
CRANFIELD UNIVERSITY

COLLEGE OF AERONAUTICS
Department of Aerospace Science

Ph. D THESIS

Academic Year 1992-1994

WAHYU KUNTJORO

Expert System for Structural
Optimization

Exploiting Past Experience
and A-priori Knowledge

Volume 1: Main Thesis

SUPERVISOR: PROF. A. J. MORRIS

NOVEMBER 1994

ii

ABSTRACT

The availability of comprehensive Structural
Optimization Systems in the market is allowing
designers direct access to software tools previously
the domain of the specialist. The use of Structural
Optimization is particularly troublesome requiring
knowledge of finite element analysis, numerical
optimization algorithms, and the overall design
environment.

The subject of the research is the application
of Expert System methodologies to support non-
specialists when using a Structural Optimization
System. The specific target is to produce an Expert
System as an adviser for a working structural
optimization system. Three types of knowledge are
required to use optimization systems effectively;
that relating to setting up the structural
optimization problem which is based on logical
deduction; past, experience; together with run-time
and results interpretation knowledge. A knowledge
base which is based on the above is set, up and
reasoning mechanisms incorporating case based and
rule based reasoning, theory of certainty, and an
object oriented approach are developed.

The Expert SVstem described here concentrates on
the optimization formulation aspects. It is able to
set up an optimization run for the user and monitor
the run-time performance. In this second mode the
system is able to decide if an optimization run is
likely to converge to a, solution and advice the user
accordingly.

The ideas and Expert System techniques presented
in this thesis have been implemented in the
development; of a prototype system written in C++. The
prototype has been extended through the development
of a user interface which is based on XView.

iii

ACKNOWLEDGMENT

For my part, I am firstly and mostly indebted to my mother
Kusmiasih who sacrificed part of her life and happiness
just for us her children. Her prayer and support is always
an inspiration to me.

I wish to express my appreciation to my supervisor, Prof.
A. J. Morris,, for his exceptional guidance in conducting
this research. Indeed, I have been fortunate to have him as
supervisor.

I also would like to thank
discussions and advice in the
appreciation to Dr. L. Oswald
computational supports, and
student) Mr. T. Kocak for
setting up a graphical-user-i

Dr. J. Saggu for fruitful
subject of Expert System. My

for his help in providing the
also to my colleague (Ph. D
the fruitful discussion in

nterface based on XView.

And of course, I wish to express my appreciation to my wife
Linda for her understanding and support, in addition to the
demands of a home and our little son Ilya.

iv

CONTENTS

ABSTRACT ii

ACKNOWLEDGEMENT iii

CONTENTS iv

LIST OF FIGURES viii

CHAPTER 1: INTRODUCTION 1

1.1. Expert System and Structural Optimization 1

1.2. Research Objective and System Overview 2

1.3. Strategy for Setting up and Monitoring
An Optimization 3

1.4. System Implementation 5
1.4.1. Driver Files, Front End and Back End 5
1.4.2. The Prototype Modules 5

CHAPTER 2: LITERATURE ON EXPERT SYSTEM FOR
STRUCTURAL DESIGN AND OPTIMIZATION 12

2.1. Examples of Successful Expert Systems 12

2.2. Expert Systems for Structural Analysis and
Design 13

CHAPTER 3: IDENTIFICATION OF TASKS INVOLVED IN
A STRUCTURAL OPTIMISATION 16

3.1. optimization Methods and Basic Concepts 16
3.1.1. Fully Stressed Design 16
3.1.2. Optimality Criteria 17
3.1.3. Mathematical Programming 17
3.1.4. Convergence Criteria 19

3.2. Outline of Setting-up A Typical Structural
Optimization Job 19

3.2.1. Problem Definition 20
3.2.2. Finite Element Modeling 20
3.2.3. Objective Function 20
3.2.4. Design Variables . ***Ooo** o * : o * *O * * : o , , o ,o o o 21
3o2.5o Relation Between D e s l g n V a r l a b l e a n d

Analysis Property ooo.. oo. 21

V

3.2.6. Constraints Definition 22
3.2.7. Algorithm Selection 22
3.2.8. Criteria of Convergence 23

CHAPTER 4: REASONING STRATEGIES 25

4.1. Expert System: General Description 25
4.1.1. Expert Systems 25
4.1.2. Expert System Development 28

4.2. Object Oriented Knowledge Base 29
4.2.1. Basic Concepts of Object Oriented Pro-

gramming 29
4.2.2. Inferencing Strategy for The Object Ori-

ented Knowledge Base 30

4.3. Case Based Reasoning 32

CHAPTER 5: REASONING THROUGH PAST EXPERIENCES 37

5.1. Structural optimization Knowledge 37

5.2. Knowledge of Past Experience 37
5.2.1. The Nature of Setting Up A Structural

Optimization Design Job .:.: ... : 38
5.2.2. Knowledge Structure and Similarity Aspects.. 40

5.3. The Structure of Design Cases 43

5.4. Similarity Rules 44

5.5. Case Selection 47

5.6. Memory Update 48

CHAPTER 6: THE REASONING OF A-PRIORI AND RESULT
INTERPRETATION KNOWLEDGE 51

6.1. Knowledge for Setting Up The Optimization
Process 51

6.1.1. The Philosophy 51
6.1.2. The Knowledge Structure 53

6.2. Run-Time and Result Interpretation Know-
ledge .. 54

6.3. The Reasoner 56

vi

CHAPTER 7: PROTOTYPE DEVELOPMENT 61

7.1. The Design Input Module 62

7.2. The Memory Module 63

7.3. The Conventional Module 63

7.4. The Element Module 63

7.5. The Variable Module 64

7.6. The Constraint Module 64

7.7. The Driver-Files Module 65

7.8. The Modules of The System's Back-end 65

7.9. The Data Flow Diagram 66

7.10. Prototype Implementation of The Knowledge ... 66

7.11. The Conventional Knowledge Base 67
7.11.1. The Domain/Subject Knowledge 68
7.11.2. The IF-THEN Rules 70
7.11.3. Explanation Facility 74

7.12. The Memory Knowledge Base 75
7.12.1. The Domain Knowledge 75
7.12.2. The Similarity Rules 76

7.13. The Knowledge Base of Run-time and
Result Interpretation Modules 78

7.14. Optimization Procedure 78

CHAPTER 8: VALIDATION 93

8.1. Static Case Example
93

8.1.1. Problem Description
93

8.1.2. ESSO Session
93

8.2. Dynamic Case Example
97

8.2.1. Problem Description 97
8.2.2. ESSO Session 97

vii

CHAPTER 9: FURTHER DEVELOPMENT 126

Deepening The Present Knowledge 126

9.2. Design Optimization for Aeroelasticity 128

9.3. Design for Manufacturing Knowledge 129
9.3.1. Implication of Manufacturing to

Design Process 129
9.3.2. Design for Manufacturing in Expert

System for Structural Optimization 130

SUMMARY 134

REFERENCES 136

Vill

LIST OF FIGURES

Figure 1-1 The conventional design process.
Figure 1-2 The optimum design process.
Figure 1-3 Expert System - optimization interaction.
Figure 1-4 Strategy for finding a solution using the

memory and conventional modules.
Figure 1-5 Program modules.

Figure 3-1 Searching for optimum in a two variable
design space.

Figure 4-1 The architecture of a typical Expert System.
Figure 4-2 Inferencing strategy for the object oriented

knowledge base.

Figure 5-1 The structure of the past experience know-
ledge.

Figure 5-2 The process of case selection.

Figure 6-1 The structur e of a-priori knowledge.
Figure 6-2 The process of the a-priori knowledge rea-

soning.
Figure 6-3 The process of the result interpretation

reasoning.

Figure 7-1 Input-output diagram of the design input mo-
dule.

Figure 7-2 Input-output diagram of the memory module.
Figure 7-3 Input-output diagram of the conventional mo-

dule.
Figure 7-4 Input-output diagram of the element module.
Figure 7-5 Input-output diagram of the variable module.
Figure 7-6 Input-output 'diagram of the constraint mo-

dule.
Figure 7-7 Input-output diagram of the driver-f iles mo-

dule.
Figure 7-8 Input-output diagram of the back-end module.
Figure 7-9 Architecture of the program.
Figure 7-10 The data flow diagram of the modules.
Figure 7-11 The sequence of modules execution.

Figure 8-1 The FE model of the Static Case Example.
Figure 8-2 The FE model of the "similar" static past

case.
Figure 8-3 The FE model of the "similar" dynamic past

case.

Figure 9-1 Simplified diagram of aircraft structural
component.

1

CHAPTER 1:

INTRODUCTION

1.1. EXPERT SYSTEM AND STRUCTURAL OPTIMIZATION.

The design of a structure is a repetitive process
involving a structural definition (synthesis) phase and an
analysis phase to meet a set of requirements. A structure
can be defined by choosing its type, configuration, and
member sizes. The analysis is required to asses the struc-
tural responses (stress, strain, displacement, etc.) under
environmental action (load, thermal, etc.) . The structure
performs satisfactorily if its responses are within accept-
able values (allowable stresses, frequencies, etc.) which
constitute the design constraints. In addition, the
designer might choose a certain goal to be satisfied. The
common practice for an aircraft structure is to achieve a
minimum weight structure. Figure 1-1 illustrates the
interaction in a design process.

Structural optimization methods have been developed to
allow the design of minimum weight structures in an automa-
tive manner. By the use of such methods the design process
outlined in the above paragraph can be computerized. The
development of computers with powerful capabilities make
the implementation of structural optimization methods prac-
tical proposition. Figure 1-2 shows the design flow which
makes use of the optimization method. Most of the methods
try to satisfy both the constraints and the goal.

Most structural optimization methods exploit princi-
ples developed in the allied discipline of mathematical
programming. A certain degree of expertise is required to
describe the structural problem in an appropriate mathema-
tical form. This means the optimization methods and the

physical behaviour of the structure to be considered must
be well understood.

For a large structure, the analysis stage is performed
using the finite element method. This requires the designer
to model the structure being optimized by a finite element
model. The designer must, therefore, understand the rela-
tion between a finite element analysis and an optimization
method.

The increasing complexity and size of the structural
problems are making the use of optimization methods a

reasonable, if not obligatory, choice as an aid to the

design of a structure. Unfortunately, most of the optimiza-
tion packages are rather cumbersome to use and require a
thorough knowledge of the methods in order to match the

2

solution algorithm to the structural design problem. In ad-
dition, the fact that the algorithms search for a solution
in design space means that they can be subject to error and
can give rise to misleading result if employed inexpertly.
It is, therefore, imperative that a certain degree of
expertise is required to use the optimization method
correctly.

Normally the suppliers of structural optimization
packages provide training, but there is no substitute for
extensive experience which takes time to build up. An al-
ternative approach, followed here, is to develop an Expert
System containing the relevant knowledge so that the de-
signers can use these packages effectively and efficiently.
In this way the user would not need to be an expert in the
use of structural optimization methods and the methods
would be available to structural designers.

RESEARCH OBJECTIVE AND SYSTEM OVERVIEW.

The subject of this research is the application of
Expert System methodologies for improving the performance
of structural optimization systems. The specific target is,
therefore, to produce an expert system as an adviser for a
working structural optimization system.

No effort is devoted to developing a separate optimi-
zation program as this is considered as impractical.
Instead, for its optimization tool, the Expert System
should be able to use the currently available structural
optimization systems in the market such as ASTROS, STARS,
SAMCEF, and NASTRAN Sol-200. This expert system will func-
tion as a front end (and back end) to the optimization
package. Assuming the user has sufficient knowledge of
finite element modelling, the Expert System need concen-
trate only on the optimization formulation aspects.

Figure 1-3 gives an overall view of the interaction
between the Expert System and the optimization package. The

users interact with the expert system through a user inter-
face. Based upon the information from the user (such as
structural requirements, FEM model, and design variables)
and the result of internal decision making within the

system with respect to such aspects as the method and
convergence criteria requirements (which can be overridden
by the user) , the system will produce driver files to run
the optimization package. The driver files required depend

on the optimization software used. After the optimization
run,, the Expert System can be consulted for the result.
Based on the results a consultancy phase is entered and the

driver files can be modified if necessary.

3

STRATEGY FOR SETTING UP AND MONITORING AN OPTI-
MIZATION.

To optimize a structure, in addition to preparing a
finite element model of the structure, the designer needs
to define the optimization algorithm and the design speci-
fication. An optimization algorithm, in general, consists
of the method to be used, the number of iterations requi-
red, and the convergence criteria. Associated with this is
the design specification which consists of design variables
definitions, the constraints specifications (stress,
displacement), and the gauges. The algorithm selection for
a specified problem is a function of the analysis and cons-
traints required. The finite element types used in finite
element modelling have a profound influence on the method
to be used. The size of the problem could also have an
influence on the algorithm selection. The design specifica-
tion usually is laid down by the designer.

The task of the Expert System is to guide the user in
setting up the optimization strategy and the design spe-
cification. An Expert System is a knowledge based program
that provides "expert quality" solutions to problems in a
specific domain [Luger and Stubblefield 1989] which, in
this research, is the structural optimization. Expert
Systems are computer programs that use heuristic strategies
to solve specific classes of problems. The common practice
for an Expert System to reach a solution is by applying an
inferencing strategy to a knowledge base. Thus the
immediate task is to set up the knowledge base relating to
the structural optimization and develop a reasoning or
inferencing strategy for this knowledge base.

Inferencing is a process that attempts to use the

available information to find conclusions from a set of
statements or finds objects that match. The knowledge base

stores information about the subject domain. It contains
symbolic representations of experts's judgement rules and
experience in a form that enables the inference engine to

perform logical deductions upon the knowledge set [Yazdani
1986] . Forward or backward chaining (or their combination)
is the inferencing strategy which is widely used. Forward

chaining is sometimes called data driven because the
inference engine uses the information which the user
provides to move through a network of logical AND and OR

statements until it reaches a terminal point, which is the

goal. Backward chaining is the reverse of forward chaining.
It starts with a hypothesis (an objective) and requests
information to confirm or deny it. This method is also

called goal driven.

The Expert System strategy developed in this research
tries to set up the optimization strategy uses the two

approaches. The first approach applies to an inferencing

4

strategy which basically is a forward chain to a knowledge
base written by using an object oriented approach. The
knowledge base stores the apriori knowledge required for
setting up an optimization algorithm. The second approach
tries to set up the optimization by recalling the system's
past experience. A solution is found if the system finds in
its knowledge base a similar design case to the current de-
sign problem. Using this second approach, during execution,
the system searches its memory to find any similar case to
the current design problem. If a similar design case is
found, the solution for that case is proposed to the user.
If no similar case is found the system will move to the
first approach. This approach with past experience is used
in case based reasoning.

These two solution strategies work in a complementary
manner. The second approach termed the "memory approach" is
written as a separate module from the first which is termed
the "conventional approach". Both modules together repre-
sent a complete Expert System which is not only capable of
finding a solution but also memorizing this solution and
the details of the design case. with increasing design
experience, the system becomes more capable in searching
for a solution.

The mechanism adopted in the memory approach discussed
above raises the question of defining similarity criteria.
This is not straight-forward as appropriate similarity
rules do not exist and are defined as part of this study.
It is noted that some of the similarity parameters might
not be deterministic in nature. Figure 1-4 shows a simpli-
fied sequence which represents the strategy discussed
above.

In addition to setting up the optimization, the user
must be able to monitor the performance of an optimization
run in order to decide if (1) a solution is being approach-
ed and (2) at termination, the result is satisfactory. If
the above situations are negative the system should offer
appropriate explanations and indicate the required remedial
action. This is implemented by developing a module which
basically is an Expert System with forward chain inferenc-
ing and production rules. The knowledge required in this

module, which is called the back-end module, is associated
with the run-time situation and results interpretation. In

addition, if the optimization run does not produce satis-
factory results, based on the proposed remedial actions the

back-end module should be able to modify the optimization
set-up.

5

SYSTEM IMPLEMENTATION.

1.4.1. DRIVER FILES, FRONT-END, AND BACK-END.

The strategy mentioned in (1.3) is required to produce
an appropriate optimization algorithm for a structural de-
sign problem. With regard to an optimization package, this
algorithm should be written in a manner which is understood
by that package. In addition to the algorithm, an optimiza-
tion run requires the design specification and the finite
element model. The design specification is related to the
design variables, constraint set, and gauges. It is assumed
that it is the user's responsibility to set up the FE
model. A module is developed to write the optimization
strategy and design specification into a file (or files)
which can be read by the optimization package. These files
are called driver files and the module which produces them
is called the driver files module.

The front-end is that part of the total system from
the system start up to the production of driver files. The
conventional and memory approaches mentioned in (1.3) are
part of this system's f ront-end which contains both proce-
dural and Expert System programming methods. When the
front-end activity is complete this is followed by an
optimization run.

The system's back-end is invoked to monitor the
progress of an optimization run. If an optimization run is

predicted not to be heading for a solution (convergence)
this module will cancel the run and advise the user of the
possible explanation and actions to follow. At termination
the result will be interpreted and if considered unsatis-
factory the possible reason is explained with advice on
actions to follow. Based on the actions proposed,, the

optimization set up can be modified, and another optimiza-
tion run can be executed.

1.4.2. THE PROTOTYPE MODULES.

For system implementation, the STARS optimization

package jointly developed by DRA and SCICON is used as the

optimization tool. For performing the associated structural

analysis, STARS calls the MSC NASTRAN finite element

package. STARS requires three files (driver files) to run,

which consists of a command data file (CDF)., a design

specification file (CONS), and a file which contains the FE

model. The first two files are produced by the driver files

module. Because STARS uses NASTRAN for its FE analysis, the

FE model consists of a NASTRAN bulk data. The system is

developed using C++ on a SUN SPARC II computer.

6

The command data file is an optimization algorithm
which includes the optimization method, the number of ite-
rations, and the convergence criteria. The design specifi-
cation file (CONS) contains the design variable definition,
the constraints specifications and the gauges. CDF and CONS
are written in statements which are unique to STARS.

Figure 1-5 shows an outline of the modules available
in the program. These modules are written using the object
oriented approach.

- The controller is the module which controls the flow of
information in the front end and basically is the main
program.

- The design input module asks the users about the design
case.

- The constraint module task is to handle information con-
cerning constraint specifications and gauges.

- The variable module deals with all aspects regarding the
design variables definitions.

- The element module deals with element data and opera-
tions. This module also contains various element types.
Currently this module contains some elements which are
found in the MSC NASTRAN finite element package.

- The driver f iles module has the task of producing driver
files. Currently, it produces STARS files only.

The memory module has the task of setting up the optimi-
zation by recalling the system's past experience.

The conventional module has the task of setting up the
optimization by applying inferencing technique to apri-
ori knowledge.

The system's backend which consists of the Run-time, Re-

sult Interpretation, and Modification modules, monitors
the progress of an optimization run and at termination
interprets the result. If there is any problems associ-

ated with optimization run, the system will search for

an explanation and propose actions to follow. If requi-

red, based on these proposed actions, the modification

module modifies the optimization set up.
Although not indicated in the diagram, there are several
front-end modules, the design input module, the cons-
traint module, the variable module, the element module,

and the driver-files module, which are also used
(shared) by the modification module.

7

Initial design

analysis

check performance

is design satisfactory ?

N

redesign based on
experience/heuristic

stop

Figure 1-1 The conventional design process
[Arora 19891.

a

Identify :
(1) Design variables
(2) Objecdve funcdon
(3) Constraints

Initial design

analysis 7

check the constraints

'%I/
convergence criteria Y

stop satisfied ?

N

redesign using
optimization method

Figure 1-2 The optimum design process.

9

RUN
OPTIMIZATION

DRIVER FILES

EXPERT SYSTEM

USERS

RESULT

Figure 1-3 Expert System - optimization interaction.

10

Design Problem

V
Memory Moý e

N Similar Y

Coventional
Module Solutionl

Solutjon2

Figure 1-4 Strategy for finding a solution using
the memory and conventional modules.

11

Controller

Memory Design input

Constraint

Conventional

Variable

Driver files
Element

Front End Modules
L --

--

Run-time Result Interpretation

Modification
Back End Modules

L --

Figure 1-5 Program modules.

12

CHAPTER 2:

LITERATURE ON EXPERT SYSTEM FOR
STRUCTURAL DESIGN AND OPTIMIZATION

Numerous studies have been reported in the literature
relating to the development of Expert Systems related to
design optimization. Some of these are reviewed briefly in
this chapter. However, the first section is more general
and reviews some successful examples of Expert System in
different subjects. The following section then reviews the
use of Expert Systems for structural analysis and design.

EXAMPLES OF SUCCESSFUL EXPERT SYSTEMS.

Several successful applications of the Expert System
technology in various fields have been developed since the
revival of Artificial Intelligence as a legitimate subject
of research.

1. DENDRAL.
DENDRAL was designed to infer the structure of organic

molecules from their chemical formulas from mass spectro-
graphic information about the chemical bonds present in the
molecules. Because organic molecules tend to be very large,
the number of possible structures for these molecules tends
to be huge. This problem of large search space is addressed
by applying the heuristic knowledge of expert chemists to
the structure elucidation problem. It represents one of the

earliest Expert Systems and was developed at Stanford in
the late 1960s.

2. MYCIN.
Developed at Stanford in the mid-1970s, MYCIN

[Buchanan and Shortliffe 1985] was one of the first

programs to address the problem of reasoning with uncertain
or incomplete information. This Expert System uses expert

medical knowledge to diagnose and prescribe treatment for

spinal meningitis and bacterial infections of the blood.

Written in INTERLISP, a dialect of LISP, with around 450

rules within its knowledge base,, MYCIN established the

methodology of contemporary Expert System implementation.

3. XCON.
XCON is an Expert System for configuring DEC

computers. In 1981, XCON had about 500 rules and could
configure the VAX 780. It was progressively refined until
in 1984 with about 4000 rules, it configured most of the

DEC product line.

13

4. PROSPECTOR.
This Expert System was developed at Stanford in the

late 1970s. It is a diagnostic Expert System for determin-
ing the probable location and type of ore deposits based on
geological information about a site. Its knowledge base
contains about 1600 rules. Bayesian probability is used for
treating uncertainties in information and rules.

5. INTERNIST.
This is an Expert System for performing diagnosis in

the area of internal medicine. Developed further (with the
name CADUCEUS), its knowledge base includes about 500
disease, 350 diseases manifestations, and about 100,000
symptomatic associations. CADUCEUS covers about 25 percent
of the diseases of internal medicine.

The above Expert Systems can be regarded as classical
Expert Systems and often mentioned in Expert System text
books. These systems use rules (IF-THEN statements) for
reasoning. Some systems, such as MYCIN and PROSPECTOR,
address uncertainty in information and rules. As can be
seen in later chapters, the Expert System presented in this
thesis also use rules and has to deal with reasoning with
uncertainty.

2.2. EXPERT SYSTEMS FOR STRUCTURAL ANALYSIS AND DESIGN..

The first successful application of Expert System
technology in the structural analysis field appears to be
SACON (Structural Analysis Consultant) . Developed in LISP
[Bennet and Engelmore 1979], SACON interacts with the user
for the proper application of MARC finite element software.
Rivlin et al. [1980] also attempted to develop a knowledge-
based consultation system and to establish a finite element
structural analysis knowledge base for the MARC finite

element program in FORTRAN.

Chen and Hajela [1987] developed an expert system
which serves as a consultant for finite element modelling
(FEMOD) . FEMOD gives the designer advice in modelling for

a special finite element program EAL. It contains rules for

selection of elements, node selection,, mesh generation,
selection of subdivision lines, and mesh refinement. FEMOD

was developed using an Expert System shell AESOP with rule-
based knowledge representation and backward chain inferenc-
ing.

A widely cited design Expert System is HI-RISE [Maher

19881 . HI-RISE is an Expert System for the preliminary
structural design of high rise building of rectangular

shape. The major concern of HI-RISE is to generate feasible

configurations, to the level of detail needed to make a

14

selection from amongst alternatives, and to provide the
initial estimate of geometric and mechanical properties for
a detailed structural analysis. HI-RISE represents the
design knowledge in the form of schemas and rules. The
schemas contain the description of the design subsystems
and components, and the rules represent design strategy and
heuristic constraints.

An extension of HI-RISE is ALL-RISE [Sriram 1987] . It
provides a framework for a knowledge-based synthesizer for
all types of buildings. Multiple solutions are generated
simultaneously, i. e there is no need for backtracking
because ALL-RISE generates all the feasible alternatives.

Adeli and Al-Rijleh developed an Expert System for
design of roof trusses, called RT-EXPERT. As described by
Adeli and Balasubramanyam [1988] RT-EXPERT can advise the
user on the appropriate type of the roof truss, selection
of the layout of the truss, and the loading. The knowledge
base and explanation facility is developed using INSIGHT 2+
Expert System shell. The mathematical computations, graphic
algorithms, and the data file manipulation routines are
developed in Turbo Pascal.

An Expert System which employ mathematical optimiza-
tion was developed by Rogers and Barthelemy [1987]. It is
in the form of an Expert System "pre-processor" for select-
ing the best combination of optimization techniques and one
dimensional search method used in the optimization software
Automated Design Synthesis (ADS) developed by Vanderplaats.
This expert system does not address the problem of monitor-
ing the optimization run and the result interpretation.

Harris et. al [1990] developed an Expert System package
as an interface to the STARS optimization package. This
system addresses problems of algorithm selection, quality
of convergence, and constraint satisfaction. The Expert
System was written using FLEX (Fortran Library for Expert
System) developed by RAE. The knowledge used in FLEX

comprises rules and facts. Rules are represented in the

standard production rules. FLEX supports both forward and
backward chaining inferencing. This Expert System does not
have the capabilities to learn from experience.

Adelli and Balasubramanyam [1988] developed a coupled
Expert System prototype for optimum (weight) design of
bridge trusses subjected to moving loads. This prototype
(called BTEXPERT) has the knowledge base which consists of

the domain specific knowledge and control knowledge. The
domain specific knowledge consists of parameters and rules

where the rules are in the IF-THEN form. The control know-

ledge consists of control command for solving the problem.
The inferencing has both forward and backward chaining.

15

This system does not address structures other than truss
structure.

Berke et al. [1993] investigated the application of
artificial neural networks to capture structural design
expertise. An artificial neural network code,, NETS,, was
used. A set of optimum design data were processed to obtain
input and output pairs,. which were used to develop a
trained artificial neural network with the code NETS.
Optimum designs for new design conditions were predicted by
using the trained network. The nature of neural network in
producing the solution makes it difficult for the users to
understand the reason of any decision given by the network.
This makes this system unsuitable as an optimization
training media for non-experts.

This research is concerned with the development of an
Expert System as an adviser for a working structural opti-
mization system. The system is developed in such a manner
that it covers the following:

1. It is able to handle various types of structure. This
implies the use of the Finite Element method in the ana-
lysis stage.

2. It accommodates various optimization softwares available
in the market.

3. It is able to perform the tasks associated with,
setting-up the optimization strategyr
monitoring the optimization run,
interpreting the optimization result,

and, in case of unsatisfactory results, advising the
users on actions to follow.

4. It has some capabilities to learn from past experience.

5. It is able to function as a training media for the users
in learning the design for optimum structure. This imp-
lies the provision of a comprehensive explanation faci-
lity.

16

CHAPTER 3:

IDENTIFICATION OF TASKS INVOLVED
IN A STRUCTURAL OPTIMIZATION

This chapter is devoted to identifying the tasks
involved in performing an optimization for a structural
design problem. Before discussing the tasks associated with
a structural optimization system, several optimization
methods and some basic concepts will be described first.
Detailed discussions of the methods employed are not consi-
dered here as these are adequately considered elsewhere
[Arora 1989; Morris 1982; Vanderplaats 1984]. The current
chapter contains an overview to provide completeness.

OPTIMIZATION METHODS AND BASIC CONCEPTS.

The methods described in this section are those which
are available in STARS optimization package and also
commonly found in most commercial systems. These methods
are quite well known and detail description of each method
can be consulted in related references. Only general dis-
cussion are presented here.

3.1.1. FULLY STRESSED DESIGN.

Fully Stressed Design, or FSD, is applicable to the
design of stress (strength) critical designs only and
cannot deal with more general constraints such as displace-
ment or frequency. This method is not really an optimiza-
tion method in the context of numerical programming but
instead is an automatic form of a design technique which
has been used for many years before the advent of the com-
puter [Vanderplaats 1984].

Fully Stressed Design procedures are based upon the
assumption that in an optimal structure each member is sub-
jected to its allowable stress under at least one of the
loading cases. There is no explicit reference to an object-
ive function (e. g. weight) . This approach consists of the
iterative application of analysis and redesign rule, where
the redesign rule is based on stress ratio.

FSD algorithm is quite simple.
For member i of a structure :

Xinew =

(Yij

x, old)
max
j=1,, NLC (Y

17

where x= size of member
NLC = number of load cases
(Yjj = stress at member
(Y = allowable stress

Reasons for the significance of FSD concepts include
[Kirsch 1981] :

Engineering experience indicates that a good design
is often one in which each member is subjected to its
allowable stress.

2. FSD can be proved to be optimal (weight) under cer-
tain circumstances.

3. FSD procedures are relatively efficient in comparison
with many mathematical programming methods.

4. An FSD is often a good starting point for optimum de-
sign procedures based on mathematical programming.

3.1.2. OPTIMALITY CRITERIA.

The optimality criteria methods aims to obtain a de-
sign that satisfies a certain specified criterion and by so
doing indirectly minimize the weight of the structure. The
criterion is derived mathematically by differentiating the
Lagrangian with respect to the design variables and impos-
ing the Kuhn-Tucker optimality conditions. In deriving the
optimality criterion and developing the algorithm, full use
is made of the knowledge of the behaviour of the cons-
traints imposed on the structure. Indeed, fully stressed
design algorithm is a special case of optimality criteria
based on stress constraint. The optimality criteria method
is discussed in detail by Morris [1982].

MATHEMATICAL PROGRAMMING.

In mathematical programming, the structural design

problem is formulated into mathematical expression. The

non-linear constrained optimization problem can be formula-
ted by,,

finding fX} so that

objective Function

Subject to constraints,

9j(fxl) ý<, 0

hk(IXI) =

F (IX}) is minimum (3-2)

(3-3)

1 (3-4)

18

where JXJ = (X1
I

X21 X31
... I Xj are design variables,, gj

and hk is inequality and equality constraint respectively.

In finding the optimum, the design is changed itera-
tively. The iterative procedure is given by,

lXq+l} = jXqj + (X. Sq (3-5)

where S is the search direction in the design space and (x
is the length of search in finding the optimum of that
search. The search procedure can be described as finding an
optimum in a design space. For a two variables case, the
procedure is illustrated in Figure 3-1. It shows the search
sequences from the initial design JX11 up to the optimum
point.

Pseudo-Newton Method.

The Pseudo-Newton method is a second-order projection
method which makes use of the concept of f inding an optimal
searching along a Newton step which is projected onto the
constraints. Based on a quadratic approximation to the ob-
jective function and linearized constraints the problem is,

min F({X}+Ihl) = F(IX}) + VFT h+ 1/2 hTH. h

subject to IN qITh=0

IN qI is the gradients of active constraintsf H is

an matrix of the objective function, and h is the
design variable changes.

It can be shown that the Lagrange multipliers, X,

X=(fN q}T H-1 fNqI) -1 1N qjT H-1 VF

and consequently,

H-1 INqI({N q}T H-1 IN qj) -1

{N qjT) H-1 VF

(3-6)

the Hessi-
vector of

are given

(3-7)

(3-8)

Some of the advantages of using a Pseudo-Newton algo-
rithm are that it both satisfies differential Kuhn-Tucker

conditions and provides estimates of the Lagrange multipli-
ers.

In its operation, any projection algorithm requires
that the active constraints set is determined at each ite-

ration. A basic active set strategy can be constructed

using following steps at the end of each iteration:

19

1. Drop constraints with negative lagrangian multipli-
ers.

2. Add violated constraints (after the analysis step)
3. Apply anti-zigg-zagg rules.

CONVERGENCE CRITERIA.

Convergence criteria is used to detect whether a de-
sign solution is an optimum one. There are several crite-
ria commonly used. Some of them are,

The relative change in the design variables is less
than a small predetermined value.

2. The relative change in the Objective Function is less
than a specified tolerance.

3. The difference between the
tual weight is less than a

4. The difference between the
(weight) and a lower bound
a specified tolerance.
A lower bound for a design
dual problem.

feasible weight and the ac-
small predetermined value.

feasible objective function
on the optimum is less than

can be found by solving the

3.2. OUTLINE OF SETTING-UP A TYPICAL STRUCTURAL OPTIMIZA-
TION JOB.

There are several standard tasks which have to be

performed by structural designers in the optimization of a
design. These tasks are concerned with the way the problem
is defined and modelled. There are eight main tasks which
are outlined below and then considered in detail:

1. Problem Definition and Identification.
(a). Identifying structural type (truss, frame, etc).
(b). Problem type (static, non-linear, dynamic, etc).

2. Finite Element Modelling.
This includes all aspects of FE modelling such as
meshing and element type selection.

Definition of Objective Function.
Minimum mass is common as a goal though other objective
functions are now being actively considered as cost and

manufacturability are key items in a modern concurrent

engineering approach.

4. Variable Selection.
This requires considering two aspects:

20

(a). Defining variables.
(b). Variable linking.

5. Relations between Design Variables and Analysis Mo-
del.

6. Constraint Definition.
Type of constraints (gauge, stress, displacement, etc)

7. Algorithm Selection.

8. Criteria of Convergence.
The selection of criteria.

3.2.1. PROBLEM DEFINITION.

Firstly, the type of structure to be optimized should
be identified. The structure could be a truss,, frame,
plate, stiffened-shell, or other types, including combina-
tions of structure types in a typical built-up construc-
tion. An important aspect is the analysis type. This is a
function of the environment which defines the loadings,
displacements, etc.,, and how the structure responds subject
to these loads. These responses may require a static
analysis, a normal modes analysis, a dynamic analysis, etc.

3.2.2. FINITE ELEMENT MODELLING.

For a complicated structure with a large number of
elements, the Finite Element Method is the obvious choice
for structural analysis. Many structural optimization
packages such as STARS, ASTROS [Johnson et al. 19891, and
NASTRAN SOL-200 [Miura 1988], offer finite element analysis
module (which is NASTRAN in those three mentioned
packages).

The finite element modelling problem involves tasks

such as mesh generation,, element selection, constraint
definition (single or multi point constraints), and loading

application. Certain type of elements are suitable only for

certain optimization algorithms. With regard to the Expert
System discussed here, the FE model is input data and
assumed to be built around NASTRAN finite element analysis.

3.2.3. OBJECTIVE FUNCTION.

An objective function is a mathematical formulation of

the entity to be optimized and is a function of the design

variables. In general terms, an objective function could be

anything defined as a goal to be achieved. In a structural

problem, it is common to design a structure for minimum

21

mass (especially for aerospace structure) and structural
mass is the objective function in this research.
Nevertheless, any Structural Optimization Expert System
must be open to the inclusion of alternative objective
functions. The pressure to move away from mass is coming
from the requirement that the more advance CAD systems
consider a range of design criteria.

3.2.4. DESIGN VARIABLES.

The variables in structural optimisation can be member
sizes and the configuration of the structure. The parame-
ters defining the size of a structural members can be
complicated. For example in a truss structure, the struc-
tural members might be a hollow tubes, where "size" can be
defined as a combination of diameter and thickness. Hence,
there are two variables for each member, the diameter and
thickness. For different type of structural member (channel
section, I-section, etc) . there are different types of va-
riables, which depend on the parameters defining the size.

Configuration optimization of a structure deals with
finding an optimum (e. g. minimum mass) configuration of a
structure. In many cases, the structural configuration is
constrained by available space and structural functionality
and has been fixed already when it goes to the optimization
stage (hence only members size optimization is needed) . The
optimization tool in this research does not handle optimi-
zation of structural configuration.

A second aspect in this section involves the linkage
of specific element design variables into linked design va-
riables. This linkage process involves examining the struc-
tural behaviour patterns to define which elements are to be
associated within a given design variable. The selection
process can be augmented by the use of sensitivity analysis
to improve the performance of the design variables through

a relinkage process.

3.2.5. RELATION BETWEEN DESIGN VARIABLE AND ANALYSIS
PROPERTY.

An optimization method deals with design variables
whilst the finite element analysis deals with analysis
properties. This means that a relationship between the
design variable property and the analysis property must be

determined.

For example, consider a truss structure with a hollow

tube beams as members. The design variables are normally
the bar diameter and thickness. If a finite element analy-

sis is based on truss analysis (CONROD element in NASTRAN) ,

22

then the property analysis is cross-sectional area. A rela-
tionship between the design variables (thickness, diameter)
and the property analysis (area) has to be defined. This
depends on the optimization packages being used. For
example,, STARS (current version) only allows the cross-
sectional area to be used as the design variable for its
CONROD element. On the other hand, using the optimization
module in NASTRAN (SOL 200), it is possible to define the
relation function as

f (D, t) (3-9)

A= area
D= diameter
t= thickness

which for a tube is

3.1416 xDxt (3-10)

3.2.6. CONSTRAINTS DEFINITION.

An optimization procedure is not only aiming at
minimizing (or maximizing) the objective function, but it
must also satisfy the set of constraints imposed. The
constraints should be in accordance with the analysis type
selected. The constraint types which can be handled depend
not only on the associated finite element systems solution
capabilities but on the element types themselves. Certain
elements cannot be employed if analytic derivatives are
required by the solution algorithm. A complex interrelation
exists between the analysis system, the elements used to
model the structure, the solution algorithm, etc.

3.2.7. ALGORITHM SELECTION.

The specific optimum seeking method selected directly

affects the optimization algorithm to be applied. Some me-
thods require constraint derivative while others do not. In
STARS there are three methods available: Fully Stressed
Design, Optimality Criteria, and Pseudo Newton. It is also
possible to use them in combination. The number of
iterations also needs to be determined. The selection of a
specific algorithm or combination of algorithms represents
one of the most complex aspects of the setting-up of an

optimization run. The suitability of a solution strategy is

difficult to asses if the design problem covers a combina-
tion of problem areas, statics, dynamics, aeroelasticity,

etc, and the structure/ loadings are large. In forming a so-
lution strategy, past experience is, often, the main source

23

of information. If no experience is available the user has
to proceed with extreme caution.

