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Abstract 
 
 
An investigation into the current methods employed to conserve vorticity in 

numerical calculations is undertaken. Osher’s flux for the artificial compressibility 

equations is derived, implemented and validated in Cranfield University’s second 

order finite volume compressible flow solver MERLIN. Characteristic 

Decomposition is applied as a method of vorticity conservation in both the 

compressible and artificial compressibility MERLIN solvers. The performance of this 

method for vorticity conservation in both these solvers is assessed. Following a 

discussion of the issues associated with application of limiter functions on 

unstructured grids three modified versions of the method of Characteristic 

Decomposition are proposed and tested in both the compressible and incompressible 

solvers. It is concluded that the method of Characteristic Decomposition is an 

effective method for improving vorticity conservation and compares favourably in 

terms of increased computational cost to vorticity conservation through grid 

refinement. 
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1. Introduction and General Objectives 
 

Over the past three decades there has been significant progress in the understanding 

and development of numerical algorithms for the solution of the Navier-Stokes 

equations. The resulting schemes are widely used in commercial CFD software and 

research codes and have been demonstrated to be both accurate and robust for a wide 

range of flows. Unfortunately there is growing evidence that existing algorithms fail 

for flows in which the creation, development and interaction of vortical flow 

structures are important.  

 

Existing algorithms suffer from the inability to preserve vorticity - dissipating it at an 

unphysical rate. Vortical structures, such as wing tip vortices, which should persist 

for a great length downstream from their point of origin are quickly dissipated often 

being overwhelmed by numerical viscosity within a couple of chord lengths.  This 

problem is amplified when calculations are performed on unstructured and highly 

skewed and stretched structured grids. Although the problem is extensively 

documented in the literature the underlying causes for this failure are complex and 

are not well understood.   

 

The importance of considering vorticity conservation in algorithm development, in 

order to provide numerical schemes which can accurately predict and maintain 

vortical structures, cannot be overstated. There is a broad spectrum of engineering 

applications in which vorticity is of key interest spanning aeronautical flows, in both 

the compressible and incompressible regimes, with applications including helicopter 

wakes, high-speed weapon and rocket aerodynamics, flows in the built environment, 

automotive flows and flow control.  

 

The use of numerical analysis alongside wind tunnel testing is vital to aeronautical 

engineering  providing a means of carrying out initial testing that can redirect, or 

narrow, the focus of a wind tunnel test campaign and allowing the simulation of 

aspects of flows which may be difficult, or impossible, to recreate and study 

effectively in wind tunnel experiments. 
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The development of unstructured grid generation techniques has provided a more 

time efficient method for generating grids for complex geometries compared to 

structured grid generation. Unfortunately the full potential for using unstructured 

grids in aeronautical flow calculations cannot currently be realised due to the failure 

of algorithms to achieve required levels of accuracy, without a prohibitively large 

number of cells, on unstructured grids in the presence of vorticity. 

 

The desire to develop algorithms that can preserve vortices has spawned a great deal 

of research and varied approaches to overcoming this problem.  Many of the 

approaches that have been explored have a limited field of application. Some of the 

methods rely on changes to the physics modelled by the algorithm, in order to 

conserve vorticity, which potentially causes undesirable changes to the structure of 

the vorticity and other flow features. While other algorithms are restricted to the 

incompressible flow regime or require some information regarding the distribution of 

vorticity to be known prior to the calculation. 

 

The focus of this research is to explore the development of a consistent approach to 

vorticity conservation that can be applied in the compressible flow regime and the 

incompressible flow regime, by way of the artificial compressibility equations. In 

order to create an algorithm that can be applied to a wide range of real engineering 

problems an algorithm that retains the physics of the basic flow model is sought.  

Development of an algorithm that can better preserve vorticity on unstructured grids 

is also explored. 

 

The thesis objectives are discussed and clarified following the literature review. 
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2. Literature Review - the Problem and Current 
Solutions 
 
 
A comprehensive background on numerical methods in fluid dynamics can be found 

in the two volumes ‘Numerical Computation of Internal and External Flows’ by 

Hirsch1,2 with a more detailed background on methods employed to solve non-linear 

hyperbolic conservation laws found in ‘Riemann Solvers and Numerical Methods for 

Fluid Dynamics’ by Toro3. 

 

When computing vortical flows current numerical schemes excessively dissipate 

vorticity in an unphysical manner. The precise cause of this problem is difficult to 

determine although several contributing factors have be identified. 

 

Roe4,5 states that the delicacy of the physical mechanisms by which vorticity is 

created and destroyed means that the vorticity distribution in a computed solution is 

particularly vulnerable to numerical error. In addition, the discrete equations for 

current algorithms have been developed without the need to enforce the equations 

governing the transport of vorticity in mind and it can be shown that these laws are 

often violated by the creation of vorticity due to physically irrelevant terms in the 

truncation error. The vulnerability of vorticity to numerical error along with the 

failure of current algorithms to enforce the equations governing conservation of 

vorticity in the discrete approximation leads to incorrect solutions for vorticity 

distribution including overly diffusive solutions with inaccurate generation, 

destruction and transport of vorticity.  

 

In his work on Hyperbolic Systems of Conservation Laws Lax6 identified problems 

with the computation of contact discontinuities, resulting in unphysical spreading, by 

difference schemes. Lax states that ‘the reason for this is that contact discontinuities, 

in contrast to shocks, are very much like discontinuities of solutions of linear 

hyperbolic equations’. This is because they are associated with the linearly 

degenerate fields. He then goes on to say that difference schemes will spread these 

types of solutions so that after n time cycles the width of the contact discontinuity is 
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of order √n. Both contact discontinuities and vorticity are associated with the linearly 

degenerate fields and artificial spreading of vorticity by the same mechanism will 

also be a problem encountered by numerical schemes. Lax concludes that ‘the 

spreading of contact discontinuities in difference calculations in Eulerian coordinates 

cannot be prevented unless one uses variable size spacing intervals which is 

tantamount to introducing Lagrange coordinates’. 

 

An additional problem, when computing turbulent flows, is introduced due to the fact 

that almost all modern turbulence models employ moment of vorticity (algebraic 

models) or vorticity (multi-equation models) in modelling the near wall behaviour of 

boundary layers. As a consequence the behaviour of the models in the presence of 

vorticity or vortical structures, that are not associated with the near wall boundary 

layer, may be erroneous. For flows in which there is a clear distinction between the 

discrete vortical structures that are of interest and the boundary layer simple 

modifications can be made in order to prevent the incorrect application of turbulence 

models to predominantly laminar larger scale vortical structures. It is demonstrated in 

the work by Wik7 that where this is not possible it is necessary to employ a more 

complex Reynolds Stress Model in order to avoid the unwanted application of the 

turbulence model in the presence of vortical structures. 

 

High order schemes used in conjunction with grid refinement have been shown to 

provide greatly improved results for vortex dominated flows but carry a much 

increased computational cost. Work carried out by Wake and Choi8 on structured 

grids demonstrated that use of a fifth order scheme, instead of a third order scheme, 

provided a factor 10 reduction in the number of points needed in each cross flow 

plane to convect a well aligned vortex. This improvement was even greater when 

dealing with a skewed vortex with a factor 30 reduction in the number of grid flow 

points needed. The work concluded that it is more efficient to move to using a higher 

order scheme than to increase the number of grid points for cases where a vortex 

needs to be convected over a long distance. Wake and Choi defined a vortex-

convection skewness (VCS) parameter which indicates the necessary axial spacing 

required to resolve a vortex that is skewed relative to the grid. This was found to be 

very limiting in terms of the number of grid points required in the axial direction 

even for very small skew angles. Work by Hariharan and Sankar9,10 using seventh 
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order schemes concludes that the problems encountered due to the much larger 

stencils needed to compute increasingly higher order schemes offset the advantages 

of using higher order schemes beyond a certain point. The importance of grid/vortex 

alignment using current algorithms, as demonstrated by Wake and Choi, and the 

limitations of using higher order schemes, especially for unstructured grids, 

highlights the need to further investigate alternative solutions for the false diffusion 

and excessive dissipation of vortical structures.  

 

The method of vorticity confinement, developed predominantly by Steinhoff11, for 

conserving vorticity in incompressible calculations uses the addition of an artificial 

term to the momentum equations of the Euler equations which has the effect of 

convecting vorticity towards its local extreme.  

 

) 2
t

The momentum equations take the form

( . ( )                                                                            (2.1)

with the addition of the confinement term - where   is a

P s

s

ρ μ∂ = − ∇ +∇ + ∇ −∈

∈ ∈

U U U U r

r numerical coefficient that 
decides the size of the convecting region.

  where  is the vorticity vector and  is a unit vector pointing away from 
the centroid of the vortical region.

    

s

η
η

= − ×

∇
=
∇

n ω ω n

n

r

 where  is a scalar field that has a local minimum on the centroid of the 

vortical region given by 

η

η = − ω
 

 With the added term the flow equations admit solutions with concentrated vortices 

without spreading, even if the basic flow equations have diffusive terms. The added 

term acts as a velocity correction and is applied only in areas of relatively coarse grid 

where vortical structures are convecting and so can therefore be used in conjunction 

with conventional Euler/Navier-Stokes methods.  

   

This method allows vorticity to be transported once generated but the modification of 

the equations is non-physical. The method is extremely useful for computing flow 

fields containing strong vorticity but where the details of the structure and behaviour 
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of vortical regions is not the primary interest. Steinhoff11 compares his method in this 

way to shock capturing where ‘the detailed internal dynamics of shocks are not 

computed, but rather a modified set of equations is solved which results in a shock 

spread over a few number of grid cells’.   The numerical coefficient ∈  effectively 

balances the diffusion and depends on grid size, grid aspect ratio and the chosen 

convection scheme in the basic solver. The use of the vorticity confinement method 

therefore needs to be tuned to each specific case in order to provide the best results. 

The method has more recently been extended for use in compressible flow simulation 

by interpreting the confinement term as a body force12 in order to remain consistent 

with a conservation law framework, minimizing the adaptation needed to current 

compressible flow algorithms. 

 

Vortex methods, including Vortex Lattice and Vortex Blob techniques, represent the 

vorticity distribution in a flow using markers carrying vorticity. The velocity field at 

a given time is calculated from the vorticity distribution via a Biot-Savart calculation 

which is then used to update the distribution of vorticity. These methods are 

restricted in application to incompressible flows; however the Vortex Embedding 

technique uses a Vortex Lattice method in conjunction with a compressible flow 

solver in order to extend vortex methods to compressible flows. These methods can 

be very effective for flows where the vorticity distribution is highly localised but are 

less suitable for more complex flows. All these methods require some initial 

information on the position of vortical regions in order to distribute the markers and 

encounter problems where there are interactions with surfaces or merging of vortices. 

An additional drawback of these methods is that the dimensions and details of the 

vortical structures are not rigorously dealt with by the computations, with the 

emphasis on the correct calculation of the location of the centroid surfaces of vortical 

structures and the total vorticity surrounding each point on the centroid surface. The 

internal structure of a vortex is dealt with by a user specified spreading function. 

Hybrid methods use a Navier-Stokes solver in areas of the flow where vorticity is 

generated and a vortex method in areas of the flow where vorticity is localised. A 

suitable model for the intermediate region also needs to be included. There are many 

possible approaches to the hybridization and it is possible that methods can be 

tailored to suit specific applications. 
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Roe’s4 approach to capturing vorticity is to seek a numerical scheme from which it is 

possible to obtain discrete equations for the transport of vorticity that are physically 

valid from the discrete equations that are used in the code. A discrete measure of 

vorticity conservation that can be applied to finite volume schemes on unstructured 

grids is developed - the requirement that a discrete version of the circulation around a 

closed surface remains invariant.  In work looking for schemes with vorticity 

preserving properties, Roe concludes that schemes that are based, like most upwind 

schemes, on one-dimensional reconstructions and interpolation cannot preserve 

vorticity. The cell centred two dimensional finite volume Rotated Richtmyer scheme 

investigated by Roe5 is one in which there is a unique flux through each interface but 

it is not evaluated with reference only to the two cells which it separates but by 

averaging the fluxes at its two end points and therefore involves four cell states. The 

method is shown to preserve vorticity by virtue of the fact that when contributions to 

the change in discrete vorticity from all cells meeting at a vertex are added together 

they all cancel, leading to a zero change in circulation around a vertex. This scheme 

is extended to three dimensional unstructured grids by a particular method of 

dissection of the control volume surrounding a vertex into sub cells. Roe also draws 

attention to the connection with the work carried out by Hyman and Shaskov13,14 

towards developing a discrete analogue of vector and tensor calculus that can be used 

for correct representation of continuum models. Hyman and Shaskov use the support-

operator method in which a discrete approximation to a first order differential 

operator is constructed that satisfies the appropriate vector identity. This operator is 

then used in the construction of other discrete operators. Hyman and Shaskov go on 

to construct discrete analogues of second order differential operators. This work is 

developed in a finite difference framework but Roe observes that there is a link 

between the search for a correct discrete analogue for vector analysis and the search 

for an algorithm that correctly represents the identities relating to vorticity in the 

continuum model. Roe concludes that a close comparison of the two approaches 

could prove profitable.  

 

More recent work carried out by Ismail and Roe15 on developing a vorticity 

preserving scheme for the Euler equations has taken the approach of adding a 

correction term to the Roe solver which has the effect of removing spurious vorticity. 

