates which
construct must be provided for a given call. The difference
with the control services as presented above is limited to
the To-field. For example, if we name the combined control
servicecontrol, anassign task packet now becomes:

passign = packet(task, control, j, rj ; eassign)

eassign = 〈assign qv r〉

The advantages of combining the control services are less
overhead thanks to the shared service manager and local store
and the potential to factor out common functionality, thus
further reducing the required area. The potential disadvantage
is due to the lower degree of parallelism and the potentially
large number of calls to be handled, i.e. the classic trade-off of
speed for area. However, the important issue is to make sure
no control service, either combined or individual, is present in
the data path.

C. Redirection of data flows

For optimal performance control flows must be separated
from data flows, i.e. data should flow between non-control

services while the actual data path is governed by the control
service. If this would not be the case, data would have to be
copied to and from the control service’s local memory, causing
a performance bottleneck. The Gannet system as presented
solves this issue via a combination ofdeferred evaluation
andresult redirection. To explain this mechanism, we use the
control services introduced above as examples.

Consider the expression:
(S1 (group

(assign ’v1 ...)
(S2 ... (read ’v1) ...)

))

With the semantics as presented in Subsection IV-C.2.a, the
group service receives the result of the evaluation of theS2
call. It then passes this result on toS1. However, the behaviour
is different when the last argument is quoted:

(S1 (group
(assign ’v1 ...)

’(S2 ... (read ’v1) ...)
))

In this case, evaluation the last expression is deferred to the
group core. The core dispatches a reference packet toS2 but
sets the return address toS1:

pgroup = packet(task, control, S1, rl; egroup);

egroup = 〈group ...rassign... qrS2
〉;

rassign = 〈assign qvj rj〉

rS2 ⇒ 〈S2...rj ...〉 −→ wk; rj ⇒ 〈read qvj〉 → wj

Sgroup(storeassign(...))

−→M Sgroup(storeassign(...(vj wj) ...(qrS2
rS2)...))

−→P Sgroup(storeassign(...))

pr = packet(reference, S2, S1, rl; rS2)

Similarly, theif service performs redirection if the selected
argument is quoted.

(S1 (if (Sp ...) ’(S2t ...) ’(S2f ...)))

So if theSp call evaluates to true, the result ofS2t will be
sent directly toS1.

pif = packet(task, control, S1, r1; eif);

eif = 〈if ep qrt qrf 〉; ep = 〈sp...〉; ep
→ true

Sif (store(...))

−→M Sif (store(...(rp true) (qrt rt) (qrf rf)...))

−→P Sif (store(...))

pr = packet(reference, S2t, S1, S1; rt);

Finally, theapply service uses reference substitution for
the same reasons. Consider the expression:

(S1 (apply (lambda ’x ’(S2 x)) ’(S3 ...))

If apply would bind the evaluated arguments to theλ-
variables, all results would be copied to theapply service’s
local store and would have to be requested from there. This
excessive back-and-forth copying of potentially large amounts
of data is avoided by substituting theλ-variables for code
references instead:

papply = packet(task, control, S1, r1; eapply);

eapply = 〈apply rλ qrS3〉; rλ → eλ; qrS3
→ rS3

eλ = 〈lambda qx qrS2x〉

rS2x ⇒ 〈S2 x〉

Sapply(store(...))

−→M Sapply(store(...(rλ eλ)... (qrS3
rS3)...))

−→P Sapply(store(...))

pc = packet(code, S2, j, rw; ew);

ew = eλ[x/rS3] = 〈S2 rS3〉

pr = packet(reference, S2, S1, r1; rw)

In a similar fashion any other control service can use
the mechanism of deferred evaluation and result redirection
to achieve separation of data flow from control flow. Con-
sequently, the Gannet architecture provides fully task-level
configurable data paths without incurring the performance
bottleneck resulting from repeated transfers of large amounts
data to and from a central memory.

VI. CONCLUSION

The Gannet project researches a novelservice-basedarchi-
tecture for very large reconfigurable Systems-on-Chip. The
proposed architecture results in a packet-based distributed
processing system that is reconfigurable at task level.