3.2.8. CRITERIA OF CONVERGENCE.

The selection of the convergence criteria actually de-
pends on the problem type and the capabilities of the sys-
tem. Most systems have the usual criteria which stop on the
basis of small rates of change in specific parameters, de-
sign variables for example. Other systems can employ a dual
bounding procedure but this may not be employed with non-
derivative based algorithms.

24

X2 9

od g4
xi

X2 si

X4 X3

Cl < C2 <... < C5

opýmum poi g2

f-cl
ýj f -04 f -05

f MC2
1

7- xi

f =C3

Figure 3-1 Searching for optimum in a two
variable design space.

25

CHAPTER 4:

REASONING STRATEGIES

This chapter discusses aspects of Expert System
(Knowledge Base Systems) methodologies placing emphasis on
two aspects, the implementation of object oriented concepts
in constructing a knowledge base system, and case based
reasoning employing past experiences.

EXPERT SYSTEM: GENERAL DESCRIPTION.

4.1.1. EXPERT SYSTEMS.

An Expert System is a knowledge-based program that
provides solutions to problems in specific domains [Luger
and Stubblefield 1989]. Generally, its knowledge is
extracted from a human expert (hence the term Expert
System) . The knowledge relates to both theoretical and
practical aspects in the domain. These systems are able to
use heuristic strategies to solve specific classes of
problems. Because of the heuristic,, knowledge intensive
nature of expert level problem solving, Expert Systems are
generally :

- Open to inspection, both in presenting intermediate
steps and in answering questions about solution pro-
cess.

- Easily modified, both in adding and deleting skills
from the knowledge-base.

- Heuristic, in using (often imperfect) knowledge to ob-
tain solutions.

Figure 4-1 shows a typical Expert System architecture.

A. The Knowledge-Base.

The three fundamental components of an expert sys-
tem are the knowledge base, the inference engine, and the

user interface. The knowledge base stores information about
the subject domain. However,, information in a knowledge

base is not a passive collection of records and items which

are found in a conventional database. Rather it contains

symbolic representations of experts' rules of judgement and

experience, in a form that enables the inference engine to

perform logical deductions upon it [Yazdani 1986].

26

In general, knowledge can be represented in a number
of ways. An example of four methods are shown below:

1. Rules in IF-THEN format conditions are the rule ele-
ment between IF and THEN, while the conclusions are ele-
ments which follow THEN.

2. Semantic Nets : these represent relations among ob-
jects in the domain by links between nodes. Semantic
nets can be drawn up to assist the development of rules.

Frames : these are a generalized record structure with
fields (or slots).

4. Horn clauses : this is a form of predicate logic on
which PROLOG is based.

With the advent of Object Oriented Design programming, see
(4.2), there are new developments which utilize this
approach in constructing not only software but also
knowledge base. Object oriented programming can also
produce frames-like structure and simulate semantic nets.
Object oriented programming is ideal to represent objects
to be organized in taxonomies, and as optimization methods
can be organized in this way then it is appropriate to
employ this approach of programming. However, rules are a
natural formalism for representing heuristic and problem
solving knowledge [Luger, Stubblefield 1989]. For this
reason rules are used in the Expert System for Structural
Optimization for representing heuristic strategy and
problem solving.

B. The Inference Enqine.

B. 1. Chaininq

Inferencing is a reasoning process that attempts to
use the available information to find matching conclusions
or objects. The most commonly used inferencing strategies
are forward-chain and backward-chain.

Forward-chaining is sometimes called data-driven
because the inference engine uses information that the user
provides to move through a network of logical ANDs and ORs

until it reaches a terminal point, which is the object. If
the inference engine can not find an object by using the

existing information, then it requests more. The only way
to reach a solution is by satisfying all of its rules.

Suppose that the user of a structural optimization

system decides to use a stress ratioing algorithm to solve

a displacement constrained problem. The inferencing process

would start the requirement that the design problem has a

27

displacement constraint. The chaining process starts with
the inference engine firing the rule whose condition part
deals with the displacement constraint and progresses from
this point. Sooner or later it encounters a rule which
states:

IF (constraint = displacement) and
(algorithm = stress-ratioing)

THEN inappropriate algorithm selected

Backward-chaining is the reverse of forward-chaining.
It starts with a hypothesis (an object) and requests infor-
mation to confirm or deny it. This method is also called
goal-driven.

To illustrate backward-chaining we consider the
stress-ratioing, displacement constrained proposition dis-
cussed above. In this case the inferencing mechanism works
from a likely-looking conclusion to find the conditions
which must apply for that conclusion to be true. The con-
clusion being sought is that the stress-ratioing algorithm
is acceptable. When the propositions associated with this
conclusion are examined it will be found no rule exists
which implies that stress ratioing is inappropriate when
displacement constraints are present.

The selection of chaining methods to
on the nature of the problem. In our
forward-chaining is used for reasoning
knowledge for setting up the optimization
time and result- interpretation knowledgE
discussed in more details in chapter 6.

be used depends
Expert System,

in the apriori
and in the run-

This will be

There are often situations where the Expert System

must attempt to draw correct conclusions from uncertain
evidence using rules which are not one hundred percent
reliable. There are several ways of managing these

uncertainties with the commonly used being the Bayesian

approach and theory for certainty.

B. 2. Incorporatinq Uncertaintv.

The Bayesian approach to uncertainty is based on
formal probability theory. Assuming a random distribution

of events,, probability theory allows the calculation of
more complex probabilities from previously known results.
Where the assumptions are met, Bayesian approaches offer
the benefit of a well founded and statistically correct
handling of uncertainty. However, many Expert System

domains do not meet these requirements and must rely on

more heuristic approaches.

28

The theory of uncertainty makes some simple assump-
tions for creating confidence measures and has some equally
simple rules for combining these confidences as the program
moves toward its conclusion. Based on a piece of evidence
the certaintiness of a hypothesis, called as the certainty
factor (CF) . can be measured. The range of CF is between -1
and 1. As the certainty factor approaches 1 the evidence is
stronger for a hypothesis; as CF approaches -1 the confi-
dence against the hypothesis gets stronger; and a CF around
0 indicates that there is little evidence either for or
against a hypothesis. In a rule base system, the reliabili-
ty of a rule's conclusion (or hypothesis) can be measured
if the CFs of rule premises and the CF associated with that
rule is known. When two or more rules support the same re-
sult, the multiple CFs also can be combined.

Either the Bayesian approach or the theory of uncer-
tainty can be critized for using numeric approaches to the
handling of uncertain reasoning. Many would argue that it
is unlikely that humans use these numeric valuation
paradigms for reasoning with uncertainty. Some applications
tend to require a more qualitative approach to the problem.
If human experts are asked why their conclusions are uncer-
tain,, they tend to answer in qualitative relationships
between features of the problem instance. However, if some-
one says that something is better than the other, one could
ask how much better. If one compares ten systems and tries
to put them in order with respect to their performances,
probably numeric approach is better than qualitative rela-
tionship.

These probability aspects have an important role to
play when questions relating to the similarity of design
problems are addressed. As we shall observe, saying that
two design problems are similar does not mean they are
identical. Thus similarity has probability aspects associa-
ted with its use. This will be discussed in more details in

chapter 5.

4.1.2. EXPERT SYSTEM DEVELOPMENT.

Expert System development requires a non-traditional
development cycle based on early prototyping and incremen-
tal revision of the code. There is also complications due
to the fact that (most) Expert Systems are jointly
developed by the knowledge engineer (program builder) and
the domain expert.

Expert Systems are built by progressive approxima-
tions, with the program's mistake leading to corrections
and addition to the knowledge base. In a sense, the know-

ledge base is "grown" rather than constructed. The second

major feature of Expert System programming is that the pro-

29

gram needs never be considered "finished". The modularity
and easy modification available in the production system
(rules) model make it natural to add to or modify rules
[Luger and Stubblefield 1989].

Many of the successful
direct result of early resea
of the 1960s. Classic Expert
around fifty person-years
successful system, DENDRAL,
years to develop.

Expert Systems have been the
rch which has gone on since mid

System such as MYCIN required
to develop, while another

required almost forty person-

However, there is an important aspect of Expert System
programs, the average development time for Expert Systems
has been drastically reduced across the decades of evolu-
tion. The emergence of Expert System shells was instrumen-
tal in reducing the design time.

An Expert System shell is an "expert" system which has
everything (inference engine, explanation facility, know-
ledge base editor, and user interface) except the knowledge
base. The system designer needs only to insert domain
knowledge into the system by using a knowledge base editor.
There is no doubt, that this system is a great help to the
designer of an Expert System. The drawback of this system
is its limitation to the numerically complex domain pro-
blems. With respect to the optimization problem it is dif-
ficult (if at all possible) to interfacing the commercially
available Expert System shells with an optimization module/
software. In this research, the Expert System is developed
as a generic system specially to deal with structural
optimization problems.

4.2. OBJECT ORIENTED KNOWLEDGE BASE.

4.2.1. BASIC CONCEPTS OF OBJECT ORIENTED PROGRAMMING
[Meyer 1988; Schildt 1990; Booch 19911.

Object oriented design is the construction of software

systems in the form of structured collections of abstract
data type implementations [Meyer 1988]. Every module in an

object oriented architecture is built on a data

abstraction. The principle of abstraction is used to

construct solutions to problems without having to take into

account the intricate details of the various component

subproblems.

The modules of object oriented systems are called

classes. An object is not a class, but an object is an ins-

tance of class. The class structure encompasses both pro-

perties and behaviour of an object which it defines. In

other wordsf class is the template of object.

30

An object is a dynamic and complete entity. It has
properties unique to itself and a set of operations (func-
tions) on its properties. When required, an object is also
able to interact with other objects. Indeed,, an object
oriented system is a system which operates on objects and
objects interactions. Object also support the principle of
data encapsulation which protects data within an object.

Object oriented systems also support the principle of
inheritance where a class is a descendant of one or more
other. Inheritance permits objects to be organized in taxo-
nomies in which specialized objects inherit the properties
and functions of more generalized objects. However,, it
might be possible for an object to redefine an inherited
property or operation.

Polymorphism is another concept supported by object
oriented program. Polymorphism essentially means that one
name can be used for several related but slightly different
purposes. The purpose of polymorphism is to allow one name
to be used to specify a general class of actions. However,
depending upon what type of data it is dealing with, a
specific instance of the general case is executed.

Object oriented software is implemented using an
object oriented language. The term object oriented language
is used to separate this language type from conventional
non-object-oriented languages such as Basic, Fortran,
Pascal, and C. Examples of pure object oriented languages
are Smalltalk, Eiffel and Simula; C++ is an extension of C
which supports object oriented characteristics [Schildt
1990] There are also available extensions of Lisp and
Pascal which support object oriented principles.

In this research C++ is used to build the prototype.
Unlike Lisp or PROLOG, C++ is not a traditional expert sys-
tem language. The advantage of C++ is that it is not only
capable of handling operations on symbols, but it is also
an excellent numerical processor. Together with Fortran and
Pascal, C++ is widely used in numerical analysis softwares.
This numerically excellent capability would be a great ad-
vantage when it comes to the development of a coupled Ex-

pert System which deals with number crunching.

4.2.2. INFERENCING STRATEGY FOR THE OBJECT ORIENTED

KNOWLEDGE BASE.

The properties of object oriented programming are very

useful for the design of knowledge bases. In addition to

the benefits of class inheritance for representing taxono-

mic knowledge, the objects interaction (message-pas sing)

aspects of object oriented systems simplifies the represen-
tation of interacting components.

31

Having mentioned the good things of object oriented
programming in the design of knowledge bases, it must be
said that, production system rules are a natural formalism
for representing heuristic and problem solving knowledge.
The prototype developed as part of the current work
combines both object oriented schemes and production rules
for constructing the knowledge base. The object oriented
scheme represents domain properties while rules reason
about them. A simple way to show this relation is by
writing a production rules where rules could send messages
to objects and test the response in their premises. For
example,

Rule :
IF (method. analysis testo = true) and

(method. constraint testo = true)
THEN (method. to-consider = true) (4-1)

The rule tests the object method to see if it can do the
analysis and handle the constraints. It is the object
method itself which does the analysis test and the cons-
traint test operations. The object will see if it can do
the analysis and accommodate the constraints requirements
of the current design problem. If the rule premises are
satisfied,, then the object method will be considered for
subsequent tests.

The problem with the above rule is that it is written
in a procedural way. This type of programming leads to dif-
ficulties in writing the inference engine and the knowledge
base as two separate modules. In an Expert System program,
the user/programmer should be able to modify the rules
(knowledge base) without interfering with the inference
engine. A better way to code the above rule is,

IF analysis
-

test = true and
constraint test = true

THEN (method_to_consider = true (4-2)

The premises variables (analysis test and constraint_test)
have to be instantiated first. The instantiation is per-
formed in an assignment/instantiation routine which sends
enquiries to the appropriate object, in this case is

method,, about its capabilities in handling the analysis and
constraints required. Functions analysis test and
constraint test in the object method will provide the

answers to these enquiries. If the conditions of the rule

are satisfied then the conclusion method to consider is

instantiated to true. For certain informaCion-, instead of

asking questions to various objects, this assignment rou-
tine might ask the users to provide the answers.

From the discussion above it is clear that inferencing

is applied to the heuristic knowledge which is represented

32

by IF-THEN rules while the object oriented domain supplies
the information for variable (in the rule premises) assign-
ment. This mechanism is shown in figure 4-2 and is nothing
more than an Expert System with a production rule knowledge
base which contains the heuristic knowledge. Either forward
or backward chaining can be applied to these rules. The
distinction is in the fact that additional information is
provided by the knowledge relating to the optimization me-
thods stored in an object oriented fashion.

The discussions above show a concept in which a know-
ledge base consists of domain properties (object oriented
scheme in our case above) and IF-THEN rules which reason
about them. This concept can also work as efficiently using
records or frames to represent the domain properties (in-
stead of the object oriented way).

4.3. CASE BASED REASONING.

Case based reasoning is an AI technique that adapts a
solution obtained from past experiences (cases) for solv-
ing current problems. This reliance on previous experiences
(or cases) is a hallmark of case-based reasoning. The idea
of reasoning from relevant past cases is appealing because
it corresponds to the process an expert uses to solve new
problems.

A case basically contains a list of features which re-
present the nature of a case and a solution for that case.
Any case specific information, such as possibility of case
failure if a certain external perturbation is applied, can
be added to a case. In case based systems, the case (or

cases) itself is used as means of explanation. Hence a case
should have adequate information about itself.

Case based reasoning differs from other types of rea-
soning and problem-solving techniques and is, in some
instance, a direct reaction to the problems encountered in

a rule-based (product ion- rules-based) reasoning system. The

problems with rule-based systems which prompted a search
for an alternative paradigm for problem solving concern
knowledge acquisition and robustness:

(1) . Knowledge Acquisition. It is known in rule based

systems that collecting knowledge and encoding it into an
IF-THEN form is difficult. It is often argued that experts
do not actually use rules, it is their experience that

makes them expert. An additional complication in setting-up

rules is that it is necessary to trace interactions between

rules to ensure that they could chain properly and that

contradictions are eliminated.

33

(2) . Robustness. Since all their knowledge is recorded in
terms of rules,, if a problem does not match any of the
rules, the system could not solve it. In this context the
rule based systems are brittle.
In fact it is possible to regard this third problem as a
problem which is related to the knowledge quantity and also
applies to other type of reasonings.

Case based reasoning offers advantages over rule-based
system in the following ways:

- Knowledge Acquisition. Cases are more memorable than
abstract rules. It is often easier for experts to remember
and articulate specific examples of the problems and their
solutions to those problems, than it is for them to des-
cribe their problem solving technique in terms of poten-
tially large number of rules.

- Learning from Experience. The learning process is a natu-
ral mechanism in case based reasoning. Each time the system
solves a problem, that problem and its solution are stored
in memory as a new case. In this way, the case based sys-
tems progressively has more capacity in dealing with more
situations.

- Adaptivity. The case based reasoning adapts the solution
of similar past cases to solve new problems.

While adaptivity is regarded as one of basic steps in case
based reasoning algorithms, in fact we regard this as one
of the most difficult parts. If an exactly similar case can
be found then the solution of that case can be directly
applied for current problem. Problems occur if no exactly
similar case is available. Generating an adaptation algo-
rithm is not easy and must include a few rules from its

rule-based "competitor". Pure case based reasoning will be

simply lost if there is no case found to be similar. Thus,
case based reasoning should be regarded as a complimentary
technique to the rule based reasoning and both are imple-

mented in this research.

The basic processing cycle of case based reasoning
systems is "input a problem, retrieve similar past cases,
adapt the selected case solution to the current problem,
and store the new case along with its solution in "memory".
The above cycle is elaborated as follows:

(1) . Input a problem. Upon input of a problem, the key

features are extracted for use in retrieving cases with

similar features. These features are called indexes.

(2) . Retrieve similar past cases. The indexes are used to

retrieve cases from the memory and the process of case re-
trieval is called case-indexing. A commonly used case-

34

indexing is the so called nearest-neighbour [Kolodner
19931 . The nearest -ne ighbour approaches let the user
retrieve cases based on a weighted sum of features in the
input case that match cases in memory.

(3)
. Select most relevant case (s) . The similar cases retri-

eved are ranked and the one with highest rank available to
be selected.

(4) Adapt the case solution for the current problem. If
the current problem is the same or nearly the same as the
selected case then the solution can be directly applied.
However, often this is not true and the solution needs to
be altered for the current problem.

(5). Update memory. The current problem and its successful
solution is stored as a new case in memory.

With regard to our optimization problem, there are se-
veral questions which need to be answered:

1. What are the relevant features for any design case?
2. How can the case be described to the computer?
3. How to represent interdependency among features?
4. How to judge similarity?
5. How to address the ambiguities in similarity?
6. What if there is no case found to be similar?

These problems will be discussed in the next chapters.

35

USER
---7, \

AX

USERINTERFACE

\V \V
KNOWLEDGE INFERENCE

BASE ENGINE

Figure 4-1 The architecture of a typical Expert
System.

36

0
w

F--
Z
W Z (0
i r- < ein 0 2(- <

w
0

Z 0 CO
3

0
ir.

w
0 w
Z Z
w
CC (9
W
LL

Z
W

Z

0
w

F--
Z
W Z
i r- <
0 2

0
w
0

Z 0 CO
3

0
ir. 12-

Figure 4-2 Inferencing strategy for the object
oriented knowledge base.

37

CHAPTER 5

REASONING THROUGH PAST EXPERIENCES

STRUCTURAL OPTIMIZATION KNOWLEDGE.

For a structural optimization system to be effectively
used the users must be able to set up the data to run the
system efficiently, analyze the behaviour of the system
during the running of the solution algorithms, and inter-
prete the results. Setting up the system requires knowledge
of the optimization requirements and can exploit past expe-
rience, where available. In addition to setting up the
optimization the user must be able to monitor the perfor-
mance of an algorithm at run-time in order to decide if a
solution is being approached and., at termination if the
result is satisfactory. Thus three types of knowledge can
be identified as necessary to effectively use such systems:

1. Knowledge relating to setting up the structural optimi-
zation.

2. Knowledge which is based on past experiences.
3. Run-time and results interpretation knowledge.

Both the first and second knowledge types have the task of
setting-up the optimization. However, the first type of
knowledge is based solely on logical deduction and is a-
priori in nature, while the second type of knowledge is
based on previous experiences (past cases) .

When the users input the design requirements/specifi-
cations, the system will consult the system past experi-
ence. If there is a similar case found in the memory then
the solution for that case is proposed. If no similar case
is found, then a solution strategy is formulated with what-
ever logical knowledge (a priori) is possessed by the

system and is described in section 6.1. Once the optimiza-
tion input data has been assembled the system initiates a
solution run. Control is then handed over to the structural
optimization program but the performance is monitored by
the 'run-time' system. This assesses the effectiveness of
the optimization run and intervenes as required.

This chapter looks into the detail of the knowledge
based on past experiences. The a-priori and results inter-

pretation knowledges are discussed in the next chapter.

5.2. KNOWLEDGE OF PAST EXPERIENCE.

As a supplement to apriori knowledge it is possible to

appeal to past experience. The knowledge now is based ex-

38

p icitly on the outcome of previous optimization runs. The
basic idea behind this approach is to try to capture the
past design experiences (previous optimization runs) and
use it to solve current problems. Just as human beings try
to remember what has been done to solve a similar problem in the past, the Expert System will search for a similar
case in its memory and uses the optimization set-up of that
case for solving the current design problem. This kind of
approach of solving new problems by adapting solutions that
were used in previous cases is called case-based reasoning
(CBR).

There are advantages of using the case-based reason-
ing. The most obvious one is the availability of a memory
which contains previous cases and their solutions. The
case-based reasoning systems are built on a memory of prior
cases. Each time the system solves a problem, that problem
and its solution are stored in memory as a case. In this
way CBR systems can easily learn from experience; they do
not have to waste effort resolving a similar problem which
has been solved before. Storing a new case in memory can be
regarded as a means of knowledge acquisition.

The case representation and similarity aspects depends
on the nature of the problem at hands which in this case is
structural optimization. Before discussing the structure of
the past experience knowledge and its reasoning mechanism,
the nature of setting up structural optimization design job
will be described first.

5.2.1. THE NATURE OF SETTING UP A STRUCTURAL OPTIMIZATION
DESIGN JOB.

Setting up an optimization job depends primarily on
the design requirements. The type of analysis and
constraint requirement directly affect the selection of
optimization techniques. While a static case with stress
constraint can be handled with fully stressing method, the

addition of more complex constraints such as displacement

or frequency will require more advanced optimization
techniques. Some cases might require a combination of
optimization techniques.

As the Finite Element method is used in the analysis
stage of the optimization, Finite Element models are need
to be prepared. The models are represented among other
things by the number of nodes or grid points, number of

elements,, and type of elements. The FE model affects the

selection of optimization algorithm as some elements

require gradient information.

If the user decides to employ a large number of design

variables this may require many optimization iterations

39

before the optimum point is found. For methods which needs
constraint gradients, the selection of a large number of
potentially active constraints will give rise to a
requirement for an unacceptable time to locate an optimum.
In both of these situations it might be necessary to limit
the number of iterations or start with a non gradient based
method. Whilst the standard convergence criteria, based on
changes in direct parameters (e. g. design variables) from
iteration to iteration have no influence on the selection
process, the use of complex criteria could be influential.
For example, the use of dual bonding criterion requires
gradient information which is not required by a fully
stressing method.

The above description points out that the type of
analysis, constraint requirements, the Finite Element
model, and the set up of design variables are important
factors /parameters in setting up an optimization. This also
means that, in the context of reasoning through past
experience, those parameters should be considered in
recalling the useful past cases. The influence of analysis
and constraint are very obvious. Two designs with different
analysis or (and) constraint requirements most probably
need a different optimization approach. For example, a
structure under static loads with stress constraint might
be optimized using the fully stressed design method. The
method can not be used for that same structure if the
constraint set is changed to include displacements.

Whilst a change of analysis or constraint has clear
implications for the algorithm selection the situation is
more confused in the case of design variables numbers.
Suppose for example, two structures have the same analysis
and constraint set and the FE model is similar (which
implies similar node and element parameters) but have a
different numbers of design variables. If the first
structure has (say) 20 variables and the second structure
has 19 variables then it is logical to say that the same
algorithm can solve both problem. But if one structure has
100 variables and a second 10 variables only, these two

structure might need different solution approaches. The

question of which number of design variables can be said to
be similar and which ones are not remains, for the moment,
an open question. We may also note that two problems may
have the same number of design variables but number of

elements within these variables and their pattern may be

completely different.

The striking nature of structural optimization which

might cause problem is that a slight change in design re-

quirements might produce unexpected results. For example,

consider a static case with a single displacement

constraint. This structure normally can be optimized with
the optimality criterion method without problem. However,

40

an addition of another active displacement constraint in
design requirement might make the optimality criterion
method ineffective to optimize the structure. Another
example is in the dynamic case with a frequency constraint.
An algorithm can be used to minimize the structural weight
while keeping the natural frequency above, say, 10 Hz. If
the frequency limit is increased, say, to 40 Hz, the same
algorithm might not be able to meet the requirements. The
reason probably is not caused by the effectiveness of the
algorithm used but by, among other things, the nature of
the structural characteristics which makes it impossible to
have natural frequency as high as 40 Hz.

It has to be stressed here that the parameters
mentioned above are not completely independent. For
example, in a dynamic case, the number of degrees of
freedom is important factor to consider in setting up the
optimization. However, the number of degrees of freedom is
not critical in a static case with stress constraints. The
number of design variables is also more critical in non
static cases than the static ones.

The complicated nature of structural optimization as
discussed above makes the nearest neighbour techniques
[Kolodner 19931 which are commonly used in case based
reasoning systems unsuitable in dealing with structural
optimization. A different reasoning strategy needs to be
implemented.

5.2.2. KNOWLEDGE STRUCTURE AND SIMILARITY ASPECTS.

As mentioned earlier, the basic idea behind reasoning
through past experience is to try to capture the past
design experiences (previous optimization runs) and use it
to solve current problems. In this case the system will
search for a similar case in its memory and uses the
optimization set-up of that case for solving the current
design problem. To find a similar case to the current
design problem, it is necessary to define similarity. This

requires selecting criteria so that a specific design case
can be categorized as similar to the current design

problem. These criteria need to be expressed in terms of
parameters which need to be defined to judge the similarity
between the current design problem and the past design

cases in the memory. The selection of these parameters is

very important as the matching of the current design with
a previous one is based on them exclusively. In CBR this

procedure of extracting features to use in cases comparison
is called index extraction where the indexes in this report

are called the similarity parameters.

From the description on the nature of setting up an

optimization strategyf the nearest neighbour strategy is

41

regarded as not suitable. Rules (IF-THEN rules) are more
natural to represents the complexities and interdependency
among the affecting parameters in setting up optimization.
These parameters are adopted as the similarity parameters.
Thus by using these similarity parameters, similarity rules
can be defined. Using this approach a current design
problem is defined as similar to a design case in the
system memory if the similarity rules are satisfied.

The requirements for the similarity parameters is that
their contribution in setting up the optimization should be
significant and they should be able to define the
uniqueness of a design case. Currently these relate to:

1. Analysis: statics, normal modes, dynamics, and combina-
tions.

2. Constraint: stress, displacement, strain, buckling, na-
tural frequency, dynamics, and combinations.

3. Node number: the number of nodes in the finite element
model.

4. Number of element: the number of elements used to model
the structure.

5. Element types: plate/membrane, beam, rod, and combina-
tions.

6. Number of design variables: the number of design varia-
bles and the linkage pattern.

Design cases which the memory stores are treated as a
collection of knowledge entities (past experiences) in the
form of records. Each record basically contains a design
case and its solution. These are expressed in terms of si-
milarity parameters together with their values and the
design solution for that particular case. A design solution
basically is a definition of an optimization set-up which
consists an optimization algorithm (an optimization method
or methods combination), number of iterations, and conver-
gence criteria. If the current design problem and a past
design case are considered as similar, then this optimiza-
tion algorithm is proposed for use.

Due to the nature of structural optimization problems,
which has been discussed in 5.2.1, the use of past experi-
ence introduces certain ambiguities because the similarity
concept does not, necessarily, gives rise to hard and fast

rules. For example it is difficult to state with certainty
that, two structures are not similar because one has 10 de-

sign variables and the other one 15 design variables and
hence they need different optimization strategies, because
it still might be possible that these two design problems

42

can be optimized effectively with exactly the same strate-
gy. Similar ambiguities may arise in different situations,
for example, in the case of two structure which have the
same analysis and constraint requirements but a different
number of nodes and elements.

Although there are ambiguities with regard to the si-
milarity parameters, there are still some basic principles
which can be followed in deriving the similarity rules.
These principles are as follow,

1. Analysis.
If the current design problem has the same analysis re-
quirement as a design case in the memory record, then
they are similar in analysis.

2. Constraints.
If the current design problem has the same constraint
requirement as a design case in the memory then they are
similar in constraint.

If the system is not able to find in its data base a de-
sign case with the same analysis and constraint set as
the current design problem there is only a small possi-
bility that any solution from the design cases in the
memory can be used for the current problem.

3. Node nuiWber.
If the current design problem has fewer nodes than the
target one in the memory record then, from node number
point of view, the solution in that record is acceptable
for the current design.

4. Element number.
If the current design problem has fewer elements than
the target one in the memory record then, from element
number point of view, the solution in that record is ac-
ceptable for the current design.

5. Element type.
If the current design problem has same types of element
as the one in the memory record then, from element point
of view, the solution in that record is acceptable for
the current design.

6. Design Variable number.
If the current design problem has fewer design variables
than the one in the memory record, currently being con-
sidered as similar, then the solution in that record is

acceptable for the current design.

The rules related to the conditions (1) and (2) are deter-

ministic in nature while the rules related to the condi-
tions (3) to (6) are more fuzzy. If, in addition to

43

conditions (1) and (2) the rules related to conditions (3)
to (6) are satisfied then the solution (an optimization
set-up) in the record can be used. But, if those rules are
not met it does not necessarily mean that the solution used in the earlier problem will fail for the current design
problem.

As mentioned previously, the similarity parameters
mentioned above are not completely independent and this to
be taken into account in making judgments on similarity. A
reasoning technique based on the production rules making
use of the concept of certainty factors is implemented.
Using the concept of case similarity, based on the similar-
ity principles mentioned previously, the reasoner proposes
an optimization strategy from a similar case for use.

The judgment whether cases are similar could not be
based on statistical observations. We consider that this
type of decision making relies more on the expertise
(beliefs) of the individual making the decision. It is
inappropriate to say, for example, that the prior
probability of a case to be statics is 0 (no static cases
ever found), or 1 (all structural cases found are statics) .
It is for this reason that in this research the concept of
certainty factors is preferred to use than Bayesian
conditional probability.

The similarity rules are written using IF-THEN rules
with certainty factors attached to them. Each certainty
factor (CF) express the level of user confidence (or be-
lief) with regard to the trueness of the rule a CF is

attached. These CFs can also be regarded as weight factors.

5.3. THE STRUCTURE OF DESIGN CASES.

As described above the basic idea is to try to capture
design experience in order to be able to solve future

problems. Thus design experience is codified into knowledge

stored in the memory which can be regarded as a file

containing a collection of knowledge (past experience)
records. Each record contains a (past) design case and its

solution, held in the form of the similarity parameters
with their values and the successful optimization strategy
for that particular case. The similarity rules are written
in the form of production rules (IF-THEN rules) and are

used to capture the design case record which is similar to
the current design problem.

Each record in the knowledge base contains the follow-
ing information (stored in fields),

44

- number of analysis,
- analysis types,
- number of constraints,
- constraint types,
- number of nodes,
- number of elements,
- element types,
- number of design variables,
- solution,
- comments.

Thus a typical record might be,

- number of analysis: 1;
- analysis types: statics;
- number of constraints: 2;
- constraints types: stress, displacement;
- number of nodes: 5;
- number of elements: 6;
- element types: rod;
- number of design variables: 6;
- solution: pseudo-newton algorithm, n number of

iterations, a type of convergence criteria
- comments: a straight forward process

In addition to the above fields, each case might store
additional information which is unique to that case, for
example storing the associated structural drawing.

If the number of cases is small then the time spent
for case searching and retrieval is unimportant. However it
is inevitable that after many runs the number of cases
stored becomes increasingly huge. Hence it is necessary to
structure the cases to reduce the length of time spent for
cases searching and retrieval. For our system it is pro-
posed to classify cases as a tree structure. Cases are
grouped according to the analysis type. The search will not
go further in a group of cases if the analysis required by
a current design problem does not match the analysis type
of that group.

5.4. SIMILARITY RULES.

The contents of the rules are primarily based on the
basic principles mentioned in (5.2) and the fact that

similarity parameters are not completely independent has to
be included in the rules.

A certainty factor is attached to each rule and

reflects the designer's confidence in his rule. Value of
CFs range from -1 to 1. As a CF approaches 1 the confidence
in the rule is stronger; as CF approaches -1 the confidence

45

against the rule gets stronger; and a CF around 0 indicates
that there is little evidence either for or against the
rule.

Each rule consists of an IF-THEN statement and a cer-
tainty factor CF. For example, the rule for similarity
parameter relating to analysis, is in the form of:

IF (analysis type of a design case)
(analysis type of the current design

THEN analysis_similar is TRUE
CF=0.15

problem)

The above rule simply says that, if the current design pro-
blem analysis requirement is the same as to the analysis
type of a previous design case then the design is 11similar"
from analysis point of view. The designer's confidence on
his rule towards the similarity of a case is shown by the
CF value, in this case is 0.15. The opposite of the above
analysis rule,

IF (analysis type of a design case)
(analysis type of the current design problem)

THEN analysis_similar is TRUE
CF=-0.6

The rule says that, if the analysis required in current
problem is different to the analysis of a previous design
case then the design is unlikely to be similar (CF=-O. 6)
from analysis point of view.

As can be seen from previous analysis rules, rule
premises have no CF values attached to. All premises are
deterministic in nature. There is no chaining process du-
ring reasoning hence there is no CF propagation from a rule
to another rule. The CF value contributes toward a final CF
which is a combination of various CFs. The positive and
negative values of CFs are judged and determined separate-
ly, unlike statistical probability where the sum of a pro-
bability and its negation is one. If fired, the second rule
above will most probably kill off the chance of a case
being similar, which is in accordance to the similarity
principles discussed in (5.2).

Another example is the rule relating to the design

variable which has the form

IF (number of variable of a design case)
(number of variable of the current design)

THEN variable_similar is TRUE
CF=O. l

The rule states that, if a design case has the same or

areater number of design variables than the current design
zi -- -- --

46

problem then that design case is acceptable for this para-
meter. The contribution of design variables towards the si-
milarity of a case is rather small (0.1).

The parameters dependency can be shown by another rule
which also deals with number of variables,

IF (number of variable
(number of variable

AND (analysis=static)
THEN variable-similar is
CF=0.05

of a design case)
of the current design)

TRUE

From the rule it is clear that the logic of previous rule
is not met, the current design problem has a larger number
of variables than the design case. Due to the fact that the
analysis is statics, when fired, this rule will not kill
off the chance of a case to be regarded as "similar". This
illustrates the relative importance of an analysis type to
number of design variables with regard to the use of an op-
timization strategy.

From the discussion above it is clear that each
similarity parameter is represented by more than one rule.
During the reasoning process, for each similarity parame-
ter, only one rule which represents the true current situa-
tion will be fired. The goal of the reasoning process is
deciding whether a case is, based on similarity rules,
acceptable (or unacceptable) and the confidence in the
decision taken. The acceptability of a case is based on
contribution of various similarity parameters and, hence,
on the combination of CFs of the fired rules. This means
that CF values play an important role in deciding whether
a case could be regarded as similar. The CF value which is
given to a rule should be based on the concept that that
value at the end must support what the experts belief as
true. In our problem, similarity, a case should be con-
sidered of having a chance to be similar if the criteria
related to the analysis and constraint are satisfied; on
the other hand a case is not similar if the same criteria
above not satisfied. Figure 5-1 shows the structure of the

past experiences knowledge base which contains both the

similarity rules and the past cases.

Now it is necessary to calculate the contribution of

various CFs toward a total CF value. This is identical to

the problem of combining multiple CFs when two or more

rules support the same result. Suppose CF(R1) is the cer-
tainty factor associated with the rule R1, and CF(R2) is

the certainty factor associated with the rule R2; then the

CF combination of both rules is calculated by [Luger and
Stubblefield 1989] :

47

CF (Rl) + CF (R2) -(CF (Rl) X CF(R2) when CF(Rl) and
CF(R2) are posi-
tive

CF (Rl) + CF (R2) +(CF (Rl)

CF (Rl) + CF (R2)

X CF(R2) when CF(Rl) and
CF(R2) are nega-
tive

1- MIN(ICF(Rl)IICF(R2)1)

5.5. CASE SELECTION.

otherwise.

Faced with a problem, the task of a reasoner is to
produce a solution by manipulating the knowledge to derive
an effective solution strategy. From previous discussion it
is clear that the knowledge structure consists of IF-THEN
rules which addresses question of similarity and cases. The
objective is to find an acceptable case in the memory and
use its optimization set-up for solving the current pro-
blem.

The reasoning process is controlled by a case selec-
tor. The selector starts the case selection by retrieving
a case from memory. The similarity rules are applied to
evaluate the acceptability of the case. A confidence
scoring based on the CF calculation in section 5.4.1 is
performed to find the CF of the case. This mechanism is
shown on figure 5-2. The cases with 'acceptable' CF values
(higher than 0.27) are sorted using the bubble-sort tech-

nique and presented to the user for consideration.

The threshold value,, 0.27,, is selected because this
number represents a 'reasonable' level of belief in simi-
larity. In fact this number is slightly less than CF

combination of analysis and constraint rules when both are
satisfied (a past case has the same types of analysis and
constraint with the current problem), which is 0.2775. This

was chosen to allow minor adjustments due to the influence

of other parameters.

However, due to the nature of structural optimization,
there are situations in which the similarity-strategy
proposed in this chapter could not cope well. Consider an

optimization of a structure with natural frequency as the

constraint and assume that only the first mode is

considered. The constraint requires that at optimum the

natural frequency of structure is higher or equal 20 Hertz.

Suppose that in the system's memory, there is a design case

which is exactly similar to the current design problem

48

(same structure,, FE model, type of analysis,, constraint,,
etc.), except that the case in the memory is required to
have a natural frequency higher or equal 10 Hertz. Using
our case based system with the strategy discussed above the
optimization set up of the design case mentioned will be
proposed with a high CF value. Still, there is no guarantee
that the optimization will go to convergence in this case.
There is possibility that due to the nature of structural
configuration, it is impossible to achieve a natural
frequency value of 20 Hz by resizing of structural
components alone. Hence the optimization will not reach
convergence. In the Expert System developed in this
research, the task of finding the reasons of non-
convergence in the situation illustrated above is given to
the backend modules and the user will be given advice on
modification required.

The f inal CF depends on the CF values in the similari-
ty rules and these values are subjective in nature. The
system's users are able to interrogate the system as to the
system's decision on case selection and its level of conf i-
dence. It is important that users have control over the
importance of a rule (represented by its CF) and can modify
the CF values if appropriate.

As previously mentioned, the cases are structured
according to a tree structure. The tree's main branches are
determined according to the analysis types used. The search
at any specific time is performed only in one tree branch.
In other words a search will go deeper only in the branch
representing the required analysis type. This is due to the
analysis similarity parameter being regarded as a hard
rule. Furthermore, the case selector will look for the
cases with identical constraint type first. By using these
measures the search can be channelled toward the most rele-
vant cases only.