This term is determined by using the vorticity transport equation to give an 
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independent estimate of the vorticity at each time step. This correction controls the 

curl of the momentum, or ‘psuedo vorticity’, and because the underlying scheme is 

consistent with the Euler equations it is concluded that the predicted vorticity will be 

close to the ‘true vorticity’. It is found that the accuracy when computing rotational 

flow by this method is greatly dependent on the accuracy of the independent vorticity 

estimate. The divergence of momentum is discretized via a two step central scheme 

in which two options are possible for application of a limiter. In the first option, 

‘VP1’, a limiter is applied only at the half-step and in the other, ‘VP2’, a limiter is 

applied on both the half and full steps. The slope limiter that is employed in both 

cases is Superbee. Results for both options are compared to a first order scheme and 

also a baseline second order scheme employing the Superbee slope limiter without 

the vorticity correction. It is found that the second order baseline Superbee scheme 

does not excessively diffuse vorticity due to its compressive nature however this 

scheme results in the generation of spurious enstrophy. The VP1 scheme lies between 

the first order and Superbee method with the VP2 scheme performing the best and 

producing negligible amounts of spurious enstrophy whilst conserving vorticity. This 

is attributed to vorticity physics being incorporated to the scheme in addition to 

conventional upwinding.   

 

Work has been carried out by several different parties16,17,18  to develop schemes to 

minimise dispersion, the spurious propagation of different frequency components of 

an acoustic wave at different speeds, in order that CFD algorithms can be utilised for 

aeroacoustic calculations. The low dispersion finite volume (LDFV) schemes 

developed have the property that in addition to minimizing the dispersion in the 

solution they provide a way of minimizing numerical dissipation. The LDFV scheme 

chooses an interpolation at cell faces, where the flux is calculated, that accurately 

represents the sinusoidal waves of short wavelengths and minimizes numerical 

dissipation. This method has been shown to improve the vortex capturing capabilities 

of a code. 

 

Brown19 suggests a method for rotor wake modelling based on the vorticity transport 

equations in conservative formulation using Toro’s20  weighted average flux (WAF) 

method extended to three dimensions to approximate the transport operator. The 

WAF method is a conservative Riemann problem based method that is modified in 
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order to use flux limiters. The production of vorticity is dealt with by the use of a 

source term. The use of the conservative formulation enables the total vorticity 

present in the computational domain to be conserved. An appropriate choice of flux 

limiter is shown to be necessary in order to maintain the compactness of the domains 

of vorticity. Figure 1 compares the results from an extremely compressive super-type 

limiter, which provides the best results, with min-type limiters proving to be 

excessively diffusive. 

 

                       
                                       (a)                                                      (b) 

 
Figure 1. – Brown’s rotor wake calculations (a) results with a min-type limiter, (b) results with a 

super-type limiter. The super-type limiter provides much greater vortex conservation with the 

vortex being convected to the edge of the computational domain as opposed to th min-type 

limter where the vortex is dissipated very quickly 

 

Brown’s work demonstrates that the use of the vorticity-velocity formulation in 

conservation form is not in itself enough to solve the problems encountered in 

computing vortical flows. Although the total vorticity contained in the computational 

domain may be conserved the vorticity is not confined.  In combination with the 

application of an extremely compressive Super-type limiter this approach proves 

highly effective and the strength and definition of the tip vortices is maintained right 

the way to the edge of the computational domain. Although Brown identifies that 

application of a compressive limiter, to the vorticity field, is necessary in order to 

maintain the tip vortices he does not give an explanation as to why his scheme is so 

successful.  
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Employing Characteristic Decomposition in the solution of the Euler equations has 

been investigated by Kim, Williams and Lyrintzis21 in order to preserve vorticity. 

The method of Characteristic Decomposition was first experimented with by Sweby22  

when he employed the Superbee flux limiter for the linear field and the Minmod or 

the Van Leer flux limiter for the non-linear fields for Sod’s shock tube problem. He 

found that both these combinations provided improved resolution of the shock wave 

and contact discontinuity. When Superbee was applied across all fields the contact 

discontinuity was sharply resolved but the solution was not TVD in the region of the 

shock. When Minmod or Vanleer flux limiting was applied to all fields the solution 

was TVD in the region of the shock but the contact discontinuity was not sharply 

resolved.  

 

Kim, Williams and Lyrintzis’ method involves carrying out the interpolation of the 

right and left cell states via a transformation to the characteristic variables. The 

characteristic variables are defined by multiplication of the conservative variable 

vector by a set of the left eigenvectors of the flux Jacobian matrix1. MUSCL-type 

interpolation is then carried out via the use of characteristic variables and slope 

limiters are employed in the interpolation. The choice of slope limiter is varied to suit 

the nature of the characteristic variables under consideration. A compressive super- 

type limiter is applied to the linearly degenerate characteristic fields associated with 

the entropy and vorticity waves. A diffusive min-type limiter is applied to the non-

linear fields associated with the acoustic pressure waves to suppress spurious 

numerical oscillations. The effect of the use of characteristic decomposition is shown 

in Figure 2. 
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Figure 2. – Kim, Williams and Lyrintzis results using a baseline scheme and a higher order 

scheme with and without  characteristic decomposition. It can be seen that moving to a higher 

order scheme provides greater vorticity conservation than the baseline scheme. Further 

improvement is gained by the introduction of characteristic decomposition. 
 

 The motivation behind this approach comes from the concept that linearly 

degenerate fields where wave speed is independent of amplitude, such as those 

associated with the entropy perturbation and vorticity wave, are prone to dissipate in 

the presence of numerical diffusion. The truly nonlinear fields such as those 

associated with acoustic pressure waves, where wave speed depends on amplitude, 

have a ‘self stiffening mechanism’ and a compressive limiter is not necessary6.  

 

Characteristic decomposition has been shown to provide improved results for rotor 

wake capturing and although this is computationally more expensive the additional 

cost is less than that required to use grid refinement to achieve the same level of tip 
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vortex conservation. The benefit of using a coordinate transform and varying choice 

of limiter to improve vorticity capturing capabilities is that adaption of existing codes 

to include this feature is relatively straight forward and the method can be used with 

whatever order of interpolation is chosen.  
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3. Discussion of Current Methods and Thesis 
Objectives. 
 

The focus of this research is to explore the development of a consistent approach to 

vorticity conservation that can be applied in the compressible flow regime and the 

incompressible flow regime, by way of the artificial compressibility equations, in 

order to develop a method that can be applied to a wide range of real engineering 

problems for which vorticity is of paramount interest. The influence of the choice of 

turbulence model employed in a calculation on vorticity conservation is well 

understood and it has therefore been decided that an examination of turbulence 

models is outside the scope of this research. 

 

The development and testing of vortex capturing methods is undertaken in Cranfield 

University’s unsteady compressible viscous flow solver, MERLIN, which employs 

the Riemann solver of Osher in a three dimensional cell centred finite volume 

formulation with dual time stepping. The method of artificial compressibility is 

implemented in the same code in order to provide an incompressible solver.  

 

The survey of current methods and research on the problem of vorticity capturing 

highlights several interesting areas of ongoing research, some of which are already 

providing practically applicable solutions and others which are still in their infancy. 

When seeking a numerical method that can be used across a broad range of 

applications, where there is a desire to understand the details of vortex behaviour for 

complex vortical flows, the use of vortex methods or vorticity confinement is not 

appropriate. The current work that seems the most promising is that undertaken by 

Brown using the vorticity transport equations and a compressive limiter, the work on 

characteristic decomposition undertaken by Kim, Williams and Lyrintzis and the 

work on development of a vorticity conserving scheme carried out by Ismail and 

Roe. The importance of the choice of limiter employed in these three methods seems 

to be a common thread. A more detailed look at the system of vorticity transport 

equations indicates why. 
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The three vorticity transport equations are given below. The terms in the first set of 

brackets are the advection terms with the terms in the second set of brackets being 

responsible for stretching of vorticity due to velocity gradients in the flow. When 

dealing with the advection terms Brown uses Toro’s weighted average flux method 

extended to three dimensions using the standard Strang spatial splitting. Ismail and 

Roe use the vorticity transport equations to provide a correction to the Euler 

equations. They calculate the advection terms of the vorticity transport equation 

using an upwind method with a limiter applied to the linearly reconstructed data used 

in the flux function.   
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It can be seen that the advective terms are uncoupled with each spatial direction 

containing a diagonal matrix with repeated entries multiplied by the components of 
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vorticity. For each matrix the repeated values are the eigenvalues - this system is 

therefore not strictly hyperbolic as the eigenvalues are not distinct. The system has a 

three dimensional eigenspace in which every direction is an eigendirection. It is clear 

that the advection terms are in characteristic form with the components of vorticity 

being the characteristic variables. All the characteristic fields are linearly degenerate 

with repeated eigenvalues of λ=u for the x spatial component λ=v for the y spatial 

component and λ=w for the z spatial component. Physically these fields represent the 

propagation of vorticity with the fluid velocity.  

 

In the application of the WAF method to the advective terms Brown’s method carries 

out interpolation on the components of vorticity which are the characteristic variables 

of the linearly degenerate characteristic fields of the system. He has success in 

conserving vorticity when a compressive limiter (Superbee) is applied - in fact it is 

found to be necessary for vorticity conservation. In Ismail and Roe’s work it is found 

to be necessary to apply the Superbee limiter at both the half and full steps of the 

scheme applied to the advection terms of the vorticity conservation equation to 

achieve improved vorticity conservation, again this limiter is being applied to the 

characteristic variables related to the linearly degenerate fields.  

 

This discussion has identified that the method of Characteristic Decomposition, 

Brown’s work using the vorticity transport equation and Ismail and Roe’s vorticity 

correction scheme all rely on the use of the compressive limiter Superbee when 

interpolating variables related to the linearly degenerate characteristic fields in order 

to conserve vorticity. The reason why the use of a compressive limiter for the linearly 

degenerate fields succeeds in improving the vorticity conservation capabilities of 

each method comes down to the nature of the linearly degenerate fields - which for 

the compressible Euler equations relate to propagation of contact discontinuities and 

vorticity. The linearly degenerate fields in nonlinear systems behave in a similar way 

to the solutions of linear hyperbolic equations. Valuable discussion on the nature of 

the differing characteristic fields of hyperbolic systems can be found in the text by 

Leveque23 and the text by Toro3.  The relevant points are summarised here. 

 

A system of m non-linear hyperbolic conservation laws, in one spatial dimension, can 

be represented by the following equation 

 17



 

1

2
, ,

, ,

( ) 0        where U=                                                                            (3.3)

Which in quasi-linear form is given by

( ) 0    where     ( )

t x

m

t x

u
u

U F U

u

FU A U U A U

⎛ ⎞
⎜ ⎟
⎜ ⎟+ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂
+ = =

∂

M

                                                                   (3.4)

This system is hyperbolic if ( )  has m real eigenvalues and is strictly hyperbolic
if all these eigenvalues are distinct. 
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Each eigenvalue λp and corresponding eigenvector Rp corresponds to a characteristic 

family of waves. A hyperbolic system can be transformed to a system of equations 

where each equation represents the propagation of one of these families of waves – 

this is the characteristic form of the system and is obtained by multiplication of the 

dependent variables by the matrix of left eigenvectors. Transformed to this 

characteristic form the equations can be rewritten as a series of m equations  

 

, ,( ) ( ) ( ) 0                                                                      (3.5)

where the characteristic curves satisfy

( )

p p p
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A characteristic field is genuinely nonlinear if it relates to a distinct eigenvalue and 

right eigenvector. For genuinely nonlinear fields the following relation holds 

 

( ) ( ) 0                                                                     (3.6)

everywhere  and ( ) is the gradient of ( ) with respect to U

p p

p p

U R U

U U

λ

λ λ

∇ ≠

∇

�
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For linearly degenerate fields relating to the repeated eigenvalues the opposite is true 

with 

( ) ( ) 0   everywhere                                                                (3.7)p pU R Uλ∇ =�  

 

The difference in these two types of fields can be explained by their effect on a 

simple wave, a smooth discontinuity associated with a single characteristic family, 

propagating in the field. Through a simple wave in a nonlinear field the 

characteristics are not parallel and are either converging or diverging on the wave 

leading to distortion. In the Riemann problem each wave will be either a single shock 

or a rarefaction wave. Linearly degenerate fields do not display this nonlinear 

behaviour and through a simple wave in a linearly degenerate field the characteristics 

are parallel, like in a linear system, leading to the wave propagating without 

distortion.  

 

This pseudo-linear behaviour associated with the degenerate fields leads to the 

discontinuities associated with these fields being prone to experience the same type 

of numerical problems as noted by Lax6 with the spreading of contact discontinuities 

of linear hyperbolic equations by numerical schemes. It is therefore necessary to 

apply a compressive limiter which sharpens the gradients of these fields in order to 

overcome the numerical error that leads to spreading of their associated 

discontinuities. 

 

When looking for a method that is best suited for implementation in an existing finite 

volume solver and which is easily applied to a range of engineering applications the 

method of Characteristic Decomposition seems the most suitable option. Brown’s 

work requires the generation of vorticity in the domain to be dealt with by a source 

term which significantly reduces the range of possible applications. The method 

suggested by Roe and Ismail has as yet only been implemented for two dimensional 

inviscid flow and extension to viscous flows has not been explored. 

 

There are some issues in need of clarification with regards to the use of the method of 

Characteristic Decomposition.  
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- It is observed by Ismail and Roe that when the compressive limiter Superbee 

is applied to the conserved variables in a calculation although the 

conservation of vorticity is improved there is also spurious generation of 

vorticity due to the steepening nature of Superbee. It needs to be clarified if 

this same problem of the generation of spurious vorticity occurs, and if so to 

what extent, when the compression of Superbee is applied only to the fields 

where it is required to overcome numerical errors as in Characteristic 

Decomposition.  

 

- The implementation and demonstration of the effectiveness of the method of 

Characteristic Decomposition in an artificial compressibility scheme has not 

been demonstrated.  

 

- The work on using Characteristic Decomposition for vorticity conservation 

has concentrated on application along with high order schemes. The 

effectiveness of the method of Characteristic Decomposition with second 

order schemes has not been demonstrated. 