In this paper we have presented a formal semantics for
control and data flow in the Gannet service-based SoC ar-
chitecture.This small-step reduction semantics formalises op-
eration of the machine in terms of packet transfers between
services, actions taken by service manager and actions taken
by service core. We have applied the semantics to demonstrate
how the Gannet system can achieve separation between data
flows and control flows, thus avoiding the bottleneck presented
by conventional in-path control mechanisms such as memory
transfers. The properties of the Gannet system make it ideally
for run-time reconfiguration of SoCs with multiple concurrent
high-throughput datapaths.

Acknowledgements
The author acknowledges the support of the UK Engineering

and Physical Science Research Council (EPSRC Advanced
Research Fellowship).

REFERENCES

[1] C. Kulkarni, G. Brebner, and G. Schelle, “Mapping a domain specific
language to a platform fpga,” inDAC ’04: Proceedings of the 41st
annual conference on Design automation, (New York, NY, USA),
pp. 924–927, ACM Press, 2004.

[2] L. Lavagno, S. Dey, and R. Gupta, “Specification, modeling and de-
sign tools for system-on-chip,” inASP-DAC ’02: Proceedings of the
2002 conference on Asia South Pacific design automation/VLSI Design,
(Washington, DC, USA), p. 21, IEEE Computer Society, 2002.

[3] W. Vanderbauwhede, “Gannet: a functional task description language for
a service-based SoC architecture,” inProc. 7th Symposium on Trends in
Functional Programming (TFP06), Apr. 2006.

[4] W. Vanderbauwhede, “The Gannet Service-based SoC: A Service-level
Reconfigurable Architecture,” inProceedings of 1st NASA/ESA Confer-
ence on Adaptive Hardware and Systems (AHS-2006), (Istanbul,Turkey),
pp. 255–261, June 2006.

[5] P. Hofstee and M. Day, “Hardware and software architectures for
the cell processor,” inCODES+ISSS ’05: Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, (New York, NY, USA), pp. 1–1, ACM Press,
2005.

[6] L. Benini and G. De Micheli, “Networks on Chips: A New SoC
Paradigm,”IEEE Computer magazine, vol. 35, pp. 70–78, Jan. 2002.

[7] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey,
and A. Sangiovanni-Vencentelli, “Addressing the system-on-a-chip in-
terconnect woes through communication-based design,” inDAC ’01:
Proceedings of the 38th conference on Design automation, (New York,
NY, USA), pp. 667–672, ACM Press, 2001.

[8] W. J. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection networks,” inProceedings of the Design Automation Conference,
(Las Vegas, NV, USA), pp. 684–689, June 2001.

[9] H.-J. Stolberg, M. Berekovic, S. Moch, L. Friebe, M. Kulaczewski,
S. Flugel, H. Kluszmann, A. Dehnhardt, and P. Pirsch, “Hibrid-soc:
A multi-core soc architecture for multimedia signal processing,” The
Journal of VLSI Signal Processing, vol. 41, pp. 9–20, August 2005.

[10] B. Wilkinson, Computer architecture: design and performance, ch. 10,
pp. 434–437. Prentice-Hall, 2nd ed., 1996.

[11] A. H. Veen, “Dataflow machine architecture,”ACM Comput. Surv.,
vol. 18, no. 4, pp. 365–396, 1986.

[12] J. McCarthy, “Recursive functions of symbolic expressions and their
computation by machine, part i,”Commun. ACM, vol. 3, no. 4, pp. 184–
195, 1960.

[13] G. J. Sussman and J. Guy L. Steele, “An interpreter for extended lambda
calculus,” tech. rep., Cambridge, MA, USA, 1975.

[14] M. Felleisen and R. Hieb, “The revised report on the syntactic theories
of sequential control and state,”Theor. Comput. Sci., vol. 103, pp. 235–
271, September 1992.

[15] J. Matthews and R. B. Findler, “An operational semantics for r5rs
scheme,” in2005 Workshop on Scheme and Functional Programming,
Sept. 2005.

	citation_temp.pdf
	http://eprints.gla.ac.uk/6546/