5.6. MEMORY UPDATE.

After a successful optimization run, the memory is

updated by storing the new case. An important aspect is

where to put this case in memory. As previously mentioned,
the cases are structured as a tree with analysis types as
the main branches. A new case will be stored in the slot
with the class of similar analysis types.

The updating process also must include the "experi-

ence" of a case, especially the difficulties or problems a

case encountered during an optimization run. Not every

optimization process can run smoothly. Even if the optimi-

zation strategy itself is correct, there are still other

sources of mistakes such as vibration restriction impos-

49

sible to achieve or constraints highly dependent on each
other. For case based systems which rely on features
comparison, it would be difficult to predict if an
optimization run would end with any failures mentioned
above. However, each type of structural case usually is
associated with certain types of mistake possibilities. For
example, an optimization of a static case with stress and
displacement constraints might not go to convergence if the
constraint values are mutually contradictory. Such mistake
tendencies can be stored in the case in the comment field
and serve as a reminder to the user not to repeat the same
mistake.

c

12

(0) 00 C03 (D (D (D (D (D L- 16- L-

LLJ

C/)

(D
W

uj

LU

.j

0 CO
z w

D

(D
z
w

LL

Figure 5-1 The structure of the past experience
knowledge.

50

Q
E 7g
(D t5
ma 0
2 (1) IL C/) M r_
D

L C/)
LL

0

(D

(D

L A

(D

cis
ca E

U)

Figure 5-2 The process of case selection.

51

CHAPTER 6:

THE REASONING OF A-PRIORI
AND RESULT INTERPRETATION KNOWLEDGE

As indicated in earlier chapters, for a structural
optimization system to be effectively used the users must
be able to set up the data to run the system efficiently,
analyze the behaviour of the system during the running of
the solution algorithms, and interpret the results. Set-
ting-up the optimization run can exploit past experiences,
and this has been discussed in detail in chapter five. In
this chapter, another way of doing the set-up, through a-
priori knowledge, is discussed. Also presented in this
chapter is the discussion about monitoring the optimization
run and interpreting the result.

1. KNOWLEDGE FOR SETTING UP THE STRUCTURAL OPTIMIZAý
TION PROCESS.

6.1.1. THE PHILOSOPHY.

The knowledge being discussed here contains the
information required to set up and efficiently run an
optimization system. This basically consists of knowing
which optimization technique (or their combination) to
employ, the number of iterations, and the convergence
criteria. The selection of the optimization strategy
depends on the nature of the structural problem and the
design requirements/specification.

The structural design specification generally consists
of the following:

1. Type of structure (truss, stiffened panel, or others)

2. Type of analysis (staticf dynamic, or others) .

3. Constraints required (stress, displacement, or others)

4. Gauges limits.

5. Number of load cases.

6. Finite element model.

Once the specification is complete the selection of the

solution algorithm is directly influenced by the decisions

made at this early stage of the optimization process.

52

tion are -.
The parameters which affects the algorithm selec-

1. Analysis required (static, dynamic, or others) . Some methods are better suited to certain type of analy-
sis, for example fully stressed design is appropriate
for certain static analysis problems but will not work if a dynamic analysis is required.

2. Constraints required (stress, frequency, or others) . Not every optimization method can handle all types of
constraints. A Pseudo Newton method might work for a va-
riety of constraints, but fully stressed design is ap-
propriate for stress constraint only. In addition, for
certain constraints such as flutter, their incorporation
greatly augments the analysis requirements.

3. Type of finite elements used (membrane, beam, shell, or
others).
For some elements obtaining analytic gradient informa-
tion is difficult, hence these are suitable for certain
optimization algorithms only unless numerically derived
gradients are used. The use of complex elements is not
precluded but many optimization systems do not always
allow the use of other than simple elements.

4. Number of load cases.
The number of load cases affect the selection of optimi-
zation methods insofar as it influences the size of the
problem. On this basis a large number of load cases
might invalidate the use of gradient based methods which
inflate in size in proportion to the cases analyzed.

5. Number of design variables.
A problem which occurs with a large number of design
variables requires many optimization iterations before
the optimum point is found. For methods which need cons-
traint gradients, the time required to locate the opti-
mum might be unacceptable. In this situation it might be

necessary to limit the number of iterations or start
with a non gradient based method.

6. Convergence criteria required.
Whilst the standard convergence criteria, based on chan-
ges in direct parameters (e. g. design variables) from
iteration to iteration, have no influence on the selec-
tion process the use of complex criteria could be influ-

ential. For example, the use of dual bounding criterion
requires the use of gradient information which is not
immediately available when using a fully-stressing

method (say).

The above provides an outline of the type of knowledge

which allows the user to match the design requirement with

53

the capabilities of the optimization. The knowledge is not based explicitly on information obtained from previous runs but is derived by deducing the influence which the design
model has on the selection of a solution strategy. Because
it is based on logical deductions and not on past knowledge
it is a priori in nature.

THE KNOWLEDGE STRUCTURE.

The set up knowledge base consists of production
system rules and an object oriented scheme. The object
oriented scheme is used to classify the optimization me-
thods into objects with each method represented as an
object. These objects contain information concerning the
object capabilities and operations/functions to test whe-
ther a particular object can handle the design require-
ments. The production rules such as (4-2) are used to
represent the heuristic and problem solving knowledge.

The object oriented domain has (currently) a simple
scheme with a top class, procedure which has a child class,
method,. Procedure is a base class which contains a set of
parameters and functions. These parameters and functions
are inherited by method. Class method also has the cons-
tructor function for object instantiation. The objects ins-
tantiated by method are the optimization methods. The para-
meters in procedure are,

name, name of optimization method,
analysis, type of analysis which can be handled by a me-
thod,,
constraint, type of constraints which can be handled by
a method,
element, type of elements suitable for a method,
convergence, type of convergence criteria which can be
handled by a method,
Lagrange, indicating the method's capability to produce
Lagrange multiplier.

The purpose of class functions is to test whether an object
(a method) can handle the design requirements. This is per-
formed by comparing the design requirements with object
capabilities. The functions required in procedure are,

- ;; n;; lv. -, i-, s check() , to test whether an object can handle
---- - -1 -- -_ -III
the analysis requirement,
constraint checko, to test whether
the constraints requirement,
element check(), to test whether an
types 6f elements used in a finite

an object can handle

object can accept the
element model.

Currently there are five objects to be instantiated.

These objects are optimization methods which can be run by

54

the structural optimization system, which, for the present
report is taken to be STARS. In this case the methods are fully stressed design, optimality criteria, Pseudo Newton,
and their combinations, fully stressing followed by optima- lity criteria or fully stressing followed by Pseudo Newton.
The data/ information of each object (optimization method) is read from a data base. For five objects there are five
database files, one file for each object. The user can mo-
dify the data. More methods (for example from other optimi-
zation package) can be added. Each data base includes
information such as name, analysis capability, constraint
capability, convergence criteria, and Lagrangian informa-
tion.

Figure 6-1 shows the knowledge base structure of the
knowledge required to set up the optimization algorithm.

6.2. RUN-TIME AND RESULT INTERPRETATION KNOWLEDGE.

This is the knowledge which is concerned with aspects
such as
- deciding if an algorithm is heading for optimum,
- deciding that an optimum has been reached,
- the actions required if the above situations are nega-

tive.

Whether an optimization run is heading for an optimum
usually can be predicted by studying the optimization
trend. An extrapolation can be derived with respect to the
convergence parameters on the change in structural weight
or the gap between the actual weight and a lower bound. If
an algorithm seems not to be heading for an optimum then
the run-time knowledge should be able to explain the reason
why it is not able to reach the optimum and give an alter-
native solution strategy if any exists. Examples of optimi-
zation routines having difficulties in locating a solution
are numerous and occur, for example, in cases where vibra-
tion restrictions are impossible to achieve, or where the

constraints are highly dependent.

In order to predict whether or not an optimization run
is heading for an optimum we suspend the run after three or
four iterations and studying its trend. An appropriate pro-
cedure is to extrapolate the gap between feasible weight
and lower bound using the dual bounding process. For me-
thods which do not produce a lower bound on the optimum
weight, such as FSD, the gap between the actual and feasi-
ble weight is used. If it is predicted that an optimization
run is not converging then this fact is presented to the

user. However, the information presented has to cover a

range of possibilities relating the failure, or otherwise,

of the solution strategy. Some of these are related to the

55

form of the design problem itself and some are more
algorithm based. It is worth noting impact that the user has when formulating the design problem is very significant in this area.

An optimum is reached when the convergence criteria
are met and constraint set satisfied. This is known only
after an optimization run stops, either because the conver-
gence criteria are satisfied or the maximum iterations are
reached (both do not, however, necessarily mean the optimum
is found) , and results produced which need interpretation.
Successful results need to be explained to the user and
offered to the 'past experience' data base but the inter-
preter needs to be able to explain why an optimization run
does not produce an optimum result.

In the case where an optimization run does not result
in an optimum, this is defined as a failure which can be
associated with three situations,

- failure to go to convergence,
- false convergence, and
- system crash.

A" failure to converge' means that an optimization run is
predicted not to go to convergence or that it does not meet
the convergence criteria after the maximum iteration is
reached. False convergence is basically also a failure to
converge. As an example consider the case of an algorithm
stopping because there is no further change in mass which
gives the appearance of a converged solution but the cons-
traints are not satisfied. The causes of the such a fail-
ures cases are not easy to categorize. While there is
theoretical base to trace the cause of convergence failure
and false convergence there are situations where the
failures are optimization software and machine dependent.
The cause of a problem for one optimization software system
might not be problem for an alternative optimization
packages.

A system crash failure is definitely optimization
software and machine dependent. For example a structure
with a large number of members subject to stress cons-
traints might give rise to a large number of stress cons-
traints. This large number might exceed the constraint
array setting for certain software and lead to a system
crash. Another source of system crash, error in coding the
driver files, has been very much reduced by developing

modules which have the task of writing driver files.

The above situationsr which lead to difficulties in

categorizing and drawing-up the taxonomy of the knowledge

base, make the use of production rules a natural choice for

the knowledge base scheme. The information in the knowledge

56

base is based upon failures encountered during running STARS for various optimization design problem.

6.3. THE REASONER.

Faced with a problem, the task of a reasoner is to
produce a solution by manipulating the knowledge to derive
an effective solution strategy. It also has an important
role in generating explanations for the user. This is done
by means of an inferencing process. In the case of setting-
up an optimization run by using the apriori knowledge, the
reasoner produces a solution in the form of a definition of
an optimization set-up. In the case of either a runtime
situation or when apparent convergence is reached, faced
with a failure,, the task of the reasoner is to produce
explanations why the failure occurs.

In this prototype the reasoner is based on forward
chain inferencing (data driven reasoning) with the produc-
tion rules (IF-THEN rules) . The reasoning begins with the
given facts of the problem which is the design requirement,
and a set of rules. It searches for a solution by applying
rules to facts to produce new facts which are,, in turn,
used to produce more new facts. This process continues un-
til the goal is found. Data driven reasoning was selected,
as opposed to a goal driven reasoning (backward chain),
because:

1. Many of the data are already available as the design re-
quirement. This is especially true for reasoning to pro-
duce a definition of an optimization set-up where all
data required is available in the form of the design re-
quirement and domain knowledge.

2. It is difficult to form a goal. In an optimization set-
up it is difficult to predict values of the parameters
used in an optimization set-up. With regard to the run-
time and result interpretation problem it is also
difficult to judge initially the reason for an error or
failure.

The same reasoning/inferencing technique is used for

a-priori, run-time., and results interpretation knowledge
bases. This is possible because the inferencing is applied
only to the production rules (IF-THEN rules) of all the
knowledge approaches. However some of the data required by

the reasoner is supplied from a different source:

1. The reasoning process for defining the optimization

set-up with a priori knowledge requires information rela-
ting to the design requirements and objects (optimization

methods) capabilities. While the design requirement (stored

57

in object design, see chapter seven) are specified by the
user, the information concerning the optimization methods is provided by the object oriented domain. Each method (or
methods combination), represented as an object, is tested
one by one against the rules. The goal of this reasoning
process is to generate an appropriate optimization set-up (differences lie in the method being used) which can be
used to solve the design problem. Figure 6-2 shows the
diagram of this process.

2. The goal of the reasoning process for the run-time and
result interpretation knowledge base is the explanations
associated with any run failure. The reasoning process re-
quires data related to the optimization result and design
specifications. The optimization results can be supplied by
the users or automatically via interface to the optimiza-
tion package. Figure 6-3 shows the diagram of the reasoning
process of result interpretation. The diagram for the run-
time process is similar.

The knowledge and reasoning mechanisms required in the
Expert System for Structural Optimization have been
discussed in chapter five and this chapter. In order to
validate the concepts,, it is necessary to assemble the
required knowledge and programming requirement, and to
construct the prototype. The prototype construction is
discussed in the next chapter.

58

«a 1 JDO
z9 2

(4
0 Co 0

13
2

m £2 0 C)

CL CM

f2"
0

0E 0 2 M

(0 w

Z
w

. r2
in

-0 0

I

U

. 12
in

Figure 6-1 The structure of a-priori knowledge.

59

(0
LU

Z
Lii
r

h-
LL

. 13 r= 0
\V

0 Gxgý -0
0 LU hl C) ow E- lö -; 2 9)., a Z _j c2. r uj::) E t-
:), Fu - r-: g r-

C) wo 0E 048 a00 U-2 Im 0.
CD-0

in

: e-v
2Cr-(DO

i=,
Q) o E-0 b- E. M 45 r= ÜP E2

&-M
c c2-: 2 a-

.,
0 no 04; 0C (>

.ýD .
22 c

=-M CM ýr
3

C»
.a
0
dn E

Figure 6-2 The process of the a-priori knowledge
reasoning.

60

LLI

CC

z
LLJ

LL
L-77-j

C

C
lic co

N2

0 z UJ D 1.2
0 cr 0 *8
c wo r- N
0 U-2

.2 14- E
0z 4-J

C CL

(D
010
0) V. 0
r .0

4) (D '-'-%
0Eo

Figure 6-3 The process of the result interpretation

reasoning.

61

CHAPTER 7:

PROTOTYPE DEVELOPMENT

The subject of the research presented in this report
is the application of Expert System methodologies for
improving the performance of structural optimization
systems. The target is to produce an Expert System as an
adviser for working structural optimization systems. The
results from the earlier chapters have considered how the
required knowledge may be constructed and reasoned with in
order to produce interconnected components of an Expert
System. In order to move towards a functioning system it
would now be normal to construct an overall architecture.
However, the concepts developed represent research
conjectures and need validating before an architecture can
be constructed. Thus, a prototype computer program is
required to test idea and start the process of constructing
a usable system.

This prototype is called ESSO (Expert System for
Structural Optimization) and places the basic concepts into
a program able to give guidance to designers who wish to
employ optimization. The system will guide the user in set-
ting up an optimization system, monitoring the optimization
run, and interpreting the result or any failure associated
with an optimization run. For trial implementation, the
STARS optimization package is used as the optimization tool
supported by ESSO. The prototype produces set-up files,
which are called driver files,, to run an optimization
system. These files become the STARS CDF (command data) and
CONS (design specification) files. The third file required
by STARS, a file contains the finite element model, is to
be prepared by the user.

At present, the prototype can handle static and
dynamic problems only. But any type of constraint
associated with both types of analysis can be handled.
Currently, the prototype deals only with isotropic

materials.

The modules available in the prototype are, the

modules which constitute the system's front end,

- the design input module,
- the memory module,
- the conventional module,
- the element module,
- the variable module,

the constraint module,
the driver-files module,

62

and the modules which constitute the system back end,

- the run-time module,
- the result interpretation module,
- the modification module.

The prototype is written in C++ using object oriented
design methodologies. Each module is written as a class
with its own task. Some modules are defined with only one
class while others have a parent and several child classes.
Objects are created during executions and defined as global
objects (similar in concept to global variables) which can
be accessed by every module in the prototype.

A user interface is developed using XView [Heller
1990] . XView (X Window-System-based Visual/Integrated
Environment for Workstations) is a user-interface toolkit
to support interactive, graphics-based application running
under the X Window System. XView applications are written
using the C language. It features an object-oriented style
interface and provides a set of prebuilt, user-interface
objects such as canvases, scrollbars, menus and control
panels. The appearance and functionality of these objects
follow the OPEN LOOK Graphical User Interface (GUI)
specification.

THE DESIGN INPUT MODULE.

The task of the design input module is to obtain
information relating to the design requirement such as the
analysis requirement, constraint requirement, number of
design variables, and general information of the FE model.
This module consists of one class, Desiqn, which has the
parameters for defining the design requirement and the
operations/functions relating to obtaining the design

requirement. The class Desiqn defines the object design.
All design specifications are stored in this object and
these can be used by other modules through object passing.
This object only deals with a general design requirement.
More detail specifications are dealt with by other modules.
For example, with regard to the constraint requirement,
object design stores only type of constraints (such as
stress, displacement) while details of the constraint
values are handled by the module constraint. Figure 7-1

shows the input-output diagram of this module.

The data for this module,,
specification, is supplied by
design. Data in this object is

conventional, variabler element,
and back-end modules. Data transf

object design to those modules.

in the form of design
the user and stored in
required by the memory,

constraint, driver-files,
er is performed by sending

63

7.2. THE MEMORY MODULE.

Following the execution of the design input module,
the memory module is invoked. This contains the reasoner
and the knowledge base for the past experience knowledge.
The detail description of the mechanism inside this module
has been discussed in chapter five. If there is a similar
case found then the execution proceeds to the variable and
element modules, otherwise the conventional module is
executed. Figure 7-2 shows the input-output diagram of the
memory module.

The information required by the memory module is
supplied by object design in the form of the design
requirements. The output of this module, definition of the
optimization set-up, is used by the driver-files module.

7.3. THE CONVENTIONAL MODULE.

The conventional module contains the reasoner and the
knowledge base for the a priori knowledge. The mechanism
inside the module has been described in detail in chapter
six. Figure 7-3 shows the input-output diagram of this
module.

Similar to the memory module, the information required
by the conventional module is supplied by object design.
The output of this module, definition of the optimization
set-up, is sent to the driver-files module.

7.4. THE ELEMENT MODULE.

The task of the element module is to deal with those
operations related to the finite element model such as
elements numbering and displaying elements characteristics.
The details of the FE model are supplied by the user. This

module has a base class, Element, which itself has three

child classes, Pla te membrane,, Beam, and Axial rod. The

class Beam has four child classes, those are I-beam,

channel-beam, T-beam,, and rectangular beam. The classes
under the class Element contain information about element
characteristics and relations between design variable
properties and analysis properties. Any element type used
in the FE model is associated to an appropriate element

class and entitles to the characteristics belong to that

class. For example, a CBEAM (a NASTRAN element type)

element type will be associated to the Beam class, and if

the beam used is having a rectangular cross section then it

will be associated further to the rectangular beam class.
The output of this module is an FE data and element

64

characteristics stored in various element objects. The input-output diagram of this module is shown in figure 7-4.

Other information required by this module is the
design requirement which are concerned with the general FE
model and supplied by object design. The output of this
module is required by the variable and driver-files
modules.

7.5. THE VARIABLE MODULE.

The variable module has the task of dealing with
operations relating to variable formulation. This module
consists of one class, Variable. Object variable is created
from this class. The variable asks the user to supply
variable specifications such as finite element types and
element numbers in each design variable and stores them in
this object. It also advises the users if incompatible
element types (having different analysis properties) are
grouped in the same design variable, for example if the rod
elements is put under the same design variable as the plate
elements. This module needs information relating to the
element characteristics. The input-output diagram of the
element module is shown in figure 7-5.

In order for the variable module to run, it needs
information relating to the design requirement which is
supplied by object design, and the elements characteristics
supplied by various element objects. The user also has to
supply variable specifications. The object variable is
required by the driver-files module.

7.6. THE CONSTRAINT MODULE.

The operations relating to details of the design cons-
traints are handled by the constraint module. This module
has a base class, Constraint. This class has several child
classes which deal with more specific type of constraints
namely, Static constraint, Normal_modes_constraint,
Bucklinq

-
constrai , and Dynamic-constraint. Depending upon

the analysis and constraint requirements, the appropriate
objects are created. For example, if a static analysis with
stress constraint is required, then an object which is

called static constraint is instantiated. Figure 7-6 shows
the input-out7p-ut diagram of this module.

This module needs detail information which is related
to constraint specification supplied by the user. Some of
the information is supplied by the object design. The

65

products of this module, various constraint objects, are
required by the driver-files module.

7.7. THE DRIVER-FILES MODULE.

The task of the driver-files module is to produce
files which are used to run the optimization software. In
this prototype, the driver-files module produces files for
running the STARS optimization package, namely the command
data file (CDF) and the design specification file (CONS) . We may note that STARS is being used to represent a general
structural optimization system and the prototype is not
written in a STARS specific manner. The ideas and concepts
being trialed here are generally applicable to any system
which employs driver files. The CDF consists of a set of
instructions for running and controlling the optimization
algorithms and includes the optimization method to use,
number of iterations, and convergence criteria. The CONS
defines the variable set-up and constraint set. The driver
files module consists of two modules. The first module, the
cdf-module, produces the CDF file while the second module,
the cons-module, produces the CONS file. The information
required by the driver files module to produce these two
files is obtained from the modules executed previously. For
different optimization packages, the driver files module
has to be modified accordingly. Figure 7-7 shows the input-
output diagram of this module.

7.8. THE MODULES OF THE SYSTEM'S BACK-END.

The back-end consists of the run-time module,, the
result interpretation module, and the modification module.
With the driver files and FE model (prepared by the user)
available, the optimization system can be run. This will be

suspended after three iterations to check whether the

optimization is converging. This check is performed with
the aid of an extrapolation routine in the run-time module.
If convergence is predicted the optimization run is resumed
otherwise the module searches for explanations. If a point
is reached where the convergence criteria selected by the

user are satisfied (or the maximum number of iterations is

reached) the result interpretation module checks the

optimization result to ensure that this point is indeed

optimal. For satisfactory results, the current design

problem and its optimization set up is appended to the case

memory in the memory module. If this module regards the

optimization result as unsatisfactory it offers an

explanation of the reasons for failure and corrective

actions to follow. If required, the modification module

66

wl modify the optimization set up for another
optimization run.

The run-time and result interpretation modules are Expert System modules and have been discussed in detail in
chapter six. The modification module has the task of
modifying the optimization set-up if required. The
modification is based on the actions proposed by the run-
time module or the result interpretation module. The
modification module also needs design data and optimization
set up produced by the front-end. For design/constraint
data processing,, the modification module makes use the
objects structures of the design input module, the variable
module, the element module, and the constraint module. The
modification instructions are sent to the driver files
module. Figure 7-8 shows the input-output diagram for this
module in a very simplified manner.

7.9. THE DATA FLOW DIAGRAM.

The overall architecture of the prototype is shown in
figure 7-9. Figure 7-10 shows the data flow diagram.

7.10. PROTOTYPE IMPLEMENTATION OF THE KNOWLEDGE.

There are four modules in ESSO which contain the
knowledge bases and reasoners namely, the memory module,
the conventional module, the run-time module, and the
result interpretation module. The tasks of the memory and
conventional modules are for setting up the optimization.
The run-time module monitors the optimization run. The
optimization results will be interpreted by the result
interpretation module. Details of how the knowledge may be

constructed and reasoned with have been described in

chapters five and six. The following sections describe
their implementation in the prototype.

The knowledge base of the run-time and result
interpretation moduler were constructed using procedural
rules,, IF-THEN rules. The knowledge base of the

conventional modules combine the domain/subject knowledge

with IF-THEN rules. This domain knowledge contains the
domain properties while the rules reason about them. The

program implementation of forward chain inferencing is

adapted from the original code in Levine et al. [1990]. The

approach used in the memory module is based on case based

reasoning. Similarity rules were set up to find similar

cases among the past cases recorded in the memory module.

67

The domain knowledge of the conventional module was
structured according to object oriented methodologies. Each
optimization method is treated as an object and stored in
a file. This represents the optimization method
capabilities in handling design problems.

In the memory module, the domain knowledge contains
past experiences in dealing with design problems. Each
design experience is stored as a record. Each record, which
represents a design case, contains the design problem and
the set up of the optimization strategy for solving the
design problem. Whether cases can be regarded as similar
depend on the value of certainty factors of the cases after
similarity rules are applied.

7.11. THE CONVENTIONAL KNOWLEDGE BASE.

The knowledge base of the conventional module combines
both object oriented schemes and production rules. The
object oriented scheme represents domain properties while
rules reason about them. A simple way to show this relation
is by writing production rules which send messages to
objects and test the response in their premises. It must be
noted that in an Expert System program, the user/programmer
should be able to modify the rules (knowledge base) without
interfering with the inference engine. This is shown in the
following example,

IF analysis_test = true and
constraint test = true

THEN (method_to_consider = true (7-1)

The premises variables (analysis test and constraint
-

test)
have to be instantiated first. The instantiation is
performed in an assignment/instantiation routine which
sends enquiries to a candidate object, in this case is

assumed to be fsd (the Fully Stressed Design method) , about
its capabilities in handling analysis and constraints
required. Functions analYsis-test and constraint-test in
the object fsd will provide the answers to these enquiries.
If the conditions of the rule is satisfied then the

conclusion method to consider is instantiated to true. For

certain information, instead of asking questions to various
objects, this assignment routine might ask the users to

provide the answers.

The above illustration leads to the discussion about
the domain/subject knowledge (written in an object oriented

scheme) and production rules in the conventional module.

68

7.11.1 THE DOMAIN/SUBJECT KNOWLEDGE.

The domain knowledge contains the information about
objects capabilities. The objects in this case are the
optimization methods. Object oriented methodologies are
used to represents this domain knowledge. For this purpose,
two classes are defined, those are class Procedure and
class METHOD. Procedure is a base class with METHOD as its
child class.

The task of the class Procedure is to deal with
matters relating to optimization algorithms. It contains
parameters which def ine the capabilities and properties of
optimization algorithms. This class also contains
procedures for interrogating the available algorithms with
regard to their capabilities in handling a current design
problem. Object procedure is created from this class. The
class Procedure is defined as follows (written in C++
terminology,

class Procedure
public :

/* the parameters below refer to algorithm capabilities
in dealing with */
max number of load case

int load case,

lagrange multiplier.
lagrange;

number of analysis types, number of constraint types.
int analysis num, constraint num;

number of-convergence type, number of element type
available.

int convergence num, elem avail num;
// combine anal7ysis, comtUne constraint.
int combine analysis, combine_constraint;
// stress constraint;
int stress constraint;
// an algorithm might need stress constraint
int need stress;
// analysis types
char analysis [10][401,

constraint types
constraint [10] [401.,

convergence criteria types
convergence [101 [401,

element (FE) types
elem avail[101[40];

/* method currently available
// number of method
int num of method;

FSD) .

69
// method name
char method name [5] [20];

// procedure to invoke available methods.
void case_method (void);

/* procedures below are to test whether an algorithm can handle current design requirement with respect to fol-
lowing aspects
analysis

int analysis checking(void);
// constrain-t-
int constraint

-
checking(void);

// load case
int loadcase checking(void);
// element CFE) types
int element-checking (void);

J procedure; // object procedure is defined.

class METHOD : public Procedure
public :

// method name
char name[10];
// procedure for reading the file
void Dbase read(char f[10]);
method[5]; // five objects are created.

The class METHOD is the child of the class Procedure.
During program run several object are created where each
object represents an algorithm. The name of the available
algorithms is stored in a file called method. dat. The data

relating to an algorithm is read from a file. For example,
data for the fsd algorithm is stored in a file called
fsd. dat. There are five algorithms available in ESSO.
The data for each file is written in a standard sequence as
follows,

Parameters:

analysis-num;
analysis[i];
combine-analysis;

constraint num;
constraint [iI;
combine_constraint;

stress_constraint;

Explanation:

Number of analysis.
Types of analysis (array).
Capability in handling analysis com-
bination.
Number of constraints.
Type of constraints (array).
Capability in handling constraint
combination.
Capability in handling stress cons-
traint.

70

need-stress;

convergence_num;
convergence[i
load case;
lagrange;

elem avail-num;
eleuý_avail [i] ;

If an algorithm needs stress cons-
traint.
Number of convergence criteria.
Type of convergent criteria (array)
Number of load case.
Capability to calculate lagrange
multiplier.
Number of element types.
Element names (array).

For example, the capabilities of the optimality criterion
algorithm is coded in opc. dat as follows,

3
static
normal-modes
buckling
0
4
stress
displacement
buckling
natural_frequency
0
0
0
3
ENDP
ENDF
ENDT
20
1

7
CQUAD4
CTRIA3
CSHEAR
CBEAM
CBAR
CROD
CONROD

number of analysis capability

> not suited to analysis combination
number of constraints capability

not suited to constraint combination
> can not handle stress constraint

does not need stress constraint

> number
> able to

plier
> number

7.11.2. THE IF-THEN RULES.

of load cases capability
calculate lagrange multi-

of available element types

The IF-THEN rules are used for reasoning. The rules

are stored in a file called convrule. dat. The coding of

these rules in C++ is implemented using switch - case

operation as follows,

71

#ifdef RULE

// if-then statements

// if part:
case 1:

if (..... break;
I
case 2:

if (..... break;
I

case 3:
if (..... break;

I

case i:
if (..... break;

I

) s=1;

) s=1;

) s=1;

) s=1;

case n:
if (..... break;

I

I

// see if the then part should be invoked, i. e s=1
if (S! =l)

goto ... I

// invoke the then part

switch (sn) f
// then part
case 1:

instantiateo;

72

break;
I
case 2:

instantiateo;
break;

case i:

instantiateo;
break;

case n:

instantiateo;
break;

j

#endif

#ifdef VARLIST

// list of variables
strcp_v (varl t [1], 11 ... 11) ;
strcp_v (varl t [2],

strcp_v (varl t [k],

// list of variables in rule premises
strcpy(clvarlt[11,
st rcpy (cl va rl t [21,
strcp_y(clvarlt[lll, FF);

strcpy(clvarlt[21]t,
st rcpy (cl va rl t [22],
strcpy(clvarlt[231,

11rule-1

11rule-2

11rule-n

#endif

73
#ifdef CLASS PAR

#endif

#ifdef CHECK INST

void apriori_reasoning:: check instantiation (METHOD object)

while ((strcmp(v, varlt[i]) ! =O) && i<=30) i++;
if (instlt[i]! =l)

instlt[i]=l;

switch (i)
case 1:

........... break;
j
case 2:

............ break;
j

case m: f

............ break;
I

#endif

This file consists of four sections in which each
section is coded between Wdef and #endif statements.
Those sections are,

rules (between #ifdef RULE and #endif)
list of variables (between #ifdef VARLIST and #endif)

variable definition (between Wdef CLASS PAR and #endif)
instantiation (between #ifdef CHECK INSf-and #endif) .

In the rules section, the rules (referred to by rule
number) to be considered depend on the value of sn. The
number after case is the rule number, from 1 to n. In the

74

I if part' , if rule premises (within parentheses) are satisfied, then the value of s is instantiated to 1. In that case the 'then part' of that rule (within parentheses)
will be fired. The function instantiateo is part of the inferencing mechanism.

7.11.3. EXPLANATION FACILITY.

Associated with each rule (IF-THEN statement) is an
explanation-statement of that rule. This explanation-
statement describe the contents of the rule using easy to
understand sentences. When a rule is fired, the associated
statement is recalled. The coding of the explanation-
statement is as follow:

11case 1:
strcpy (texrule [11

- text [0], 11 ir) ;
strcpy(texrule[ll. text[l], "

strcpy (texrule [1 text [q-2],
strcpy(texrule[l]. text[q-1], "
t exrul e [1]. t extn um=q;

11case i:
strcpy (texrule [i text [0],,
strcpy(texrule[i]. text [1],,

strcp_v(texrule[i]. text [r-2],,
strcp_v(texrule[i]. text [r-11.,
t exrul e [i]. t extn um=r;

11case n:
strcpy(texrule[n]. text [01,
strcpy (texrule[n]. text [11,

strcpy(texrule[n]. text [s-21,
strcpy (texrule [n]. text [s-1
t exrul e [n I-t extn um=s;

75

The number of explanation statements is the same as the
number of rules which is n. The parameters q, r, and s are the number of "sentences"in each of statement. The
explanation-statements for the conventional module are
stored in the file convexpl. dat. The user should learn this
file and the associated knowledge base file convrule. dat.

7.12. IHE MEMORY KNOWLEDGE BASE.

The knowledge base of the memory module also consists
of the domain knowledge and the IF-THEN rules. The domain
knowledge is the system's memory of its past experience
which can be regarded as a file containing a collection of
knowledge (past experience) records. Each record contains
a (past) design case and its solution, held in the form of
the similarity parameters (for similarity parameters and
similarity rules please see chapter 5) with their
associated values and the successful optimization strategy
for that particular case. The IF-THEN rules are the
similarity rules and are used to reason in capturing the
design case record which is similar to the current design
problem.

7.12.1 THE DOMAIN KNOWLEDGE.

Each record in the knowledge base contains the
following information (stored in fields),

number of analysis,
- analysis types,
- number of constraints,
- constraint types,
- number of nodes,
- number of elements,
- element types,
- number of design variables,
- solution which consists of algorithm,

number of iterations, and convergence
comments, comments on the optimization
f ilename, the f ilename where the FE data

Thus a typical record might be,

- number of analysis:
- analysis types:
- number of constraints:
- constraints types:

- number of nodes:
- number of elements:
- element types:

criteria,
process,

are stored.

1;

statics;
2;

stress, displacement;
5;
6;

beam;

76

- number of design variables: 6;
- solution: pseudo-newton algorithm, n number of iterations, a type of convergence criteria
- comment: a straight forward optimization run
- filename: framnsin. dat;

Such record can be written in C++ using Structure. The
DESIGN CASE structure below is used to represent the
systemTs memory.

struct DESIGN CASE
int index;
int num analysis;
int num constraint;
int element-tYPe num;
int element num;
int node num;
int design var;
int algor iteration;
int fsd iteration;
int used rule[20];
int num 7ýired rule;
float used cf-[201;
float cf value;
char anallysis[7] [40];
char constraint[7][40];
char element type[7][401;
char algor name[10];
char crit-conv[10];
char comment [101 [801;
char filename[401;
struct TEXTRULE explain_rule[25];

Records of the system's past experience can be seen in

memo. ry. dat. Some members of the above data structure are
used for reasoning process only and do not appear in the
data f ile. The TEXTRULE is a structure which is used to

store the explanation-statements and these statements are
stored in mem-rule. dat together with the similarity rules.

7.12.2. THE SIMILARITY RULES.

The similarity rules are
format:

// rule 1
if (............. &&

.............
&&

written in the following

77

.............

rule[l]=TRUE;

text rule 1
strcpy (textrule [1 text [0],
strcpy(textrule[l]. text[l], "

strcpy (textrul e [1 text [q-2],
strcpy (textrule [1]. text [q-11, "cf=x. xx")
textrule [1]. textnum=q;

// rule i
if (............. &&

............. &&

.............
................ rule [i] =TRUE;
cf[i]=x. xx;

text rule i
strcpy (textrule [i]. text [0].,
strcpy(textrule[i]. text[l]., "

strcpy(textrule[i]. text[r-2], " ");
strcpy(textrule[i]. text[r-1l, "cf=x. xx");
textrule [i]. textnum=r;

// rule n
if (.............

.............

78

.............

................ rule[n]=TRUE;
cf[n]=x. xx;

I
// text rule n
strcpy (textrule [n]. text [0],
strcpy (textrule [n]. text [1],

strcpy(textrule[nl. text[s-2], " 11) ;
strcpy (textrule [n]. text [s-1], "cf=x. xx
textrule [n] . textnum=s;

A certainty factor (cf) with a value of x. xx is attached to
each similarity rule. Although the rules above show AND
(&&) relationships, the rule premises could also include OR
relationships. As shown above, the explanation-statements
are written below associated rules. The similarity rules
are stored in the file memrule. dat.

7.13. THE KNOWLEDGE BASE OF RUN-TIME AND RESULT INTER-
PRETATION MODULES.

The run-time and result interpretation modules use
procedural rules as the knowledge base. The structure of
the rules (IF-THEN rules) are similar to the rules in the
conventional module (omitting the objects) . The knowledge
base of the run-time interpretation module is stored in

runtrule. dat while the explanat ion- statements are in

runtexpl. dat. The knowledge base of the result
interpretation module is stored in res1rule. dat, while the

explanation statements are in reslexpl. dat.

7.14. OPTIMIZATION PROCEDURE.

Figure 7-11 shows a flow chart of the procedure in an

optimization job as implemented in the ESSO prototype. It

shows the sequence of modules execution but it does not

show the interactions which can occur at any stage during

the optimization process.

When the ESSO
users have to do is
design input module
- type of analysis,
- set of constraintf

execution begins the first step the
to supply the design requirements. The

asks the user to supply

79

FE data which includes the number of nodes, number of
elements, element types, and number of load cases,
number of design variables.

Based on the above information, the memory module
searches for a similar case in its data base and if one is
found the solution (the algorithm, number of iterations,
and convergence criteria used) is proposed to the user. If
required this solution can be modified. Having accepted the
solution the execution moves to the design variables
specification, otherwise the conventional module is
invoked.

The conventional module, similar to the memory module,
searches for an optimization solution using the information
provided during the design input stage. This is performed
by a reasoning process to an a-priori knowledge (see chap-
ter six) . The user can query the solution proposed by this
module and accept or change it. Having accepted the solu-
tion the execution moves to the element specification.

To specify the design variables the user needs to de-
fine the element types for every design variable. If incom-
patible element types are grouped in one design variable
the user will be warned and asked to make modification. The
reason of incompatibility will be explained. If everything
goes well then the user is asked to specifiy the element
numbers for each design variable.

Depending upon the type of analysis used the system
asks the user to supply the associated set of constraints.
For example, if a static analysis is required then the user
will be asked to supply constraints such as displacement,
stress, or strain, and not natural frequency. For an analy-
sis type the user has to supply one or more constraint
types associated with that analysis. Most constraints re-
quire the users to supply upper and lower value of the
constraint. The users are also asked to supply gauge limits
for each design variable.

At this stage the system runs the driver-files module.
If required by the user the driver files can be displayed.
With the driver files and FE model available (the FE model
prepared by the user) the optimization system can start
running.