 

- The work on using Characteristic Decomposition for vorticity conservation 

has concentrated on calculations using structured grids. The effectiveness of 

the method of Characteristic Decomposition on unstructured grids has not 

been assessed. It is however well known that the performance of one 

dimensional limiting schemes, such as Superbee, on unstructured grids causes 

problems and it may be possible to improve the performance of Characteristic 

Decomposition on unstructured grids by modifying the application of the 

limiters to make their behaviour more compatible with an unstructured grid 

formulation. 
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4. Thesis Objectives 
 

Validation of an artificial compressibility scheme in Cranfield’s compressible solver 

MERLIN  

 

Assessment of the method of Characteristic Decomposition applied in both the 

Compressible and Artificial Compressibility Schemes. 

 

Assessment of the performance of the method of Characteristic Decomposition on 

unstructured grids 

 

Development and assessment of a variation of the method of Characteristic 

Decomposition for improved performance on Unstructured Grids  
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5. Implementation of Baseline Incompressible 
Scheme 
 
In order to provide a scheme in which to test the method of characteristic 

decomposition for incompressible flows the method of Artificial Compressibility has 

been implemented in the framework of the existing compressible solver MERLIN. 

MERLIN is a three dimensional second order finite volume flow solver, for the 

unsteady compressible viscous flow equations, which employs dual time stepping. 

The equations solved by the compressible MERLIN solver are given below. 
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ables, F the inviscid flux vector
and G the viscous flux vector.  is the surface normal outward 
facing unit vector and  the complete velocity.
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These equations are solved by the dual timestepping method where by they are 

marched to a steady state in pseudo time, τ, at each physical time step via a 2nd order 
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explicit method. As an explicit method is used the pseudo time steps are restricted by 

the cfl condition. The flux evaluations are carried out by applying the Riemann solver 

of Osher, with a MUSCL interpolation to provide second order accuray, to the locally 

one dimensional Riemann problems at the cell faces. The physical time step is 

updated via the implicit 2nd order backward in time Euler method. 

 

The background of the method of Artificial Compressibility is discussed below. 

 

The research and development of methods applied to the compressible flow equations 

has consistently outstripped efforts directed at the solution of incompressible flows. 

The method of artificial compressibility allows the wealth of knowledge from this 

research to be applied to the solution of incompressible flows. The Compressible 

Navier-Stokes equations describe flows of all Mach numbers but when it comes to 

numerical solution of these equations for low Mach numbers the methods applied to 

higher Mach number flows run into problems with convergence and stability. In fact 

testing carried out in Cranfield’s compressible flow solver, MERLIN, showed 

problems with convergence appearing for M≈0.1 and a failure of the code for 

M<0.01. This is because as Mach number reduces the speed of acoustic waves 

increases, tending to infinity in the limit, leading to a large disparity in acoustic wave 

and convection speeds. An approach to overcoming this is to instead solve the 

incompressible equations but these offer some challenges themselves due to the lack 

of coupling of the pressure and velocity fields. The Method of Artificial 

Compressibility was first introduced by Chorin24 in 1967 as a way of overcoming this 

problem. This method transforms the left hand side of these equations into a 

hyperbolic type, mathematically similar to the compressible equations but with a 

pseudo acoustic wave speed, by introduction of an artificial derivative of pressure 

into the continuity equations thus opening them up to solution by the many Riemann 

Solvers available. This method was extended for application to unsteady viscous 

flows by Merkle25 in 1987 via the application of dual time stepping. Another useful 

discussion of dual time stepping applied to the artificial compressibility equations can 

be found in the work by Breuer and Hanel26. 
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Governing System of Equations – Artificial Compressibility 
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compressibility coefficient
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In converting the compressible solver to solve the artificial compressibility equations 

original solver is modified as follows. The variables solved for are altered for the 

artificial compressibility scheme. The Energy equation is no longer solved. The 

boundary conditions and Oshers Flux for the inviscid terms are replaced by those for 

the artificial compressibility scheme. The viscous fluxes for the momentum equations 

remain unchanged and the viscous algorithms of the compressible code are retained. 

The calculation of the CFL condition for the pseudo time steps is altered to depend 

on the pseudo speed of sound. 

 

In the method of artificial compressibility the unsteady incompressible equations are 

recovered at each physical time step. When the solution is marched to a steady state 

in pseudo-time, and the pseudo-time derivative Qτ τ∂ ∂  tends to zero, the artificial 
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compressibility term vanishes form the equations leaving the unsteady 

incompressible equations. 

 

The Riemann Solver of Osher for the Artificial Compressibility Equations 

 

The locally one dimensional problem solved at the cell faces by the reimann solver 

for the artificial compressibility equations is given below. 
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The Riemann solver of Osher was first presented in the papers by Engquist and Osher 
27 and Osher and Soloman28. A good account of this method is also given in Toro3 in 

which the application of the method for any non-linear system of hyperbolic 

conservation laws is given. Toro states that ‘one of the attractions of Osher’s scheme 

is the smoothness of the numerical flux; the scheme has also been proved to be 

entropy satisfying’. The derivation of Osher’s flux depends on integration in phase 

space. The integration paths are integral curves associated with the set of right 

eigenvectors of the system. For the artificial compressibility equations these curves 

along with their intersection points need to be determined. The generalised Riemann 

invariants are used to determine the intersection points. The Osher flux for a general 

system of hyperbolic equations with variable vector U is defined by the following 

equation. 
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The full derivation of the Osher Flux for the Artificial Compressibility Equations is 

given in Appendix A. 

 

Choice of Value for the Artificial Compressibility Coefficient. 

 

There have been many different approaches to determining the appropriate value of 

the Artificial Compressibility coefficient, c. Some people choose a constant value for 

c normally in the range 1 → 3 and then use an empirical approach to alter this value, 

if found necessary, for a particular calculation. There has also been work to 

determine the ideal value of c dependent on flow velocity, most notably that by 

Turkel29,30. It seems sensible to take the approach of defining c in this way as c has 

dimensions of velocity and so there can be no universal appropriate value for c as this 

will depend on the non-dimensionalization. 

 

There are several things to consider when choosing a value of the artificial 

compressibility coefficient. The speed of propagation of the pseudo acoustic waves is 

determined by c and so this choice effects the convergence characteristics of a code. 

For a low value of c the acoustic wave speeds will be smaller, for a given convection 

speed, and so the ratio of pseudo acoustic to convection speeds will be smaller 

leading to better convergence characteristics. On the other hand for small c the 

influence of the artificial time derivative on the continuity equation will be greater 
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leading to a possible loss of accuracy for a given level of convergence. Marx31 

concluded that c ‘appears to have more influence on the convergence rate of a 

method than on the accuracy of the results’ and so it is the convergence 

characteristics that should be of greatest concern when making a choice of c value.  

 

For those who choose a value for c dependent on the flow velocity there is then the 

decision of whether to keep this value a constant, dependent on the farfield velocity, 

or to allow this value to vary with the maximum flow velocity. There is also a need to 

consider a lower limit on the value of c in order to avoid problems close to stagnation 

points. 

 

In [30] Turkel derives a variable value of c which would minimize the largest 

possible ratio of wave speeds which is given by 

 
2 2 2

2 2
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max(3( ), )                                                                                       (5.6)         
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Rizzi32 shows that a value of  

c2 > (u2+v2)                                                                                                         (5.7)                         

 

provides better conditioning preventing problems near stagnation points putting a 

lower acceptable limit on the value of c. In the later paper Turkel30 observes that a 

constant value for c in fact provides better convergence but concludes that ‘the 

reasons for this are not clear’. The issue of whether a constant value of c is preferable 

has not been clarified with several papers coming to contradictory conclusions, for 

example Marx31 and Elsworth and Toro33 both find a variable c preferable with Marx 

stating that ‘a variable – in time – c2, linked to maximum velocity can also stabilize 

an otherwise diverging calculation’. It seems sensible to experiment with both 

variable and constant values of c when implementing artificial compressibility in a 

code for the first time, starting with a value close to that predicted as ideal by 

Turkel29. 
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6. Testing of the Artificial Compressibility Scheme 
Initial validation of the artificial compressibility scheme concentrates on calculation 

of an inviscid steady flow. This test case is used in order to test the most appropriate 

choice of artificial compressibility coefficient and to validate the artificial 

compressibility scheme. It is useful to apply several levels of testing to the code – 

firstly to validate the core of the artificial compressibility method embedded in the 

unsteady viscous flow solver and then to validate the viscous terms by calculating a 

laminar flow over a flat plate and comparing to the Blausius similarity solutions. The 

dual time stepping scheme can then be tested against a suitable test case in this case 

the laminar flow over a circular cylinder. All calculations performed in the testing of 

the artificial compressibility scheme employ the Barth and Jespersen limiter35. This 

limiter has been chosen as a baseline for comparison throught out this work due to 

it’s popularity and strong performance. The Barth and Jespersen limiter is applied so 

that the reconstructed values in a cell are bounded by the maximum and minimum 

values that can be found by considering the cell and it’s neigbours. 

 
For unstructured cell B the Barth and Jespersen limiter function ( ) takes values
such that the following condition is enforced

min( , ) ( ) max( , ) ( )                  

BJ

N B B BJ B N B

r

q q q r r q q q N Neighbour B

Ψ

≤ +Ψ •∇ ≤ ∀ ∈
r

1
2

 (6.1)

Here  is the vector connecting the cell centre to the face centre- making  the 
interpolated difference, which is to be limited, in q from the cell centre to the face. 
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Inviscid Flow around a slotted flap aerofoil 

 

This test case is the calculation of the flow around a two dimensional slotted-flap 

aerofoil at a nondimensionalised velocity = 0.2. In the MERLIN solvers all velocities   
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are nondimensionalised by the freestream speed of sound of a compressible flow at 

the velocity under consideration. The exact solution for the pressure distribution is 

given in Williams35 and the calculation of the exact solution was carried out as 

follows. “The Inviscid flow about two lifting circles was calculated by the method of 

images and then the two circles were mapped conformally onto two aerofoils by 

applying the Karman-Trefftz transformation twice.” This test case is towards the top 

range of the speeds for which the artificial compressibility scheme is appropriate and 

so provides a challenging case and also the opportunity to compare its performance to 

a compressible flow solver at Mach 0.2.  

 

The calculation is carried out on an unstructured grid consisting of 15000 cells with 

501 cells around the main element and 201 around the flap. These points are 

distributed such that the grid spacing and the leading and trailing edges of both the 

main element and flap is 0.0001m. The leading edge of the main element is placed at 

(0, 0) and the boundary of the computational domain is circular with radius 20m. 

Figures 3 and 4 show the computational domain. All calculations are run with a 

cfl=0.1. 

 

 
Figure 3 – The computational domain for the Slotted Flap Calculation 
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Figure 4 – Close up of the distribution of cells in the region of the aerofoil  

for the slotted flap calculation 

 

Initial tests centred around the choice of artificial compressibility coefficient. It was 

confirmed that the lower bound of c2 > (u2+v2) is valid and in fact it was not possible 

to achieve a converged solution if this relationship was violated. Following this 

finding constant values of c determined by the relationship  

 

c = α √(u2+v2)farfield                                                                                           (6.3)                           

                                  

and variable values of c with  

 

c = α √(u2+v2)max                                                                                              (6.4)                           

                            

at each time step were tested. The parameter α taking values in the range (1.1, 5) 
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It was found, as suggested by Turkel29, that a constant value of c consistently gives 

the best convergence rates across a range of c values. This is demonstrated in the 

following figures.  
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Figure 5  

 

 

 
Figure 6 
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Figure 7 

 

 

 

 

 
Figure 8 
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The accuracy of the calculation is not greatly affected by the choice of c value but 

testing in the region of the value c=3, suggested by Turkel, found that c=3.5 gave a 

slightly more accurate value at the leading edge if the aerofoil as is shown in figures 

9 and 10. 

 Figure 9 – Plot of the pressure distribution for several  values of the artificial compressibility 

coefficient 
 

 
Figure 10 – Close up of the peak region in Figure 9 – it can be seen that an artificial 

compressibility coefficient = 3.5 provides the most accurate solution in this area. 
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Comparing the artificial compressibility formulation to results achieved with the 

compressible flow solver the artificial compressibility scheme is slightly less accurate 

around the leading edge as can be seen from Figure 11. 

 

 
Figure 11– Plot of the pressure distribution for the artificial compressibility and compressible 

solvers. It can be seen that the compressible solver provides the slightly better solution 

 

Both codes have problems with resolving the flow accurately in this area and this is 

thought to be due to having an insufficiently fine grid around the leading edge. The 

performance of the artificial compressibility algorithm for this case is sufficiently 

accurate to conclude that the scheme is working as intended and that it is suitable for 

calculation of steady incompressible flows at nondimensionalised velocity = 0.2 and 

below.  

 

The results of grid convergence studies for both the artificial compressibility and 

compressible schemes are shown in Figures 12 and 13. The two coarser grids have 

13000 and 8000 cells. 
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Figure 12 -Plot of the pressure distribution for the artificial compressibility solver on three grid 

densities 

 

 

 
Figure 13 - Plot of the pressure distribution for the compressibe solver on three grid densities 

 

The behaviour of both the artificial compressibility and incompressible codes as the 

grids are refined are similar and it can be seen that as the grid resolution improves the 

calculated solutions for both schemes are approaching the exact solution. 
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Calculation of the Laminar flow over a Flat Plate 

 

The laminar flow past a flat plate at zero angle of incidence, at Mach = 0.1 is 

calculated. The flow is calculated at a Reynolds number of 250000 based on the 

length of the flat plate and the temperature is 388.89K. A laminar boundary layer 

forms along the plate which can be compared with the Blasius similarity solutions 

given below 

 

fs

fs
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The values of the functions '  and  ,f f  along with a comprehensive discussion of 

similarity solutions, can be found in the text by White36.  