The performance of the optimization run is monitored
by the run-time module which is part of the back-end

module. As mentioned in (7.8) this is performed by

suspending the run after three iterations to check whether
the optimization is converging. If convergence is predicted
the run is resumed. Optimization results will be

interpreted by the result interpretation module. If results

are not satisfactory, the system will search for

80

explanations and proposes actions to follow. Based on the
proposed actions, if required the modification module will
modify the optimization set up for another optimization
run.

81

0

.0 (D
C. L-
.
CD: 3

t5

o"a

CL
c

O)o

-0

(D
E
(D

W CL
4) :3

-0 V)

Figure 7-1 Input-output diagram of the design-
input module.

82

32) ý
1-

-50
Co

(D
0Z
Em
(1) 0 EE

7\

c:
5 0, «o
15
@(D_
0

Figure 7-2 Input-output diagram of the memory
module.

83

-0 Co (U M0r, r

C) (D

E. E00

45 0 (D
N0

(D E. 92 >
Eö

c

"z3

m

Figure 7-3 Input-output diagram of the conven-
tional module.

84

6. -a
«v

0 -5 (P

0

Co u)

0
%omo

«a 0
0--

-U c2. U
Q) 0 c2.

: aN W

Figure 7-4 Input-output diagram of the element
module.

85

(D
1 :m . - tu

0>

AU
s- 0 cö
>E

Co
ar 0

E
h- -Z oto 0

0 V t Co 0 (P >
0

EE
0 Co 0 0

Figure 7-5 Input-output diagram of the variable
module.

86

Uk

:s Co
b0
-ffl :=
iz 0
0

r_

8

0 CU

4.1 -0 CO 0
E

0 Co 0 :3c
12- C» CO. A%

. - Co

*g 0 c5 0
-iu. 2 -0
a- la t
.5 c2.0 c: Z -,

ca 0

Figure 7-6 Input-output diagram of the constraint
module.

87

V)
z
0

73

.c
LL

Oo

14-

co

0

E

cn
.9

CO
4ý

E

CD 0 WC373
0) CD

CIO
(/)'-0- I- 0) (D 00 ýg L- L-

'o >NMW
M-

E
(D (D . -
00000
IIIII

Figure 7-7 Input-output diagram of the driver-files

module.

88

E

M

, zg >% 0
(Z

Co
C)

NC
-0 E.

c5.: E : 22
. 'i W ý

cl.
kc) -

E. 8

-
" %'Jet-

(D

0
E

-0 5 "5 hl N
Ein

Co 0 -0 o(0) O=
1 m a

Figure 7-8 Input-output diagram of the back-end
module.

89

Controller

Memory Design input

Constraint

Conventional

Variable

Driver files
Elem

Front End Modules
L ---
r--I

Run-time Result Interpretation

Modification
Back End Modules

I--------------------------------
--- -- --- -- --- -- --- -- --

Figure 7-9 Architecture of the program.

90

0E

0,8. I=
o

CL r- C ýg E
a 0 . :3E0 CL

P4

-0
K

A CL Z)
CL

CL C
4-

75
3

%-
Lo
U t c 2 C 9 0

-0
c
0

ý"ý 1
r

. u r_ " 6.2 010 .0 ri.
8 0

*9 '10 -p-

CL
ID

CL
CL

:3 tt -,, -9 < -E- -f-

m 1 0
W

0
0

E
CD C > C
E

C)

7,

-. 0 S! M
4- :) 0 .9 CL

r-
CP

Figure 7-10 The data flow diagram of the

modules.

91

design Input
module

memory module

sim ar or N N
near-similar

Y
conventional

module

element mod

Q/
variable mod ule

Figure 7-11 (continued)

92

0
constraint module

driver files
module

OPTIMIZATION RUN

optimization
result

back end module

Figure 7-11 The sequence of modules
execution.

93

CHAPTER 8:

VALIDATION

The ideas and Expert System techniques presented in
the previous chapters need validation and for that purpose
a prototype Expert System For Structural Optimization
(ESSO) has been constructed (see chapter seven) . Intensive

tests using various design cases have been performed using the prototype and two of these, one static case and one dynamic case, are presented in this chapter.

STATIC CASE EXAMPLE.

8.1.1. PROBLEM DESCRIPTION.

A wing structure (cant i lever-wing) is designed to
carry a static load which is assumed to be applied at the
wing tip. The structure consists of upper and lower panels,
front and rear spars, and wing ribs. The length of the wing
is 3600 mm (half-span) . The root-chord length is 2400 mm
with a maximum thickness of 600 mm. The tip-chord length is
800 mm with a maximum thickness of 200 mm. The finite
element model of the wing is shown in figure 8-1 and
consists of 90 nodal points and 112 elements. CQUAD4
membrane elements are used for the wing panels and ribs.
For front and rear spars CSHEAR elements are used. The FE
model in NASTRAN format is shown in table 8-1.

The tensile strength of the material is 250.0 MPa
while the compressive strength is -120.0 MPa- The other
material data used is:

Modulus Young = 79000.0 MPa

poisson's ratio = 0.33
/MM3 mass density = 2.8E-6 Kg

The structure is to be designed to be of minimum
weight subject to limits on stresses given above and on the
lateral displacement of 25 mm at nodes 81 to 85 (wing-tip) -
The gauge limits are as follows, thickness of the

structural elements should be not less than 0.6 mm. It is

specified that maximum thickness of upper and lower panel
is 10 mm, the maximum thickness of spars is 3.5 mm, and the

maximum thickness of ribs is 2.5 mm.

8.1.2. ESSO SESSION.

ESSO starts the session by asking the user to supply
information relating to,

94

type of analysis, in this case statics, type of constraints, stress and displacement.

The user must now supply a general description of the finite element model of the structure, which consists of,

the number of nodal/grid points, which is 90,
the element types, which in this case are CQUAD4 and CSHEAR,.
the number of elements, which is 112,
and the number of load cases, in this case is 1.

Ideally the system should draw this information directly
from the FE (NASTRAN) file, but at its current stage ESSO
cannot do this. The user now informs the system of the
number of design variables required, 6 in this example. It
is up to the user to define the set up of the design
variables which link specific finite elements to a design
variable. For example if the panel of a wing bay (between
two ribs) is desired to have a uniform thickness, then all
finite elements in that bay are grouped in one design
variable.

Based on the above information, ESSO searches its
memory using the reasoning process described earlier and
finds one "similar" case, that is,,

case index number 3 (from static
number of analysis = 1, statics,
number of constraint type is 2,
number of nodal points = 24,
number of elements = 26,

cases in memory),

stress and displacement,

number of element types = 1r CQUAD4r
number of design variables = 5,
name of solution algorithm = Pseudo Newton,
maximum number of solution iteration = 4,
convergence criteria = dual gap.

The finite element model for the above case is shown in
figure 8-2. The certainty factor of this case (indicating
the degree to which this solution algorithm can solve the

current problem successfully) is 0.381. The same analysis
and constraint types give positive contribution to

similarity, though the number of nodal points, elements,
and design variables of this past case are smaller than the

current design problem. This lack of total agreement does

not become a kill off factor because the analysis type is

static and ESSO believes there is a reasonable chance of

success in using this case. The resulting algorithm

proposed as a result of this process is the Pseudo Newton

with maximum iteration numbers of 4. It is assumed that the

user agrees with this proposal.

95

The next step is design variables set up. The user informs ESSO of the element types in each design variable (there are six design variables in the present case), and ESSO will check whether the elements grouping is
appropriate. The element types of the design variables are,

variable-1
variable-2
variable-3
variable-4
variable-5
variable-6

= CQUAD41
= CQUAD41
= CQUAD4f
= CQUAD41
= CSHEAR,
= CQUAD4.

The above grouping is accepted by ESSO and the user then
has to supply the element numbers for each of these design
variables,

variable-1 33,34,, 49,. 50,, 81,, 82,, 97,, 98 (the first upper and
lower panel bays near the wing root)

variable-2 35,36,51,52,83,84,99,100 (the second upper
and lower panel bays)

variable-3 37-48,53-64 (the rest of the upper panel)
variable-4 85-96,101-112 (the rest of the lower panel)
variable-5 = 65-80 (the front and rear spars)
variable-6 = 113-144 (the ribs).

The gauge and stress constraints are now supplied:

Gaucres.:

1. lower-limit = 0.6
upper-limit = 10.0
element = 33-64,

2. lower-limit = 0.6
upper-limit = 3.5
element = 65-80

81-112 (upper and lower panels)

(front and rear spars)

2. lower-limit = 0.6
upper-limit = 2.5
element = 113-144 (ribs)

Stress: lower-limit -120.0
upper-limit 250.0
for elements 33-144.

ESSO also asks the user to supply
constraint:

lower-limit -25.0
upper-limit 25.0, to Y-direction
at nodes = 81-85.

the displacement

96

At this stage ESSO has performed the necessary
reasoning to construct a solution strategy and the user has
supplied the description of the design problem. It is now a relatively straightforward for ESSO to create appropriate input data sets for the structural optimization, thus, ESSO
now informs the user that the front end session is
completed and the STARS driver files "essocdf. dat" (see
table 8-2) and "essocons. dat" (see table 8-3) are produced. ESSO also requests the user to run STARS. When executed,
the STARS run is suspended after 3 iterations. This
suspension is invoked to allow ESSO to examine the progress
of the optimizer and asses the likely success of the
current run to converge to an optimum.

ESSO employs a number of parameters to predict
convergence or otherwise as described earlier. In the
present case the iteration history up to the third
iteration (can be read from the STARS result file
"essorslt. dat") is shown below.

iteration feasible weight dual weight
--

0 127.9 48.3
1 109.5 77.0
2 106.5 99.6
3 106.2 104.8

Based on the above information, the run-time application
predicts that the optimization will reach convergence at
maximum iteration (maximum iteration=4) . In fact the above
data shows that the optimization run has produced a very
good design at iteration 3.

The STARS run is resumed with one more iteration to

complete. After the optimization stops at fourth iteration,
the result application is invoked to check whether this
design can be regarded as optimum. This ESSO application
uses dual weight of the last iteration (iteration 4) and
the most non-feasible constraint (if any) together with any
violated limit value. In the present case we find that at
the optimum,

- feasible weight = 106.2, dual weight = 106.1,

- the " violated" constraint is displacement at node 83

equal to 25.0 mm. with the limit value of 25.0 mm.

Based on this data,, ESSO concludes that the design at
iteration 4 can indeed be regarded as optimum because the

constraints are satisfied while the dual gap is satisfied.

97

Because the optimization produces an optimum design, the ESSO memory is updated with this design problem.

8.2. DYNAMIC CASE EXAMPLE.

8.2.1. PROBLEM DESCRIPTION.

The same structure as in the first case (8.1) is used
again for this second design case. Instead of the static design requirement, now the structure is desired to have a
minimum weight while maintaining its lowest natural frequency above 2.50 cycles/second. This is a dynamic case
with frequency constraint. The FE model and the set up of the design variables of the first case are retained. The
same material is also used with similar gauge limits on
elements. The FE model is similar to the one in figure 8-1
omitting the static forces. Table 8-4 shows the NASTRAN
data of the model.

8.2.2. ESSO SESSION.

Similar to the first case, ESSO starts the session by
asking the user to supply information relating to,

type of analysis, which in this case is dynamics,
type of constraint, which is natural frequency.

This is followed by the general description of the finite
element model of the structure, and this consists of,

- number of nodal/grid points, which
- element types, which in this case
- number of elements, which is 112,
- and number of load cases, which in

is 90,
are CQUAD4 and CSHEAR,

this case is 1.

The user then must inform the system on the number of
design variables required, which we have selected to be 6.

Based on the above information, ESSO suggests the
following as a suitable "similar" case,

case index number 1 (from dynamic cases in memory),
number of analysis = 1. dynamics,
number of constraint type is 1, natural frequency,

number of nodal points = 90,
number of elements = 148,
number of element types = 3f CQUAD4f CSHEAR, CONROD,

number of design variables = 8f

name of solution algorithm = Pseudo Newton,

maximum number of solution iteration = 7,

convergence criteria = dual gap

98
The finite element model of the above case can be seen in figure 8-3. The certainty factor of this case is 0.473. In addition to the front and rear spars, the structure in the "similar" proposed case has a middle spar. We now assume that the user is satisfied that there is a good chance of success in using this case to supply the optimization
solution strategy for the present example. The algorithm
proposed is the pseudo newton with maximum iteration
numbers of 7. It is assumed that the user prefers to increase the maximum iteration numbers to 10.

The next step is design variables set up. The element types associated with the design variables are,

variable-1
variable-2
variable-3
variable-4
variable-5
variable-6

= CQUAD41
= CQUAD41
= CQUAD41
= CQUAD4r
= CSHEAR,
= CQUAD41

and the element within each design variable,

variable-1 33f 34,, 49,, 50,81,, 82f 97,, 98 (the first upper and
lower panel bays near the wing root)

variable-2 35,36F 51F 52f 83f 84f 99f 100 (the second upper
and lower panel bays)

variable-3 37-48f 53-64 (the rest of the upper panel)
variable-4 85-96,101-112 (the rest of the lower panel)
variable-5 65-80 (the front and rear spars)
variable-6 113-144 (the ribs).

Similar to the first case, there is no fix-element.

The gauges limit are specified as:

1. lower-limit
upper-limit
element

2. lower-limit
upper-limit
element

2. lower-limit
upper-limit
element

0.6
10.0
33-64,81-112 (upper and lower panels)

0.6
3.5
65-80 (front and rear spars)

0.6
2.5
113-144 (ribs)

Next,, ESSO asks the user to supply the lower limit

value of the frequency and the associated mode number. In

this case,

mode number =1
natural frequency = 2.50.

99
At this stage ESSO inform

session is completed and
"essocdf. dat" (see table 8-5) a
8-6) are produced. ESSO also
STARS. As with the previous
suspended after 3 iterations.

the user that the front end the STARS driver files
nd "essocons. dat" (see table

requests the user to run "Statics" case the run is

The iteration history for these initial iterations is:

--
iteration feasible weight dual weight

--
0 127.9 35.9
1 80.4 35.9
2 107.9 35.9
3 168.7 35.9

--

Based on the above information, the run-time application
predicts that the optimization will not converge to the
optimum at maximum iteration (maximum iteration=10) .

At this point, the optimizer has been able to raise
the natural frequency of the structure from the starting
value of 1.54 Hz to 2.0 Hz. However, ESSO believes that the
optimum will not be reached because there is insufficient
scope to make changes due to the design variable set up.
ESSO,, thus, proposes that number of design variables be
increased. In response to this the number of design
variables is increased to 17.

The element types associated with the design variables
are,

variable-1 = CQUAD4r

variable-2 = CQUAD4f

variable-3 = CQUAD4,

variable-4 = CQUAD4,

variable-5 = CQUAD41

variable-6 = CQUAD4f

variable-7 = CQUAD4,

variable-8 = CQUAD4,

variable-9 CQUAD4,
variable-10 CSHEAR,

the f irst bay of upper and lower
panels,

the second bay of upper and lower
panels,
the third bay of upper and lower
panels,

the f ourth bay of upper and lower
panels,

the fifth bay of upper and lower
panels,
the sixth bay of upper and lower
panels,
the seventh bay of upper and lo-

wer panels
the eighth bay of upper and lower

panels,
the ribs,

the first bay of front and rear
spars.,

100

variable-11 = CSHEAR,

variable-12 = CSHEAR,

variable-13 = CSHEAR,

variable-14 = CSHEAR,

variable-15 = CSHEAR,

variable-16 = CSHEAR,

variable-17 = CSHEAR,

the second bay of
spars,
the third bay of
spars,

the fourth bay of
spars.,
the fifth bay of
spars,
the sixth bay of
rear spars,
the seventh bay
rear spars,

front and rear

front and rear

front and rear

front and rear

front and

of front and

the eighth bay of front and
rear spars.

The associated elements within each design variable can be
seen in table 8-7.

Having completed the modification, ESSO produces
"essocdf. dat" and "essocons. dat". The "essocons. dat" is
shown in table 8-7. ESSO then asks the user to run STARS.

After 3 iterations STARS run is suspended. The ESSO's
run-time application asks the user to supply data on
feasible and dual weights from iteration 0 to iteration 3
which is shown below,

--
iteration feasible weight dual weight

--
0 127.9 35.9
1 72.1 34.7
2 71.6 48.3
3 76.8 56.4

--

Based on the above information, the run-time application
predicts that the optimization will reach convergence at
maximum iteration (maximum iteration=10) and asks the user
to resume the optimization run.

The optimization run stops at maximum iteration and
the ESSO' s result application is called to check the

results. It asks the user to supply the feasible and dual

weights of the last iteration (iteration 10) and also the

most non-feasible constraint (if any) together with the

violated limit value. From the "essorslt. dat",

- feasible weight = 78.3. dual weight = 66.0,

- the "violated" constraint is the natural frequency of
2.39 Hz which is still below the limit value of 2.5 Hz.

101

From the data above ESSO concludes that the design is not
satisfactory, but the constraint-gap is relatively small,
under five percent. At this stage, ESSO asks the user to
supply the history of frequency during optimization run
which is as follow,

--
fo fl f2 f3 f4 f5 f6 f7 f8 f9 flo

--
1.54 1.73 2.05 2.29 2.42 2.36 2.42 2.38 2.41 2.40 2.39

--

The data above shows the frequency at every iteration from
initial value, fO, to the last iteration, f1O. Based only
on the above data, in fact the optimization is converging
to a design point where the natural frequency of the
structure is close to 2.4 Hz (still infeasible) . From this
fact ESSO concludes that the problem is caused by the
algorithm itself (pseudo newton) . To solve this problem (an
infeasible design) ESSO suggests the user to increase
slightly the constraint value. This is accepted by
increasing the natural frequency to 2.65 Hz.

With this slight modification, the STARS is re-run.
The optimization data after ten iteration is

- feasible weight = 95.9, dual weight = 72.5,

- the natural frequency is 2.53 Hz which is above the
original limit value of 2.50 Hz.

The data above shows that the design is not yet optimum but
it is a useful feasible design (with respect to the
original design requirement) and probably not that far away
from the optimum point. The frequency history as shown
below,

--
fo fl f2 f3 f4 f5 f6 f7 f8 f9 flo

--
1.54 1.75 2.09 2.37 2.56 2.48 2.56 2.48 2.54 2.48 2.53

--

shows that the optimization is converging to a design point

with the frequency close to 2.5 Hz- This supports the fact

points out by ESSO that the pseudo newton method of STARS

could not cope well with this dynamic problem.

Finally ESSO updates its memory by appending
.

this case

and asking the user to put comments on the running of the

optimization. The comments might look like this,

natural frequency requirement of at least 2.5 Hz.

initial frequency of structure (iter-0) = 1.54 Hz.

102

- needs effective material distribution through appro-
priate design variable set-up

- optimization tends to point to a slightly infeasible
design

- the trick is to slightly increase the constraint to 2.65
Hz.

103

Table 8-1: The FE data of the Static Case Example.

TITLE = WING STATIC-CASE STRESS-DISPLACEMENT CONSTRAINT
SUBCASE=l
LOAD=l
BEGIN BULK
GRID 1 0. 300. 0. 123456
GRID 2 0. 270. 600. 123456
GRID 3 0. 221.052 -600. 123456
GRID 4 0. 142.104 -1200. 123456
GRID 5 0. 140. 1200. 123456
GRID 6 0. -142.105 -1200. 123456
GRID 7 0. -200. 1200. 123456
GRID 8 0. -221.052 -600. 123456
GRID 9 0. -300. 600. 123456
GRID 10 0. -300. 0. 123456
GRID 11 450. 275. 0. 456
GRID 12 450. 247.5 550. 456
GRID 13 450. 202.631 -550. 456
GRID 14 450. 130.813 1100. 456
GRID 15 450. 130.262 -1100. 456
GRID 16 450. -130.263 -1100. 456
GRID 17 450. -186.875 1100. 456
GRID 18 450. -202.632 -550. 456
GRID 19 450. -275. 550. 456
GRID 20 450. -275. 0. 456
GRID 21 900.0001 250. 0. 456
GRID 22 900.0001 225. 500. 456
GRID 23 900.0001 184.21 -500. 456
GRID 24 900.0001 121.625 1000. 456
GRID 25 900.0001 118.421 -1000. 456
GRID 26 900.0001 -118.421 -1000. 456
GRID 27 900.0001 -173.75 1000. 456
GRID 28 900.0001 -184.211 -500. 456
GRID 29 900.0001 -250. 500. 456
GRID 30 900.0001 -250. 0. 456
GRID 31 1350. 225. 0. 456
GRID 32 1350. 202.5 450. 456
GRID 33 1350 . 165.789 -450. 456
GRID 34 1350 .

11L438900.0001 456
GRID 35 1350. 106.579-900.000 456

GRID 36 1350. -106.579-900.000 456

GRID 37 1350. -160.625900.0001 456

GRID 38 1350. -165.79 -450. 456

GRID 39 1350. -225. 450. 456

GRID 40 1350. -225. 0. 456

(continued)

104

Table 8-1

GRID

41

1800.200.0.

456

GRID 42 1800.180.400. 456
GRID 43 1800.147.368 -400. 456
GRID 44 1800.103.25800.0001 456
GRID 45 1800.94.73701-800.000 456
GRID 46 1800. -94.7375-800.000 456
GRID 47 1800. -147.369 -400. 456
GRID 48 1800. -147.5800.0001 456
GRID 49 1800. -200.400. 456
GRID 50 1800. -200.0. 456
GRID 51 2250.175.0. 456
GRID 52 2250.157.5 350. 456
GRID 53 2250.128.948 -350. 456
GRID 54 2250.94.06251700.0001 456
GRID 55 2250.82.89521-700.000 456
GRID 56 2250. -82.8956-700.000 456
GRID 57 2250. -128.948 -350. 456
GRID 58 2250. -134.375700.0001 456
GRID 59 2250. -175.350. 456
GRID 60 2250. -175.0. 456
GRID 61 2700.150.0. 456
GRID 62 2700.135.300. 456
GRID 63 2700.110.527 -300. 456
GRID 64 2700.84.87501 600. 456
GRID 65 2700.71.0535 -600. 456
GRID 66 2700. -71.0537 -600. 456
GRID 67 2700. -110.527 -300. 456
GRID 68 2700. -121.25 600. 456
GRID 69 2700. -150.300. 456
GRID 70 2700. -150.0. 456
GRID 71 3150.125.0. 456
GRID 72 3150.112.5 250. 456
GRID 73 3150.92.10591 -250. 456
GRID 74 3150.75.68751 500. 456
GRID 75 3150.59.21181 -500. 456
GRID 76 3150. -59 , .

2119 -500. 456

GRID 77 3150. -92.1059 -250. 456

GRID 78 3150. -108.125 500. 456

GRID 79 3150. -125.250. 456

GRID 80 3150. -125.0. 456

GRID 81 3600.100.0. 456

GRID 82 3600.90-00001 200. 456

GRID 83 3600.73.68501 -200. 456

GRID 84 3600.66.50001 400. 456

GRID

85

3600.47.37001 -400.

456

(continued)

105

Table 8-1

GRID

86

--------- ---------------
3600. -47.3700

-400.

------- ------
456

GRID 87 3600. -73.6850 -200. 456
GRID 88 3600. -95.0000 400. 456
GRID 89 3600. -100. 200. 456
GRID 90 3600. -100. 0. 456
MAT1 1 79000. 0.33 2.80-6
PSHELL 33 1 1.
PSHEAR 65 1 1.
FORCE 1 81 5000.0 0.0 1.0 0.0
FORCE 1 82 10000.0 0.0 1.0 0.0
FORCE 1 83 12000.0 0.0 1.0 0.0
FORCE 1 84 10000.0 0.0 1.0 0.0
FORCE 1 85 5000.0 0.0 1.0 0.0
CQUAD4 33 33 5 14 12 2 0.
CQUAD4 34 33 2 12 11 1 0.
CQUAD4 35 33 14 24 22 12 0.
CQUAD4 36 33 12 22 21 11 0.
CQUAD4 37 33 24 34 32 22 0.
CQUAD4 38 33 22 32 31 21 0.
CQUAD4 39 33 34 44 42 32 0.
CQUAD4 40 33 32 42 41 31 0.
CQUAD4 41 33 44 54 52 42 0.
CQUAD4 42 33 42 52 51 41 0.
CQUAD4 43 33 54 64 62 52 0.
CQUAD4 44 33 52 62 61 51 0.
CQUAD4 45 33 64 74 72 62 0.
CQUAD4 46 33 62 72 71 61 0.
CQUAD4 47 33 74 84 82 72 0.
CQUAD4 48 33 72 82 81 71 0.
CQUAD4 49 33 1 11 13 3 0.
CQUAD4 50 33 3 13 15 4 0.
CQUAD4 51 33 11 21 23 13 0.
CQUAD4 52 33 13 23 25 15 0.
CQUAD4 53 33 21 31 33 23 0.
CQUAD4 54 33 23 33 35 25 0.
CQUAD4 55 33 31 41 43 33 0.
CQUAD4 56 33 33 43 45 35 0.

CQUAD4 57 33 41 51 53 43 0.

CQUAD4 58 33 43 53 55 45 0.

CQUAD4 59 33 51 61 63 53 0.

CQUAD4 60 33 53 63 65 55 0.

CQUAD4 61 33 61 71 73 63 0.

CQUAD4 62 33 63 73 75 65 0.

CQUAD4 63 33 71 81 83 73 0.

CQUAD4

64

33

73

83

85

75

0.

(continued)

106

Table 8-1

CQUAD4

81

33

6

16

18

8

0 CQUAD4

CQUAD4
82
83

33
33

8 18 20 10 . 0.
CQUAD4 84 33

16
18

26
28

28
30

18 0.
CQUAD4 85 33 26 36 38

20
28

0.
0 CQUAD4 86 33 28 38 40 30 . 0 CQUAD4 87 33 36 46 47 38 . 0 CQUAD4 88 33 38 47 50 40 . 0 CQUAD4 89 33 46 56 57 47 . 0 CQUAD4 90 33 47 57 60 50 . 0 CQUAD4 91 33 56 66 67 57 . 0 CQUAD4 92 33 57 67 70 60 . 0 CQUAD4 93 33 66 76 77 67 . 0 CQUAD4 94 33 67 77 80 70 . 0 CQUAD4 95 33 76 86 87 77 . 0 CQUAD4 96 33 77 87 90 80 . 0 CQUAD4 97 33 10 20 19 9 . 0 CQUAD4 98 33 9 19 17 7 . 0 CQUAD4 99 33 20 30 29 19 . 0 CQUAD4 100 33 19 29 27 17 . 0 CQUAD4 101 33 29 39 37 27 . 0 CQUAD4 102 33 30 40 39 29 . 0 CQUAD4 103 33 40 50 49 39 . 0 CQUAD4 104 33 39 49 48 37 . 0. CQUAD4 105 33 50 60 59 49 0. CQUAD4 106 33 49 59 58 48 0. CQUAD4 107 33 60 70 69 59 0. CQUAD4 108 33 59 69 68 58 0. CQUAD4 109 33 70 80 79 69 0.

CQUAD4 110 33 69 79 78 68 0.
CQUAD4 111 33 80 90 89 79 0.
CQUAD4 112 33 79 89 88 78 0.
CQUAD4 113 33 17 14 12 19 0.
CQUAD4 114 33 19 12 11 20 0.
CQUAD4 115 33 20 11 13 18 0.
CQUAD4 116 33 18 13 15 16 0.
CQUAD4 117 33 27 24 22 29 0.
CQUAD4 118 33 29 22 21 30 0.
CQUAD4 119 33 30 21 23 28 0.
CQUAD4 120 33 28 23 25 26 0.
CQUAD4 121 33 37 34 32 39 0.
CQUAD4 122 33 39 32 31 40 0.
CQUAD4 123 33 40 31 33 38 0.
CQUAD4

124

33

38

33

35

36

0.

(continued)

107

Table 8-1

CQUAD4

125

33

48

44

42

49

0

CQUAD4 126 33 49 42 41 50 . 0 CQUAD4 127 33 50 41 43 47 . 0. CQUAD4 128 33 47 43 45 46 0.
CQUAD4 129 33 58 54 52 59 0.
CQUAD4 130 33 59 52 51 60 0.
CQUAD4 131 33 60 51 53 57 0.
CQUAD4 132 33 57 53 55 56 0.
CQUAD4 133 33 68 64 62 69 0.
CQUAD4 134 33 69 62 61 70 0.
CQUAD4 135 33 70 61 63 67 0.
CQUAD4 136 33 67 63 65 66 0.
CQUAD4 137 33 78 74 72 79 0.
CQUAD4 138 33 79 72 71 80 0.
CQUAD4 139 33 80 71 73 77 0.
CQUAD4 140 33 77 73 75 76 0.
CQUAD4 141 33 88 84 82 89 0.
CQUAD4 142 33 89 82 81 90 0.
CQUAD4 143 33 90 81 83 87 0.
CQUAD4 144 33 87 83 85 86 0.
CSHEAR 65 65 5 14 17 7
CSHEAR 66 65 14 24 27 17
CSHEAR 67 65 24 34 37 27
CSHEAR 68 65 34 44 48 37
CSHEAR 69 65 44 54 58 48
CSHEAR 70 65 54 64 68 58
CSHEAR 71 65 64 74 78 68
CSHEAR 72 65 74 84 88 78
CSHEAR 73 65 4 15 16 6
CSHEAR 74 65 15 25 26 16
CSHEAR 75 65 25 35 36 26
CSHEAR 76 65 35 45 46 36
CSHEAR 77 65 45 55 56 46
CSHEAR 78 65 55 65 66 56
CSHEAR 79 65 65 75 76 66
CSHEAR 80 65 75 85 86 76
ENDDATA

(end of table)

108

Table 8-2: The command data file of the Static Case
Example.

START
COMMAND DATA PNEWTON
C

SET NSIV=l;
SET MXIT=4;
SET APRT=YES;
SET ACTG=YES;
SET IFLM=YES;
DO NSIN;
DO OPTIN;

C

c
L010:

L031:

L032:

L033:

L034:

L040:
c

DO ANALYSIS;
DO INSPECT;
DO OPTX;
PSEUDO NEWTON ITERATIONS
DO ITER;
DO QNEWTON;
DO OPTX;
IF(ENDC. EQ. YES) GOTO L031;
IF(NOIT. EQ. 3) DO HISTORY;
IF(NOIT. EQ. 3) SUSPEND;
IF(ENDI. EQ. YES) GOTO L040;
GOTO L010;
DISPLAY CONVERGENCE TO THE
GOTO L050;

LOWER BOUND WEIGHT;

DISPLAY CONVERGENCE TO DESIGN VARIABLES;
GOTO L050;
DISPLAY CONVERGENCE TO FEASIBLE VS ACTUAL WEIGHT;
GOTO L050;
DISPLAY CONVERGENCE TO FEASIBLE WEIGHT;
GOTO L050;
DISPLAY MAX. NUMBER OF ITERATIONS REACHED;

L050: SET APRT=YES;
DO ANALYSIS;
DO INSPECT;
DO HIST;
STOP;
END;

C ANALYSIS PROCEDURE;
PROC OPTX;
DO ANALYSIS;
DO ACTSET;
DO DERV;
DO CONV;
DO INSPECT;
END OPTX;

ENDATA

109

Table 8-3: The design/ constraint file of the Static Case
Example.

C234567890123456789012345678901234567890123456789012345678901234567890
DESIGN 1 33
DESIGN 1 34
DESIGN 1 49
DESIGN 1 50
DESIGN 1 81
DESIGN 1 82
DESIGN 1 97
DESIGN 1 98
DESIGN 2 35
DESIGN 2 36
DESIGN 2 51
DESIGN 2 52
DESIGN 2 83
DESIGN 2 84
DESIGN 2 99
DESIGN 2 100
DESIGN 3 37
DESIGN 3 38

to

DESIGN 3 47
DESIGN 3 48

to

DESIGN 3 63
DESIGN 3 64

to

DESIGN 4 95
DESIGN 4 96
DESIGN 4 101
DESIGN 4 102

to

DESIGN 4
DESIGN 4 112
DESIGN 5 65

---------- ------- ----------- ----------- --------------- (continued)

110

Table 8-3

DESIGN

5

66

to

DESIGN 5 79
DESIGN 5 80
DESIGN 6 113
DESIGN 6 114

to

DESIGN 6 143
DESIGN 6 144
DESIGN 6 117
GAUGE 0.600000 10.0000 33
GAUGE 0.600000 10.0000 34

to

GAUGE 0.600000 10.0000 63
GAUGE 0.600000 10.0000 64
GAUGE 0.600000 10.0000 81
GAUGE 0.600000 10.0000 82

to

GAUGE 0.600000 10.0000
GAUGE 0.600000 10-0000 112
GAUGE 0.600000 3.50000 65
GAUGE 0.600000 3.50000 66

to

GAUGE 0.600000 3.50000 79
GAUGE 0.600000 3.50000 80
GAUGE 0.600000 2.50000

.
113

GAUGE 0.600000 2.50000 114

to

GAUGE 0.600000 2.50000 143
GAUGE 0.600000 2.50000 144
STRESS -120.000 250.000 33
STRESS -120.000 250.000 34
STRESS -120.000 250.000 35
STRESS -120.000 250.000 36

------------------ ------- --------- ------------ ----------- -----
(continued)

ill

Table 8-3

STRESS -120.000 250.000 37
STRESS -120.000 250.000 38

to

STRESS -120.000 250.000 143
STRESS -120.000 250.000 144
DISP-Y -25.0000 25.0000 81
DISP-Y -25.0000 25.0000 82
DISP-Y -25.0000 25.0000 83
DISP-Y -25.0000 25.0000 84
DISP-Y -25.0000 25.0000 85
ENDATA

(end of table)

112

Table 8-4: The FE data of the Dynamic Case Example.

TITLE = WING DYNAMIC-CASE FREQUENCY CONSTRAINT
BEGIN BULK
GRID 1 0. 300. 0. 123456
GRID 2 0. 270. 600. 123456
GRID 3 0. 221.052 -600. 123456
GRID 4 0. 142.104 -1200. 123456
GRID 5 0. 140. 1200. 123456
GRID 6 0. -142.105 -1200. 123456
GRID 7 0. -200. 1200. 123456
GRID 8 0. -221.052 -600. 123456
GRID 9 0. -300. 600. 123456
GRID 10 0. -300. 0. 123456
GRID 11 450. 275. 0. 456
GRID 12 450. 247.5 550. 456
GRID 13 450. 202.631 -550. 456
GRID 14 450. 130.813 1100. 456
GRID 15 450. 130.262 -1100. 456
GRID 16 450. -130.263 -1100. 456
GRID 17 450. -186.875 1100. 456
GRID 18 450. -202.632 -550. 456
GRID 19 450. -275. 550. 456
GRID 20 450. -275. 0. 456
GRID 21 900.0001 250. 0. 456
GRID 22 900.0001 225. 500. 456
GRID 23 900.0001 184.21 -500. 456
GRID 24 900.0001 121.625 1000. 456
GRID 25 900.0001 118.421 -1000. 456
GRID 26 900.0001-118.421 -1000. 456
GRID 27 900.0001 -173.75 1000. 456
GRID 28 900.0001 -184.211 -500. 456
GRID 29 900.0001 -250. 500. 456
GRID 30 900.0001 -250. 0. 456
GRID 31 1350. 225. 0. 456
GRID 32 1350. 202.5 450. 456
GRID 33 1350. 165.789 -450. 456
GRID 34 1350. 112.438900-0001 456
GRID 35 1350. 106.579- 900.000 456
GRID 36 1350. -106.579- 900.000 456
GRID 37 1350. -160.625900-0001 456
GRID 38 1350. -165.79 -450. 456
GRID 39 1350. -225. 450. 456
GRID 40 1350. -225. 0. 456

GRID 41 1800. 200. 0. 456

GRID 42 1800. 180. 400. 456

(continued)

113

Table 8-4

GRID

43

1800.147.368 -400.

456

GRID 44 1800.103.25800.0001 456
GRID 45 1800.94.73701-800.000 456
GRID 46 1800. -94.7375-800.000 456
GRID 47 1800. -147.369 -400. 456
GRID 48 1800. -147.5800.0001 456
GRID 49 1800. -200.400. 456
GRID 50 1800. -200.0. 456
GRID 51 2250.175.0. 456
GRID 52 2250.157.5 350. 456
GRID 53 2250.128.948 -350. 456
GRID 54 2250.94.06251700.0001 456
GRID 55 2250.82.89521-700.000 456
GRID 56 2250. -82.8956-700.000 456
GRID 57 2250. -128.948 -350. 456
GRID 58 2250. -134.375700.0001 456
GRID 59 2250. -175.350. 456
GRID 60 2250. -175.0. 456
GRID 61 2700.150.0. 456
GRID 62 2700.135.300. 456
GRID 63 2700.110.527 -300. 456
GRID 64 2700.84.87501 600. 456
GRID 65 2700.71.0535 -600. 456
GRID 66 2700. -71.0537 -600. 456
GRID 67 2700. -110.527 -300. 456
GRID 68 2700. -121.25 600. 456
GRID 69 2700. -150.300. 456
GRID 70 2700. -150.0. 456
GRID 71 3150.125.0. 456
GRID 72 3150.112.5 250. 456
GRID 73 3150-92.10591 -250. 456
GRID 74 3150.75.68751 500. 456
GRID 75 3150.59.21181 -500. 456
GRID 76 3150. -59.2119 -500. 456

GRID 77 3150. -92.1059 -250. 456

GRID 78 3150. -108.125 500. 456

GRID 79 3150. -125.250. 456

GRID 80 3150. -125.0. 456

GRID 81 3600.100.0. 456

GRID 82 3600-90-00001 200. 456

GRID 83 3600.73.68501 -200. 456

GRID 84 3600.66.50001 400. 456

GRID

85

3600.47.37001 -400.
------- --------------------------

456

(continued)

114

Table 8-4

GRID

86

--------- ---------------
3600. -47.3700

-400.