 

The two dimensional computational domain has its inflow boundary at x=-0.25 and 

outflow boundary at x=1. The flat plate is at y=0 and the farfield boundary is placed 

at y=1. The streamwise grid density is ∆x=0.02 with 63 grid points. In the transverse 
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direction there are 69 grid points with an initial ∆y=0.0005 with the first 40 points in 

the transverse direction below y=0.1 giving a fine distribution in the region of the 

boundary layer as is shown in figures 14 and 15. All calculations are carried out with 

cfl=0.3 

 

 

 
Figure 14 – Computation domain for the laminar flat plate calculation 

 

 

 38



 
Figure 15 – close up of the grid distribution for the first 48 transverse points in the area of the 

wall boundary for the laminar flat plate calculation 

 

The solutions obtained for the flat plate calculation for the artificial compressibility 

code are compared to the Blausis solutions in figures 16 and 17. 

 

 
Figure 16 – Comparison of the Artificial Compressibility Scheme to the Blausius solution for the 

streamwise components of velocity, the calculation comes close to the analytic solution 
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Figure 17 - Comparison of the Artificial Compressibility Scheme to the Blausius solution for the 

transverse components of velocity 

 

The solution for function for the v component of velocity appears to be less accurate 

than the solution the u velocity component but when it is taken into consideration that 

the components of velocity in the transverse direction are many orders of magnitude 

smaller than those in the streamwise direction the solutions seem reasonable. The 

calculated velocity profiles compare favourably with the analytic solutions and it can 

be concluded the viscous terms in the code are working as intended. 
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The Laminar Flow Over a Circular Cylinder at Mach=0.2 

 

The two dimensional flow over a laminar circular cylinder at Reynolds number 150, 

based on the cylinder diameter, is calculated. The freestream flow is Mach=0.2 and 

the temperature is 278K. The results can be compared to experimental date obtained 

for the Strouhal number which is the dimensionless vortex shedding frequency given 

by 

 

                                                                                       (6.8)

where D is the diameter of the cylinder, U is the freestream velocity and  is 
the frequency of vortex

t
DS f
U

f

=

 shedding.

 

 

For a Reynolds number of 150 the Strouhal number can be expected to be in the 

region of 0.16 – 0.18. 

 

The computational domain is circular with a radius of 200m and is centred on the 

cylinder. The structured grid has 401 points around the cylinder and 201 points in the 

radial direction with an initial wall spacing of 1x10-3. The hybrid grid has the same 

distribution of structured mesh surrounding the cylinder to a distance 0.1m normal to 

the cylinder surface. The remainder of the domain is unstructured with the farfield 

boundary having an even distribution of 401 cells. Figure 18 and 19 show the 

computational domains of both grids in the region of the cylinder. It can be noted that 

in both grids the quality of the grid reduces dramatically down stream of the cylinder 

and the vortex capturing capabilities of the calculations will be affected by this.  
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Figure 18 – Structured grid in the region of the cylinder  

 
Figure 19– Unstructured grid in the region of the cylinder 

 

All calculations are carried out with a cfl=0.3 and run for a total physical time of 3s 

with a time step of dt=0.01s. 

 

The Strouhal numbers calculated from the frequency of variations in pressure at a 

monitor position below the vortex shedding path are St=0.146 for both the structured 

and unstructured cases.  Tests were carried out to find the number of subiterations at 

which the calculated Strouhal number stopped changing with additional iterations 

and it was found to be 2500 sub iterations for each physical time step. A test on the 

time step convergence was carried out in which the physical time steps were halved 

to see the change in the calculated Strouhal number in the structured case the 

Strouhal number was higher at St=0.15 but remained unchanged for the unstructured 

case. All these predicted values are less than the magnitude of the Strouhal number 

predicted by experiment. The Strouhal number increases with Reynolds number for 

Reynolds numbers in the region of 150. The under prediction of the Strouhal number 

may be due to numerical dissipation in the code increasing the effective viscosity and 

so dropping the effective Reynolds number. The physical time step chosen may also 

influence the predicted values which may improve with further reduction of the 

physical timesteps but the amount of reduction possible is restricted by computational 

costs and there was little change for a 50% reduction in physical timestep. It must 

also be considered that the freestream Mach number =0.2 is towards the top end of 

the appropriate range for application of the artificial compressibility scheme and this 

may have some influence on the accuracy of the predicted Strouhal number. 
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The following figures show the vorticity shed from the cylinder for both the 

structured and unstructured calculations at 300 physical timesteps. 

 

      
Figure 20 Structured Calculation, Vorticity Magnitude non-dimensionalised by the physical 

freestream speed of sound 

 

 

 
Figure 21 Unstructured Calculation, Vorticity Magnitude non-dimensionalised by the physical 

freestream speed of sound 

 

 

 

Taking into consideration the factors possibly affecting the performance of the 

artificial compressibility scheme in this calculation it can be concluded that 

implementation of dual time stepping in the scheme is performing as expected. 
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7. Implementation of Characteristic Decomposition 
 

The method of characteristic decomposition applies different limiter functions to 

different variables during the reconstruction of the slopes in a higher order 

calculation of a system of hyperbolic conservation laws. A compressive limiter, 

Superbee, is used for variables associated with the linearly degenerate fields whilst 

the more diffusive limiter, Minmod, is applied to those associated with the genuinely 

nonlinear fields. The method of application of characteristic decomposition, for a 

system of three dimensional equations, follows. 

 

In order to apply a Riemann Solver in conjunction with a Godunov type scheme to a 

three dimensional system of hyperbolic conservation laws the x-split Riemann 

problem is solved.  

 

The equations in use will therefore be in the form  

 

 

1

2        where U=                                                                                        (7.1)

e vector of local conserved variables

m

u
u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟
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⎝ ⎠

M
( ) 0

Where U is th

In quasi-line

t xU F U+ =

ar

( )t xU A U U+ =

 form this is given by

0    where     ( ) FA U
U
∂

=
∂

    

 

The matrix A(U) has m eigenvalues λp and left and right eigenvector Lp and Rp.  The 

linearly degenerate fields are associated with repeated eigenvalues whilst the 

genuinely non-linear fields have distinct eigenvalues and linearly independent 

eigenvectors. 
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The local characteristic variables, W, of the system can be obtained via the 

transformation  

                                                                                 (7.2)W LU=  

 

It is assumed the following relationship is valid 

 

                                                                                 (7.3)W L UΔ = Δ  

 

The gradients of the local conserved variables are obtained via the chain rule from 

the gradients of the global variables and are used to calculate the limited differences 

    and     compressive dissusiveU UΔ Δ     

 

The interpolation function is then given by 

 

1/ 2 1 2

1 2

                                                  (7.4)

Where   is the matrix of left eigenvectors and  and  are matricies of the
eigenvectors of the l

i i i i compressive i dissusive

i i i

W LU L U L U

L L L

+ = + Δ + Δ

1 2

inearly degenerate fields and genuinely nonlinear fields 
respectively such that  

                                                                                                 (7.5)

the int

i i iL L L= +

1/ 2 i 1/ 2

erpolated local conserved variables are recoved via

=R                                                                                               (7.6)

and the global variables recovered 

i iU W+ +

from the local conserved variables

 

 

The details of the implementation of characteristic decomposition for the artificial 

compressibility and compressible Euler equations can be found in Appendices B and 

C respectively. 
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8. Testing of the Method of Characteristic 
Decomposition 

The Effect of Characteristic Decomposition on the Slotted Flap Aerofoil Test Case 

Compressible Solver –  

Figure 22 shows the effect of the application of Characteristic Decomposition in the 

compressible flow solver on the slotted flap aerofoil test case. 

 

 

Figure 22 – Comparison of the pressure distributions obtained with the Barth and Jespersen 

Limiter and Characteristic Decomposition – Characteristic Decomposition shows a great 

improvement over the Barth and Jespersen limiter 

The application of Characteristic Decomposition greatly improves the performance of 

the compressible code for this test case. The additional computational cost of this 

scheme over the base line scheme is an additional 25% per iteration. The effect on 

convergence also needs to be taken into account when considering the benefit of the 

additional accuracy of the Characteristic Decomposition scheme. Figure 23 Shows a 

comparison of the convergence histories of the baseline and Characteristic 

Decomposition Schemes. The baseline scheme shows better convergence 
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characteristics than the Characteristic Decomposition Scheme although the 

convergence is similar until the point at which the residual levels out for the 

Characteristic Decomposition scheme. This behaviour is expected as the method of 

Characteristic Decomposition employs non-differentiable limiters which are known 

to suffer from convergence stall to a greater degree than three dimensional limiters 

such as Barth and Jespersens. The Characteristic Decomposition scheme can then be 

considered to give a considerable improvement in accuracy over the baseline scheme 

at 25% additional computational cost. 

 
 

 
Figure 23 – Convergence histories for Barth and Jespersen and Characteristic Decomposition 

Schemes – the onset of convergence stall is evident for the Characteristic scheme 
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Artificial Compressibility Solver –  
 

Figure 24 shows the effect of the application of Characteristic Decomposition in the 

artificial compressibility flow solver. 

 

 

Figure 24– Comparison of the pressure distributions obtained with the Barth and Jespersen 

Limiter and Characteristic Decomposition – Characteristic Decomposition shows a great 

improvement over the Barth and Jespersen limiter 

 
 
As with the compressible code the implementation of Characteristic Decomposition 

in the artificial compressibility scheme provides an improvement in the calculated 

pressure distribution on the aerofoil and flap. Figure 25 shows the convergence 

histories of both the baseline and Characteristic schemes for this test case. For both 

the baseline and Characteristic Decomposition schemes the convergence is slower for 

the artificial compressibility scheme than the compressible solver. Again the baseline 

scheme shows better convergence behaviour.  In this case the convergence of the 

Characteristic Decomposition scheme remains approximately one order of magnitude 

greater than the baseline scheme.  
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Figure 25– Convergence histories for Barth and Jespersen and Characteristic Decomposition 

Schemes – the onset of convergence stall is evident for the Characteristic scheme 

 

Appendix D contains the results obtained for the baseline and characteristic 

decomposition scheme for various levels of grid refinement. It is noted that the 

implementation of Characteristic Decomposition has little effect on the behaviour of 

the calculated solution as the grid is refined as compared to the baseline scheme. 

 

For both the compressible and artificial compressibility schemes the Superbee limiter 

was tested and failed to achieve a converged solution. 
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Calculation of Flow over a Supersonic Wedge. 

 

The two dimensional inviscid flow over a supersonic wedge with half angle 15o and 

freestream Mach number 2.5 is calculated. The freestream temperature is 288.89K. 

An oblique shock is formed at the leading edge of the wedge and the calculated 

change in conditions across the shock can be compared to the analytic solution. 

Details of the analytic solution for this flow can be found in Anderson37 and the 

relations across the shock are summarised in the following table (figure 26).  

 

 

Angle of oblique shock  36.94490o 

Mach number behind the oblique shock 1.873526  

Pressure ratio (p2/p1)  2.467500  

Density ratio (rho2/rho1)  1.866549  

Temperature ratio (T2/T1)  1.321958  

Figure 26 Analytic solution of the Inviscid Flow of a wedge of  

half angle 15o with freestream Mach number 2.5 

 

 

The flow is calculated on a two dimensional grid with grid density 155 in the 

streamwise direction and 101 points in the transverse direction. This gives a nearly 

even grid spacing of approximately 0.01 in each direction, Figure 27 shows the 

computational grid. The leading edge of the wedge is located at (0, 0) with the inflow 

boundary of the domain located at x=-0.5m, the outflow boundary at x=1m and the 

farfield boundary at y=1m. All calculations are carried out with cfl=0.1 

 

This test case is used to assess the effect of the implementation of Characteristic 

Decomposition on the ability of the compressible code to capture the shock and 

provide a monotone solution. 
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Figure 27 – The computational domain for the Supersonic Wedge Calculation 

 

Figure 28 shows the behaviour of the Barth and Jespersen limiter, the Superbee 

limiter and Characteristic Decomposition on the change in pressure across the shock. 

 

 
Figure 28 – Pressure change across the shock for the supersonic wedge case – the Superbee 

limiter fails to provide a monotone solution. 
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The Characteristic Decomposition and Barth and Jespersen limiters both provide a 

monotone solution resolving the shock in the same number of grid points where as 

the Superbee limiter fails to provide a monotone solution for this test case although it 

resolves the shock in fewer grid points. 

 

Calculations were also carried out on coarser grids in order to provide a grid 

convergence study. Calculations were performed on grids with densities of 117x77 

and 77x51. The range of variation in the coarsness of the grids used for this study 

were limited by the ability of the scheme to achieve a converged solution for this test 

case – it was therefore necessary to use varying non integer refinement ratios. The 

integral average of the Mach number behind the shock was used in order to calculate 

the GCI index for this grid convergence study the results of which are summarised in 

the following table. Here r is the grid refinement ratio and epsilon the relative error. 

The GCI is the Grid Convergence Index and is a measure of the percentage the 

computed value is away from the value of the asymptotic numerical value.  

 

Grid r 
Average 

Mach 

% error  

Av Mach 
epsilon GCI 

77x51 1.3 1.866843 0.356684672 0.062858 0.242453 

117x77 1.5 1.868018 0.294011402 0.27395 0.657481 

151x101  1.873149 0.020116081  - 
Figure 29 Superbee 

 
 
 
 
 
 
 
 
 
 
 

 

Grid r 
Average 

Mach 

% error 

Av Mach 
epsilon GCI 

77x51 1.3 1.866643 0.367359731 0.117282 0.452372 

117x77 1.5 1.868835 0.250371762 0.216867 0.520481 

151x101  1.872897 0.03357733  - 

Figure 30 Barth and Jespersen 
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Grid r 
Average 

Mach 

% error 

Av Mach 
epsilon GCI 

77x51 1.3 1.865269 0.44070806 0.035891 0.138436 

117x77 1.5 1.865939 0.404962626 0.240404 0.576969 

151x101  1.870436 0.164955279  - 

Figure 31 Characteristic Decomposition 

 
 
For all schemes the GCI values are low and this indicates that the grids are within the 

asymptotic range. For the calculation of the average Mach the scheme that provides 

the most accurate solution is the Superbee scheme followed by the Barth and 

Jespersen and then Characteristic Decomposition although the percentage errors for 

all schemes are low. 

 

The effects of the differing schemes on convergence histories are shown in Figure 32. 

 

 
Figure 32 – Convergence histories for the Supersonic Wedge case – convergence stall is evident 

for both the Superbee and Characteristic Decomposition schemes 

 

The issue of convergence stall is very apparent for both the Superbee limiter and 

Characteristic Decomposition Schemes for this test case. This is likely to be due to 
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the activation of the limiters due to small numerical oscillations in the smooth regions 

of the flow. The Superbee limiter’s convergence stalls without achieving even one 

order reduction in magnitude of the residual and continues to show large oscillations 

about its final average value whilst Characteristic Decomposition stalls at one order 

of magnitude reduction. 

 

It can be concluded that although the application of Characteristic Decomposition 

affects the convergence behaviour of a code as compared to the Barth and Jespersen 

scheme due to the use of the non-differentiable limiters Minmod and Superbee it does 

not suffer from the problems achieving a monotone solution in the same way as the 

Superbee limiter. The effect of the application of Characteristic Decomposition on 

the Grid Convergence behaviour of the code is such it can be assumed that if grids 

are in the Asymptotic range for the Barth and Jespersen scheme they will also be 

likely to be for the Characteristic Decomposition Scheme. 

 

Calculation of the flow over a laminar flat plate 

 

The following Figures 33 and 34 compare the performance of Characteristic 

Decomposition and the Barth and Jespersen and Superbee limiters for the laminar flat 

plate test case. 
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Figure 33– Comparison of the Barth and Jespersen, Superbee and Characteristic Decomposition 

schemes to the Blausius solution for the streamwise components of velocity, all the calculations 

come close to the analytic solution 

 

 
Figure 34- Comparison of the Barth and Jespersen, Superbee and Characteristic Decomposition 

schemes to the Blausius solution for the transverse components of velocity 

 

 

There is very little variation between the solutions obtained using each of these 

methods and it can be concluded that the application of Characteristic Decomposition 

has little effect on the accuracy of the viscous terms in the code. 

 

Figure 35 shows the convergence histories for these calculations and it can be seen 

that the convergence behaviour is very similar in all three cases but the Barth and 

Jespersen limiter levels out at one order of magnitude less than the Superbee limiter 

and Characteristic Decomposition. 
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Figure 35– Convergence histories for the Laminar Flat Plate case – convergence stall is evident 

for both the Superbee and Characteristic Decomposition schemes 

 

 

Calculation of the Laminar Unsteady flow over a Circular Cylinder –  

 

The results obtained for the calculation of the Strouhal number for the laminar flow 

over a circular cylinder test case were unchanged at St=0.146 for both the 

unstructured and structured Characteristic Decomposition calculations and the 

unstructured Superbee calculation. For the Structured Superbee calculation the 

calculated Strouhal number rose to St=0.15 indicating that the compressive nature of 

the Superbee limiter is lowering the effective viscosity of the numerical scheme and 

therefore raising the effective Reynolds number.  

 

The following figures show the vorticity shed form the laminar cylinder at 300 

timesteps for the Barth and Jespersen, Superbee and Characteristic Decomposition 

schemes for the unstructured and structured grids. 
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a. 

      
b 

 
c 

Figure 36- Plots for Unstructured Grids of Vorticity Magnitude non-dimensionalised by the 

physical freestream speed of sound. a=Barth and Jespersen b=Superbee c=Characteristic 

Decomposition 
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a 

 
b 

 
c 

Figure 37 - Plots for Structured Grids of Vorticity Magnitude non-dimensionalised by the 

physical freestream speed of sound. a=Barth and Jespersen b=Superbee c=Characteristic 

Decomposition 
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For both the structured and unstructured grid calculations the Superbee and 

Characteristic Decomposition schemes are visibly convecting the shed vortices 

further down stream than the Barth and Jespersen scheme. It appears that 

Characteristic Decomposition performs best for vorticity magnitude conservation for 

the unstructured grid and that Superbee performs best for the structured grid. It is 

difficult to draw a definite conclusion about the vorticity conserving nature of the 

different schemes from this test case as the onset of vortex shedding happens at 

different times in the physical time steps of the calculations for different cases and so 

the positions of the shed vortices at any one physical time are not in synch across the 

different calculations. 
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Calculation of an Inviscid Convecting Vortex 

 

This test case involves the calculation of a two dimensional inviscid convecting 

vortex. An exact solution derived assuming a Gaussian pressure distribution and 

periodic boundary conditions is given in reference15 by the following equations. 

 

 
2 2

1 0 2 0 0

2 2
1 0 2 0 0

2
21

inf 2 0 0
2

cos [ sin ]exp[ ([ cos ] [ sin ] )]                      (8.1)

sin [ cos ]exp[ ([ cos ] [ sin ] )]

0.25 (exp[ 2 ([ cos ] [
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c
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= + − − − − − + − −

= − − − − − − + − −
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1 2

sin ] )] 1)

where  is the flow angle M the mach number and c  and c  are perturbation coefficients

Mt α

α

−

 

The computational domain for all calculations extends from x=(-40,40)m y=(-

40,40)m and the centre of the vorticity perturbation is at x0=-20m y0=0m. A 

structured grid with grid density in 80x80 and an unstructured grid with boundary 

density 40x40 giving 1500 cells are used as the baseline grids. These grids are shown 

in figures 38 and 39. All computations are run with cfl=0.3. 

 

 
Figure 38 – Computational Domain for  Structured Grid Calculation 
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Figure 39- Computational Domain for Unstructured Grid Calculation 

 

A compressible test case is set up with M=0.5, c1=-0.04 and c2=0.02 the timestep is 

dt=0.0004703 and the calculation is run for 500 physical time steps in order to 

convect the vortex 40m. 

 

A test case for the incompressible code is set up with M=0.2, with a weaker vortex 

given by c1=-0.0375 and c2=0.016 the timestep is dt=0.001758 and the calculation is 

run for 500 physical time steps in order to convect the vortex 40m. Due to the slower 

speed of propagation of the vortex and it’s weaker strength this test is a greater 

challenge in terms of vorticity conservation for a code. 

 

The initial vorticity distribution should convect unchanged with the freestream 

velocity. The results of these calculations are analysed by looking at several measures 

of vorticity conservation in the domain. Firstly the distribution of vorticity magnitude 

is considered to indicate change in the vortex shape and magnitude. The decline in 

maximum vorticity magnitude is plotted against the time step to give an indication of 

the rate of dissipation of the vorticity within the vortex. The enstrophy given by 

 
2( )                                                        (8.2)ns

S

E U U dS= ∇∫  

is integrated over the whole domain and plotted against time step. This is a quantity 

related to the kinetic energy of the flow and gives an indication of the rate of 
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dissipation within the computational domain. For an inviscid calculation the 

enstrophy should remain constant due to the dissipationless nature of inviscid flow. It 

is therefore a useful measure of the numerical dissipation as it indicates whether a 

particular numerical scheme is dissipating or is raising the total kinetic energy 

contained within the domain.  

 

Results for the compressible convecting vortex case. 

 

Structured Grid – 

 

The decline in peak vorticity for the structured vortex case for Characteristic 

Decomposition, the Barth and Jespersen and Superbee limiter is shown in the figure 

40. 

 

 
Figure 40 – Decline in Peak Vorticity for Structured Grid calculation. Characteristic 

decomposition shows a marked improvement over the Barth and Jespersen limiter and 

Superbee maintaines peak vorticity close to unity. 

 

It can be seen that the peak vorticity is conserved for the Superbee scheme and that 

the Characteristic Decomposition scheme maintains approximately twice the vorticity 

magnitude of the Barth and Jespersen scheme. 
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Figure 41 shows the change in Enstrophy in the computational domain for each of the 

above calculations. 

 

 
Figure 41– Change in Enstrophy for Structured Grid calculation. Characteristic decomposition 

shows a marked improvement over the Barth and Jespersen limiter when maintaining 

Enstrophy. Superbee is generating spurious enstrophy with the value rising above unity. 

 

 

 

It can be seen that although the Superbee limiter preserves the peak vorticity of the 

vortex the scheme is increasing the Enstrophy within the computational domain with 

time. This is evident from looking at the following figure 42 which depicts vorticity 

magnitude at 500 timesteps compared to the initial vortex which should convect 

unchanged. It can be seen that the Superbee scheme is creating spurious vorticity and 

that the shape of the vortex has become distorted. Vorticity conservation for 

Characteristic Decomposition is much improved over the baseline Barth and 

Jespersen scheme and does not suffer from the generation of spurious vorticity and 

vortex distortion in the same way as the Superbee scheme. 

 

The calculation was also run with the timestep reduced by 50% and the difference in 

the computed values of peak vorticity differed by 0.11482% from the original 

calculation indicating the calculation is run with a sufficiently small time step. 
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A.    Barth and Jespersen                                   B. Superbee 

 
C. Characteristic Decomposition                    D, initial vorticity distribution 
 
Figure 42 - Plots of  vorticity magnitude calculated from nondimensionalised velocity 

distribution for the structured grid calculation.  The generation of spurious vorticity by the 

Superbee limiter is evident whilst the Charateristic Decomposition scheme improves vorticity 

conservation without suffering from this problem. 
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Unstructured Grid – 

 

The decline in peak vorticity for the unstructured vortex case for Characteristic 

Decomposition, the Barth and Jespersen and Superbee limiter is shown in the figure 

43. 

 

 
Figure 43– Decline in Peak Vorticity for Unstructured Grid calculation. Characteristic 

decomposition shows a marked improvement over the Barth and Jespersen limiter with 

Superbee showing the greatest conservation of peak vorticity 

 

 

As with the structured case Superbee maintains the peak vorticity magnitude the best 

and Characteristic Decomposition provides an improvement over Barth and 

Jespersen. Figure 44 shows the change in Enstrophy in the computational domain for 

each of the above calculations. 
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Figure 44– Change in Enstrophy for Unstructured Grid calculation. Characteristic 

decomposition shows a marked improvement over the Barth and Jespersen limiter when 

maintaining Enstrophy. Superbee is generating spurious enstrophy with the value rising above 

unity. 

 

 

Again it can be seen that Superbee is increasing the enstrophy in the domain with 

time. The effect of this is less evident in the distribution of vorticity magnitude than 

in the structured grid calculation. The following figure 45 depicts vorticity magnitude 

at 500 time steps compared to the initial vortex which should convect unchanged. 

Vorticity conservation for Characteristic Decomposition is much improved over the 

baseline Barth and Jespersen scheme and does not suffer problem of increasing 

enstrophy in the domain. 

 

The calculation was also run with the timestep reduced by 50% and the difference in 

the computed values of peak vorticity differed by 0.079859% from the original 

calculation indicating the calculation is run with a sufficiently small time step. 
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A.    Barth and Jespersen                                   B. Superbee 

 

 
C. Characteristic Decomposition                    D, initial vorticity distribution 
 

Figure 45- Plots of  vorticity magnitude calculated from nondimensionalised velocity 

distribution for the unstructured grid calculation.  The generation of spurious vorticity by the 

Superbee limiter is evident whilst the Charateristic Decomposition scheme improves vorticity 

conservation without suffering from this problem. 
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Results for the artificial compressibility convecting vortex case. 

 

Structured Grid – 

 

The decline in peak vorticity for the structured vortex case for Characteristic 

Decomposition, the Barth and Jespersen and Superbee limiter is shown in Figure 46. 

 

 
Figure 46 – Decline in Peak Vorticity for Structured Grid calculation. Characteristic 

decomposition shows an improvement over the Barth and Jespersen limiter with Superbee 

showing the greatest conservation of peak vorticity 

 

 

Here the Superbee limiter again conserves the peak vorticity the best with the 

Characteristic Decomposition providing a significant improvement over the baseline 

Barth and Jespersen limiter. Figure 47 shows the change in enstrophy in the domain 

with this calculation. 
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Figure 47 – Change in Enstrophy for Structured Grid calculation. Characteristic decomposition 

shows an improvement over the Barth and Jespersen limiter when maintaining Enstrophy. 

Superbee is generating spurious enstrophy with the value rising above unity. 

 

 

Again  in this case it can be seen that the Superbee limiter increases the enstrophy in 

the domain with time. Figure 48 shows the distribution of vorticity magnitude for this 

case. Here the problem associated with generation of spurious vorticity and vortex 

distortion associated with the raise in enstrophy in the domain is very evident for the 

Superbee calculation. Characteristic Decomposition again provides an improvement 

over the Barth and Jespersen Limiter. 

 

The calculation was also run with the timestep reduced by 50% and the difference in 

the computed values of peak vorticity differed by 0.130571% from the original 

calculation indicating the calculation is run with a sufficiently small time step. 
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A.    Barth and Jespersen                                   B. Superbee 

 

        
C. Characteristic Decomposition                    D, initial vorticity distribution 
 
Figure 48 - Plots of  vorticity magnitude calculated from nondimensionalised velocity 

distribution for the structured grid calculation.  The generation of spurious vorticity by the 

Superbee limiter is evident whilst the Charateristic Decomposition scheme improves vorticity 

conservation without suffering from this problem. 
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Unstructured Grid – 

 

The decline in peak vorticity for the unstructured vortex case for Characteristic 

Decomposition, the Barth and Jespersen and Superbee limiter is shown in Figure 49. 