-------- -----
456

GRID 87 3600. -73.6850 -200. 456
GRID 88 3600. -95.0000 400. 456
GRID 89 3600. -100. 200. 456
GRID 90 3600. -100. 0. 456
MAT1 1 79000. 0.33 2.80-6
PSHELL 33 1 1.
PSHEAR 65 1 1.
CQUAD4 33 33 5 14 12 2 0.
CQUAD4 34 33 2 12 11 1 0.
CQUAD4 35 33 14 24 22 12 0.
CQUAD4 36 33 12 22 21 11 0.
CQUAD4 37 33 24 34 32 22 0.
CQUAD4 38 33 22 32 31 21 0.
CQUAD4 39 33 34 44 42 32 0.
CQUAD4 40 33 32 42 41 31 0.
CQUAD4 41 33 44 54 52 42 0.
CQUAD4 42 33 42 52 51 41 0.
CQUAD4 43 33 54 64 62 52 0.
CQUAD4 44 33 52 62 61 51 0.
CQUAD4 45 33 64 74 72 62 0.
CQUAD4 46 33 62 72 71 61 0.
CQUAD4 47 33 74 84 82 72 0.
CQUAD4 48 33 72 82 81 71 0.
CQUAD4 49 33 1 11 13 3 0.
CQUAD4 50 33 3 13 15 4 0.
CQUAD4 51 33 11 21 23 13 0.
CQUAD4 52 33 13 23 25 15 0.
CQUAD4 53 33 21 31 33 23 0.
CQUAD4 54 33 23 33 35 25 0.
CQUAD4 55 33 31 41 43 33 0.
CQUAD4 56 33 33 43 45 35 0.
CQUAD4 57 33 41 51 53 43 0.
CQUAD4 58 33 43 53 55 45 0.
CQUAD4 59 33 51 61 63 53 0.
CQUAD4 60 33 53 63 65 55 0.
CQUAD4 61 33 61 71 73 63 0.
CQUAD4 62 33 63 73 75 65 0.
CQUAD4 63 33 71 81 83 73 0.
CQUAD4 64 33 73 83 85 75 0.
CQUAD4 81 33 6 16 18 8 0.
CQUAD4 82 33 8 18 20 10 0.

CQUAD4 83 33 16 26 28 18 0.

CQUAD4 84 33 18 28 30 20 0.

CQUAD4 85 33 26 36 38 28 0.

CQUAD4 86 33 28 38 40 30 0.

CQUAD4

87

33

36

46

47

38

0.

(continued)

115

Table 8-4

CQUAD4

88

33

38

47

50

40

0 CQUAD4 89 33 46 56 57 47 . 0 CQUAD4 90 33 47 57 60 50 . 0 CQUAD4 91 33 56 66 67 57 . 0 CQUAD4 92 33 57 67 70 60 . 0 CQUAD4 93 33 66 76 77 67 . 0 CQUAD4 94 33 67 77 80 70 . 0 CQUAD4 95 33 76 86 87 77 . 0 CQUAD4 96 33 77 87 90 80 . 0 CQUAD4 97 33 10 20 19 9 . 0 CQUAD4 98 33 9 19 17 7 . 0 CQUAD4 99 33 20 30 29 19 . 0 CQUAD4 100 33 19 29 27 17 . 0 CQUAD4 101 33 29 39 37 27 . 0 CQUAD4 102 33 30 40 39 29 . 0 CQUAD4 103 33 40 50 49 39 . 0 CQUAD4 104 33 39 49 48 37 . 0 CQUAD4 105 33 50 60 59 49 . 0 CQUAD4 106 33 49 59 58 48 . 0. CQUAD4 107 33 60 70 69 59 0. CQUAD4 108 33 59 69 68 58 0. CQUAD4 109 33 70 80 79 69 0. CQUAD4 110 33 69 79 78 68 0. CQUAD4 111 33 80 90 89 79 0.

CQUAD4 112 33 79 89 88 78 0.
CQUAD4 113 33 17 14 12 19 0.
CQUAD4 114 33 19 12 11 20 0.
CQUAD4 115 33 20 11 13 18 0.
CQUAD4 116 33 18 13 15 16 0.
CQUAD4 117 33 27 24 22 29 0.
CQUAD4 118 33 29 22 21 30 0.
CQUAD4 119 33 30 21 23 28 0.
CQUAD4 120 33 28 23 25 26 0.
CQUAD4 121 33 37 34 32 39 0.
CQUAD4 122 33 39 32 31 40 0.
CQUAD4 123 33 40 31 33 38 0.
CQUAD4 124 33 38 33 35 36 0.
CQUAD4 125 33 48 44 42 49 0.
CQUAD4 126 33 49 42 41 50 0.
CQUAD4 127 33 50 41 43 47 0.
CQUAD4 128 33 47 43 45 46 0.
CQUAD4 129 33 58 54 52 59 0.
CQUAD4

130

33

59

52

51

60

0.

(continued)

116

Table 8-4

CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR

131 33 60 51 53 57 132 33 57 53 55 56 133 33 68 64 62 69 134 33 69 62 61 70
135 33 70 61 63 67
136 33 67 63 65 66
137 33 78 74 72 79
138 33 79 72 71 80
139 33 80 71 73 77
140 33 77 73 75 76
141 33 88 84 82 89
142 33 89 82 81 90
143 33 90 81 83 87
144 33 87 83 85 86

65 65 5 14 17 7
66 65 14 24 27 17
67 65 24 34 37 27
68 65 34 44 48 37
69 65 44 54 58 48
70 65 54 64 68 58
71 65 64 74 78 68
72 65 74 84 88 78
73 65 4 15 16 6
74 65 15 25 26 16
75 65 25 35 36 26
76 65 35 45 46 36
77 65 45 55 56 46
78 65 55 65 66 56
79 65 65 75 76 66
80 65 75 85 86 76

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

ENDDATA

(end of table)

117

Table 8-5: The command data file of the Dynamic Case
Example.

START
COMMAND DATA PNEWTON
C

SET NSIV=l;
SET MASS=STR;
SET MODE=l;
SET MXIT=10;
SET APRT=YES;
SET ACTG=YES;
SET IFLM=YES;
DO NSIN;
DO OPTIN;

C
DO ANALYSIS;
DO INSPECT;
DO OPTX;

C PSEUDO NEWTON ITERATIONS
L010: DO ITER;

DO QNEWTON;
DO OPTX;
IF(ENDC. EQ. YES) GOTO L031;
IF(NOIT. EQ. 3) DO HISTORY;
IF(NOIT. EQ. 3) SUSPEND;
IF(ENDI. EQ. YES) GOTO L040;
GOTO L010;

L031: DISPLAY CONVERGENCE TO THE
GOTO L050;

LOWER BOUND WEIGHT;

L032: DISPLAY CONVERGENCE TO DESIGN VARIABLES;
GOTO L050;

L033: DISPLAY CONVERGENCE TO FEASIBLE VS ACTUAL WEIGHT;
GOTO L050;

L034: DISPLAY CONVERGENCE TO FEASIBLE WEIGHT;
GOTO L050;

L040: DISPLAY MAX. NUMBER OF ITERATIONS REACHED;
C
L050: SET APRT=YES;

DO ANALYSIS;
DO INSPECT;
DO HIST;
STOP;
END;

C ANALYSIS PROCEDURE;
PROC OPTX;
DO ANALYSIS;
DO ACTSET;
DO DERV;
DO CONV;
DO INSPECT;
END OPTX;

ENDATA

118

Table 8-6: The design/constraint file of the Dynamic Case
Example.

C234567890123456789012345678901234567890123456789012345678901234567890
DESIGN 1 33
DESIGN 1 34
DESIGN 1 49
DESIGN 1 50
DESIGN 1 81
DESIGN 1 82
DESIGN 1 97
DESIGN 1 98
DESIGN 2 35
DESIGN 2 36
DESIGN 2 51
DESIGN 2 52
DESIGN 2 83
DESIGN 2 84
DESIGN 2 99
DESIGN 2 100
DESIGN 3 37
DESIGN 3 38

to

DESIGN 3 47
DESIGN 3 48

to

DESIGN 3 63
DESIGN 3 64

to

DESIGN 4 95
DESIGN 4 96
DESIGN 4 101
DESIGN 4 102

to

DESIGN 4
DESIGN 4 112
DESIGN 5 65

------------------------------------ ------------ ---------- ------------ (continued)

119

Table 8-6

DESIGN 5 66

to

DESIGN 5 79
DESIGN 5 80
DESIGN 6 113
DESIGN 6 114

to

DESIGN 6 143
DESIGN 6 144
DESIGN 6 117
GAUGE 0.600000 10.0000 33
GAUGE 0.600000 10.0000 34

to

GAUGE 0.600000 10.0000 63
GAUGE 0.600000 10.0000 64
GAUGE 0.600000 10.0000 81
GAUGE 0.600000 10.0000 82

to

GAUGE 0.600000 10.0000
GAUGE 0.600000 10.0000 112
GAUGE 0.600000 3.50000 65
GAUGE 0.600000 3.50000 66

to

GAUGE 0.600000 3.50000 79
GAUGE 0.600000 3.50000 80
GAUGE 0.600000 2.50000 113
GAUGE 0.600000 2.50000 114

to

GAUGE 0.600000 2.50000 143
GAUGE 0.600000 2.50000 144
NFREQ 1 2.50
ACTNFREQ 1
ENDATA

(end of table)

120

Table 8-7: The modified design/ constraint file of the
Dynamic Case Example.

C234567890123456789012345678901234567890123456789012345678901234567890
DESIGN 1 33
DESIGN 1 34
DESIGN 1 49
DESIGN 1 50
DESIGN 1 81
DESIGN 1 82
DESIGN 1 97
DESIGN 1 98
DESIGN 2 35
DESIGN 2 36
DESIGN 2 51
DESIGN 2 52
DESIGN 2 83
DESIGN 2 84
DESIGN 2 99
DESIGN 2 100
DESIGN 3 37
DESIGN 3 38
DESIGN 3 53
DESIGN 3 54
DESIGN 3 85
DESIGN 3 86
DESIGN 3 101
DESIGN 3 102
DESIGN 4 39
DESIGN 4 40
DESIGN 4 55
DESIGN 4 56
DESIGN 4 87
DESIGN 4 88
DESIGN 4 103
DESIGN 4 104
DESIGN 5 41
DESIGN 5 42
DESIGN 5 57
DESIGN 5 58
DESIGN 5 89
DESIGN 5 90
DESIGN 5 105
DESIGN 5 106
DESIGN 6 43
DESIGN 6 44
DESIGN 6 59
DESIGN 6 60

(continued)

121

Table 8-7

DESIGN

6

91

DESIGN 6 92
DESIGN 6 107
DESIGN 6 108
DESIGN 7 45
DESIGN 7 46
DESIGN 7 61
DESIGN 7 62
DESIGN 7 93
DESIGN 7 94
DESIGN 7 109
DESIGN 7 110
DESIGN 8 47
DESIGN 8 48
DESIGN 8 63
DESIGN 8 64
DESIGN 8 95
DESIGN 8 96
DESIGN 8 ill
DESIGN 8 112
DESIGN 9 113
DESIGN 9 114

to

DESIGN 9 143
DESIGN 9 144
DESIGN 10 65
DESIGN 10 73
DESIGN 11 66
DESIGN 11 74
DESIGN 12 67
DESIGN 12 75
DESIGN 13 68
DESIGN 13 76
DESIGN 14 69
DESIGN 14 77
DESIGN 15 70
DESIGN 15 78
DESIGN 16 71
DESIGN 16 79
DESIGN 17 72
DESIGN 17 80

(continue)

122

Table 8-7

GAUGE

0.600000

10.0000

33

GAUGE 0.600000 10.0000 34

to

GAUGE 0.600000 10.0000 63
GAUGE 0.600000 10-0000 64
GAUGE 0.600000 10-0000 81
GAUGE 0.600000 10-0000 82

to

GAUGE 0.600000 10.0000
GAUGE 0.600000 10-0000 112
GAUGE 0.600000 3.50000 65
GAUGE 0.600000 3.50000 66

to

GAUGE 0.600000 3.50000 79
GAUGE 0.600000 3.50000 80
GAUGE 0.600000 2.50000 113
GAUGE 0.600000 2.50000 114

to

GAUGE 0.600000 2.50000 143
GAUGE 0.600000 2.50000 144
NFREQ 1 2.50
ACTNFREO 1
ENDATA

(end of table)

123

Figure 8-1 The FE model of the Static Case Example.

124

Figure 8-2 The FE model of the "similar" static past
case.

125

Figure 8-3 The FE model of the "similar" dynamic past
case.

126

CHAPTER 9

FURTHER DEVELOPMENT

The research and development of an Expert System for
structural optimization has been discussed in the previous
chapters. Currently, the system prototype (ESSO) functions
as an adviser for the user of structural optimization
systems. It assists the user in constructing the
optimization strategy, monitoring the optimization run, interpreting the optimization results, and in case of
unsatisfactory results modifying the optimization set up.
At this present stage ESSO can deal with static and dynamic
problems and includes within the constraint set limits on
stress, displacement, natural frequency, dynamic amplitude,
and element gage.

However, in order for the prototype to work more
effectively in dealing with the design optimization of
aircraft structures it is necessary to investigate the
following aspects:

1. Deepening the present knowledge.
2. Extending the knowledge to include aeroelastic design.
3. Extending the knowledge to include the design for

manufacturing.

In the following sections,, the above aspects and their
implication for the ESSO are discussed in more detail.

DEEPENING THE PRESENT KNOWLEDGE.

Other than direct inputs from experts, relevant inputs

research papers are an important sources of knowledge for
the expert system for structural optimization. For example,
research done by Kellerer [1992] gives a better

understanding of the effect of design variable linking on
the optimization of wing structures under static loading.
This shows the effect of design variable definition for the

wing region (spars, ribs, upper and lower panels), and the
influence of the number of design variables in

characterising the optimization problem.

Brooker [1992] attempted to reduce vibration levels of
helicopter structures through structural redesign utilising

optimization techniques. Both STARS and NASTRAN solution
200 were used in his research. This provides considerable
insight into the use of optimization for dynamic modelling

of structures.

127

Currently the expert system described here only deals
with the isotropic materials. To be able to deal
effectively with modern structures, the system should also posses the capability to work with composite structures. The system should be able to advise the user in the following aspects:

1. Selection of suitable material types such as, carbon, kevlar, or glass fibres, for the parts to be designed.
2. Combination of ply orientations in a laminate.

It is unnecessary to include all possible ply orientations
(from 0 to 90 degree), from practical point of view it is
sufficient to consider [01, [901, and [45/-45] only.

Much of the decision making in a design process is
based on the functionality of the components, the type of
forces applied to the structure (axial, shear, etc.), and
the environment in which the components operate. To deepen
the structural optimization knowledge of the system, it is
necessary to be more specific about the functionality of
the structure. With regard to the aircraft structure, the
expert system should classify the structures into wing,
fuselage, horizontal stabilizer, fin, engine nacelle,
undercarriage, etc. The decision on the linkage of design
variables, material selection, advice on the type of finite
elements used, depend on the functionality of the
component. For example, in setting up the design variables,
wing spars is not usually linked to the upper or lower
panel; the shear element (CSHEAR in NASTRAN) is normally
used to model the spar structure; to effectively carry the
shear load, a [45/-45] laminate or a laminate with a high
portion of plies in this orientation is normally used if
composite material is preferred. In the upper wing panel,
it is normally preferred to link the panel in one bay
(between two ribs) to a single design variable; Al-7075 is
appropriate if isotropic material is selected, or if

composite material is preferred then a carbon laminate with
majority of plies orientated to [0] is appropriate. A plate
element is normally used for the finite element modelling
and the user advised not to forget the compression buckling

constraint. The kind of knowledge mentioned above is very
much depended on the functionality of the part/component to
be designed.

Figure 9-1 shows a simplified diagram of an aircraft
structural component with arrows indicating the flow of
information. It is interesting to note that knowledge

stored in the spar is not only appropriate for the wing but

also for the fin and horizontal stabilizer. This suggests
that there are a number of similarities between the design

considerations for, and structural modelling of spars for

wing, fin, or horizontal stabilizer.

128
9.2. DESIGN OPTIMIZATION FOR AEROELASTICITY.

Aeroelasticity is concerned with those physical phenomena which involve significant mutual interaction
among inertial, elastic and aerodynamic forces [Dowell et al. 1989] . This section is concerned only with structural
optimization which includes flutter as a design
requirement. Structural optimization with aeroelastic design requirements has been performed in the past and is
reported in several reports [Souahi 1986; Kiusalaas 1972;
Lansing et al. 1977; Wilkinson et al. 1976; Haftka 1973] .

Flutter calculation is concerned with finding the
critical flutter speed and involves [Rodden et al. 1979] :

1. Modelling the structure with finite elements.
2. Calculating the aerodynamic forces based on

and the aerodynamic considerations.
3. Performing a modal analysis which requires

of the free-vibration eigenvalue problem.
4. Performing a flutter analysis by solving the

flutter equation.

geometric

the solution

appropriate

The task involve in flutter optimization is enormous. This
is due to the fact that a complete description of the
aeroelastic behaviour of the structure must be provided at
each step of the optimization routine requiring the
solution of a free-vibration eigenvalue problem, the
interconnection of structural and aerodynamic grids, and
the generation of unsteady air forces. The theory used in
developing air forces depends on flight speed (subsonic,
supersonic, or transonic) . The f lutter solution is defined
in terms of complex eigenvalues and the corresponding
complex eigenvectors. The details of the approach used to
perform flutter optimization is outside the scope of this
thesis and should be consulted in the relevant references
some of them are already mentioned above.

To optimize a structure with respect to strength and
flutter requirements, it is common to obtain a design which
is strength optimum followed by flutter optimization. The

strength optimum design can be achieved by the fully

stressing method. It is known that the fully stressing
method does not always produce the least weight design.
However it is unnecessary to use more advanced method to

meet the strength requirement as at the end it is the
flutter requirement which is more likely to be active.

The flutter optimization phase can be performed by two

approach. The first approach consists of two stages; the

first stage involves a structural redesign to achieve the

required flutter speed; the second stage minimized the

weight by keeping the flutter speed constant. In the second

129

approach,, the weight is minimized with at the same time trying to meet the flutter speed requirement.

The knowledge base required to assist the designer in
optimizing for strength and flutter requirements should include the following guidelines:

1. An indication that the system should optimize the struc- ture for strength requirements first (possibly using the fully stressed design method).
2. For this strength optimization a large number of design

variables can be used.
3. Due to the enormous calculation required, a large number

of design variables is prohibitive in flutter optimiza- tion. Hence the flutter optimization stage is divided
into two stages.

4. The first involves optimizing the structure with a rea-
sonably small number of design variables.

5. The second stage increase the number of design variables
in the region where the elements are more effective
(high constraint sensitivity).

9.3. DESIGN FOR MANUFACTURING KNOWLEDGE.

IMPLICATION OF MANUFACTURING TO DESIGN PROCESS.

The manufacturing cost of an aircraft structure
(airframe) is a significant factor in the success of the
design. Thus it is necessary, during the design process, to
consider the manufacturing implications of a design
decision. The product should be designed so that it can be
economically manufactured. This means that the designers
should have information with respect to the manufacturing
aspects.

A designer has to ensure that his design is not only
functionally good but also optimum from a production point
of view. A good design is one in which the components are
designed for the selected material and manufacturing
processes to meet a specific functionality. Thus,, it is

useless to have a structural design which is optimum (say,
least weight) and meet all strength and stiffness
constraints but too complicated and expensive to be

manufactured. When a structural designer decides that a

part should be made of composite instead of aluminium, or

a part should be machined from solid instead of forging,

the designer makes one of the most important decision in

the whole design procedure by committing production to a

particular manufacturing process. Such a decision should be

made only after examining all possible manufacturing

processes and the costs associated with it.

130
It is recognized that many designers do not posses the required manufacturing knowledge and rely on the input from

production engineers when a manufacturing process decision has to be made. In an automated design process this gap should be bridged, and AI is potentially useful for this
purpose. The manufacturing and production implications of the design can be relayed to the designer in the early stages of the design process through the use of AI techniques. Research on this subject has been performed by
Saggu [1991] using the design of aircraft flap as a
specific example. The rest of this section is devoted to
the implications of design for manufacturing for the
structural optimization knowledge base.

9.3.2. DESIGN FOR MANUFACTURING IN EXPERT SYSTEM
FOR STRUCTURAL OPTIMIZATION.

In performing a structural design and moving that
design into manufacturing stage, optimization is part of
the design stage. Any optimization method is mathematical
in nature. This suggests that providing the problem can be
formulated in mathematical terms, it is probable that the
optimization process will run happily and find the optimum
(say, minimum weight) without taking into account the

manufacturability of the design.

It is, however, possible for part of the optimization
task set up process to take into account manufacturing
aspects in a limited way via minimum gauges on thickness.
It is known, for example, that a milling process should not
be applied to machine sheet plate below certain thickness
due to problems of vibrations in the sheet. ESSO does not
directly hold this kind of information in its knowledge
base, hence it is the designers responsibility to specify
the correct minimum thickness (associated with the intended
machining process) for the gauge constraint.

Design for manufacturing is directly associated with
material selection, the machining, and assembly process and
their associated costs. These aspects should always be
taken into account during the design process. To include
these aspects in the ESSO knowledge base requires an
extension to the present base. To perform this extension,
the scheme mentioned in (9.1) and illustrated in figure 9-1
is still applicable because design for manufacturing is

directly associated with the type of component being

considered.

Let us consider an upper wing panel. From a
functionality point of view, there are two material types

which are suitable, those are Al-7075 aluminium (high

strength aluminium) and carbon fibre composite. The final

selection between the two depends not only on which

131
material is superior, or which material produced at least
weight, but also on other factors such as:

- the material cost,
- the manufacturing capability possessed in producing the design made of aluminium or composite,
- the cost of producing the design made of aluminium or composite,
- the capability and the cost associated with parts assem- bly.

Clearly there is no point in designing the panel in
composite, eventhough it produces a least weight structure, if the company does not have the production facility for
manufacturing composite parts such as autoclave, tape
laying, or composite material cutter. In this situation,
the question arises as to whether it is cost effective to
make new investments in composite production facilities.

If aluminium is selected it is still necessary to
decide which type of panel is to be used, conventional
(riveted skin-stiffener) type or integral (integral skin-
stiffener machined from block of aluminium) type. Selecting
the integral type of panel requires heavy milling machine
facilities, especially for large airplanes. When
conventional panel type is selected there will be questions
such as what kind of cross-sectional shape adopted for
stiffeners. From a buckling point of view, the use of a
stiffer stiffener (high EI) is better, but this might lead
to a more complicated shape (such as top-hat or Y
stiffeners) which is more difficult and expensive to
produce. There is also question as to whether plate bending
process is adequate or extrusion process is needed for
manufacturing stiffeners.

The discussion above suggests that design for
manufacturing depends on the structural component being
considered. As mentioned previously the scheme mentioned in
(9.1) is appropriate to accommodate design for

manufacturing. Each component can be treated as an object.
The information relating to design for manufacturing
associated with each component can be stored in the form of
component objects. For example, with respect to

manufacturing, an object could contain information relating
to:

- possible materialf either composite or aluminium,

- possible machining process and gauges associated with

each type of process,
assembly process (bondingf riveting),
costs associated with a manufacturing type, etc.

In addition to the information associated with the

manufacturing process, each object also contains

132

information related to the functionality of the component.
In this respect, an object could contain:

function of the component, e. g. ribs stabilize the panel
and transfer air pressure on panels, webs carry shear
loads, etc,

- type of loading associated with the component, e. g.
stiffeners mainly carry axial load, webs carry shear
loads,,

- possible material, e. g. AL-7075 aluminium for upper pa-
nel, AL-2024 aluminium for lower panel,

- if composite material, suggested laminate orientationsf
e. g. [45/-45] for shear webs,

- suggested finite element type, e. g. NASTRAN C-SHEAR for
shear websf CQUAD4 for panels,

- behavioral constraints required, e. g. buckling constraint
for stiffener, von Misses strength for lower panel, etc.

With this scheme, the optimization process would be
performed only when the task associated with design for
functionality and manufacturing is completed.

133

w
w

LU
CO UL
D
LL

-i w

m

ü<- CO

cc

LU
Z
LLJ
LL
LL
F-
Co

L-----i

CIO
w

Figure 9-1 Simplified diagram of aircraft
structural component.

134

SUMMARY

A research and development program focused on the
creation of an Expert System for Structural Optimization has been carried out. The ideas and techniques presented in the preceding chapters have indicated the potential of using Expert System as an adviser for the user of working structural optimization systems.

Three types of knowledge are identified as necessary
components for a structural optimization knowledge base in
order for it to work effectively:

- knowledge relating to setting up the structural optimiza-
tion based on logical deduction, and which is a-priori in
nature,

- knowledge based on past experience,
- run-time and results interpretation knowledge.

Associated with each type of knowledge, a knowledge base
structure and a reasoning strategy have been developed. The
ideas and techniques advanced in this thesis have been
implemented in the development of a prototype system called
ESSO (Expert System for Structural Optimization) .

This Expert System uses the Finite Element Method, in
the form of MSC NASTRAN, for the analysis stage to deal
with various types of structure. The DRA/PSI STARS struc-
tural optimization package is used for the optimization
tool. Although the selection of a specific optimization
(and Finite Element) package restricts the portability of

the Expert System, it has validated the concept developed
during the research programme.

The prototype was written using C++ on a SUN SPARC-II

computer. This has been extended with the development of a
user-interf ace which is based on XView. A User's Manual had
been prepared which contains a guidance on using ESSO and
details of the prototype programming. The prototype system
had been trialed successfully using static and dynamic

optimization problem examples.

For an Expert System for structural optimization to

work effectively, it should have access to the optimization
data (structural responses, constraint values, sensitivity
data, objective function values, etc.) during system run.
This issue becomes important for an Expert System which is

intended to work with proprietary optimization system

packages because the optimization codes (computer programs)

are usually not available (for outsider) . The direct

application to a specific system requires an agreement

which opens the way for the Expert System developer to have

135

access to the optimization package. Unfortunately, in the development of ESSO,, we do not have means to access the
optimization data during a STARS session. This means that
for interpreting the optimization trend or results ESSO
requires the users to read STARS output and enter the data
manually for ESSO which is not an ideal way for an Expert
System to work.

Research on Expert Systems for Structural Optimization
is an on-going research and by no means complete. Further
development is necessary and is anticipated. The author
suggests that the "final" form of this Expert System should
be an Expert System for aircraft structural design with
structural optimization as part of the system. The Expert
System should be extended to include the problems of
aeroelasticity. The proposed system should also take into
account the implication of manufacturing and production in
structural design.

In chapter nine, the direction of further prototype
development as mentioned above is discussed in detail. It
is suggested that for the system to be able to deal
effectively with aircraft structural design problems, it is
necessary to be more specific with the functionality of the
structures. This requires the system to classify the
aircraft structure into its components such as wing,
fuselage, fin, and treats these components as objects.
Design for manufacturing is directly associated with the
type of component being considered and its functionality,
hence the classification of structure is considered to be
the proper way to represent the knowledge.

136

REFERENCES

Adeli,, H. and Balasubramanyam, K V. 1988.
ExPert Systems for Structural Design.
Prentice Hall, New Jersey, USA.

Arora, J S. 1989.
Introduction to Optimum Design.
McGraw-Hill Book Company, 1st edition, USA.

Bartholomew, P. 1991.
STARS Theoretical Manual.
SD-Scicon UK Ltd., UK.

Bennet, J S. and Engelmore, R S. 1979.
SACON: A Knowledge Based Consultant for Structural
Analysis.
Proceedings of the 6th International Joint Conference
on Artificial Intelligence. Tokyo.

Berke,, L. , Patnaik, S N. and Murthy, PLN. 1993.
Application of Artificial Neural Networks to the De-
sign Optimization of Aerospace Structural Component.
NASA Technical Memorandum 4389.

Booch, G. 1991.
object Oriented Design with Applications.
The Benjamin/Cummings Publishing Company, Cal., USA.

Brooker, S M. 1992.
Vibration Control of Helicopters through Structural
Optimization.
MSc Thesis, COA - Cranfield Institute of Technology,
UK.

Buchanan, B G. and Shortliffe, E H. 1985.
Rule-Based Expert Systems.
Addison-Wesley Publishing Company, USA.

Castillo, E. and Alvarez, E. 1991.
Expert Systems: Uncertainty and Learning.
Computational Mechanics Publications & Elsevier Ap-

plied Scence. UK. 1991.

Chen, J L. and Hajela, P. 1987.
FEMOD :A Consultative Expert System for Finite Ele-

ment Modeling.
29th Structures, Structural Dynamics and Materials

Conference.

137
Coxhead, P. 1987.

Starting LISP for AI.
Blackwell Scientific Publications, UK.

CRYSTAL, The Expert System Builder.
Intelligent Environment.

Dowell, E H., Curtiss, H C, Jr., Scanlan, R H. and Sisto,, F. 1989.
A Modern Course in Aeroelasticity.
Kluwer Academic Publishers, The Netherlands.

Dutta, S. and Bonissone, P. 1990.
Integrating Case Based and Rule Based Reasoning: The
Possibilistic Connection.
INSEAD Working Papers 90/45/TM. France.

Felt, L R., Grisham, A F. and Dotson, B F. 1987.
Knowledge-Based (Expert) Systems for Structural Ana-
lysis and Design.
28th Structures, Structural Dynamics and Materials
Conference.

Forsyth, R (Ed.). 1984.
Expert Systems - Principles and case studies.
Chapman and Hall Computing, UK.

Functional Specification for Remind Development
Version 1.1
Cognitive Systems, Inc.

Gero,, JS (Ed.) . 1989.
Artificial Intelligence
Computational Mechanics
UK.

in Design.
Publications Springer-Verlag

Gero, JS (Ed.) . 1991.
Artificial Intelligence in Design f 91.
Butterworth-Heidemann Ltd., UK.

Haftka, H. 1973.
Automated Procedure for Design of Wing Structures to
Satisfy Strength and Flutter Requirements.
NASA TN D-7264.

Harris, J ap C; et. al. 1990.
An Application of an Expert System Techniques to

Structural optimization in a Fortran Environment.

RAE/TM/Mat/Str/1147.

Heller, D. 1990.
XView Programming Manual. An OPEN LOOK Toolkit

for X11.
O'Reilly & Associates, Inc. USA.

138
Johnson, E H., Neil, D J., Herendeen, D L. and Canfield, CA. 1989.

Automated Structural Optimization System (ASTROS) - User Training Workshop. AFWAL-TR-88-3101.

Kellerer, H. 1992.
Influence Of Structural Modeling and Design Variable Linking on the Results of Structural Optimization of a Wing-Box Structure under Stress Constraints.
Diplomarbeitil Technische Universitat Munchen & COA - Cranfield Institute of Technology, UK.

Kirsch, U. 1981.
Optimum Structural Design.
McGraw-Hill Book Company, 1st edition, USA.

Kiusalaas, J. 1972.
Minimum Weight Design of Structures via Optimality
Criteria. NASA TN D-7115.

Kolb, M A. 1992.
Constraint-Based Component-Modeling for Knowledge-
Based Design. AIAA 92-1192.

Kolodner, J. 1993.
Case-Based Reasoning.
Morgan Kaufmann Publishers, Inc. USA.

Kuntjoro, W. 1991.
Preliminary Study on the Development of an Expert
System for Structural Optimization.
MSc Thesis, COA - Cranfield Institute of Tecnology,
UK.

Lansing,, W.,, Lerner, E. and Taylor, R F. 1977.
Application of Structural Optimization for Strength

and Aeroelastic Design Requirements. AGARD-R-664.

Levine, R. . Drang, D. and Edelsonf B. 1990.
AI and Expert Systems, A Comprehensive Guide.

McGraw Hill, 2nd edition, USA.

Luger,, G F. and Stubblefield, W A. 1989.
Artificial Intelligence and The Design of Expert
Systems.
The Ben j amin /Cummings Publishing Company, Inc.,

Cal., USA.

Maher, M L.
HI-RISE
Design -

1988.
: An Expert
In Rychener

System for Preliminary Structural
(1988).

139
Meyer,, B. 1988.

Object Oriented Software Construction.
Prentice-Hall, 1st edition, UK.

Milne., R.
Case Based Reasoning - An Introduction. (Lecture
Notes)
Intelligence Application Limited.

Miura., H. 1988.
MSC/NASTRAN Version 66, Handbook for Structural Op- timization.
The Macneal-Schwendler Corporation.

Morris, A J. 1982.
Foundation of Structural Optimization :A Unified
Approach.
John Wiley & Sons Ltd., 1st edition, UK.

MSC/NASTRAN Version 66A. User's Manual. 1989.
The Macneal-Schwendler Corporation.

MSC/XL Version 3, User's Manual. 1991.
The Macneal-Schwendler Corporation.

NAFEMS. 1986.
A Finite Element Primer.
DTI - NEL, Glasgow, UK.

Rivlin, J M., Hsu, M. B. and Marcal, P V. 1980.
Knowledge Based Consultation for Finite Element
Structural Analysis.
AFWAL-TR-80-3069. USAF Flight Dynamics Laboratory,
Wright-Patterson AFB, Ohio.

Rodden, W P. . Harder, R L. and Bellingerf E D. 1979.
Aeroelastic Addition to NASTRAN. NASA CR 3094.

Rogers, J L. and Barthelemy, J M. 1987.
An Expert System for Choosing the Best Combination of
Options in a General-Purpose Program for Automated
Design Synthesis.
Engineering with Computers, Vol. 1.

Rychener, MD (Ed.). 1988.
Expert Systems for Engineering Design.
Academic Press, Inc. r London.

Sacks,, R. and Buyukozturk, 0.1988.
Expert Interactive Design of Reinforced-Concrete Co-

lumns under Biaxial Bending.
in, Expert Systems in Engineering

(Edited by Pham, DT) .
IFS Publications /Springer-Verlag, UK.

140
Saggu, J S. 1991.

IKADE : An Intelligence Knowledge Assisted Design Environment Incorporating Manufacturing and Produc- tion Information.
PhD Thesis, COA - Cranfield Institute of Technology, UK.

Schildt, H. 1986.
Artificial Intelligence - Using C.
Osborne - McGraw-Hill, 1st edition, USA.

Schildt, H. 1987.
Advanced Prolog.
Osborne - McGraw-Hill, Berkeley, Cal., USA.

Schildt, H. 1990.
Using Turbo C++.
Osborne - McGraw-Hill, 1st edition, USA.

Shapiro,, SC (Ed.). 1987.
Enciclopedia of Artificial Intelligence Vol. 1.
John Willey & Sons, USA.

Shapiro, SC (Ed.). 1992.
Reasoning, Case Based; in Encyclopedia of Artificial
Intelligence Second Edition.
John Wiley & Sons, Inc.

STARS User Manual, Version 17.1991.
SD-Scicon UK Ltd., UK.

STARS Application Manual, Version 17.1991.
SD-SCICON UK Ltd., UK.

Souahi, A. 1986.
Structural optimization of Aircraft Lifting Surfaces
to Satisfy Flutter Requirements.
PhD Thesis, COA - Cranfield Institute of Technology,
UK.

Sriram, D. 1987.
ALL-RISE :A Case Study in Constraint-Based Design.
in, The International Journal for Artificial Intelli-

gence in Engineering, vol. 2, no. 4.

Swartout, W R. 1987.
Explanation. In Shapiro (1987).

Thomson, W T. 1986.
plications, 2nd edition. Theory of Vibration with Ap

George Allen & Unwin Ltd., London.

141

Vaish,, A K. and Kamil, H. 1988.
An Expert System for Structural Analysis and Design.
29th Structures, Structural Dynamics and Materials
Conference.

Vanderplaats, G N. 1984.
Numerical optimization Techniques for Engineering De-
sign : With Applications.
McGraw-Hill Book Company, 1st edition, USA.

Wallsgrove, R. 1988.
Explanation in Expert Systems.
MSc Thesis, College of Manufacturing, Cranfield Ins-
titute of Technology, UK.

Wilkinson, K., Lerner, E. and Taylor, R F. 1976.
Practical Design of Minimum Weight Aircraft Struc-
tures for Strength and Flutter Requirements.
Journal of Aircraft, Vol. 13 No. 8.

Yazdani, M (Ed.) . 1986.
Artificial Intelligence, Principles and Applications.
Chapman and Hall, 1st edition, UK.

Zadeh,, L A. 1983.
Commonsense Knowledge Representation Based on Fuzzy
Logic.
Computer, October 1983.

CRANFIELD UNIVERSITY

COLLEGE OF AERONAUTICS
Department of Aerospace Science

Ph. D THESIS

Academic Year 1992-1994

WAHYU KUNTJORO

Expert System for Structural
Optimization

Exploiting Past Experience
and A-priori Knowledge

Volume 2: User Manual of the
Expert System for Structural

Optimization (ESSO)

SUPERVISOR: PROF. A. J. MORRIS

NOVEMBER 1994

ii

CONTENTS

CONTENTS ii

LIST OF FIGURES iv

1. BASICS OF OPEN LOOK GRAPHICAL USER INTERFACE I
1.1. Overview of X Window System

1
1.2. Mouse and its Operation

3
1.3. Frame ...

4
1.4. Panels ..

4
1.5. Subwindows

8
1.5.1. Canvas ..

8
1.5.2. Text Subwindow

9
1.5.3. TTY Subwindow

10

2. ES SO: ITS ENVIRONMENT AND RUN PROCEDURE 11
2.1. ESSO Workspace

11
2.2. ESSO Panel Functionality

11
2.2.1. Quit Button

11
2.2.2. MSC/XL Button

11
2.2.3. STARS Button

16
2.2.4. Run ES Menu Button

16
2.2.5. EditFile Menu Button

16
2.2.6. Example Menu Button

16
2.2.7. Proposed-case Menu Button

16
2.2.8. Explain-reason Menu Button

19
2.2.9. ReadMe-first Button

19
2.3. Running ESSO

19

3. EDITING ESSO KNOWLEDGE BASE 21
3.1. ESSO Knowledge Base

21
3.2. The Conventional Knowledge Base

22
3.2.1. The Domain/Subject Knowledge

23

3.2.2. The IF-THEN Rules
24

3.2.3. Editing The Knowledge Base
26

3.2.4. Explanation Facility
31

3.3. The Memory Knowledge Base
32

3.3.1. The Domain Knowledge
32

3.3.2. The Similarity Rules
33

3.3.3. Editing The Knowledge Base
35

3.4. The Knowledge Base of The Run-time and Result
Interpretation Modules

36

iii

4. THE COMPUTER PROGRAMS OF ESSO 37
4.1. The Design Input Module

38
4.2. The Memory Module

38
4.3. The Conventional Module

39
4.4. The Element Module

40
4.5. The Variable Module

40
4.6. The Constraint Module

41
4.7. The Driver-Files Module

41
4.8. The Run-time Module

42
4.9. The Result Interpretation Module

42
4.10. The Modification Module

43
4.11. Sequence of Modules Execution

43

5. INSTALLATION PROCEDURE. 49
5.1. Transferring ESSO File from Storing-media

to Computer
49

5.2. Compiling and Linking
50

5.2.1. Compiling and Linking of es -f.................
50

5.2.2. Compiling and Linking of es-run
50

5.2.3. Compiling and Linking of es - res
51

5.2.4. Compiling and Linking of es -
mod

51
5.2.5. Compiling and Linking of esso

51

6. EXAMPLES. 52

6.1. Static Case Example
52

6.1.1. Problem Description
52

6.1.2. ESSO Session
52

6.2. Dynamic Case Example
56

6.2.1. Problem Description
56

6.2.2. ESSO Session
56

REFERENCES 95

iv

LIST OF FIGURES

Figure 1-1 A sample of OPEN LOOK workspace.
Figure 1-2 Three-button mouse.
Figure 1-3 A screen with several frames.
Figure 1-4 A typical frame and its elements.
Figure 1-5 Panel items in OPEN LOOK.
Figure 1-6 Canvas subwindow.
Figure 1-7 Text subwindow.
Figure 1-8 Term subwindow.