 

 
Figure 49 – Decline in Peak Vorticity for Unstructured Grid calculation. Characteristic 

decomposition shows an improvement over the Barth and Jespersen limiter with Superbee 

showing the greatest conservation of peak vorticity 

 

 

Here the Superbee limiter again conserves the peak vorticity the best with the 

Characteristic Decomposition providing a significant improvement over the baseline 

Barth and Jespersen limiter. Figure 50 shows the change in enstrophy in the domain 

with this calculation. 
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Figure 50– Change in Enstrophy for Unstructured Grid calculation. Characteristic 

decomposition shows an improvement over the Barth and Jespersen limiter with Superbee 

showing the greatest conservation of enstrophy. 

 

 

Here none of the calculations are increasing the enstrophy with time. Figure 51 

shows the distribution of vorticity magnitude for this case. In this case the vorticity 

dissipation is so strong in the Barth and Jespersen case that timestep = 500 the vortex 

is no longer visible in the domain. The Superbee limiter provides the greatest 

vorticity conservation and in this case where the numerical dissipation is strong the 

Superbee limiter does not seem to be affected by the same problem of generation of 

spurious vorticity and gain in enstrophy in the computational domain. 

 

The calculation was also run with the timestep reduced by 50% and the difference in 

the computed values of peak vorticity differed by 0.120108% from the original 

calculation indicating the calculation is run with a sufficiently small time step. 
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A.    Barth and Jespersen                                   B. Superbee 

 

         
C. Characteristic Decomposition                    D, initial vorticity distribution 

 

Figure 51- Plots of  vorticity magnitude calculated from nondimensionalised velocity 

distribution for the unstructured grid calculation.  The generation of spurious vorticity is not 

seen in any of the schemes . 
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9. The Trouble with Slope Limiters Applied to Irregular 
and Unstructured Grids 
 

The method of Characteristic Decomposition shows improvements over the baseline 

schemes for both structured and unstructured grids. However there are a number of 

known issues associated with the use of slope limiters on irregular and unstructured 

grids which should be addressed in order to gain maximum benefit from this method 

when applied to these grids.  

 

In the MUSCL approach to creating higher order methods the piece-wise constant 

data in first order Godunov type methods is replaced by interpolated values of the 

data computed using approximations of the gradients in a cell. According to 

Godunov’s theorem monotone schemes are at most first-order accurate which means 

that for all higher order methods spurious oscillations will occur in the solution 

variables in the vicinity of high gradients of these variables. Slope limiter methods 

overcome this problem by using some measure of the gradients in the solution to 

revert to first order methods in regions of high gradients therefore removing the 

spurious oscillations. 

 

A comprehensive discussion of the theory of slope limiter methods can be found in 

Toro3. The relevant points as regards to slope limiter methods are summarised here.  

 

In Van Leer’s series of papers ‘Towards the Ultimate Conservative Difference 

Scheme’38 he stated three rules of slope limiting that are necessary in order to prevent 

the onset of spurious oscillations  

 

1. The interpolated variables will not take values beyond the average values in 

neighbouring cells. 

2. If the cell average is an extremum with respect to neighbouring cell averages 

the slope must be set to zero in that cell. 

3. If the sign of the slope differs from that in neighbouring cells the slope must 

be set to zero. 

 

 74



These rules will not guarantee the complete suppression of spurious oscillations when 

applied to nonlinear equations but give an upper bound on the gradients that may 

produce monotone solutions. The ability of these upper bounds to be sufficient to 

produce monotone solutions also has some dependence on the cfl number. Larger cfl 

numbers provide less numerical damping and can thus require stronger limiting. 

When applying characteristic decomposition the genuinely non-linear fields are 

associated with the λ=u-a and λ=u+a eigenvalues and so for some values of the cfl 

number, cfl=(Δt/Δx)a, stronger limiting may be necessary with these fields in order to 

produce monotone solutions. The linearly degenerate fields are associated with the 

λ=u eigenvalues of the system and so the upper bounds given by the above rules are 

less likely to need further restriction to achieve monotone solutions.  

 

The formulation of slope limiters, such as Superbee and Minmod, is based in a scalar 

one dimensional regular structured grid framework. Toro3 section 13.8.4 gives a 

description of how the Superbee and Minmod slope limiters are obtained giving 
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The slope limiting can also be written in terms of a function r given by

/                                                                                    (9.2)

( )  

i i

ii i

i

r

q q r

q

+ −

+ −

−

= Δ Δ

= + Ψ Δ

= 1
2

1
2

1( )

( ) max[0,min( ,1),min( , )]                                               (9.4)

here the function obeys a symmetry condition such that

( ) 1( )                                      

i iq
r

r r r

r
r r

β β

+− Ψ Δ

Ψ =

Ψ
= Ψ

1 1
2 2

                                             (9.5)

For one dimensional structured grid formulations it is usual to write the
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For multidimensional structured grids additional space dimensions can be
treated seperately in the same manner. This formulation is less useful when
dealin

r
r

Φ = Φ

g with an unstructured multidimensional grid where the cells 
representing i+1 and i-1 are not easily identified.

 

 

 

 76



A
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C
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Fl

 
Figure 52 – A typical unstructured cell (B) and it’s neighbours (A,Cand D) 

 

Figure 52 shows an unstructured grid with cell B surrounded by three neighbours 

A,C and D. Fr and Fl are the left and right sides of the face connecting cells A and B 

to which the data will be interpolated. Typically for an unstructured grid as shown 

above cell B will have available the information relating to its surrounding cells. The 

gradient of the variables in each cell is calculated using a least square or Green-Gauss 

approximation.  The Green-Gauss method is used in the MERLIN solvers. For cell 

centered schemes the Green-Gauss method integrates around the boundary of the cell 

and uses Green theorem to estimate the average gradient over that control volume. 

The least square method solves the values of the gradients which minimise the sum 

of the differences between neighbouring values and values extrapolated from the 

point under consideration to the neighbouring locations. The least squares method is 

not dependent on grid topology and although the neighbouring cells are usually used 

the stencil can be expanded to include further cells. Unlike the Green-Gauss method 

the least squares method represents a linear function exactly. 

 

The interpolation from the centre of cell B to the face Fr will therefore be carried out 

using the following formula. 
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( )                                                                                (9.8)
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In this formulation the data will be interpolated to all three faces in cell B using the 

same equation with the relevant r and  r
r

 terms for each face. 

 

Problems with slope limiters. 

 

Slope limiting is found to perform well on regular structured grids however when 

slope limiters are applied to irregular and unstructured grids problems are 

encountered with both accuracy and convergence. 

 

The work by Venkatakrishnan39 demonstrates that the problems encountered when 

trying to achieve converged solutions on irregular grids are due to limiter chatter 

where the limiter is being activated by small oscillations in the variables in smooth 

regions of the flow. Limiter chatter prevents the solution from converging, often 

stalling convergence after a few orders of magnitude reduction in the residual, and 

also degrades the accuracy of the solution by activating the limiter and so reverting to 

a first order solution in smooth regions of the flow. The problem of limiter chatter is 

found to be worse for non-differentiable limiters which utilise the Max and Min 

functions such as the Superbee and Minmod limiters used in the method of 

characteristic decomposition. One method used to overcome this problem is to 

implement a threshold for oscillations within the flow below which the limiter will 

not activate. This type of modification can alleviate the convergence problems 

associated with limiter chatter but at the cost of achieving completely monotone 

solutions in some cases. If the threshold is set at too high a level the calculation can 
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also become unstable. This type of method for overcoming the convergence issues 

associated with limiter application is not considered for use along with characteristic 

decomposition due to the need for the limiter to be applied to the ‘smoother’ 

discontinuities associated with the linearly degenerate fields. 

 

The work by Aftosmis40 also concludes that the limiter chatter is the cause for the 

convergence stall problem and finds that this problem can cause a complete failure to 

converge for some triangular meshes. Aftosmis finds that improvements in 

convergence can be gained by using a less harsh directional limiting procedure in 

which only the face normal component of the gradient is limited. This type of 

limiting is sufficient to achieve monotone solutions but leads to the limiter being 

activated less frequently and improves the convergence of the calculation by 

approximately an order of magnitude. He also observes that in calculations in which 

convergence appears to stall there are only small amplitude fluctuations in the 

solution about the steady state and so monitoring the solution variables as opposed to 

the convergence histories can indicate when an acceptable level of convergence has 

been reached. 

 

The work by Berger, Aftosmis and Murman41 examining the behaviour of limiters on 

irregular grids finds that preservation of monotonicity and the ability of slope limiters 

to exactly reproduce linear solutions is necessary for both solution accuracy and 

convergence. When limiters are applied to irregular grids the limiters need to take 

into account mesh irregularities. The two main sources of the problems encountered 

when using limiters on irregular grids are failure to take account of mesh stretching 

and mesh skewing. This leads to limiter chatter, reduced accuracy and excessively 

dissipative solutions. 

 

The effects of mesh skewing are demonstrated in figure 53. 
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A B

 
Figure 53 – it is clear that standard limiters will fail to preserve linear data for cases where there 

is mesh stretching as they assume a regular grid spacing in their formulation.  For example in 

this case a 2:1 streching factor would mean that linear data interpolated in cell B to the face 

separating cells A and B would be interpreted as an over shoot by a factor of 2 and would be 

limited by all but the most compressive limiters leading to the degredation of linear data and 

solution accuracy.    
 

In their work Berger, Aftosmis and Murman demonstrate the effects of mesh skewing 

with the following figure 

 

 
 

 
Figure 54 - In all three examples linear data will not be preserved by standard limiters. Let the 
line between cell centres A and B be a level line of the solution. The flux evaluation and solution 
limiting occur at point C, which is not on the line. Point C will look like an overshoot, and the 
exact gradient which was reconstructed at A and B will be limited. 
 

It is observed that taking account of mesh stretching by simply rewriting existing 

limiter formulations in terms of scaled differences, in order that linear data will not 

be limited, results in the limiter not adhering to the monotonicity conditions. 

Overcoming the issue of mesh skewing at the same time as mesh stretching by 

limiting the gradients as opposed to the differences also encounters the same 

problem.  
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There have been a number of approaches to developing limiters for application to 

unstructured grids that take into account the nature of unstructured grids in multiple 

dimensions. Notably the work by Barth and Jespersen34, Batten, Lambert and 

Causon42, Hubbard43 and Jawahar and Kamath44. Although a number of these 

approaches have shown great improvements over limiter developed from a one 

dimensional framework their use is not compatible with the implementation of 

characteristic decomposition which relies on a face by face limiting of the local face 

normal characteristic variables. 
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Another issue that affects the accuracy of unstructured grid schemes is the accuracy 

of the calculated gradient which is used in the interpolation. Triangular or tetrahedral 

cells in unstructured grids have less nearest neighbours from which to calculate 

gradients than quadrilateral and hexahedral cells in structured grids which contributes 

to the poorer performance of unstructured grids when compared to comparable 

structured grids. Work by Peric45 using polyhedral unstructured meshes has shown 

that it is possible to use these unstructured meshes to achieve solutions that are 

comparable to those from structured grid calculations whilst maintaining the ease of 

mesh generation of tetrahedral cells. Calculations on the meshes also have much 

improved convergence behaviour when compared to tetrahedral meshes. This is 

attributed to the greater number of neighbours available for each gradient calculation.  

 

Approaches to improving Characteristic Decomposition on Unstructured Grids –  

 

In order to improve the application of characteristic decomposition on irregular and 

unstructured grids there are a number of alternations that have been explored. 

 

In the work by Berger, Aftosmis and Murman it is concluded that it is not possible to 

rewrite the limiter functions in terms of scaled differences or to limit the gradients 

directly as although this will improve the treatment of linear data it will not preserve 

the monotonicity of the solution. 

 

It is possible to rewrite limiters in terms of the scaled differences or to limit the 

gradients directly if a second limiting is performed in order to enforce the 

monotonicity condition. In order to achieve this the limiter functions can be rewritten 

as follows 

 

 82



 

1
2

s

min{max[0,min( ,1),min( , )], 2 }     r 0
( , )                       (9.14)

0                                                                r 0

( )r=

to limit scaled differences

2

s s
s

A B

B

r r r
r r

q q
r q

rr r

β β >⎧
Ψ = ⎨ ≤⎩

−
•∇

=

r

     where  is the vector from the centre of cell B to the centre of cell A

or to limit the gradients directly - each component of the gradient is limited using

( ) max[0, min( ,1), min(

BA
BA

x x

r
r

r r rβΨ =

r
uur

uur

, )]                                                     (9.15)

The reconstructed solution is then given by
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Unlike limiting the gradients directly, when limiting with scaled differences no 

account is taken of the effects of mesh skewing. In order to take some account of 

skewing this scaled difference limiting is combined with a directional approach, as in 

Aftosmis40, in which only the component normal to the face is limited. 

 

One of the issues highlighted as influencing the convergence characteristic of a code  

is the choice of type of limiters, in particular the use of limiters that employ the Min 

and Max function as in Superbee and Minmod.  The use of the Superbee limiter for 

characteristic decomposition is necessary as it is the compressive nature of the 

Superbee limiter which is needed to conserve vorticity. In figure 55 slope limiter 

functions providing monotone second order solutions are bounded by Minmod at the 

bottom and Superbee at the top all passing through the point of second order 

accuracy Ψ(1)=1.  

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

r
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r)

Minmod
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Vanleer

Figure 55 – Plots of limiter values Phi(r) against  ratio of differences r for Minmod, Suoerbee 

and Vanleer limiters.. Superbee and Minmod bound the region in which functions provide 

second order monotone solutions 
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There are a number of diffusive differentiable limiters that can be used instead of 

Minmod for application to the genuinely nonlinear fields in characteristic 

decomposition. 