Figure 2-1 ESSO workspace.
Figure 2-2 ESSO with Example-Window active.
Figure 2-3 ESSO with text-editor active.
Figure 2-4 Term subwindow with STARS active.
Figure 2-5 Term subwindow with Set-up active.
Figure 2-6 A similar case proposed by ESSO.

Figure 4-1 The sequence of module execution.
Figure 4-2 The data flow diagram.

Figure 6-1 The FE model of the static case example.
Figure 6-2 The FE model of the similar static past
Figure 6-3 The FE model of the similar dynamic past

case -
case.

1

CHAPTER 1-.

BASICS OF OPEN LOOK GRAPHICAL USER INTERFACE

The user interface for the Expert System for
Structural Optimization (ESSO) is implemented using the
XView (XWindow-System-Based Visual/Integrated Environment
for Workstations) toolkit running under the X Window
System. XView provides a set of prebuilt, user-interface
objects such as canvases, scrollbars, menus and control
panels. XView is written in the C language. The appearance
and functionality of these objects follow the OPEN LOOK
Graphical User Interface (GUI) specification. Basic
operations of the OPEN LOOK GUI is presented in this
chapter. Only subjects which are directly related to the
Expert System for Structural Optimization (ESSO) are
presented.

1.1. OVERVIEW OF X WINDOW SYSTEM.

X controls a bit-mapped display in which every pixel
(dot on the screen) is individually controllable. This
allows drawing of pictures in addition to text. Like other
windowing systems, X divides the screen into multiple input
and output areas called windows. Each window can act as an
independent virtual terminal. Using a terminal emulator,
not only can windows run ordinary text-based applications
but also applications designed to take advantage of the
graphic power of the bitmapped display.

Similar to other window systems, the user provides
input through a pointer, usually a mouse but could just as
well be a trackball or tablet, and a keyboard. The pointer
allows the user to point at

'
certain graphics on the screen

and use the buttons on the mouse to control a program
without using the keyboard. It is also used to direct the
input focus of the keyboard from window to window with only
one application at a time able to receive keyboard input.

Each application in X need not consist of only a
single window. Any part of an application can have its own
separate window. Such child windows are only visible within
the confines of their parent window. An application can
also creates multiple frames, each of which has its own
window (or windows).

xView provides a set of windows that inclýide:

Canvases on which programs can draw.
Text subwindows with built-in editing capabilities.

2

Panels containing items such as buttons, choice items,
and sliders.
TTY subwindows that emulate character-based terminals.

These windows are arranged as subwindows within frames,
which are themselves windows. Frames can be transitory or
permanent. Transient interactions with the user can also
take place in menus which can pop-up anywhere on the
screen.

As mentioned before, the XView implements the OPEN
LOOK GUI. The OPEN LOOK can be implemented on any operating
system, windowing system or graphic display. It can be
mapped easily into the X Window System. Figure 1-1 shows a
sample of OPEN LOOK workspace.

Draw

(-Re-c t-a -ng-l-e) (ý

0N

I (ED

10 Edit: Search and Replace I

Search For:

Replace With:

jIgnore Case IForward

lVild Card SI

lyraparound Searches

(Repiace & search) (7Replace Allý

It was a dark and s
all of the beagles w Cý
their kennels. The t COPY
around the tower. s Paste

Again
Undo

"'Apters

104)n

CD

UP
C(--)t4 SOLE

Figure 1-1 A Sample of OPEN LOOK workspace
(from Heller [1990])

3

1.2. MOUSE.

The operation on a window can be activated through a
mouse. The mouse is primarily used to move the cursor
(symbolized usually as an arrow or a solid box) around the

windows. The mouse has three buttons (see Figure 1-2) which
in XView their actions are defined as:

- The Left Mouse Button (also called select button) which
is normally used to select or activate an operation asso-
ciated with a panel button,

- the Middle Mouse Button (also called adjust button) which
can be set to activate certain operations depending on
the application, and

- the Right Mouse Button (also called menu button) which is
normally used to display menu from which a selection is
made.

The basic terminologies which are related to mouse opera-
tion are:

- Click, to quickly press and release the mouse button.

- Double-click, to click the mouse button twice in rapid
succession.

- Drag, to hold down the mouse button while moving the
mouse.

- Point, to move the mouse until the mouse pointer on the
screen rests on the item of choice.

SELE,

Figure 1-2 Three-button mouse,

4

1. FRAmE.

A frame is a container of other windows. It manages
the geometry and placement of subwindows that do not
overlap and are fixed within the boundary of the frame. In
OPEN LOOK, the subwindows in a frame do not overlap one
another. However frames might overlap. Subwindow types
include canvases, text subwindows, panels, and scrollbars.
These subwindow cannot exist without a parent frame to
manage them. Figure 1-3 shows an example of a screen that
displays several frames, each one containing at least one
subwindow.

Figure 1-4 shows a typical frame and its elements.
- Title bar is part at the top of the frame and usually
contains the frame label. The title, Edit No file, suggests
that this is a frame which contain a Text subwindow.

-]Resize corner is used to change the size of a frame. This
is performed by pointing the cursor to the resize corner
push the select button and drag the frame corner to its
required new size.

- The close button is used to close (iconize) the frame
(and its subwindows).

- The control panel (if available) contains one or more
panel items. In our example it has 'Button' button and
'Menu Button' menu. A menu button is recognized by the
small triangle near it. To activate a panel button, place
the cursor on top of the button and select it by clicking
the select (left) button of the mouse.
To activate the menu button, point to the menu, push the
mouse's menu (right) button, drag the mouse to the required
menu-item (a f ile, a value, or others) and release the mou-
se's button to select.

- The vertical scrollbar is used to scroll the window up
and down. If required, the horizontal scrollbar can also be
created.

1.4. PANELS.

A panel (or control area) is an unbordered region of
a window where controls such as buttons and settings are
displayed. The panel shown in Figure 1-4 represents the
typical positioning of the control area, that is under the
title bar and above the subwindow. Figure 1-5 shows
examples of panel items from the OPEN LOOK GUI.

5

0 S

m ýr cj
(1 1)

(xf -11-1 -i d- ?) E ý] 0- CL T

tn M M: U) C'i o C>

-ýc u'- ýL-
= (D CD E cq CE -z

CD, "0 ý ci _0
00 C[) (D <>

0 C:
A-

ci r, ý -C3 co - ý: a
(U

-
-0

-u CL
LD lcý

-0
Cý6

ý3
o (D (1) C> CL) (D

Oa - -Y
= -U C> EE a) (1) cc ki CL (1) 0 'T co -0 11 '0 E C2L (D j o-M: co

a-- ± -- oE-, -- -! -, -- W CD 3: - CD - C) , ". EN F= Ln -ýc -E r4 Z 73 E
cu

T3 (d z
L- % 3:

- 0, -
(IJ cý __A 0) ="ý-- 'M C.

. _I_- I"ý tj --2! - tý - ý, L-r) x -= tj (D
=3 (o =1 Cd,

-C z---E
-2 " <ý' (o >

ff EE C:
co :. a) 0- -3: = 3: 0E

'n :3(, 1
E2(,) 'ýO- g6 -z o-E Cl- -M --

C: -c (D CD
a) ý- ýc -0 F- ý ý- ý (o ý- -Q CL ýc -0 E ý- &L I

Z: I
E
M x <C I LLI (yx (D EDI

M: F-4 to
'0

0-
(N ITT 0

Ln
CT)

I. J a) cu r) (14

>-, <ýý'l

Lr)l v

Un IJ v ICD

a, Z3 :3 73
c= C) cc 4J 4-J

cr) 0 F- Ln Ln
C> kil
Lr) X: : CD CD :3 W

0 CT cr v
00 =3

ul C> 00 4J
I_- c kA
00 1-11, crz : Cl.

ul a)
f-= f-=

-0 -- 1> Lj 11 =3
0- cr- tn q cu o

> -ýc t-ý =3 (10 LLI Ln -- :3 a) 0 41 (0 C> Lu ý- -ý t/I tf) 0c vI
U-)

......
-

C'4 La m V- Uý CD G)
cl

4A D"
F- cx

p

CL

U-0,0

1>

-T C,

LU

C>
CD

L'i

C>

Un
ul

cc

cu

LA

CY

Figure 1-3 A screen with several frames.

6

control

Close button

Resize comer
I

T1904M

Edit - No file

(_Button) Menu Button v

VerdcW Scrollbar

Figure 1-4 A typical frame and its elements.

7

Buttons -ag Ie Hawk9
Menu buttons In sýe ct A(sv (Platvpus

Kangaroo
Items Command Item

Koala

Window Item ...
Opossom

Menu Item (>

Abbreviated buttons El

Abbreviated menu buttons Marsupials: ff) PlatVpus

Text field

Text field with scrolling buttons m e,

A, Multi-fine text field

Numeric field with increment/

decrement buttons 1 234ý

s h-] Exclusive settings French German I Enqliý_h

Nonexclusive settings Aquarium DisplaVs:

aIe

f _D -ol _t)-h-in I

r -Tu
n__aý

Check boxes 0 shoes
N6 socks

Slider ý11--

Gauge Disk Usage:
0 100

Rea, d-onlv message Size: 1997 bVtes

Figure 1-5 Panel items in OPEN LOOK
(from Heller [1990])

8

1.5. SUBWINDOWS.

Subwindows differ from frames in several basic ways.
They never exist independently; they are always owned and
maintained by a frame or another window, and they may not
themseleves own frames. While frames can be moved freely
around the screen, subwindows are constrained to f it within
the borders of the frame to which they belong. Subwindows
also tiled, they do not overlap each other within their
frame.

1.5.1. Canvas.

The canvas is the most basic type of subwindow. It
provides a drawing surface. Figure 1-6 shows a frame with
a canvas subwindow in it. A control menu can be invoked by
pushing mouse's menu button anywhere inside the subwindow.

CANTILEVER-TRUSS

2500

1

6

Task: Optimize the structure shown.

A truss structure with 6 nodes and 10 mem-,
bers with a static load P at node G.

The structure was modelled using NASTRAN,

truss members were modelled with CROD.

The tensile strength is 400 MP@, compres-

sive strength is 250 MPa. E= 69,000 M Pa,

x

and Poisson's ratio is 0.3.

The downward displacement at node 6 shoul
be less than 50 mm,
P= 10,000 N.
At optimum, the size of members 1,2,3A mu

be the same, and members 5,6,7, B, 9,10 also

must haye the same size (could be different

from members 1,2,3,, 1),

Figure 1-6 Canvas subwindow.

14 6

2500 2500

9

Text Subwindow.

Another basic window type is a text subwindow. It
provides basic text editing capabilities. Figure 1-7 shows
a frame with a text subwindow in it. Similar to a canvas
subwindow, a control menu can be invoked by pushing mouse's
menu button anywhere inside the subwindow.

START
COMMAND DATA FSD
c

SET MXIT=8;
SET APRT=YES;
SET ACTG=YES;
DO NSIN;
DO OPTIN;

C
DO NASTRAN;
DO ACTSET;
DO INSPECT;
SET APRT=NO;

C FULLY STRESSING ITERATIONS
L010: DO ITER;

IF(NOIT. EQ. 4) SUSPEND;
DO FULLY STRESSING;
IF(ENDT. EQ. YES) COTO L032;
IF(ENDF. EQ. YES) COTO L033;
IF(ENDP. EQ. YES) COTO L034;
IF(ENDI. EQ. YES) COTO L040;
DO NASTRAN;
DO ACTSET;
DO INSPECT;
COTO L010;

L031 DISPLAY CONVERGENCE TO THE LOWER BOUND WEIGHT;
COTO L050;

L032: DISPLAY CONVERGENCE TO DESIGN VARIABLES,
COTO L050;

L033: DISPLAY CONVERGENCE TO FEASIBLE VS ACTUAL WEIGHT;
GOTO L050;

L034: DISPLAY CONVERGENCE TO FEASIBLE WEIGHT;
GOTO L050;

L040: DISPLAY MAX. NUMBER OF ITERATIONS REACHED;
C
L050: SET APRT=YES;

DO NASTRAN;
DO INSPECT;
DO HIST;
STOP;
END;

ENDATA

Figure 1-7 Text subwindow.

1.5.3. TTY Subwindow.

The TTY (or terminal emulator)
standard terminal. The ESSO uses
Basically it is a TTY subwindow that
text subwindow. It may also contain a
shows a term subwindow with a control
a text field and a button.

10

subwindow emulates a
the term subwindow.
can be edited like a

scrollbar. Figure 1-8
panel which contains

Figure 1-8 Term subwindow.

11

CHAPTER 2:

ESSO: ITS ENVIRONMENT AND RUN PROCEDURE

ESSO WORKSPACE.

ESSO workspace is shown in Figure 2-1. It consists of
a base frame with Expert System for Structural Optimiza-
tion title written on the title bar. Underneath the title
bar is a control panel with several buttons. The subwindow
on the upper left under the control panel is a term
subwindow which emulates the terminal. The rest of
workspace on the right side and underneath the term
subwindow is provided for subframes which are activated by
the relevant buttons in the control panel.

Figure 2-2 shows an example of a subframe on the right
side of the term subwindow which contains a canvas and a
text subwindow. This subframe is dedicated for presenting
the examples. Figure 2-2 shows "Example 11, as indicated by
the subframe title.

Figure 2-3 shows an example of a subframe underneath
the term subwindow. This subframe contains a text editor (a
text subwindow) . The user can use the text editor to browse
the information and data involved in the system's run. The
editor also can be used to edit and save the file.

2.2. ESSO PANEL FUNCTIONALITY.

The control panel consists of several panel buttons.
The action activated by each button is presented here.

2.2.1. Quit Button.

As the name implies this button is used to quit the
ESSO application. To do this, point the cursor on top of
this button and select.

2.2.2. MSC/XL Button.

MSC/XL is a CAD package from the Macneal-Schwendler
Corporation which is built specially for NASTRAN pre/post-
processor. To call MSC/XL, select the MSC/XL button. In
ESSO, MSC/XL is used to visualize the FE model of similar
past cases. For drawing the structural geometry and
developing the FE model, MSC/XL should be invoked from the
system's command/shell window.

12

Figure 2-1 ESSO Workspace.

13

'0 Cd CD

C>

C>

Cl.

P
cl-

CI
'a.

3C LLA

C>

ICC(

9-
El.

E

CI-- -C- -; , 11 E f- C) 2 ci- «ql
> tA E: (D ri c>

cý
2 ýc c> CD cli

ýt 0 (16
Z-o c> «%3

-2
ai -0
CD

CL

-C2 CA cu c _T x: aE wi Z , t3 «x3 iý 0 Ln z3 0- c1) -ý; (D , CD tA V
Z) -C (U = `0 C> --EL CL w LD

E
(U CD

(ID -c-- cu
:: » A-- - lýý tn in

-
-tý

0-- «a <>

.
-=

IID
"b--b

A- ýc ý

=0, E cu E u b- E <> c' OL V% - J-- <: > cu > - :3 cu - a) _LA 3' ýoE t' (0 (D

c2. A-- E
0

-Z -- ---C: L . -0
F 4b F v% mý _r2 <mE4

Crx (D

04

cn

(DI)-

Ul
C14

Lr)l

0
<3
tr)
(14

, qrl

>

2-- :
<D

cr-
Lu I
Cl. I
>< I
Lij I

I

uTh

(11

0

CD

cr_ :3 :3

'113

00
LA

CD OD
:3 =3
cy- cr u
a0

00 4j
c c_-
CD 0

Cl- eý F= -
"ý a) 11 -r3 :3
Ir "I r= 0
ýLJ =3 CO D,
L'I -- =3 (D 0-
uj Ln v) o I--
CD,

uj Cý Cý 11, Lfý ('ý C, :> cx

Figure 2-2 ESSO with Example-Window active.

14

Figure 2-3 ESSO with text editor active.

15

a 0
co
CD

Co

'a.
x

LAJ

E>

co
v

I
T3
CD
%A
0
C3.
0

CL

C>

CD

CL

E
co :, c
w

C>

uj

C>
k/l
LLJ

cr

m

U
LA ý2: 1
la

CY) Ad CT) f Ln
un

v 4

tA co

CD -E3
13 D 1ý f
(1) (15

73
C: tn

cr- tv

CD V)

Ln Z3
LA

C)

4 tn

0

Ln 4 (A

t'n
Un
m

ul CD

CS
LA-1

LA

f c Q)
W cyl-

4 0
Ln

-v CD

-13-0

(D CE) (V
ý V) -

6 A64 464 44 44 4a Zj :3 LA

Figure 2-4 Term subwindow with STARS
active.

16

2.2.3. STARS Button.

STARS button is used to
STARS, developed by DRA/PSI.
the cursor on this button and
STARS optimization run in the

run the optimization routine,
This is performed by pointing

select. Figure 2-4 shows the
term subwindow.

2.2.4. Run ES Menu Button.

This Run ES Menu is invoked by pointing the cursor to
this button, pushing the mouse's menu button, drag to the
application required and releasing the menu button. There
are four applications which can be activated, Set-up, Run-
time, Result, and Modify. The task of each is as follow:

Set-up is for setting up the optimization run,
Run-time is for monitoring the optimization run,
Result is for interpreting the optimization result, and
Modify is for modifying the optimization set up based on

actions proposed by Run-time and Result.

Figure 2-5 shows the term subwindow with Set-up active.

2.2.5. EditFile Menu Button.

As the name implies, this button's task is to activate
the text-editor. When activatedf the menu shows the list of
files. Drag the cursor to the file required and release the
button. Figure 2-3 shows ESSO with the text editor active.
To invoke editor functions (such as find and replace or
saving file) push the mouse's menu button inside the text
subwindow, drag the cursor, and release at the required
operation.

2.2.6. Example Menu Button.

This button is used to invoke the examples provided
with ESSO. Figure 2-2 shows "Example 1". There are two

subwindows, the canvas (upper subwindow) shows the design

problem and the structure being considered. The text

subwindow (lower subwindow) contains the appropriate
response for solving the design problem. A vertical
scrollbar for going back and forth is provided in the text

subwindow.

2.2.7. Proposed-case Menu Button.

In ESSO, one way of setting up an optimization is by

recalling similar past cases. If similar past cases (to the

current design problem) exist, these cases can be accessed

17

Z

(D
x

Co C',
CD CD

cr_

u

C>

I_-
0

Co 11 C',
.

LLJ

C>
(D

co
v

CD
LA
0
OL
0

' CL u-
C>
2
cl.
E
co x uj 11-1

oo-q
C>

Z: : C>

LL t . E

CL
C>

C>
tA ý: c 0
Ld cc f

cr- cr :3Dv

ki u (1)
ý. j =3 =3 _0

cr 4. J I-
kA LA cc

U)
a) CD =3

LU =3 =3
cr 07

Ln 00 =3

L/) <D 00 A'
x x

00
cc CL ýý
W Ln CL,
Cl-
><

1ý (U 0
1. - -C:

D"
LLI V) 73 CD Cý 4J

L

Lý C> c

ký (4 ff) V- tr) (D OD

fl

,> CL

.

I-

(2

Figure 2-5 Term subwindow with Set-up
active.

cd
a:

e-
C>

(0

ID
cl

E
Cd x w

LLJ

Dp

LU
c :3

'cr

0

ux Ill:
9

9

Q

c Cl
U'

. 4-

0

U

0

U'
'4-

V) 0

f)
vt

(A > 0-

ce c-. IA t-. 0 1C3
L- C0L. -Z (D 0 £1 vý
(D cil v (n CI) a) -6 oý- Ni. -
AM 4-- ýy-ý ý Wý-

e =O 0 000 0 00
c

LLJ %- vý (n
tn Xo (D VI GD (P (D cz CD (D (D i;

-0 . -0 2
-0 '0 r= cu j= 9 E- r= E= Z) EE r= r= r=

:3 41 Z 41 :3 :3 :3 CY Z (Z :3 :3 ý c: (A c %A c c: r- G r- cE r- -

Figure 2-6 A similar case proposed by ESSO.

CD
PC I

kA
0

0.

0
kn :
co
(D

cc

18

19

through the Proposed-case menu button. This menu button
contains the proposed cases in descending order. The
FE model of the past cases can be seen through MSC/XL by
following the instructions given in one of the subwindows
which appears when any proposed case is invoked. Figure 2-6
shows a proposed case. The FE model is also shown through
MSC/XL.

2.2-8. Explain_reason Menu Button.

This button is invoked if
explanation or reason for any
associated with optimization set up,

2.2.9. ReadMe_first Button.

the user requires an
action/decision/advice
run-time, and results.

When invoked, a file which contains information
relating to the requirements and procedure for running ESSO
is open. It is very important that ESSO users read the
information in this file carefully.

2.3. RUNNING ESSO.

ESSO needs a graphic terminal to run. ESSO workspace
can be invoked by typing esso followed by enter in the
shelltool or cmdtool window. The ESSO workspace (see figure
2-1) will appear. It is important to make sure beforehand
that all files required by ESSO are in the same directory
(directory where ESSO is invoked) . It is users responsibi-
lity to prepare the FE model of the structure. This should
be in NASTRAN format without executive control cards. The
FE model should be stored in a file called essonsin. dat.

The typical sequence of running ESSO would be:

Setting up the optimization by running Set-up applica-
tion in Run ES menu. This will produce set-up files
(driver files) required by optimization routine
(STARS).

2. Run the optimization routine (STARS) by selecting STARS

button. Enter esso when STARS asks for userid and enter

run at the prompt.

3. When STARS stops, exit from STARS by entering exit at
the prompt. Run the Run-time application from RUN ES

menu. This predicts the possibility of an optimiza-
tion run converging. If convergence is in sight go to

step 4. If the optimization is not predicted to be

converging the system will search for explanations and

20

propose actions to follow. To implement these actions,
go to step 6.

4. Resume the STARS run. This is done by selecting the
STARS button, enter esso as userid, and enter resume at
the prompt.

5. When STARS stops, run the Result application from RUN
ES menu. This application interprets the optimization
result. If the result is satisfactory the ESSO session
stops, otherwise the system will search for explana-
tions and proposes actions to follow. To implement
these actions, go to step 6.

6. Run the modify application from RUN ES menu. This
application will modify the optimization set up based
on the actions proposed in step 3 or 4.

Go to step 2.

For first time users, the best way to become familiar
with ESSO is by running the examples given in Example menu.
Call the example and at the same time run the Run ES. Run
the case in Example by supplying the information required
by applications in Run Es according to the response given
in the example.

To exploit. MSC/XL from inside ESSO for viewing the

structural model of proposed past cases (or to do other
tasks) the users have to do the following:

- Select the MSC/XL button after ESSO workspace appears on
the screen. This action has to be done before the users
run other ESSO applications.

- Iconize the MSC/XL workspace into an icon.

- At this stage the users can run ESSO applications as nor-
mal.

- When required the users can invoke MSC/XL by opening the
MSC/XL icon. When the MSC/XL shows a blank window the

users have to restore the MSC/XL window. This is done by

pressing the menu button on the MSC/XL title bar, drag to

the "restore" option and release the button.

However, it is better to run MSC/XL from outside ESSO. To
do this, open a conunand-tool or shell-tool window and

make esso sub-directory as the active directory. Enter

x13a at the prompt.

21

CHAPTER 3:

EDITING ESSO KNOWLEDGE BASE

For an Expert System to be able to work effectively,
it is important that its knowledge can be easily modified.
New knowledge needs to be added to the existing knowledge
base. It is also necessary to modify the contents of the
knowledge base when the current knowledge is no longer
relevant. Another important aspect of any knowledge base
system is explanation. when required, the system should be
able to give its reasoning for any decision taken. This
chapter explains the way the ESSO knowledge bases are coded
in C++ language and how to edit or modify them. For any
modification in the knowledge base, the associated
explanation also needs modification, and this is also
discussed in this chapter.

ESSO KNOWLEDGE BASE.

There are four modules in ESSO which contain the
knowledge bases and reasoners namely, the memory module,
the conventional module, the run-time module, and the
result interpretation module. The task of the memory and
conventional modules are for setting up the optimization.
The run-time module monitors the optimization run. The

optimization results will be interpreted by the result
interpretation module.

The knowledge base of the run-time and result
interpretation modules were constructed using procedural
rules,, IF-THEN rules. The knowledge base of the

conventional module combines' the domain/subject knowledge

with IF-THEN rules. This domain knowledge contains the
domain properties while the rules reason about them. The

approach used in the memory module is based on case based

reasoning. Similarity rules were set up to find similar

cases among the past cases recorded in the memory module.

The domain knowledge of the conventional module was

structured according to object oriented methodologies. Each

optimization method is treated as an object and stored in

a file. This represents the optimization method

capabilities in handling design problems.

In the memory module, the domain knowledge contains

past experiences in dealing with design problems. Each

design experience is stored as a record. Each record, which

represents a design case, contains the design problem and
the set up of the optimization strategy for solving the

22

design problem. Whether cases can be regarded as similar
depend on the value of certainty factors of the cases after
similarity rules are applied.

3.2. THE CONVENTIONAL KNOWLEDGE BASE.

The knowledge base of the conventional module combines
both object oriented schemes and production rules. The
object oriented scheme represents domain properties while
rules reason about them. A simple way to show this relation
is by writing production rules which send messages to
objects and test the response in their premises. For
example,

Rule :
IF (fsd. analysis testo = true and

(fsd. constraint testo = true
THEN (fsd. to-consider = true) (3-1)

The rule tests the object fsd (fully stressed design) if it
can do both the analysis and constraints. It is the object
fsd itself which does the analysis test and constraint-test
operations. The object will see i7f it can do analysis and
constraints requirements of current design problem. If the
rule premises are satisfied, then the fsd method will be
considered for subsequent tests.

The problem with the above rule is that it is written
in a procedural way. This type of programming leads to
difficulties in writing the inference engine and the
knowledge base as two separate modules. In an Expert System

program, the user/programmer should be able to modify the

rules (knowledge base) without interfering with the
inference engine. A better way to code the above rule is,

IF analysis_test = true and
constraint test = true

THEN (method_to_consider = true (3-2)

The premises variables (analysis test and constraint_test)
have to be instantiated first. The instantiation is

performed in an assignment/instantiation routine which

sends enquiries to the appropriate object, in this case
fsd, about its capabilities in handling analysis and

constraints required. Functions analysis_test and

constraint test in the object fsd will provide the answers
to these enquiries. If the conditions of the rule is

satisfied then the conclusion method_to_consider is

instantiated to true. For certain information, instead of

asking questions to various objects, this assignment

routine might ask the users to provide the answers.

23

The above illustration leads to the discussion about the domain/subject knowledge (written in an object oriented
scheme) and production rules in the conventional module and
their editing.

The Domain/Subject Knowledge.

The domain knowledge contains the information about
objects capabilities. The objects in this case are the
optimization methods. Object oriented methodologies are
used to represents this domain knowledge. For this purpose,
two classes are defined,, those are class Procedure and
class METHOD. Procedure is a base class with METHOD as its
child class.

The task of the class Procedure is to deal with
matters relating to optimization algorithms. It contains
parameters which define the capabilities and properties of
optimization algorithms. This class also contains
procedures for interrogating the available algorithms with
regard to their capabilities in handling a current design
problem. Object procedure is created from this class. The
class Procedure is defined as follows (written in C++
terminology,

class Procedure
public :

/* the parameters below refer to algorithm capabilities
in dealing with */
max number of load case

int load case,
lagrange multiplier.

lagrange;
number of analysis types, number of constraint types.

int analysis num, constraint num;
ype, number of element type number of-convergence t-

available.
int convergence

-
num, elem avail-num;

// combine analysis, combine constraint.
int combine

-
analysis, combine_constraint;

// stress constraint;
int stress constraint;
// an algorithm might need stress constraint (e. g. FSD).
int need stress;
// analysis types
char analysis [10][40],
// constraint types

constraint [101 [40],

convergence criteria types
convergence [101 [40],

element (FE) types
elem-avail [101 [40];

24

/* method currently available
// number of method
int num of method;
// method -name
char method name[5][20];

// procedure to invoke available methods.
void case_method (void);

/* procedures below are to test whether an algorithm can
handle current design requirement with respect to fol-
lowing aspects
analysis

int analysis - checking (void)
// constraint
int constraint checking(void);

load case
int loadcase checking (void)
// element. (FE) types
int element checking(void);

) procedure; // object procedure is defined.

class METHOD : public Procedure
public :

// method name
char name[10];
// procedure for reading the file
void Dbase-read(char f[101);
method[5]; // five objects are created.

The class METHOD is the child of the class Procedure.
During program run several object are created where each
object represents an algorithm. The name of the available
algorithms are stored in a file called method. dat. The data

relating to an algorithm is read from a file. For example,
data for the fsd algorithm is stored in a file called
fsd. dat. There are five algorithms available in ESSO.

3.2.2. The IF-THEN rules.

The IF-THEN rules are used for reasoning. The

coding of these rules in C++ is implemented using switch -
case operation as follows,

swi t ch (sn) f

// 1 part:

25

case
if S=l;
break;

j
case 2:

if (. S=J;
break;

I
case 3:

if (. S=l;
break;

I

case i:
if (..... break;

j

case n:
if (..... break;

I

I

// see if the then part should be invoked, i. e s=1
if (s! =l)

goto ...

// invoke the then part

switch (sn) f

// then part
case 1:

instantiateo;
break;

case 2:

instantiateo;

26

break;
j

case i:

instantiateo;
break;

case n: f

instantiateo;
break;

j

I

Which rule (referred to by rule number) to be considered
depends on the value of sn. The number after case is the
rule number, from 1 to n. In the 'if part', if rule
premises (within parentheses) are satisfied, then the value
of s is instantiated to 1. In that case the 'then part' of
that rule (within parentheses) will be fired. The function
instantiateo is part of the inferencing mechanism and
users should not worry about this.

3.2.3. Editing the Knowledge Base.

(1). The Domain Knowledge.

The part of the domain knowledge which might need
modification (editing) is the files which contain the data

referring to the algorithm capabilities. The data for each
file is written in a standard sequence as follows,

Parameters: Explanation:

analysis num; Number of analysis.
analysisTil; Types of analysis (array).

combine_analysis; Capability in handling analysis com-
bination.

constraint-num; Number of constraints.
constraint[i]; Type of constraints (array).

combine_constraint; Capability in handling constraint
combination.

27

stress-constraint;

need_stress;

convergence num;
convergence
load case;
lagrange;

elem
-

avail-num;
elem-avail[i];

Capability in handling stress cons-
traint.
If an algorithm needs stress cons-
traint.
Number of convergence criteria.
Type of convergent criteria (array).
Number of load case.
Capability to calculate lagrange
multiplier.
Number of element types.
Element names (array).

For example, the capabilities of the optimality criterion
algorithm is coded in opc. dat as follows,

3
static
normal modes
buckling
0
4
stress
displacement
buckling
natural-frequency
0
0
0
3
ENDP
ENDF
ENDT
20
1

7
CQUAD4
CTRIA3
CSHEAR
CBEAM
CBAR
CROD
CONROD

number of analysis capability

> not suited to analysis combination
> number of constraints capability

> not suited to constraint combination
> can not handle stress constraint
> does not need stress constraint

> number
> able to

plier
> number

The IF-THEN rules.

of load cases capability
calculate lagrange multi-

of available element types

The rules are stored in a file called conv-rule. dat

which is coded as follows,

#ifdef RULE

// if-then statements

28

// if part:
case 1:

if (..... break;
j
case 2:

if (..... break;
j
case 3:

if (..... break;
I

case
if
break;

j

case n:
if (..... break;

j

I

) s=1;

) s=1;

) s=1;

) s=1;

) s=1;

// see if the then part should be invoked, i. e s=1
if (S! =l)

goto ... j

// invoke the then part

switch (sn) f
// then part
case 1:

instantiateo;
break;

case 2:

instantiateo;
break;

29

case i:

instantiateo;
break;

case n:

instantiateo;
break;

I

#endif

#ifdef VARLIST

// list of variables
strcpy(varlt[l],
strcpy (varl t [2],

st rcpy (va rl t [k

// list of variables in rule premises
strcpy(clvarlt[l],
strcpy (cl varl t [2],
strcpy (clvarl t [111, " --- ") ;

strcpy(clvarlt[2111 FF ... FF)
"t rcpy (cl va rl t [22], " --- ") ;
" trcpy (cl va rl t [231, " --- ") ;

11rule-1

11rule-2

11rule-n

#endif

30

#ifdef CLASS PAR

#endif

#ifdef CHECK INST

void apriori-reasoning:: check instantiation (METHOD object)

while ((strcmp(v, varlt[i]) ! =O) && i<=30) i++;
if (instlt[i]! =l)

instlt[i]=l;

switch (i)

case 1:
............ break;

case 2:

............ break;

case m:
............ break;

#endif

This file consists of four sections in which each

section is coded between #ifdef and #endif statements.
Those sections are,

rules (between #ifdef RULE and #endif)
list of variables (between #ifdef VARLIST and #endif)

variable definition (between #ifdef CLASS PAR and #endif)

instantiation (between #ifdef CHECK INST and #endif).

An editing process normally is started with modifying
the rule premise and/or conclusion, adding new rules, or
deleting any existing rules. The rule premise might be a

31

single premise or multiple premises with logical AND or OR.
All new variables in rule premises should be written in the
list of variables and list of variables in rule premise.
Those new variables should be defined in the variable
definition section. How a variable gets its value should be
specified in the instantiation section. In carrying out the
editing process, familiarity with C++ will help users. The
users are advised to study the convrule. dat to understand
the relation between those four sections.

3.2.4. Explanation Facility.

Associated with each rule (IF-THEN statement) is an
explanation-statement of that rule. This explanation-
statement describe the contents of the rule using easy to
understand sentences. When a rule is fired, the associated
statement is recalled. The coding of the explanation-
statement is as follow:

11case 1:
strcpy (texrule [1 text [0],
strcpy (texrule [i text [1

strcpy(texrule[l]. text[q-2], "
strcpy(texrule[ll. text[q-11,11
t exrul e [1]. t extn um=q;

11case i:
strcpy(texrule[i]. text [0],
strcpy (texrule [i]. text [11

strcp_y (texrule[i] text [r-2],
strcp_v (texrule [i] text [r-1],
texrule[i]. textnum=r;

11case n:
strcpy(texrule[n]. text[Ol, "

strcpy(texrule[nl. text[ll, "

32

strcp_y(texrule[n]. text [s-2],
strcpy(texrule[n]. text [s-1],
t exrul e [n] .t extnum=s;

The number of explanation statements is the same as the
number of rules which is n. The parameters q, r, and s are the number of "sentences" in each of statement. The
explanation-statements for the conventional module are
stored in the file convexpl. dat. The user should learn this
file and the associated knowledge base file convrule. dat.

3.3. THE MEMORY KNOWLEDGE BASE.

The knowledge base of the memory module also consists
of the domain knowledge and the IF-THEN rules. The domain
knowledge is the system's memory of its past experience
which can be regarded as a file containing a collection of
knowledge (past experience) records. Each record contains
a (past) design case and its solution, held in the form of
the similarity parameters (for similarity parameters and
similarity rules please see chapter 5 in the main thesis)
with their associated values and the successful
optimization strategy for that particular case. The IF-THEN
rules are the similarity rules and are used to reason in
capturing the design case record which is similar to the
current design problem.

The Domain Knowledge.

Each record in the knowledge base contains the
following information (stored in fields),

- number of analysis,
- analysis types,
- number of constraints,
- constraint types,
- number of nodes,
- number of elements,
- element types,
- number of design variables,
- solution which consists of algorithm,

and number of iterations,
comments, comments on the optimization
filename, the filename where the FE data

Thus a typical record might be,

number of analysis:
analysis types:

process,
are stored.

1;

statics;

33

- number of constraints: 2;
- constraints types: stress, displacement;
- number of nodes: 5;
- number of elements: 6;
- element types: rod;
- number of design variables: 6;
- solution: pseudo-newton algorithm, n number of

iterations
- comments: a straight forward optimization run
- filename: framnsin. dat;

Such record can be written in C++ using Structure. The
DESIGN

-
CASE structure below is used to represent the

system's memory.

struct DESIGN CASE
int index;
int num analysis;
int num constraint;
int element type num;
int element num;
int node num;
int design var;
int algor iteration;
int fsd iEeration;
int us(4-d rule[20];
int num ? ired rule; -
float Used ci-[201;
float cf value;
char analysis[7][40];
char constraint[7][40];
char element type [7] [4 0]
char algor name[10];
char filename[40];
char comment [101 [801;
struct TEXTRULE explain_rule[25];

Records of the system" s past experience can be seen in
memory. dat. Some members of the above data structure are
used for reasoning process only and do not appear in the
data file. The TEXTRULE is a structure which is used to

store the explanation-statements and these statements are
stored in memrule. dat together with the similarity rules.

3.3.2.

The
format:

The Similarity rules.

similarity rules are written in the following

34

// rule 1
if &&

............. &&

.............
................
rule[l]=TRUE;
cf[lj=x. xx;

j
// text rule 1
strcpy(textrule[l]. text[O]., " strcpy(textrule[l]. text[l], "

strcpy(textrule[l]. text [q-2],
strcpy(textrule[l]. text[q-1]., "cf=x. xx");
textrule[l]. textnum=q;

// rule i
if (.............

.............

.............
................
rule[i]=TRUE;
cf[i]=x. xx;

text rule i
strcpy(textrule[i]. text[O], "
strcpy(textrule[i]. text[l],, "

strcp_y (textrule [i] text [r-21,
strcp_y(textrule[i I text [r-11, "cf=x. xx");
textrule [i] . textnum=r;

35

// rule n
if (.............

.............

.............

................ rule[n]=TRUE;
cf[nl=x. xx;

j
// text rule n
strcpy(textrule[n]. text[O],, "
strcpy(textrule[n]. text[l], "

strcpy(textrule[nj. text[s-2j, " 11);
strcpy (textrule [n]. text [s-1], "cf=x. xx")
textrule [n] . textnum=s;

A certainty factor (cf) with a value of x. xx is attached to
each similarity rule. Although the rules above show AND
(&&) relationships, the rule premises could also include OR
relationships. As shown above, the explanation-statements
are written below associated rules. The similarity rules
are stored in the file memrule. dat.

3.3.3. Editing The Knowledge Base.

(1). The Domain Knowledqe.

Editing the domain knowledge (past cases) is not
normally required. The only situation where it is necessary
to edit the domain knowledge is when the similarity
parameters of the cases need modification. However this

requires some modification in the code of the memory module
(file memor_y. cxx) The domain knowledge is stored in the
file memor_y. dat.

Each past case also includes the FE model which is

written in NASTRAN convention. Instead of a complete FE

data, each case only stores the name of the file where the

data is stored. All FE files are placed in the directory

FE dat which is the child directory of ESSO working
directory.

36

The similarity rules.

The similarity rules are stored in memrule. dat.
Although not normally recommendable the user can change the
contents of the rules and certainty factor values.

3.4. THE KNOWLEDGE BASE OF THE RUN-TIME AND RESULT
INTERPRETATION MODULES.

Both the run-time and result interpretation modules
use procedural rules as the knowledge base. The structure
of the rules (IF-THEN rules) are similar to the rules in
the conventional module. Editing process also carried out
in a similar way. The knowledge base of the run-time
interpretation module is stored in runtrule. dat while the
explanation-statements are in runtexpl. dat. The knowledge
base of the result interpretation module is stored in
res1rule. dat, while the explanation statements are in
reslexpl. dat.

37

CHAPTER 4:

THE COMPUTER PROGRAMS OF ESSO

This prototype is called ESSO (Expert System for
Structural Optimization) and it's task to give guidance to
the designers who wish to employ optimization. The task of
ESSO is to guide the users in setting up an optimization,
monitoring the optimization run, and interpreting the
results or any failure associated with an optimization run.
For the trial implementation, the STARS optimization
package is used as the optimization tool. The ESSO set-up
application produces setup files, which are called driver
files, to run the STARS optimization system. These files
are CDF (command data) and CONS (design specification)
files. The third file required by STARS, a file contains
finite element model, is to be prepared by'the user.

At present, the prototype can handle static and
dynamic problems. Any set of constraints associated with
both types of analysis can be handled by the system.
Currently, the prototype deals only with isotropic
materials.

The modules available in the prototype are,

(1) the design input module,
(2) the memory module,
(3) the conventional module,
(4) the element module,
(5) the variable module,
(6) the constraint module,
(7) the driver-files module,
(8) the run-time module,
(9) the result interpretation module, and
(10) the modification module.

Modules (1) to (7) are set-up modules with the task of
setting up the optimization. The last three modules are
part of the system's back end. For data processing, the
modification module makes use the object structures of the
design input module, element module, variable module, and
constraint module.

The prototype is written in C++ in object oriented
approaches. Each module is written as a class with its own
task. Some modules are defined with only one class while
others have a parent and several child classes. Objects are
created during executions and defined as global objects
(similar in concept to global variables) which can be

accessed by every module in the prototype.

38

The set-up modules are compiled and linked into an
executable file called Set-up, the run-time interpretation
module into Run-time, the result interpretation module into
Result, and the modification module into modify. As
discussed in chapters one and two of this manual, ESSO is
run through a user interface based on XView. This user
interface is written in C. All the programming was carried
out in the SUN SPARC II workstation.

In this chapter, the computer program of ESSO and its
user interface is presented.

THE DESIGN INPUT MODULE.

The task of the design input module is to obtain
information relating to the design requirements such as the
analysis requirements, constraint requirements, number of
design variables, and general information of the FE model.
This module consists of one class, Desiqn, which has the
parameters for defining the design requirement and the
operations/functions relating to obtaining the design
requirement. The class Design defines the object design.
All design specifications are stored in this object and
these can be used by other modules through object passing.
This object deals only with a general design requirement.
More detail specifications are dealt by other modules. For
example, with regard to the constraint requirement, object
design only stores type of constraints (such as stress,
displacement) while details of the constraint values are
handled by the module constraint.

The data for this module,
specification, is supplied by
design. Data in this object is

conventional, variable, element,
and modification modules. Data
sending object design to those m

in the form of a design
the user and stored in
required by the memory,

constraint, driver-filesf
transfer is performed by

odules.

The design input module consists of one file, that is
design. cxx.

4.2. THE MEMORY MODULE.

-Following the execution of the design input module,
the memory module is invoked. This contains the reasoner

and the knowledge base for the past experience knowledge.

The detail description of the mechanism inside this module
has been discussed in chapter five. If there is a similar

case found then the execution proceeds to the variable and

element module, otherwise the conventional module is executed.

39

The information required by the memory module is
supplied by object design in the form of the design
requirements. If similar cases are found then those cases
are proposed for use. The output of this module, definition
of the optimization set-up of the proposed case is used by
the driver-files module. During its execution, the memory
module needs data from several files, s case. dat,
d_case. dat, and sd case. dat which stores records of
system's experience, and memrule. dat which contains the
similarity rules. Reasons on past cases selection are
recorded in files which are produced during the module run.

The memory module consists of the following files,

- memory. cxx, the memory module program,
- memrule. dat, which contains the similarity rules,
-s case. dat, which contains static past cases,
- d7case. dat, which contains dynamic past cases,
- sj case. dat, which contains past cases with combination

of static and dynamic analysis.

4.3. THE CONVENTIONAL MODULE.

The conventional module contains the reasoner and the
knowledge base for the a priori knowledge. Similar to the
memory module, the information required by the conventional
module is supplied by object design. The output of this
module, definition of the optimization set-up, is sent to
the driver-files module. During execution, this module
needs data from method. dat, which contains the names of
available algorithms, and the following files, fsd,

_pn.
dat,

fsd opc. dat, fsd. dat, opc. dat, and pn. dat, each stores
information about the algorithm capabilities.

The files which constitute this module are,

- convent. cxx, the inference-engine of conventional module,
- method. dat, which contains the algorithm names,

fsd. dat, which contains the characteristics of fully
stressed design algorithm,

- opc. dat, which contains the characteristics of optimality
criteria algorithm,

- pn. dat, which contains the characteristics of pseudo
newton algorithm,

- fsd,
_pn.

dat, which contains the characteristics of the

combination of fully stressed design and pseudo newton.

- fsd opc. dat, which contains the characteristics of the

combination of fully stressed design and optimality
criteria.

- convrule. dat, which contains the IF-THEN rules,

- convexpl. dat, which contains explanation statements asso-
ciated with the IF-THEN rules.

40

4.4. THE ELEMENT MODULE.

The task of the element module is to deal with those
operations related to the finite element model such as
elements numbering and displaying elements characteristics.
The details of the FE model are supplied by the user. This
module has a base class, Element, which itself has three
child classes, Plate membrane, Beam,, and Axial rod. The
class Beam has four child classes, those are I-beam

', channel-beam, T-beam, and rectanqular beam. The classes
under the class Element contain information about element
characteristics and relations between design variable
properties and analysis properties. Any element type used
in the FE model is associated to an appropriate element
class and entitles to the characteristics belong to that
class. For example, a CBEAM (a NASTRAN element type)
element type will be associated to the Beam class, and if
the beam used is having a rectangular cross section then it
will be associated further to the rect ' anqular beam class.
The output of this module is an FE data and element
characteristics stored in various element objects.

Other information required by this module is the
design requirement which are concerned with the general FE
model and supplied by object design. The output of this
module is required by the variable and driver-files
modules.

The element module consists of the following files,

- element. cxx,
- beam. cxx,
- rod. cxx,
- plate membrane. cxx.

4.5. THE vARIABLE MODULE.

The variable module has the task of dealing with
operations relating to variable formulation. This module
consists of one class, Variable. Object variable is created
from this class. The variable asks the user to supply

variable specifications such as finite element types and

element numbers in each design variable and stores them in

this object. It also advises the users if incompatible

element types (having different analysis properties) are

grouped in the same design variable, for example if the rod

elements is put under the same design variable as the plate

elements. This module needs information relating to the

element characteristics.

In order for the variable module to run, it needs
information relating to the design requirement which is

41

supplied by object design, and the elements characteristics
supplied by various element objects. The user also has to
supply variable specifications. The object variable is
required by the driver-files module.

This module contains two files, those are,

- var. cxx, which handles variable operations,
- el infer. cxx, which examined whether the grouping of ele-

ments in a design variable is appropriate.

4.6. THE CONSTRAINT MODULE.

The operations relating to details of the design
constraints are handled by the constraint module. This
module has a base class, Constraint. This class has several
child classes which deal with more specific type of
constraints namely, Static constraint, Normal modes cons-
traint, Bucklinq constrai-nt,, and DVnamic-const-raint.
Depending upon the analysis and constraint requirements,
the appropriate objects are created. For example, if a
static analysis with stress constraint is required, then
object static constraint is activated.

This module needs detail information which is related
to constraint specification supplied by the user. Some of
the information is supplied by the object design. The

products of this module, various constraint objects, are
required by the driver-files module.

This module consists of the following filesf

- constr. cxx,
- static. cxx,
- buckling. cxx,
- dynamic. cxx.

4.7. THE DRIVER-FILES MODULE.

The task of the driver-files module is to produce
files which are used to run the optimization software. In

this prototype, the driver-files module produces files for

running the STARS optimization package, namely command data

file (CDF) and design specification file (CONS) We may

note that STARS is being used to represent a general

structural optimization system and the prototype is not

written in a STARS specific manner. The ideas and concepts

being trialed here are generally applicable to any system

which employs driver files. The CDF consists of a set of

instructions for running optimization which includes the

42

optimization method to use, number of iterations, and
convergence criteria. The CONS defines the variable set-up
and constraint set. The driver files module consists of two
sub-modules. The first sub-module, the cdf produces the CDF
file, essocdf. dat, while the second sub-module, the cons
produces the CONS file, essocons. dat. The information
required by the driver files module to produce these two
files is obtained from the modules executed previously. For
different optimization packages, the driver files module
has to be modified accordingly.

The driver files module consists of these files,

cdf. cxx, which produces the STARS command data file,
cons. cxx, which produces the STARS design file.

4.8. THE RUN-TIME MODULE.

The run-time module is part of the backend module.
With the driver files and FE model (prepared by the user)
available, the optimization system can be run. This will be
suspended after several iterations to check whether the
optimization is converging. This check is performed with
the aid of an extrapolation routine in the run-time module.
If convergence is predicted the optimization run is resumed
otherwise the module searches for explanations and proposed
actions to follow. The proposed actions are printed in the
file action. dat.

The run-time module consists of the following files,

es-run. cxx, which controls the run-time module,
constype. cxx, which check if a constraint type is re-
quired in the design requirement,
runtime. cxx, the inference-engine,
runtrule. dat, which contains the IF-THEN rules,
runtexpl. dat, which contains the explanation-statements
associated with the IF-THEN rules.

4.9. THE RESULT INTERPRETATION MODULE.

If a point is reached where the convergence cri eria

selected by the user are satisfied (or the maximum number

of iterations is reached) the result interpretation module

checks the optimization results to ensure that this point
is indeed optimal. For satisfactory results the current
design problem and its optimization set up is appended to

the case memory in the memory module. If this module

regards the optimization result as unsatisfactory it offers

explanation of the reasons of failure and proposed actions

43

to follow. The proposed actions are printed in the file
action. dat.

The result interpretation module consists of the
following files,

- es
-

res. cxx, which controls the run-time module,
- result. cxx, the inference-engine,
- constype. cxx, which check if a constraint type is re-

quired in the design requirement,
- case_upd. cxx, which updates the case memory of the me-

mory module with the current design problem,
- reslrule. dat, which contains the IF-THEN rules,
- reslexpl. dat, which contains the explanation-statements

associated with the IF-THEN rules.

4.10. THE MODIFICATION MODULE.

The modification module has the task of modifying the
optimization set-up if required. The modification is based
on the actions, stored in action. dat, proposed by the run-
time module or the result interpretation module. The
modification module also needs design data and the
optimization set up produced by the front-end. For
design/constraint data processing, the modification module
makes use of the objects structures of the design input

module, the variable module, the element module, and the

constraint module. The memory and conventional modules are
used for algorithm data processing. The modification
instructions are sent to the driver files module. After

modification, the new data is sent to (modified)
buffer. dat.

The modification module consists of the following
files,.

- act read. cxx, which reads the proposed actions stored in

action. dat,
- des-read. cxx, which reads the optimization set-up and

design data stored in buffer. dat,

- mod. cxx, which decides on what to do with the proposed
actions.

4.11. SEQUENCE OF MODULES EXECUTION.

ESSO execution is started by running set-up. The first

step the users have to do is to supply the design

requirements. The design input module asks the user to

supply,

44

- type of analysis,
- the constraint set,
- FE data which includes the number of nodes, number of

elements, element types, and number of load cases,
- number of design variables.

Based on the ab(
searches for a similar
found the associated
proposed to the user.
also presented. Having
moves to the element
element module.

we information
, the memory module

case in its data base and if one is
optimization set up solution is

The reason for proposing a case is
accepted the solution the execution
specification catered for by the

The conventional module is invoked if the memory
module can not find similar cases. As with-, the memory
module, the conventional module searches for an
optimization solution using the information provided during
the design input stage. This is performed by a reasoning
process employing a-priori knowledge. The user can query
the solution proposed by this module. Having accepted the
solution the execution moves to the design variables
specification.

To specify the design variables the user needs to
define the element types for every design variable. If
incompatible element types are grouped in one design
variable the user will be warned and asked to make
modifications. If everything goes well then the user is
asked to specify the element numbers for each design
variable.

Depending upon the type of analysis used the system
asks the user to supply the associated set of constraints.
For example, if a static analysis is required then the user
will be asked to supply constraints such as displacement,
stress, or strain, and not natural frequency. For an
analysis type the user has to supply one or more constraint
types associated with that analysis. Most constraints
require the users to supply upper and lower value of the
constraint and gauge limits for each design variable.

At this stage the system runs the driver-f iles module.
If required by the user the driver files can be displayed.
With the driver files and FE model available- (the NASTRAN
FE model prepared by the user) the optimization system can
start running. At this point the set-up phase is completed.
In addition to the driver files, set-up phase also produces
a file called buffer. dat. This file contains the design
information which is required by the backend module. The
file which controls the set-up phase is es-f. cxx. For

producing the buffer. dat, es_f. cxx calls buffsave. cxx.

45

Figure 4-1 shows a flow chart of the procedure in
setting-up an optimization job as implemented in the set-up
phase. It shows the sequence of modules execution but does
not show the modules interactions which can occur at any
stage during the optimization process.

The performance of the optimization run is monitored
by the run-time module which is part of the system's
backend. As mentioned in (4.8) this is performed by
suspending the run after three iterations to check whether
the optimization is converging. If convergence is predicted
the run is resumed. The optimization results are
interpreted by the result interpretation module. If the
optimization results are satisfactory the ESSO session
stops. In the case where the results are not satisfactory
or the optimization run is predicted not to be heading for
convergence, the system will search for explanations and
proposed actions to follow. Based on the proposed actions,
the modification module modifies the optimization set up
for another optimization run.

Figure 4-1 shows the sequence of modules execution but
does not show the modules interactions which can occur at
any stage during the optimization process. The data flow
diagram among various modules is shown in figure 4-2.

46

design input
module

memory module

< similar or NN
near-similar

Y
conventional

module

element rnodul

variable module

Figure 4-1 (continued on next page)

47

S
constraint module

driver files
module

OPTIMIZATION RUN

optimization
result

back end module

Figure 4-1 The sequence of module execution.

48

c 0
9. E

CL GC ii E r_ -? 'c 0 r_ CL

r, L
r. L

A2
N «9

<

C) 0

r. L CL
(0 CD = cn Z' -2 eE<0

CA

CL (V >
cb

(D
E

Figure 4-2 The data flow diagram.

49

CHAPTER 5:

INSTALLATION PROCEDURE

The ESSO programs are provided in two 3.51, floppy
disks. Diskl contains all ESSO programs and data. Disk2
contains FE structural models in NASTRAN format associated
with past design cases. Except for the ESSO user interface
program which is in C language, all other programs are in
C++. Currently the provided disks are in MS-DOS format. It
is possible that the programs are stored in different
format (UNIX for example) and media (CD-ROM, tapes, etc.).
The programs, however, are intended to run in UNIX.

All programs are provided as source codes, hence the
computer needs to have C and C++ compiler. Furthermore the
computer should have XView toolkit under the X Window
System installed. This is required for ESSO user interface.
The installation procedure described in this chapter
applied to SUN SPARC-II workstation. For other systems, the
user must consult the computer manager.

TRANSFERRING ESSO FILES FROM STORING-MEDIA TO
COMPUTER.

To install the programs, a directory called esso and
another subdirectory under esso which is called FEdat
should be created. All the files in diskl should be copied
to the directory esso. This is done by inserting the diskl
into the floppy disk drive and making esso as the active
directory. Then type the command,

mcopy a: *. *

in esso directory. This will copy all files- from diskl into

esso directory. This command is only possible if the
computer has MTOOLS installed which emulates DOS-like
commands for floppy drives. Different way of transferring
the files are required if these files are stored in
different format and media. And this should be consulted
from the relevant computer manual.

The f iles in disk2 should be copied to directory

FEdat. This is done by making FEdat as the active
directory. Insert disk2 to the floppy drive and enter the

command,

mcopy a: *. *

50

in FEdat directory. All files in disk2 will be copied to the directory FE-dat. Again, if the files are stored in different format, different way of transferring the files
are required.

5.2. COMPILING AND LINKING.

As the files provided for installation are in the form
of source codes (in C and C++), it is necessary to compile
and link these programs into executable files. ESSO
executable files consist of three application programs and
a user interface program. The application programs are,

es_f, for setting-up optimization,
es-run, for monitoring the optimization run, and,
es-res, for interpreting the optimization results,
es-mod, for set-up modification.

The user interface program is esso. The compiling and
linking process to obtain the above executable files is
described in this section.

-' OF ES F. COMPILING AND LINKINIC-7

The compiling process for obtaining es -f includes all
files in the modules,

- the design input module,
- the memory module,
- the conventional module,
- the variable module,
- the element module,
- the constraint module,
- the driver-files module,

and files associated with the front end controller. The
command for compiling and linking these files using C++
compiler is,

CC -o es-f es-f. cxx

and entered from esso directory.

5.2.2. COMPILING AND LINKING OF ES-RUN.

The es-run is obtained from all files associated with
the run-time module which is part of the backend module.
The command for compiling and linking is,

CC -o es-run es-run. cxx -lm

51

and entered from esso directory. The parameter -1m is
required to include C++ mathematical routines which is not available in the standard header file stdlib. h.

5.2.3. COMPILING AND LINKING OF ES-RES.

The es-res is obtained from all files associated with the result interpretation module which is part of the backend module. The command for compiling and linking is,

cc
-o es_res es-res. cxx

and entered from esso directory.

5.2.4. COMPILING AND LINKING OF ES-MOD.

The es-Mod is obtained from all files associated with
the modification module which is part of the backend
module. The command for compiling and linking is,

CC -o es-mod es-mod. cxx

and entered from esso directory.

5.2.5. COMPILING AND LINKING OF ESSO.

The user interface program, esso, was written in C
language (esso. c) and based on XView. This requires that
XView toolkit under the X Window System installed. The
command for compiling and linking (in SUN SPARC II) is,

cc -o esso esso. c -I/applics/voll/openwin3/include
-1xview -lolgx -lXll

entered from esso sub-directory.

Another C file is xl_proc. c which is required for
invoking MSC/XL. The command for compiling and linking is,

cc -o xl_proc xl_proc. c -I/applics/voll/openwin3/include
-1xview -lolgx -lxll

entered from esso sub-directory. The executable xl_proc is
called by esso when MSC/XL is needed.

52

CHAPTER 6:

EXAMPLES

In this chapter two examples of ESSO sessions are
presented. The first example is concerned with a static
case optimization. The second example deals with a dynamic
problem.

STATIC CASE EXAMPLE.

6.1.1. PROBLEM DESCRIPTION.

A wing structure (cant i lever-wing) is designed to
carry a static load which is assumed to be applied at the
wing tip. The structure consists of upper and lower panels,
f ront and rear spars, and wing ribs. The length of the wing
is 3600 mm. (half-span) . The root-chord length is 2400 mm
with a maximum thickness of 600 mm. The tip-chord length is
800 mm with a maximum thickness of 200 mm. The finite
element model of the wing is shown in figure 6-1 and
consists of 90 nodal points and 112 elements. CQUAD4
membrane elements are used for the wing panels and ribs.
For front and rear spars CSHEAR elements are used. The FE
model in NASTRAN format is shown in table 6-1.

The tensile strength of the material is 250.0 MPa
while the compressive strength is -120.0 MPa. The other
material data used is:

Modulus Young = 79000.0 MPa

poisson's ratio = 0.33
/MM3 mass density = 2.8E-6 Kg

The structure is to be designed to be of minimum
weight subject to limits on stresses given above and on the
lateral displacement of 25 mm at nodes 81 to 85 (wing-tip) .
The gauge limits are as follows, thickness of the

structural elements should be not less than 0.6 mm. It is

specified that maximum thickness of upper and lower panel
is 10 mm, the maximum thickness of spars is 3.5 mm, and the

maximum thickness of ribs is 2.5 mm.

6.1.2. ESSO SESSION.

vccn t-hp- -, P-ssion bv askincf the user to supply J.: j k-1) k-. P %-., --- ---------L

information relating to,
type of analysis, in this case statics,
type of constraints, stress and displacement.

53

The user must now supply a general description of the finite element model of the structure, which consists of,

- the number of nodal/grid points, which is 90,
- the element types, which in this case are CQUAD4 and CSHEAR,,
- the number of elements, which is 112,
- and the number of load cases, in this case is 1.

Ideally the system should draw this information directly
from the FE (NASTRAN) file, but at its current stage ESSO
cannot do this. The user now informs the system of the
number of design variables required, 6 in this example. It
is up to the user to define the set up of the design
variables which link specific finite elements to a design
variable. For example if the panel of a wing bay (between
two ribs) is desired to have a uniform thickness, then all
finite elements in that bay are grouped in one design
variable.

Based on the above information, ESSO searches its
memory using the reasoning process described earlier and
finds one "similar" case,, that is,

case index number 3 (from static
number of analysis = 1, statics,
number of constraint type is 2,
number of nodal points = 24f
number of elements = 26,

cases in memory),

stress and displacement,

number of element types = 11 CQUAD4,
number of design variables = 5,
name of solution algorithm = Pseudo Newton,
maximum number of solution iteration = 4f
convergence criteria = dual gap.

The finite element model for the above case is shown in
figure 6-2. The certainty factor of this case (indicating
the degree to which this solution algorithm can solve the
current problem successfully) is 0.381. The same analysis
and constraint types give positive contribution to

similarity,, though the number of nodal points, elements,
and design variables of this past case are smaller than the

current design problem. This lack of total agreement does

not become a kill off factor because the analysis type is

static and ESSO believes there is a reasonable chance of
success in using this case. The resulting algorithm
proposed as a result of this process is the pseudo newton

with maximum iteration numbers of 4. It is assumed that the

user agrees with this proposal.

54

The next step is design variables set up. The user informs ESSO of the element types in each design variable (there are six design variables in the present case). and ESSO will check whether the elements grouping is
appropriate. The element types of the design variables are,

variable-1
variable-2
variable-3
variable-4
variable-5
variable-6

= CQUAD41
= CQUAD41
= CQUAD41
= CQUAD41
= CSHEAR,
= CQUAD4.

The above grouping is accepted by ESSO and the user then
has to supply the element numbers for each of these design
variables,

variable-1 33,34,49,50,81,82,97,98 (the f irst upper and
lower panel bays near the wing root)

variable-2 35,36,51,52,83,84,99,100 (the second upper
and lower panel bays)

variable-3 37-48f 53-64 (the rest of the upper panel)
variable-4 85-96,101-112 (the rest of the lower panel)
variable-5 65-80 (the front and rear spars)
variable-6 113-144 (the ribs).

The gauge and stress constraints are now supplied:

Gauqes:

1. lower-limit = 0.6
upper-limit = 10.0
element = 33-64f

2. lower-limit = 0.6
upper-limit = 3.5
element = 65-80

81-112 (upper and lower panels)

(front and rear spars)

3. lower-limit = 0.6
upper-limit = 2.5
element = 113-144 (ribs)

Stress: lower-limit -120.0
upper-limit 250.0
for elements 33-144.

ESSO also asks the user to supply
constraint:

lower-limit -25.0
upper-limit 25.0, to Y-direction
at nodes = 81-85.

the displacement

55

At this stage ESSO has performed the necessary
reasoning to construct a solution strategy and the user has
supplied the description of the design problem. It is now
a relatively straightforward for ESSO to create appropriate input data sets for the structural optimization, thus, ESSO
now informs the user that the front end session is
completed and the STARS driver files "essocdf. dat" (see
table 6-2) and "essocons. dat" (see table 6-3) are produced.
ESSO also requests the user to run STARS. When executed,
the STARS run is suspended after 3 iterations. This
suspension is invoked to allow ESSO to examine the progress
of the optimizer and asses the likely success of the
current run to converge to an optimum.

ESSO employs a number of parameters to predict
convergence or otherwise as described earlier. In the
present case the iteration history up to the third
iteration (can be read from the STARS result file
"essorslt. dat") is shown below.

iteration feasible weight dual weight
--

0 127.9 48.3
1 109.5 77.0
2 106.5 99.6
3 106.2 104.8

Based on the above information, the run-time application
predicts that the optimization will reach convergence at
maximum iteration (maximum iteration=4) . In fact the above
data shows that the optimization run has produced a very
good design at iteration 3.

The STARS run is resumed with one more iteration to

complete. After the optimization stops at fourth iteration,
the result application is invoked to check whether this
design can be regarded as optimum. This ESSO application
uses dual weight of the last iteration (iteration 4) and
the most non-feasible constraint (if any) together with any

violated limit value. In the present case we find that at
the optimum,

- feasible weight = 106.2, dual weight = 106.1,

- the " violated" constraint is displacement at node 83

equal to 25.0 mm. with the limit value of 25.0 mm.

Based on this data,, ESSO concludes that the design at
iteration 4 can indeed be regarded as optimum because the

constraints are satisfied while the dual gap is satisfied.

56

Because the optimization produces an optimum design,
the ESSO memory is updated with this design problem.

6.2. DYNAMIC CASE EXAMPLE.

6.2.1. PROBLEM DESCRIPTION.

The same structure as in the first case (6.1) is used
again for this second design case. Instead of the static
design requirement, now the structure is desired to have a
minimum weight while maintaining its lowest natural
frequency above 2.50 cycles/second. This is a dynamic case
with frequency constraint. The FE model and the set up of
the design variables of the first case are retained. The
same material is also used with similar gauge limits on
elements. The FE model is similar to the one in figure 6-1
omitting the static forces. Table 6-4 shows the NASTRAN
data of the model.

6.2.2. ESSO SESSION.

Similar to the first case, ESSO starts the session by
asking the user to supply information relating to,

- type of analysis, which in this case is dynamics,

- type of constraint, which is natural frequency.

This is followed by the general description of the finite
element model of the structure, and this consists of,

number of nodal/grid points, which is 90,
element types, which in this case are CQUAD4 and CSHEAR,
number of elements, which is 112,
and number of load cases, which in this case is 1.

The user then must inform the system on the number of
design variables required, which we have selected to be 6.

Based on the above information, ESSO suggests the
following as a suitable "similar" case,

case index number 1 (from dynamic cases in memory),
number of analysis = 1, dynamics,
number of constraint type is 1, natural frequency,

number of nodal points = 90,

number of elements = 148f
number of element types = 31 CQUAD4r CSHEAR, CONROD,

number of design variables = 8,

name of solution algorithm = Pseudo Newton,

maximum number of solution iteration = 71

convergence criteria = dual gap

57

The finite element model of the above case can be seen in figure 6-3. The certainty factor of this case is 0.473. In
addition to the front and rear spars, the structure in the "similar" proposed case has a middle spar. We now assume that the user is satisfied that there is a good chance of
success in using this case to supply the optimization
solution strategy for the present example. The algorithm
proposed is the pseudo newton with maximum iteration
numbers of 7. It is assumed that the user prefers to
increase the maximum iteration numbers to 10.

The next step is design variables set up. The element
types associated with the design variables are,

variable-1
variable-2
variable-3
variable-4
variable-5
variable-6

= CQUAD41
= CQUAD41
= CQUAD41
= CQUAD41
= CSHEAR,
= CQUAD4r

and the element within each design variable,

variable-1 33,34,49,50,81,82,97,, 98 (the first upper and
lower panel bays near the wing root)

variable-2 35,36,51,52,83,84,99,100 (the second upper
and lower panel bays)

variable-3 37-48,53-64 (the rest of the upper panel)
variable-4 85-96,101-112 (the rest of the lower panel)
variable-5 65-80 (the front and rear spars)
variable-6 113-144 (the ribs).

Similar to the first case, there is no fix-element.

The gauges limit are specified as:

1. lower-limit
upper-limit
element

2. lower-limit
upper-limit
element

2. lower-limit
upper-limit
element

0.6
10.0
33-64,81-112 (upper and lower panels)

0.6
3.5
65-80 (front and rear spars)

0.6
2.5
113-144 (ribs)

Next,, ESSO asks the user to supply the lower limit

value of the frequency and the associated mode number. In

this case,

mode number =1
natural frequency = 2.50.

58

2111C, this stage ESSO inform
session is completed and
"essocdf. dat" (see table 6-5) a
6-6) are produced. ESSO also
STARS. As with the previous
suspended after 3 iterations.

the user that the front end
the STARS driver files

nd 'vessocons. dat" (see table
requests the user to run

"statics" case the run is

The iteration history for these initial iterations is:

--
iteration feasible weight dual weight

--
0 127.9 35.9
1 80.4 35.9
2 107.9 35.9
3 168.7 35.9

--

Based on the above information, the run-time application
predicts that the optimization will not converge to the
optimum at maximum iteration (maximum iteration=10) .

At this point, the optimizer has been able to raise
the natural frequency of the structure from the starting
value of 1.54 Hz to 2.0 Hz. However, ESSO believes that the
optimum will not be reached because there is insufficient
scope to make changes due to the design variable set up.
ESSO, thus,, proposes that number of design variables be
increased. In response to this the number of design
variables is increased to 17.

The element types associated with the design variables
are,

variable-1 = CQUAD4,

variable-2 = CQUAD4,

variable-3 = CQUAD4,

variable-4 = CQUAD4,

variable-5 = CQUAD41

variable-6 = CQUAD4,

variable-7 = CQUAD4f

variable-8 = CQUAD41

variable-9 CQUAD4,
variable-10 CSHEAR,

the f irst bay of upper and lower
panels,

the second bay of upper and lower
panels,
the third bay of upper and lower
panels,

the fourth bay of upper and lower
panels,
the f if th bay of upper and lower
panels,
the sixth bay of upper and lower
panels,
the seventh bay of upper and lo-

wer panels
the eighth bay of upper and lower

panels,
the ribs,

the first bay of front and rear
spars,

59

variable-11 = CSHEAR, the second bay of f ront and rear
spars,,

variable-12 = CSHEAR, the third bay of front and rear
spars,,

variable-13 = CSHEAR, the fourth bay of front and rear
spars,,

variable-14 = CSHEAR, the fifth bay of front and rear
spars.,

variable-15 = CSHEAR, the sixth bay of front and
rear spars,

variable-16 = CSHEAR, the seventh bay of front and
rear spars.,

variable-17 = CSHEAR, the eighth bay of front and
rear spars.

The associated elements within each design variable can be
seen in table 6-7.

Having completed the modification, ESSO produces
"essocdf. dat" and "essocons. dat". The "essocons. dat" is
shown in table 6-7. ESSO then asks the user to run STARS.

After 3 iterations STARS run is suspended. The ESSO's
run-time application asks the user to supply data on
feasible and dual weights from iteration 0 to iteration 3
which is shown below,

--
iteration feasible weight dual weight

--
0 127.9 35.9
1 72.1 34.7
2 71.6 48.3
3 76.8 56.4

--

Based on the above information, the run-time application
predicts that the optimization will reach convergence at
maximum iteration (maximum iteration=10) and asks the user
to resume the optimization run.

The optimization run stops at maximum iteration and
the ESSO' s result application is called to check the

results. It asks the user to supply the feasible and dual

weights of the last iteration (iteration 10) and also the

most non-feasible constraint (if any) together with the

violated limit value. From the "es sors lt. dat ",,

- feasible weight = 78.3f dual weight = 66.0,

- the "violated" constraint is the natural frequency of
2.39 Hz which is still below the limit value of 2.5 Hz.

60
From the data above ESSO concludes that the design is not satisfactory, but the constraint relatively small, under five percent. At this stage, ESSO asks the user to supply the history of frequency during optimization run which is
as follow,

--
fo fl f2 f3 f4 f5 f6 f7 f8 f9 flo

--
1.54 1.73 2.05 2.29 2.42 2.36 2.42 2.38 2.41 2.40 2.39

--

The data above shows the frequency at every iteration from
initial value, fO. to the last iteration, f1O. Based only
on the above data, in fact the optimization is converging
to a design point where the natural frequency of the
structure is close to 2.4 Hz (still infeasible) . From this
fact ESSO concludes that the problem is caused by the
algorithm itself (Pseudo Newton) . To solve this problem (an
infeasible design) ESSO suggests the user to increase
slightly the constraint value. This is accepted by
increasing the natural frequency to 2.65 Hz.

With this slight modification, the STARS is re-run.
The optimization data after ten iteration is

feasible weight = 95.9, dual weight = 72.5,

the natural frequency is 2.53 Hz which is above the
original limit value of 2.50 Hz.

The data above shows that the design is not yet optimum but
it is a useful feasible design (with respect to the
original design requirement) and probably not that far away
from the optimum point. The frequency history as shown
below,

--
fo fl f2 f3 f4 f5 f6 f7 f8 f9 flo

--
1.54 1.75 2.09 2.37 2.56 2.48 2.56 2.48 2.54 2.48 2.53

--

shows that the optimization is converging to a design point
with the frequency close to 2.5 Hz. This supports the fact

points out by ESSO that the Pseudo Newton method of STARS

could not cope well with this dynamic problem.

Finally ESSO updates its memory by appending this case

and asking the user to put comments on the running of the

optimization. The comments might look like this,

natural frequency requirement of at least 2.5 Hz.

initial frequency of structure (iter-0) = 1.54 Hz.

61

- needs effective material distribution through appro-
priate design variable set-up

- optimization tends to point to a slightly infeasible
design

- the trick is to slightly increase the constraint to 2 . 65
Hz.

62

Table 6-1: The FE data of the Static Case Example.

TITLE = WING STATIC-CASE STRESS-DISPLACEMENT CONSTRAINT
SUBCASE=l
LOAD=l
BEGIN BULK
GRID 1 0.300. 0. 123456
GRID 2 0.270. 600. 123456
GRID 3 0.221.052 -600. 123456
GRID 4 0.142.104 -1200. 123456
GRID 5 0.140. 1200. 123456
GRID 6 0. -142.105 -1200. 123456
GRID 7 0. -200. 1200. 123456
GRID 8 0. -221.052 -600. 123456
GRID 9 0. -300. 600. 123456
GRID 10 0. -300. 0. 123456
GRID 11 450.275. 0. 456
GRID 12 450.247.5 550. 456
GRID 13 450.202.631 -550. 456
GRID 14 450.130.813 1100. 456
GRID 15 450.130.262 -1100. 456
GRID 16 450. -130.263 -1100. 456
GRID 17 450. -186.875 1100. 456
GRID 18 450. -202.632 -550. 456
GRID 19 450. -275. 550. 456
GRID 20 450. -275. 0. 456
GRID 21 900.0001 250. 0. 456
GRID 22 900.0001 225. 500. 456
GRID 23 900.0001 184.21 -500. 456
GRID 24 900.0001 121.625 1000. 456
GRID 25 900.0001 118.421 -1000. 456
GRID 26 900.0001-118.421 -1000. 456
GRID 27 900.0001 -173.75 1000. 456
GRID 28 900.0001-184.211 -500. 456
GRID 29 900.0001 -250. 500. 456
GRID 30 900.0001 -250. 0. 456
GRID 31 1350.225. 0. 456
GRID 32 1350.202.5 450. 456
GRID 33 1350.165.789 -450. 456
GRID 34 1350.11-2.438900-0001 456
GRID 35 1350.106.579-900.000 456
GRID 36 1350. -106.579- 900.000 456
GRID 37 1350. -160.625900.0001 456
GRID 38 1350. -165.79 -450. 456

GRID 39 1350. -225. 450. 456

GRID 40 1350. -225. 0. 456

(continued)

63

Table 6-1

GRID

41

1800.200.

0.

456 GRID 42 1800.180. 400. 456 GRID 43 1800.147.368 -400. 456 GRID 44 1800.103.25800.0001 456 GRID 45 1800.94.73701- 800.000 456 GRID 46 1800. -94.7375-800.000 456 GRID 47 1800. -147.369 -400. 456 GRID 48 1800. -147.5800.0001 456

GRID 49 1800. -200. 400. 456
GRID 50 1800. -200. 0. 456
GRID 51 2250.175. 0. 456
GRID 52 2250.157.5 350. 456
GRID 53 2250.128.948 -350. 456
GRID 54 2250.94.06251700.0001 456
GRID 55 2250.82.89521-700.000 456
GRID 56 2250. -82.8956- 700.000 456
GRID 57 2250. -128.948 -350. 456
GRID 58 2250. -134.375700.0001 456
GRID 59 2250. -175. 350. 456
GRID 60 2250. -175. 0. 456
GRID 61 2700.150. 0. 456
GRID 62 2700.135. 300. 456
GRID 63 2700.110.527 -300. 456
GRID 64 2700.84.87501 600. 456
GRID 65 2700.71.0535 -600. 456
GRID 66 2700. -71.0537 -600. 456
GRID 67 2700. -110.527 -300. 456
GRID 68 2700. -121.25 600. 456
GRID 69 2700. -150. 300. 456
GRID 70 2700. -150. 0. 456
GRID 71 3150.125. 0. 456
GRID 72 3150.112.5 250. 456
GRID 73 3150.92.10591 -250. 456
GRID 74 3150.75.68751 500. 456
GRID 75 3150.59.21181 -500. 456
GRID 76 3150. -59.2119 -500. 456
GRID 77 3150. -92.1059 -250. 456
GRID 78 3150. -108.125 500. 456
GRID 79 3150. -125. 250. 456
GRID 80 3150. -125. 0. 456
GRID 81 3600.100. 0. 456
GRID 82 3600-90-00001 200. 456
GRID 83 3600.73.68501 -200. 456
GRID 84 3600.66.50001 400. 456
GRID

85

3600.47.37001

-400.