 

 

The Van Leer limiter given by 

 

2( )                                                             (9.20)
1VL

rr
r

Ψ =
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is a differentiable limiter which is more compressive than the Minmod limiter but 

may improve convergence characteristic due to its smooth nature. There are no 

differentiable limiters which come close enough to the upper monotonicity bounds to 

make them suitable candidates to replace Superbee. The use of the non-differentiable 

Superbee limiter is therefore a necessary evil in the application of characteristic 

decomposition.  

 

In summary there are three different formulations of Characteristic Decomposition 

that are investigated in the next section 

 

The first – referred to as ‘Characteristic Decomposition – New’ limits only the face 

normal component of the gradient and uses scaling factors to take account of mesh 

stretching. 

 

The second – referred to as ‘Characteristic Decomposition – New 2’ limits the 

gradients directly. 

 

The third – referred to as ‘Characteristic Decomposition – New 2V’ limits the 

gradients directly and also replaces the Minmod limiter with the Van Leer limiter.   

  

 

The issue of the accuracy of the gradient calculation used in the reconstruction on 

vorticity conservation has been investigated by comparison of results obtained using 

a constrained least squares employing nearest neighbour and results obtained using 
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nearest neighbours and neighbours of neighbours. The increased vorticity 

conservation in the incompressible convecting vortex case was found to be less than 

2% improvement in conservation of peak vorticity whilst the additional 

computational cost per iteration was found to be approximately 30%. It is likely that 

the effect of varying the accuracy of the gradient calculation on the accuracy of the 

results would be more marked for grids containing greater levels of distortion than 

those considered in the current study. This issue has not been investigated any further 

here. 
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10. Results for New Limiting Schemes on 
Unstructured Grids. 
 

Slotted Flap Aerofoil Case 

Compressible Solver –  

Figure 56 shows the effect of the application of the new methods of Characteristic 

Decomposition in the compressible flow solver on the slotted flap aerofoil test case 

compared to the baseline Characteristic Decomposition scheme. 

 

 
Figure 56 – Pressure Distribution for the Characteristic, Charteristic New and Characteristic 

New 2 schemes  
 
The Characteristic Decomposition - New 2V scheme failed to achieve a converged 

solution as did the Superbee scheme in earlier tests. The reason for this failure is 

thought to be that the additional compression provided by the substitution of the Van 

Leer limiter for the Minmod limiter causes the calculation to become unstable and 

diverge. Both the Characteristic Decomposition – New and New 2 seem to provide 

similar level of accuracy to the original characteristic decomposition for this test 

case. Figure 57 shows the pressure distribution around the leading edge of the 

aerofoil at a closer scale. 
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Figure 57 – Close up of the leading edge from Figure 56 – it can be seen that all the schemes 

come close to the analytic solution with the Characteristic New 2 providing the best result 
It can be seen that Characteristic Decomposition new 2 provides a more accurate 

solution for the pressure distribution in this area than the other two schemes which 

provide similar results. The convergence histories of these schemes are compared in 

Figure 58. 

 
Figure 58 – Convergence Histories for the Characteristic, characteristic New and Characteristic 

New2 schemes. It can be seen that all schemes suffer from convergence stall which is most 

pronounced in the Characteristic New  scheme. 
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Both of the new versions of Characteristic Decomposition suffer from convergence 

stall at a higher level of the residual than the original Characteristic Decomposition 

for this test case. 

 

Artificial Compressibility Solver –  

Figure 59 shows the effect of the application of the new methods of Characteristic 

Decomposition in the artificial compressibility flow solver on the slotted flap aerofoil 

test case compared to the baseline Characteristic Decomposition scheme. 

 

 
Figure 59 – Pressure Distribution for the Characteristic, Charteristic New and Characteristic 

New 2 schemes  
 

 

Again the Characteristic Decomposition - New 2V scheme failed to achieve a 

converged solution. The performance of the other new formulations appears to be 

similar to that of the original characteristic decomposition over the majority of the 

aerofoil pressure distribution. Figure 60 shows the pressure distribution around the 

leading edge of the aerofoil at a closer scale. 
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Figure 60 – Close up of the leading edge from Figure 59 – it can be seen that the Characteristic 

New 2 provides the best result 

In the artificial compressibility solver the Characteristic Decomposition – New 2 

scheme is again providing the most accurate solution in this region but differently in 

this solver the Characteristic Decomposition – New scheme does not resolve this 

region of the pressure distribution as well as the original Characteristic 

Decomposition scheme. The convergence histories for these calculations are shown 

in figure 61. 
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Figure 61– Convergence Histories for the Characteristic, characteristic New and Characteristic 

New2 schemes. It can be seen that both the Characteristic New and New2 schemes suffer from 

convergence stall which is most pronounced in the Characteristic New  scheme. 
 

The convergence behaviour of the new Characteristic Decomposition schemes in the 

artificial compressibility solver is much worse than the original baseline 

Characteristic Decomposition scheme. The Characteristic Decomposition – new 

scheme fails to converge to a value of the residual below unity. The Characteristic 

Decomposition – New 2 scheme stalls at approximately half an order of magnitude 

reduction in the residual. 

 

The solutions of the schemes for both the compressible and artificial compressibility 

schemes for three levels of grid density are shown in Appendix D. There is little 

effect on the convergence of the solutions towards the exact solution for the differing 

schemes and in increases in accuracy found on the finest grid above seem to be 

duplicated on the coarser grids as expected. 

 

 

 

 

 

 

Unsteady Laminar Flow over a Circular Cylinder –  

 

For the calculation of the laminar flow over a circular cylinder calculated with the 

unstructured grid the Strouhal number calculated from the solutions using the three 

variations of Characteristic Decomposition remained at St=0.146 as in the baseline 

incompressible scheme indicating that the differing formulations have not 

substantially altered the effective viscosity of the code. The following figures show 

the vorticity shed from the laminar cylinder at 300 time steps for Characteristic 

Decomposition and the three altered Characteristic Decomposition schemes. 
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a.

 
b. 

 
c. 

  
d 

    
Figure 62  - Plot for Unstructured Grids of  vorticity magnitude calculated from the velocity 

field non-dimensionalised by the physical freestream speed of sound a=Charac Decomp, 

b=Charac Decomp New, c=Charac Decomp New 2, d= Charac Decomp New 2V 
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Again it is hard to make a meaningful comparison in terms or downstream vorticity 

conservation characteristics of the different implementations due to the fact that the 

onset of vortex shedding happens at different times in the physical timesteps of the 

calculations for different cases and so the positions of the shed vortices at any one 

physical time are not in synch across the different calculations. 

 

Results for the compressible convecting vortex case. 

 

Unstructured Grid – 

 

The decline in peak vorticity for the unstructured vortex case for Characteristic 

Decomposition and the three variations of Characteristic decomposition are shown in 

Figure 63 and change in enstrophy with time in Figure 64 

 

 
Figure 63– Decline in Peak Vorticity for Unstructured Grid calculation. All the new schemes 

show an improvement in peak vorticity conservation over the Characteristic Decomposition 

scheme with Charac Decomp new 2V showing the greatest conservation of peak vorticity  
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Figure 64 - Change in Enstrophy for Unstructured Grid calculation. Characteristic Decomp 

New shows a small improvement over the Charac Decomp  scheme when maintaining 

Enstrophy. Charac Decomp New 2 and New 2V generate spurious enstrophy with the value 

rising above unity. 

 

 

 

The following figure 65 depicts vorticity magnitude at 500 time steps for each of the 

adapted characteristic decomposition schemes compared to the baseline 

Characteristic Decomposition scheme. 

 

Although all the schemes tried show an improvement over the initial implementation 

of Characteristic Decomposition there is a problem, as found with the use of the 

Superbee limiter, with a gain in enstrophy throughout the computational domain with 

time. 
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A. Characteristic Decomposition               B. Characteristic Decomposition New                    

             
C. Characteristic Decomposition New 2       D. Characteristic Decomposition New 2V                    
 

Figure 65  - Plots of  vorticity magnitude calculated from nondimensionalised velocity 

distribution for the unstructured grid calculation.  The generation of spurious vorticity by the 

Characteristic Decomposition New 2 and New 2V schemes is evident whilst both the 

Charateristic Decomposition and Charateristic Decomposition New schemes improve vorticity 

conservation without suffering from this problem. 
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Results for the artificial compressibility convecting vortex case. 

 

Unstructured Grid – 

 

The decline in peak vorticity for the unstructured vortex case for Characteristic 

Decomposition and the three variations of Characteristic Decomposition are shown in 

Figure 66 and change in enstrophy with time in Figure 67. For this test case all the 

methods applied show a similar level of vorticity decline apart from Characteristic 

Decomposition New 2V which shows some improvement over the initial formulation 

of Characteristic decomposition. All of the test cases show a decline in enstrophy 

with time indicating dissipation of energy occurring within the calculations. 

 

 

 

 
Figure 66 – Decline in Peak Vorticity for Untructured Grid calculation. The Charac Decomp 

new 2V shows a greater conservation of peak vorticity than all the other schemes  
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Figure 67- Change in Enstrophy for Unstructured Grid calculation. Characteristic Decomp New 

and New 2 show a small improvement over the Charac Decomp  scheme when maintaining 

Enstrophy. The improvement for Charac Decomp New 2V is the largest. 

 

 

 

The following figure 68 depicts vorticity magnitude at 500 time steps for each of the 

adapted Characteristic Decomposition schemes compared to the baseline 

Characteristic Decomposition scheme. Figure 68 shows little difference between the 

distributions of vorticity magnitude for each of the Characteristic Decomposition 

schemes. 
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A. Characteristic Decomposition               B. Characteristic Decomposition New                    
 

    
C. Characteristic Decomposition New 2       D. Characteristic Decomposition New 2V                    
 
Figure 68  - Plots of  vorticity magnitude calculated from nondimensionalised velocity 

distribution for the unstructured grid calculation.  There is no generation of spurious vorticity 

for any of the schemes in this case. 
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11. Assessment of the improvements in vorticity 
conservation for Characteristic Decomposition. 
 
For the compressible structured convecting vortex case, carried out on an 80x80 grid 

implementation of Characteristic Decomposition provided an increase in normalised 

final peak vorticity from 0.439 for the Barth and Jespersen scheme to 0.806 which is   

an improvement of 83.6% with an increased computational cost of approx 25% per 

iteration. The implementation of the Characteristic scheme in this case did not suffer 

from increasing enstrophy with time in the computational domain as the calculation 

carried out with the Superbee limiter did. 

 

A calculation carried out on a 160x160 structured grid, corresponding to a four fold 

increased computational cost over the 80x80 grid, with the Barth and Jespersen 

limiter provided a final normalised peak vorticity of 0.67 which is a 23% increase 

which is less than that obtained with the coarser grid employing Characteristic 

Decomposition which only cost an additional 25% computational cost. 

 

For the compressible unstructured convecting vortex case, carried out on a grid with 

3000 cells implementation of Characteristic Decomposition and Characteristic 

Decomposition New provided an increase in normalised final peak vorticity from 

0.59 for the Barth and Jespersen scheme to 0.78 and 0.81 respectively which is an 

improvement of 32% and 33% respectively with an increased computational cost of 

approx 25% per iteration. The implementation of the Characteristic schemes in this 

cases did not suffer from increasing enstrophy with time in the computational domain 

as the calculations carried out with the Superbee limiter and the Characteristic 

Decomposition New 2 and New2V did. 

 

A calculation carried out on a 12000 cell unstructured grid, corresponding to a four 

fold increase in computational cost over the 3000 cell grid, with the Barth and 

Jespersen limiter provided a final normalised peak vorticity of 0.79 which is 

approximately the same as the improvement obtained by the Characteristic 

Decomposition and Characteristic Decomposition New which only provided an 

additional 25% computational cost per iteration. 

 99



For the artificial compressibility structured convecting vortex case, carried out on an 

80x80 grid implementation of Characteristic Decomposition provided an increase in 

normalised final peak vorticity from 0.088 for the Barth and Jespersen scheme to 

0.225 which is  an improvement of 155.7% with an increased computational cost of 

approx 25% per iteration. The implementation of the Characteristic scheme in this 

case did not suffer from increasing enstrophy with time in the computational domain 

as the calculation carried out with the Superbee limiter did. 

 

A calculation carried out on a 160x160 structured grid, corresponding to a four fold 

increased computational cost over the 80x80 grid, with the Barth and Jespersen 

limiter provided a final normalised peak vorticity of 0.164 which is an 86% increase 

which is less than that obtained with the coarser grid employing Characteristic 

Decomposition which only cost an additional 25% computational cost. 

 

 For the artificial compressibility unstructured convecting vortex case, carried out on 

a grid with 3000 cells implementation of Characteristic Decomposition, 

Characteristic Decomposition New, New 2 and New 2V provided an increase in 

normalised final peak vorticity from 0.121 for the Barth and Jespersen scheme to 

0.28, 0.29, 0.28 and 0.36 respectively which is an improvement of 131%, 140%, 

131% and 198% respectively with an increased computational cost of approx 25% 

per iteration. All implementations of Characteristic decomposition schemes in this 

case did not suffer from increasing enstrophy with time in the computational domain. 

 

A calculation carried out on a 12000 cell unstructured grid, corresponding to a four 

fold increase in computational cost over the 3000 cell grid, with the Barth and 

Jespersen limiter provided a final normalised peak vorticity of 0.234 which is an 

improvement of 93% which is less than all the improvements obtained by the 

Characteristic Decomposition schemes which only provided an additional 25% 

computational cost per iteration. 

 

For all the differing applications of Characteristic Decomposition to steady 

calculations there were clear issues with convergence stall compared to the Barth and 

Jespersen Limiter, the worst of these was the Characteristic Decomposition – New 

2V scheme which failed to converge for the slotted flap aerofoil case. However in all 
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these cases the convergence issues were not as severe as those associated with the 

Superbee limiter. 
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12. Conclusions 
 

It can be concluded that the method of characteristic decomposition provides an 

effective method of improving the vorticity conservation in a calculation at less 

computational cost than would be required to gain the same level of vorticity 

conservation by grid refinement on both structured and unstructured grids. 

 

It has been confirmed that implementation of Characteristic Decomposition is an 

effective method of vorticity conservation when applied to an artificial 

compressibility scheme. 

 

It has been confirmed that the method of Characteristic Decomposition is effective in 

a second order scheme and not just in higher order schemes – where testing of this 

method for vorticity conservation has been concentrated. 

 

Three adapted methods for Characteristic Decomposition on unstructured grids were 

proposed and tested. All methods provided an improvement in vorticity conservation 

over the original Characteristic Decomposition scheme in the compressible solver 

applied to a convecting vortex. For this test case the Characteristic Decomposition – 

New scheme was the only one that did not suffer from the problem of increasing 

enstrophy in the computational domain. For the artificial compressibility solver the 

Characteristic Decomposition – New 2V provided the best improvement in vorticity 

conservation for the convecting vortex case and none of the Characteristic 

Decomposition schemes suffered from increasing enstrophy. 

 

There are greater convergence problems associated with all the vorticity conserving 

schemes tested in this work than for the baseline Barth and Jespersen limiter. 
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13. Recommendations for Further Work 
 

Further investigation of the issue of generation of spurious vorticity and increasing 

enstrophy in Characteristic Decomposition is warranted. There may be a relationship 

between vorticity strength and generation of spurious enstrophy in a calculation as 

the problems of increasing enstrophy were much more apparent in the compressible 

solver convecting vortex test case. 

 

There are obvious convergence issues for the method of characteristic decomposition 

- likely to be associated with the triggering of the non-differentiable limiters in 

smooth regions of the flow. Further work to look at ways of improving the 

convergence of Characteristic Decomposition schemes would be valuable. It may be 

possible to take an approach similar to that of45 where thresholds are set so that 

limiters are switched off in smooth regions of the flow. Careful consideration of how 

to apply thresholds in order not to deactivate the limiters in the region of vorticity 

would need to be taken. 
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APPENDIX A 
 

Derivation of Osher’s Flux for the Artificial Compressibility Equations 
 

Governing System of Equations 

 

The left hand side of the unsteady x split three dimensional artificial compressibility 

equations employing dual time stepping follows. At each physical time step the 

solution is marched to a steady state in pseudo-time, where the pseudo-time 

derivative Qτ τ∂ ∂  tends to zero, and the unsteady incompressible equations are 

recovered. 

 

 

2

2

0                                                                                        (1)

where

0

                            

t

t

Q Q H
t x
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u u u PQ Q H
v v vu
w w wu

τ

τ

τ
∂ ∂ ∂

+ + =
∂ ∂ ∂

⎛⎛ ⎞ ⎛ ⎞
⎜⎜ ⎟ ⎜ ⎟

+⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝

                   is the local surface normal, outward pointing, unit vector

c is the artificial compressibility coefficient

x

y

z

u n
u V n V v n n

w n

⎞
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ⋅ = =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Derivation of the Riemann Solver of Osher for the Artificial Compressibility 

Equations 

 

The derivation of Osher’s flux depends on integration in phase space. The integration 

paths are integral curves associated with the set of right eigenvectors of the system. 

For the artificial compressibility equations these curves along with their intersection 
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points need to be determined. The generalised Riemann invariants are used to 

determine the intersection points. The Osher flux is defined by  equation (2). 

( )1

0

1 2
3 3

0 1
3

1/ 2 0

1 2,3 4

1/ 2 0

( )                                                                   (2)

integral

( ) ( ) ( ) ( )

( ) ( )

U

i U

U U

i U U

F F U A U dU

where the is taken in phase space along

I U I U I U I U

giving

F F A U dU A U dU

−
+

− −
+

= +

= ∪ ∪

= + +

∫

∫
1

2
3

( )                      (3)
U

U
A U dU−+∫ ∫

 

 

the eigenvalues of the system are calculated from equation (1)  

 

1

2 3

4

2 2

                                                                                                        (4)

      

u a

u

u a

where

a artificial speed of sound u c

λ

λ λ

λ

= −

= =

= +

= = +

 

 

It is noted that the artificial speed of sound will always be greater than the flow 

velocity and so there will be no need to consider sonic points in the determination of 

Osher’s flux.   

 

The vector of right eigenvectors is given by 

 

( )

( ) 0 0 ( )
1 0 0 1

1 1

1 1

a u a u

v vR                                                                     5
a a
w w
a a

⎡ ⎤− + −
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎣ ⎦
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The Riemann invariants are determined from the right eigenvectors given by (5). 

 

 

Across wave 1                 
1( )

dP du dv d w
u a v w

a a
= = =

− +
− −

                                (6) 

giving 

( )

2 2

1

2 2
1

( ) tant

( , ) ln( )                                                              (7)
2 2 2
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u c uaI P u P u a
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du dv
a v

u v In u u c In v
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+ =
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∫ ∫

∫ ∫

( )2 2
1

                        (8)

1 1 constant

I ( , ) ( )                                                               (9)

and

d w d w
a w

u w In u u c In w

+ =

= + + +

∫ ∫

 

 

Across wave 2              P = constant and u  = constant 

 

Across wave 3                    
1( )

dP du dv d w
u a v w

a a
= = =

− −
                               (10) 

Giving 
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2 2

2

2 2
2

( ) tant

( , ) ln( )                                                            (11)
2 2 2
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and
1 1 constant
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du d w
a w
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− =

= + + −

∫ ∫

 

 

collecting all relationships given by the Riemann invariants (7),(8),(9),(11),(12),(13) 

together gives  
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1/3 2/ 3 *

2 2
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In u u c In w In u u c In w

+

Ψ = + − + − = + − + −

Φ = + + − = + + −

Φ = + + − = + + −

 

(14) 

 

Equations (14) can be used to give an expression for u * in terms of known values. 

 

2 22 2 2
* * * * 0 1ln( ) ( ) 0c u u c u u c+ + + + − Ψ −Ψ =                                                   (15) 

 

 This function has only one zero so the Newton-Raphson method can be used to 

determine u *
.  Taking u * =u 0 as an initial estimate for u * the Newton-Raphson 

method is given by. 
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*
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1 ' *
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0 1
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Determination of the Osher flux 

 

The value of each of the terms in the Osher Flux can now be determined by 

inspection of the signs of the eigenvalues along each of the integration paths. 
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Along I3(U) – 

 

1
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This means there are only two alternatives to consider for the flux formula. 

 

*

1/ 2 0 1/3 0 2/3 1/3 2 /3

*

1/ 2 0 1/3 0 1/3

     u 0

     u 0

i

i

If
F F F F F F F

If
F F F F F

+

+

〈
= + − + − =

≥
= + − =

                                                    (21) 

 

Once the value of u * has been determined the value of all the other variables can be 

calculated from the Riemann invariants. 
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APPENDIX B 
 

Applying Characteristic Decomposition in an Artificial 
Compressibility Solver. 
 

Characteristic decomposition is applied in the interpolation algorithm. The limited 

differences of the local conservative variables, limited by both a compressive and 

diffusive limiter, are calculated. These values, along with the matrix of left 

eigenvectors, are used to transform to characteristic variables for the interpolation to 

be carried out with the compressive limiter applied to the linear degenerate fields and 

the diffusive limiter to the genuinely non-linear fields. 

 

The relations used in the method of characteristic decomposition are as follows

W = LQ                                           (1)

In the method of characteristic decomposition it is also assumed that

i+1/2

W= L Q                                      (2)

Giving
 

W Q                          (3)

Here the linearly degenerate fields are calculated with the Q values limited 
with the compressive lim

LQ L

Δ Δ

= + Δ

Δ
iter and the genuinely non-linear fields with the 

difussive limiter

The reverse transformation to local conservative variables is given by

Q = RW                                          (4)
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In order to apply characteristic decomposition it is first necessary to transform from 

Primitive variables to the local Conserved variables, of the split three dimensional 

Euler equations, in the interpolation algorithm. These are given below.  

 

 

, ,

(1,1) (1,2) (1,

PP
uu

q         Q=                          (4)
v v
w w

Where

u v w  are the components of velocity transformed so that 

u is normal to the face in question

Where

u a u a v a

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= ⇒ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

= + + 3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

w

v a u a v a w                       (5)

w a u a v a w

where a is the coordinate transformation matrix from global to local coordinates

= + +

= + +

 

 

 

The limited gradients of the conserved variables are then calculated for both the 

compressive and diffusive limiters. In order to do this it is necessary to have the 

values of  

 

 Q∇  

 

These can be obtained by applying the chain rule as the gradient of the primitive 

variable are already available. 
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Application of the chain rule gives the following relations 
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4
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q
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∂
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∂
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∂
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∂
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Once the limited gradients of the local conserved variables have been calculated and 

limited with both the diffusive and compressive limiters it is necessary to calculate 

the matrices of the right and left eigenvectors. For the split three-dimensional 

compressible Euler equations these are given by 
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2
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⎢ ⎥
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⎢ ⎥
⎢ ⎥=
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−⎢ ⎥
⎢ ⎥
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              (12) 

Where 

 

2 2a artificial speed of sound u c= = +                      (13) 

 

The first and last columns of R and first and last rows of L relate to the λ=u -a and 

λ=u +a genuinely non-linear characteristic fields. The second, third and fourth 

columns of R and second, third and fourth rows of L relate to the degenerate λ=u  

characteristic fields. 

 

The L matrix can be split into two matrices one containing the information used to 

calculate the degenerate fields using the compressively limited Q  gradient values, 

L1, and one containing the information used to calculate the genuinely nonlinear 

fields using the more diffusive limited Q  gradient values, L2. 
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The second order scheme with characteristic decomposition can be written in terms 

of the conserved variables and matrix of left eigenvectors as follows. 

 

 

1
1/ 2 1/ 21 2

1/ 2

( ) 1( ) 2( )

( )

Compressive Diffusive
i i i ii i i i i i i

ii i

W R Q Q L Q Q r L Q Q r          (16)

the local conserved variables are then recovered via

Q R Q W                                               

−
→ + → ++

+

= + ∇ ⋅ + ∇ ⋅

=

r r

                                                       (17)

 

And the primitive variables q are then recovered from the local conserved variables. 
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APPENDIX C 
 
Applying Characteristic Decomposition in a Compressible Solver. 
 

Characteristic decomposition is applied in the interpolation algorithm. The limited 

differences of the local conservative variables, limited by both a compressive and 

diffusive limiter, are calculated. These values, along with the matrix of left 

eigenvectors, are used to transform to characteristic variables for the interpolation to 

be carried out with the compressive limiter applied to the linear degenerate fields and 

the diffusive limiter to the genuinely non-linear fields. 

 

The relations used in the method of characteristic decomposition are as follows

W = LQ                                                                                     (1)

In the method of characteri

i+1/2

stic decomposition it is also assumed that

W= L Q                                                                                 (2)

Giving
 

W Q                                              LQ L

Δ Δ

= + Δ                        (3)

Here the linearly degenerate fields are calculated with the Q values limited 
with the compressive limiter and the genuinely non-linear fields with the 
difussive limiter

The r

Δ

everse transformation to local conservative variables is given by

Q = RW                                                                                     (4)
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In order to apply characteristic decomposition it is first necessary to transform from 

Primitive variables to the local Conserved variables, of the split three dimensional 

Euler equations, in the interpolation algorithm. These are given below.  
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The limited gradients of the conserved variables are then calculated for both the 

compressive and diffusive limiters. In order to do this it is necessary to have the 

values of  
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 Q∇  

 

These can be obtained by applying the chain rule as the gradient of the primitive 

variable are already available. 

 

 

jl l

ji j

qQ Q

ix q x
∂∂ ∂

=
∂ ∂∑ ∂

                                            (10) 

 

Application of the chain rule gives the following relations 
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Once the limited gradients of the local conserved variables have been calculated and 

limited with both the diffusive and compressive limiters it is necessary to calculate 

the matrices of the right and left eigenvectors. For the split three-dimensional 

compressible Euler equations these are given by 
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The first and last columns of R and first and last rows of L relate to the λ=u-a and 

λ=u+a genuinely non-linear characteristic fields. The second, third and fourth 

columns of R and second, third and fourth rows of L relate to the degenerate λ=u 

characteristic fields. 

 

The L matrix can be split into two matrices one containing the information used to 

calculate the degenerate fields using the compressively limited Q  gradient values, 

L1, and one containing the information used to calculate the genuinely nonlinear 

fields using the more diffusive limited Q  gradient values, L2. 
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The second order scheme with characteristic decomposition can be written in terms 

of the conserved variables and matrix of left eigenvectors as follows. 
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the local conserved variables are then recovered via
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)

 

And the primitive variables q are then recovered from the local conserved variables. 
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Appendix D 

 
 
Grid convergence results for all slotted flap aerofoil cases. 
 
 
Compressible Cases -  
 
Figure 69 – Pressure distribution for the baseline Barth and Jespersen scheme for 
three grid densities. 
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Figure 70 - Pressure distribution for the Characteristic Decomposition scheme for 
three grid densities. 
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Figure 71 - Pressure distribution for the Characteristic Decomposition New scheme 
for three grid densities. 
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Figure 72 -  Pressure distribution for the Characteristic Decomposition New 2 
scheme for three grid densities. 
 
 

 
 
 

 127



Artificial Compressibility Cases -  
 
 
Figure 73 - Pressure distribution for the baseline Barth and Jespersen scheme for 
three grid densities. 
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Figure 74 - Pressure distribution for the Characteristic Decomposition scheme for 
three grid densities. 
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Figure 75 - Pressure distribution for the Characteristic Decomposition New scheme 
for three grid densities. 
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Figure 76 - Pressure distribution for the Characteristic Decomposition New 2 scheme 
for three grid densities. 
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