456

(continued)

64

Table 6-1

GRID

86

--------- ---------------
3600. -47.3700

-400.

------- ------
456 GRID 87 3600. -73.6850 -200. 456 GRID 88 3600. -95.0000 400. 456 GRID 89 3600. -100. 200. 456 GRID 90 3600. -100. 0. 456 MAT1 1 79000. 0.33 2.80-6

PSHELL 33 1 1.
PSHEAR 65 1 1.
FORCE 1 81 5000.0 0.0 1.0 0.0
FORCE 1 82 10000.0 0.0 1.0 0.0
FORCE 1 83 12000.0 0.0 1.0 0.0
FORCE 1 84 10000.0 0.0 1.0 0.0
FORCE 1 85 5000.0 0.0 1.0 0.0
CQUAD4 33 33 5 14 12 2 0.
CQUAD4 34 33 2 12 11 1 0.
CQUAD4 35 33 14 24 22 12 0.
CQUAD4 36 33 12 22 21 11 0.
CQUAD4 37 33 24 34 32 22 0.
CQUAD4 38 33 22 32 31 21 0.
CQUAD4 39 33 34 44 42 32 0.
CQUAD4 40 33 32 42 41 31 0.
CQUAD4 41 33 44 54 52 42 0.
CQUAD4 42 33 42 52 51 41 0.
CQUAD4 43 33 54 64 62 52 0.
CQUAD4 44 33 52 62 61 51 0.
CQUAD4 45 33 64 74 72 62 0.
CQUAD4 46 33 62 72 71 61 0.
CQUAD4 47 33 74 84 82 72 0.
CQUAD4 48 33 72 82 81 71 0.
CQUAD4 49 33 1 11 13 3 0.
CQUAD4 50 33 3 13 15 4 0.
CQUAD4 51 33 11 21 23 13 0.
CQUAD4 52 33 13 23 25 15 0.
CQUAD4 53 33 21 31 33 23 0.
CQUAD4 54 33 23 33 35 25 0.
CQUAD4 55 33 31 41 43 33 0.
CQUAD4 56 33 33 43 45 35 0.
CQUAD4 57 33 41 51 53 43 0.
CQUAD4 58 33 43 53 55 45 0.
CQUAD4 59 33 51 61 63 53 0.
CQUAD4 60 33 53 63 65 55 0.
CQUAD4 61 33 61 71 73 63 0.
CQUAD4 62 33 63 73 75 65 0.
CQUAD4 63 33 71 81 83 73 0.
CQUAD4

64

33

73

83

85

75

0.

(continued)

65

Table 6-1

CQUAD4

81

33

6

16

18

8

CQUAD4
CQUAD4

82
83

33 8 18 20 10
0.
0.

CQUAD4 84
33
33

16
18

26
28

28 18 0.
CQUAD4 85 33 26 36

30
38

20
28

0.
0 CQUAD4

CQUAD4
86
87

33 28 38 40 30 . 0.
CQUAD4 88

33
33

36
38

46
47

47 38 0.
CQUAD4 89 33 46 56

50
57

40
47

0.
0 CQUAD4 90 33 47 57 60 50 . 0 CQUAD4 91 33 56 66 67 57 . 0 CQUAD4 92 33 57 67 70 60 . 0 CQUAD4 93 33 66 76 77 67 . 0 CQUAD4 94 33 67 77 80 70 . 0 CQUAD4 95 33 76 86 87 77 . 0 CQUAD4 96 33 77 87 90 80 . 0 CQUAD4 97 33 10 20 19 9 . 0 CQUAD4 98 33 9 19 17 7 . 0 CQUAD4 99 33 20 30 29 19 . 0 CQUAD4 100 33 19 29 27 17 . 0 CQUAD4 101 33 29 39 37 27 . 0 CQUAD4 102 33 30 40 39 29 . 0 CQUAD4 103 33 40 50 49 39 . 0. CQUAD4 104 33 39 49 48 37 0. CQUAD4 105 33 50 60 59 49 0. CQUAD4 106 33 49 59 58 48 0. CQUAD4 107 33 60 70 69 59 0. CQUAD4 108 33 59 69 68 58 0. CQUAD4 109 33 70 80 79 69 0. CQUAD4 110 33 69 79 78 68 0.

CQUAD4 111 33 80 90 89 79 0.
CQUAD4 112 33 79 89 88 78 0.
CQUAD4 113 33 17 14 12 19 0.
CQUAD4 114 33 19 12 11 20 0.
CQUAD4 115 33 20 11 13 18 0.
CQUAD4 116 33 18 13 15 16 0.
CQUAD4 117 33 27 24 22 29 0.
CQUAD4 118 33 29 22 21 30 0.
CQUAD4 119 33 30 21 23 28 0.
CQUAD4 120 33 28 23 25 26 0.
CQUAD4 121 33 37 34 32 39 0.
CQUAD4 122 33 39 32 31 40 0.
CQUAD4 123 33 40 31 33 38 0.
CQUAD4

124

33

38

33

35

36

0.

(continued)

66

Table 6-1

CQUAD4

125

33

48

44

42

49

0 CQUAD4 126 33 49 42 41 50 . 0 CQUAD4 127 33 50 41 43 47 . 0 CQUAD4 128 33 47 43 45 46 . 0 CQUAD4 129 33 58 54 52 59 . 0. CQUAD4 130 33 59 52 51 60 0. CQUAD4 131 33 60 51 53 57 0.

CQUAD4 132 33 57 53 55 56 0.
CQUAD4 133 33 68 64 62 69 0.
CQUAD4 134 33 69 62 61 70 0.
CQUAD4 135 33 70 61 63 67 0.
CQUAD4 136 33 67 63 65 66 0.
CQUAD4 137 33 78 74 72 79 0.
CQUAD4 138 33 79 72 71 80 0.
CQUAD4 139 33 80 71 73 77 0.
CQUAD4 140 33 77 73 75 76 0.
CQUAD4 141 33 88 84 82 89 0.
CQUAD4 142 33 89 82 81 90 0.
CQUAD4 143 33 90 81 83 87 0.
CQUAD4 144 33 87 83 85 86 0.
CSHEAR 65 65 5 14 17 7
CSHEAR 66 65 14 24 27 17
CSHEAR 67 65 24 34 37 27
CSHEAR 68 65 34 44 48 37
CSHEAR 69 65 44 54 58 48
CSHEAR 70 65 54 64 68 58
CSHEAR 71 65 64 74 78 68
CSHEAR 72 65 74 84 88 78
CSHEAR 73 65 4 15 16 6
CSHEAR 74 65 15 25 26 16
CSHEAR 75 65 25 35 36 26
CSHEAR 76 65 35 45 46 36
CSHEAR 77 65 45 55 56 46
CSHEAR 78 65 55 65 66 56
CSHEAR 79 65 65 75 76 66
CSHEAR 80 65 75 85 86 76
ENDDATA

(end of table)

67

Table 6-2: The command data file of the Static Case
Example.

START
COMMAND DATA PNEWTON
C

SET NSIV=l;
SET MXIT=4;
SET APRT=YES;
SET ACTG=YES;
SET IFLM=YES;
DO NSIN;
DO OPTIN;

C
DO ANALYSIS;
DO INSPECT;
DO OPTX;

C PSEUDO NEWTON ITERATIONS
L010: DO ITER;

DO QNEWTON;
DO OPTX;
IF(ENDC. EQ. YES) GOTO L031;
IF(NOIT. EQ. 3) DO HISTORY;
IF(NOIT. EQ. 3) SUSPEND;
IF(ENDI. EQ. YES) GOTO L040;
GOTO L010;

L031: DISPLAY CONVERGENCE TO THE LOWER BOUND WEIGHT;
GOTO L050;

L032: DISPLAY CONVERGENCE TO DESIGN VARIABLES;
GOTO L050;

L033: DISPLAY CONVERGENCE TO FEASIBLE VS ACTUAL WEIGHT;
GOTO L050;

L034: DISPLAY CONVERGENCE TO FEASIBLE WEIGHT;
GOTO L050;

L040: DISPLAY MAX. NUMBER OF ITERATIONS REACHED;
C
L050: SET APRT=YES;

DO ANALYSIS;
DO INSPECT;
DO HIST;
STOP;
END;

C ANALYSIS PROCEDURE;
PROC OPTX;
DO ANALYSIS;
DO ACTSET;
DO DERV;
DO CONV;
DO INSPECT;
END OPTX;

ENDATA

68

Table 6-3: The design/constraint file of the Static Case
Example.

C234567890123456789012345678901234567890123456789012345678901234567890
DESIGN 1 33
DESIGN 1 34
DESIGN 1 49
DESIGN 1 50
DESIGN 1 81
DESIGN 1 82
DESIGN 1 97
DESIGN 1 98
DESIGN 2 35
DESIGN 2 36
DESIGN 2 51
DESIGN 2 52
DESIGN 2 83
DESIGN 2 84
DESIGN 2 99
DESIGN 2 100
DESIGN 3 37
DESIGN 3 38
DESIGN 3 39
DESIGN 3 40
DESIGN 3 41
DESIGN 3 42
DESIGN 3 43
DESIGN 3 44
DESIGN 3 45
DESIGN 3 46
DESIGN 3 47
DESIGN 3 48
DESIGN 3 53
DESIGN 3 54
DESIGN 3 55
DESIGN 3 56
DESIGN 3 57
DESIGN 3 58
DESIGN 3 59
DESIGN 3 60
DESIGN 3 61
DESIGN 3 62
DESIGN 3 63
DESIGN 3 64
DESIGN 4 85
DESIGN 4 86
DESIGN 4 87
DESIGN 4 88
DESIGN 4 89
DESIGN

4

90
-- (continued)

69

Table 6-3

DESIGN

4

91

DESIGN 4 92
DESIGN 4 93
DESIGN 4 94
DESIGN 4 95
DESIGN 4 96
DESIGN 4 101
DESIGN 4 102
DESIGN 4 103
DESIGN 4 104
DESIGN 4 105
DESIGN 4 106
DESIGN 4 107
DESIGN 4 108
DESIGN 4 109
DESIGN 4 110
DESIGN 4 ill
DESIGN 4 112
DESIGN 5 65
DESIGN 5 66
DESIGN 5 67
DESIGN 5 68
DESIGN 5 69
DESIGN 5 70
DESIGN 5 71
DESIGN 5 72
DESIGN 5 73
DESIGN 5 74
DESIGN 5 75
DESIGN 5 76
DESIGN 5 77
DESIGN 5 78
DESIGN 5 79
DESIGN 5 80
DESIGN 6 113
DESIGN 6 114
DESIGN 6 115
DESIGN 6 116
DESIGN 6 117
DESIGN 6 118
DESIGN 6 119
DESIGN 6 120
DESIGN 6 121
DESIGN 6 122
DESIGN 6 123

(continued)

70

Table 6-3

DESIGN 6 124
DESIGN 6 125
DESIGN 6 126
DESIGN 6 127
DESIGN 6 128
DESIGN 6 129
DESIGN 6 130
DESIGN 6 131
DESIGN 6 132
DESIGN 6 133
DESIGN 6 134
DESIGN 6 135
DESIGN 6 136
DESIGN 6 137
DESIGN 6 138
DESIGN 6 139
DESIGN 6 140
DESIGN 6 141
DESIGN 6 142
DESIGN 6 143
DESIGN 6 144
GAUGE 0.600000 10.0000 33
GAUGE 0.600000 10.0000 34
GAUGE 0.600000 10.0000 35
GAUGE 0.600000 10.0000 36
GAUGE 0.600000 10.0000 37
GAUGE 0.600000 10.0000 38
GAUGE 0.600000 10.0000 39
GAUGE 0.600000 10-0000 40
GAUGE 0.600000 10.0000 41
GAUGE 0.600000 10.0000 42
GAUGE 0.600000 10.0000 43
GAUGE 0.600000 10.0000 44
GAUGE 0.600000 10.0000 45
GAUGE 0.600000 10-0000 46
GAUGE 0.600000 10-0000 47
GAUGE 0.600000 10-0000 48
GAUGE 0.600000 10-0000 ' 49
GAUGE 0.600000 10-0000 50
GAUGE 0.600000 10-0000 51
GAUGE 0.600000 10-0000 52
GAUGE 0.600000 10-0000 53
GAUGE 0.600000 10-0000 54
GAUGE 0.600000 10-0000 55
GAUGE 0.600000 10-0000 56
GAUGE 0.600000 10-0000 57

--- (continued)

71

Table 6-3

GAUGE

0.600000

10.0000

58

GAUGE 0.600000 10.0000 59
GAUGE 0.600000 10.0000 60
GAUGE 0.600000 10.0000 61
GAUGE 0.600000 10.0000 62
GAUGE 0.600000 10.0000 63
GAUGE 0.600000 10.0000 64
GAUGE 0.600000 10.0000 81
GAUGE 0.600000 10.0000 82
GAUGE 0.600000 10.0000 83
GAUGE 0.600000 10.0000 84
GAUGE 0.600000 10.0000 85
GAUGE 0.600000 10-0000 86
GAUGE 0.600000 10-0000 87
GAUGE 0.600000 10-0000 88
GAUGE 0.600000 10-0000 89
GAUGE 0.600000 10-0000 90
GAUGE 0.600000 10-0000 91
GAUGE 0.600000 10-0000 92
GAUGE 0.600000 10-0000 93
GAUGE 0.600000 10-0000 94
GAUGE 0.600000 10-0000 95
GAUGE 0.600000 10-0000 96
GAUGE 0.600000 10-0000 97
GAUGE 0.600000 10-0000 98
GAUGE 0.600000 10-0000 99
GAUGE 0.600000 10-0000 100
GAUGE 0.600000 10-0000 101
GAUGE 0.600000 10-0000 102
GAUGE 0.600000 10-0000 103
GAUGE 0.600000 10-0000 104
GAUGE 0.600000 10-0000 105
GAUGE 0.600000 10-0000 106
GAUGE 0.600000 10-0000 107
GAUGE 0.600000 10-0000 108
GAUGE 0.600000 10-0000 109
GAUGE 0.600000 10-0000 110
GAUGE 0.600000 10-0000 ill
GAUGE 0.600000 10-0000 112
GAUGE 0.600000 3.50000 65
GAUGE 0.600000 3.50000 66
GAUGE 0.600000 3.50000 67
GAUGE 0.600000 3.50000 68
GAUGE 0.600000 3.50000 69
GAUGE 0.600000 3.50000 70
GAUGE 0.600000 3.50000 71

(continued)

72

Table 6-3

GAUGE

0.600000

3.50000

72

GAUGE 0.600000 3.50000 73
GAUGE 0.600000 3.50000 74
GAUGE 0.600000 3.50000 75
GAUGE 0.600000 3.50000 76
GAUGE 0.600000 3.50000 77
GAUGE 0.600000 3.50000 78
GAUGE 0.600000 3.50000 79
GAUGE 0.600000 3.50000 80
GAUGE 0.600000 2.50000 113
GAUGE 0.600000 2.50000 114
GAUGE 0.600000 2.50000 115
GAUGE 0.600000 2.50000 116
GAUGE 0.600000 2.50000 117
GAUGE 0.600000 2.50000 118
GAUGE 0.600000 2.50000 119
GAUGE 0.600000 2.50000 120
GAUGE 0.600000 2.50000 121
GAUGE 0.600000 2.50000 122
GAUGE 0.600000 2.50000 123
GAUGE 0.600000 2.50000 124
GAUGE 0.600000 2.50000 125
GAUGE 0.600000 2.50000 126
GAUGE 0.600000 2.50000 127
GAUGE 0.600000 2.50000 128
GAUGE 0.600000 2.50000 129
GAUGE 0.600000 2.50000 130
GAUGE 0.600000 2.50000 131
GAUGE 0.600000 2.50000 132
GAUGE 0.600000 2.50000 133
GAUGE 0.600000 2.50000 134
GAUGE 0.600000 2.50000 135
GAUGE 0.600000 2.50000 136
GAUGE 0.600000 2.50000 137
GAUGE 0.600000 2.50000 138
GAUGE 0.600000 2.50000 139
GAUGE 0.600000 2.50000 140
GAUGE 0.600000 2.50000 141
GAUGE 0.600000 2.50000 142
GAUGE 0.600000 2.50000 143
GAUGE 0.600000 2.50000 144
STRESS -120.000 250.000 33
STRESS -120.000 250.000 34
STRESS -120.000 250.000 35
STRESS -120.000 250.000 36

(continued)

73

Table 6-3

STRESS

-120.000

250.000

37

STRESS -120.000 250.000 38
STRESS -120.000 250.000 39
STRESS -120.000 250.000 40
STRESS -120.000 250.000 41
STRESS -120.000 250.000 42
STRESS -120.000 250.000 43
STRESS -120.000 250.000 44
STRESS -120.000 250.000 45
STRESS -120.000 250.000 46
STRESS -120.000 250.000 47
STRESS -120.000 250.000 48
STRESS -120.000 250.000 49
STRESS -120.000 250.000 50
STRESS -120.000 250.000 51
STRESS -120.000 250.000 52
STRESS -120.000 250.000 53
STRESS -120.000 250.000 54
STRESS -120.000 250.000 55
STRESS -120.000 250.000 56
STRESS -120.000 250.000 57
STRESS -120.000 250.000 58
STRESS -120.000 250.000 59
STRESS -120.000 250.000 60
STRESS -120.000 250.000 61
STRESS -120.000 250.000 62
STRESS -120.000 250.000 63
STRESS -120.000 250.000 64
STRESS -120.000 250.000 65
STRESS -120.000 250.000 66
STRESS -120.000 250.000 67
STRESS -120.000 250.000 68
STRESS -120.000 250.000 69
STRESS -120.000 250.000 70
STRESS -120.000 250.000 71
STRESS -120.000 250.000 72
STRESS -120.000 250.000 ý3
STRESS -120.000 250.000 74
STRESS -120.000 250-000 75
STRESS -120.000 250.000 76
STRESS -120.000 250.000 77
STRESS -120.000 250.000 78
STRESS -120.000 250-000 79
STRESS -120.000 250-000 80
STRESS -120.000 250-000 81

-------------------------------- --------- ------------ ----------- -----
(continued)

74

Table 6-3

STRESS

-120.000

250.000

82

STRESS -120.000 250.000 83
STRESS -120.000 250.000 84
STRESS -120.000 250.000 85
STRESS -120.000 250.000 86
STRESS -120.000 250.000 87
STRESS -120.000 250.000 88
STRESS -120.000 250.000 89
STRESS -120.000 250.000 90
STRESS -120.000 250.000 91
STRESS -120.000 250.000 92
STRESS -120.000 250.000 93
STRESS -120.000 250.000 94
STRESS -120.000 250.000 95
STRESS -120.000 250.000 96
STRESS -120.000 250.000 97
STRESS -120.000 250.000 98
STRESS -120.000 250.000 99
STRESS -120.000 250.000 100
STRESS -120.000 250.000 101
STRESS -120.000 250.000 102
STRESS -120.000 250.000 103
STRESS -120.000 250.000 104
STRESS -120.000 250.000 105
STRESS -120.000 250.000 106
STRESS -120.000 250.000 107
STRESS -120.000 250.000 108
STRESS -120.000 250.000 109
STRESS -120.000 250.000 110
STRESS -120.000 250.000 ill
STRESS -120.000 250.000 112
STRESS -120.000 250.000 113
STRESS -120.000 250.000 114
STRESS -120.000 250.000 115
STRESS -120.000 250.000 116
STRESS -120.000 250.000 117
STRESS -120.000 250.000 118
STRESS -120.000 250.000 119
STRESS -120.000 250.000 120
STRESS -120.000 250.000 121
STRESS -120.000 250.000 122
STRESS -120.000 250.000 123
STRESS -120.000 250.000 124
STRESS -120.000 250.000 125
STRESS -120.000 250.000 126

(continued)

75

Table 6-3

STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
DISP-Y
DISP-Y
DISP-Y
DISP-Y
DISP-Y
ENDATA

-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-120.000
-25.0000
-25.0000
-25.0000
-25.0000
-25.0000

250.000
250.000
250.000
250.000
250.000
250.000
250.000
250.000
250.000
250.000
250.000
250.000
250.000
250.000
250.000
250.000
250.000
250.000
25.0000
25.0000
25.0000
25.0000
25.0000

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
81
82
83
84
85

(end of table)

76

Table 6-4: The FE data of the Dynamic Case Example.

TITLE = WING DYNAMIC-CASE FREQUENCY CONSTRAINT
BEGIN BULK
GRID 1 0. 300. 0. 123456
GRID 2 0. 270. 600. 123456
GRID 3 0. 221.052 -600. 123456
GRID 4 0. 142.104 -1200. 123456
GRID 5 0. 140. 1200. 123456
GRID 6 0. -142.105 -1200. 123456
GRID 7 0. -200. 1200. 123456
GRID 8 0. - 221.052 -600. 123456
GRID 9 0. -300. 600. 123456
GRID 10 0. -300. 0. 123456
GRID 11 450. 275. 0. 456
GRID 12 450. 247.5 550. 456
GRID 13 450. 202.631 -550. 456
GRID 14 450. 130.813 1100. 456
GRID 15 450. 130.262 -1100. 456
GRID 16 450. - 130.263 -1100. 456
GRID 17 450. - 186.875 1100. 456
GRID 18 450. - 202.632 -550. 456
GRID 19 450. -275. 550. 456
GRID 20 450. -275. 0. 456
GRID 21 900.0001 250. 0. 456
GRID 22 900.0001 225. 500. 456
GRID 23 900.0001 184.21 -500. 456
GRID 24 900.0001 121.625 1000. 456
GRID 25 900.0001 118.421 -1000. 456
GRID 26 900.0001 -118.421 -1000. 456
GRID 27 900.0001 -173.75 1000. 456
GRID 28 900.0001-184.211 -500. 456
GRID 29 900.0001 -250. 500. 456
GRID 30 900.0001 -250. 0. 456
GRID 31 1350. 225. 0. 456
GRID 32 1350. 202.5 450. 456
GRID 33 1350. 165.789 -450. 456
GRID 34 1350. 11

,
2.438900-0001 456

GRID 35 1350. 106.579 -900.000 456
GRID 36 1350. -106.579-900.000 456
GRID 37 1350. -160.625900.0001 456
GRID 38 1350. -165.79 -450. 456
GRID 39 1350. -225. 450. 456
GRID 40 1350. -225. 0. 456
GRID 41 1800. 200. 0. 456
GRID 42 1800. 180. 400. 456

(continued)

77

Table 6-4

GRID

43

1800.147.368 -400.

456

GRID 44 1800.103.25800.0001 456 GRID 45 1800.94.73701-800.000 456
GRID 46 1800. -94.7375-800.000 456
GRID 47 1800. -147.369 -400. 456
GRID 48 1800. -147.5800.0001 456
GRID 49 1800. -200.400. 456
GRID 50 1800. -200.0. 456
GRID 51 2250.175.0. 456
GRID 52 2250.157.5 350. 456
GRID 53 2250.128.948 -350. 456
GRID 54 2250.94.06251700.0001 456
GRID 55 2250.82.89521-700.000 456
GRID 56 2250. -82.8956-700.000 456
GRID 57 2250. -128.948 -350. 456
GRID 58 2250. -134.375700.0001 456
GRID 59 2250. -175.350. 456
GRID 60 2250. -175.0. 456
GRID 61 2700.150.0. 456
GRID 62 2700.135.300. 456
GRID 63 2700.110.527 -300. 456
GRID 64 2700.84.87501 600. 456
GRID 65 2700.71.0535 -600. 456
GRID 66 2700. -71.0537 -600. 456
GRID 67 2700. -110.527 -300. 456
GRID 68 2700. -121.25 600. 456
GRID 69 2700. -150.300. 456
GRID 70 2700. -150.0. 456
GRID 71 3150.125.0. 456
GRID 72 3150.112.5 250. 456
GRID 73 3150.92.10591 -250. 456
GRID 74 3150.75.68751 500. 456
GRID 75 3150.59.21181 -500. 456
GRID 76 3150. -59.2119 -500. 456
GRID 77 3150. -92.1059 -250. 456
GRID 78 3150. -108.125 500. 456
GRID 79 3150. -125.250. 456
GRID 80 3150. -125.0. 456
GRID 81 3600.100.0. 456
GRID 82 3600-90-00001 200. 456
GRID 83 3600.73.68501 -200. 456
GRID 84 3600.66.50001 400. 456
GRID

85

3600.47.37001 -400.

456

(continued)

78

Table 6-4

GRID 86
GRID 87
GRID 88
GRID 89
GRID 90
MAT1 1 79000.
PSHELL 33 1
PSHEAR 65 1
CQUAD4 33 33
CQUAD4 34 33
CQUAD4 35 33
CQUAD4 36 33
CQUAD4 37 33
CQUAD4 38 33
CQUAD4 39 33
CQUAD4 40 33
CQUAD4 41 33
CQUAD4 42 33
CQUAD4 43 33
CQUAD4 44 33
CQUAD4 45 33
CQUAD4 46 33
CQUAD4 47 33
CQUAD4 48 33
CQUAD4 49 33
CQUAD4 50 33
CQUAD4 51 33
CQUAD4 52 33
CQUAD4 53 33
CQUAD4 54 33
CQUAD4 55 33
CQUAD4 56 33
CQUAD4 57 33
CQUAD4 58 33
CQUAD4 59 33
CQUAD4 60 33
CQUAD4 61 33
CQUAD4 62 33
CQUAD4 63 33
CQUAD4 64 33
CQUAD4 81 33
CQUAD4 82 33
CQUAD4 83 33
CQUAD4 84 33
CQUAD4 85 33
CQUAD4 86 33
CQUAD4 87 33

3600. -47.3700
3600. -73.6850
3600--95.0000
3600. -100.
3600. -100.

0.33

5
2

14
12
24
22
34
32
44
42
54
52
64
62
74
72

1
3

11
13
21
23
31
33
41
43
51
53
61
63
71
73

6
8

16
18
26
28
36

14
12
24
22
34
32
44
42
54
52
64
62
74
72
84
82
11
13
21
23
31
33
41
43
51
53
61
63
71
73
81
83
16
18
26
28
36
38
46

-400.
-200.

400.
200.

0.
2.80-6

12
11
22
21
32
31
42
41
52
51
62
61
72
71
82
81
13
15
23
25
33
35
43
45
53
55
63
65
73
75
83
85
18
20
28
30
38
40
47

2
1

12
11
22
21
32
31
42
41
52
51
62
61
72
71

3
4

13
15
23
25
33
35
43
45
53
55
63
65
73
75

8
10
18
20
28
30
38

456
456
456
456
456

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

(continued)

79

Table 6-4

CQUAD4
CQUAD4

88
89

33
33

38

47

50

40

0.

CQUAD4 90 33
46
47

56
57

57 47 0.
CQUAD4 91 33 56 66

60
67

50
57

0.
0 CQUAD4

CQUAD4
92
93

33
33

57 67 70 60 . 0.
CQUAD4 94 33

66
67

76
77

77
80

67
70

0.
CQUAD4 95 33 76 86 87 77

0.
0 CQUAD4 96 33 77 87 90 80 . 0 CQUAD4 97 33 10 20 19 9 . 0 CQUAD4 98 33 9 19 17 7 . 0 CQUAD4 99 33 20 30 29 19 . 0 CQUAD4 100 33 19 29 27 17 . 0 CQUAD4 101 33 29 39 37 27 . 0 CQUAD4 102 33 30 40 39 29 . 0 CQUAD4 103 33 40 50 49 39 . 0 CQUAD4 104 33 39 49 48 37 . 0 CQUAD4 105 33 50 60 59 49 . 0 CQUAD4 106 33 49 59 58 48 . 0 CQUAD4 107 33 60 70 69 59 . 0 CQUAD4 108 33 59 69 68 58 . 0. CQUAD4 109 33 70 80 79 69 0. CQUAD4 110 33 69 79 78 68 0. CQUAD4 111 33 80 90 89 79 0.

CQUAD4 112 33 79 89 88 78 0.
CQUAD4 113 33 17 14 12 19 0.
CQUAD4 114 33 19 12 11 20 0.
CQUAD4 115 33 20 11 13 18 0.
CQUAD4 116 33 18 13 15 16 0.
CQUAD4 117 33 27 24 22 29 0.
CQUAD4 118 33 29 22 21 30 0.
CQUAD4 119 33 30 21 23 28 0.
CQUAD4 120 33 28 23 25 26 0.
CQUAD4 121 33 37 34 32 39 0.
CQUAD4 122 33 39 32 31 40 0.
CQUAD4 123 33 40 31 33 38 0.
CQUAD4 124 33 38 33 35 36 0.
CQUAD4 125 33 48 44 42 49 0.
CQUAD4 126 33 49 42 41 50 0.
CQUAD4 127 33 50 41 43 47 0.
CQUAD4 128 33 47 43 45 46 0.
CQUAD4 129 33 58 54 52 59 0.
CQUAD4

130

33

59

52

51

60

0.

(continued)

80

Table 6-4

CQUAD4 131 33 60 51 53 57
CQUAD4 132 33 57 53 55 56
CQUAD4 133 33 68 64 62 69
CQUAD4 134 33 69 62 61 70
CQUAD4 135 33 70 61 63 67
CQUAD4 136 33 67 63 65 66
CQUAD4 137 33 78 74 72 79
CQUAD4 138 33 79 72 71 80
CQUAD4 139 33 80 71 73 77
CQUAD4 140 33 77 73 75 76
CQUAD4 141 33 88 84 82 89
CQUAD4 142 33 89 82 81 90
CQUAD4 143 33 90 81 83 87
CQUAD4 144 33 87 83 85 86
CSHEAR 65 65 5 14 17 7
CSHEAR 66 65 14 24 27 17
CSHEAR 67 65 24 34 37 27
CSHEAR 68 65 34 44 48 37
CSHEAR 69 65 44 54 58 48
CSHEAR 70 65 54 64 68 58
CSHEAR 71 65 64 74 78 68
CSHEAR 72 65 74 84 88 78
CSHEAR 73 65 4 15 16 6
CSHEAR 74 65 15 25 26 16
CSHEAR 75 65 25 35 36 26
CSHEAR 76 65 35 45 46 36
CSHEAR 77 65 45 55 56 46
CSHEAR 78 65 55 65 66 56
CSHEAR 79 65 65 75 76 66
CSHEAR 80 65 75 85 86 76
ENDDATA

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

(end of table)

81

Table 6-5: The command data file of the Dynamic Case
Example.

START
COMMAND DATA PNEWTON
C

SET NSIV=l;
SET MASS=STR;
SET MODE=l;
SET MXIT=10;
SET APRT=YES;
SET ACTG=YES;
SET IFLM=YES;
DO NSIN;
DO OPTIN;

C
DO ANALYSIS;
DO INSPECT;
DO OPTX;

C PSEUDO NEWTON ITERATIONS
L010: DO ITER;

DO QNEWTON;
DO OPTX;
IF(ENDC. EQ. YES) GOTO L031;
IF(NOIT. EQ. 3) DO HISTORY;
IF(NOIT. EQ. 3) SUSPEND;
IF(ENDI. EQ. YES) GOTO L040;
GOTO L010;

L031: DISPLAY CONVERGENCE TO THE
GOTO L050;

LOWER BOUND WEIGHT;

L032: DISPLAY CONVERGENCE TO DESIGN VARIABLES;
GOTO L050;

L033: DISPLAY CONVERGENCE TO FEASIBLE VS ACTUAL WEIGHT;
GOTO L050;

L034: DISPLAY CONVERGENCE TO FEASIBLE WEIGHT;
GOTO L050;

L040: DISPLAY MAX. NUMBER OF ITERATIONS REACHED;
C
L050: SET APRT=YES;

DO ANALYSIS;
DO INSPECT;
DO HIST;
STOP;
END;

C ANALYSIS PROCEDURE;
PROC OPTX;
DO ANALYSIS;
DO ACTSET;
DO DERV;
DO CONV;
DO INSPECT;
END OPTX;

ENDATA

82

Table 6-6: The design/ constraint file of the Dynamic Case
Example.

C234567890123456789012345678901234567890123456789012345678901234567890
DESIGN 1 33
DESIGN 1 34
DESIGN 1 49
DESIGN 1 50
DESIGN 1 81
DESIGN 1 82
DESIGN 1 97
DESIGN 1 98
DESIGN 2 35
DESIGN 2 36
DESIGN 2 51
DESIGN 2 52
DESIGN 2 83
DESIGN 2 84
DESIGN 2 99
DESIGN 2 100
DESIGN 3 37
DESIGN 3 38
DESIGN 3 39
DESIGN 3 40
DESIGN 3 41
DESIGN 3 42
DESIGN 3 43
DESIGN 3 44
DESIGN 3 45
DESIGN 3 46
DESIGN 3 47
DESIGN 3 48
DESIGN 3 53
DESIGN 3 54
DESIGN 3 55
DESIGN 3 56
DESIGN 3 57
DESIGN 3 58
DESIGN 3 59
DESIGN 3 60
DESIGN 3 61
DESIGN 3 62
DESIGN 3 63
DESIGN 3 64
DESIGN 4 85
DESIGN 4 86
DESIGN

4

87
--

(continued)

83

Table 6-6

DESIGN

4

88

DESIGN 4 89
DESIGN 4 90
DESIGN 4 91
DESIGN 4 92
DESIGN 4 93
DESIGN 4 94
DESIGN 4 95
DESIGN 4 96
DESIGN 4 101
DESIGN 4 102
DESIGN 4 103
DESIGN 4 104
DESIGN 4 105
DESIGN 4 106
DESIGN 4 107
DESIGN 4 108
DESIGN 4 109
DESIGN 4 110
DESIGN 4 ill
DESIGN 4 112
DESIGN 5 65
DESIGN 5 66
DESIGN 5 67
DESIGN 5 68
DESIGN 5 69
DESIGN 5 70
DESIGN 5 71
DESIGN 5 72
DESIGN 5 73
DESIGN 5 74
DESIGN 5 75
DESIGN 5 76
DESIGN 5 77
DESIGN 5 78
DESIGN 5 79
DESIGN 5 80
DESIGN 6 113
DESIGN 6 114
DESIGN 6 115
DESIGN 6 116
DESIGN 6 117
DESIGN 6 118
DESIGN 6 119
DESIGN 6 120
DESIGN 6 121

--- (continued)

84

Table 6-6

DESIGN 6 122
DESIGN 6 123
DESIGN 6 124
DESIGN 6 125
DESIGN 6 126
DESIGN 6 127
DESIGN 6 128
DESIGN 6 129
DESIGN 6 130
DESIGN 6 131
DESIGN 6 132
DESIGN 6 133
DESIGN 6 134
DESIGN 6 135
DESIGN 6 136
DESIGN 6 137
DESIGN 6 138
DESIGN 6 139
DESIGN 6 140
DESIGN 6 141
DESIGN 6 142
DESIGN 6 143
DESIGN 6 144
GAUGE 0.600000 10.0000 33
GAUGE 0.600000 10.0000 34
GAUGE 0.600000 10.0000 35
GAUGE 0.600000 10.0000 36
GAUGE 0.600000 10.0000 37
GAUGE 0.600000 10-0000 38
GAUGE 0.600000 10.0000 39
GAUGE 0.600000 10-0000 40
GAUGE 0.600000 10-0000 41
GAUGE 0.600000 10-0000 42
GAUGE 0.600000 10-0000 43
GAUGE 0.600000 10-0000 44
GAUGE 0.600000 10-0000 45
GAUGE 0.600000 10-0000 46
GAUGE 0.600000 10-0000 47
GAUGE 0.600000 10-0000 48
GAUGE 0.600000 10-0000 49
GAUGE 0.600000 10-0000 50
GAUGE 0.600000 10-0000 51
GAUGE 0.600000 10-0000 52
GAUGE 0.600000 10-0000 53
GAUGE 0.600000 10-0000 54

---------------------------- ----------- ---------- ----------- ---
(continued)

85

Table 6-6

GAUGE

0.600000

10.0000

55

GAUGE 0.600000 10.0000 56
GAUGE 0.600000 10.0000 57
GAUGE 0.600000 10.0000 58
GAUGE 0.600000 10.0000 59
GAUGE 0.600000 10.0000 60
GAUGE 0.600000 10.0000 61
GAUGE 0.600000 10.0000 62
GAUGE 0.600000 10.0000 63
GAUGE 0.600000 10.0000 64
GAUGE 0.600000 10.0000 81
GAUGE 0.600000 10.0000 82
GAUGE 0.600000 10.0000 83
GAUGE 0.600000 10.0000 84
GAUGE 0.600000 10.0000 85
GAUGE 0.600000 10-0000 86
GAUGE 0.600000 10-0000 87
GAUGE 0.600000 10-0000 88
GAUGE 0.600000 10-0000 89
GAUGE 0.600000 10-0000 90
GAUGE 0.600000 10-0000 91
GAUGE 0.600000 10-0000 92
GAUGE 0.600000 10-0000 93
GAUGE 0.600000 10-0000 94
GAUGE 0.600000 10-0000 95
GAUGE 0.600000 10-0000 96
GAUGE 0.600000 10-0000 97
GAUGE 0.600000 10-0000 98
GAUGE 0.600000 10-0000 99
GAUGE 0.600000 10-0000 100
GAUGE 0.600000 10-0000 101
GAUGE 0.600000 10-0000 102
GAUGE 0.600000 10-0000 103
GAUGE 0.600000 10-0000 104
GAUGE 0.600000 10-0000 105
GAUGE 0.600000 10-0000 106
GAUGE 0.600000 10-0000 107
GAUGE 0.600000 10-0000 108
GAUGE 0.600000 10-0000 109
GAUGE 0.600000 10-0000 110
GAUGE 0.600000 10-0000 ill
GAUGE 0.600000 10-0000 112
GAUGE 0.600000 3.50000 65
GAUGE 0.600000 3.50000 66
GAUGE

0.600000

3.50000

67

(continued)

86

Table 6-6

GAUGE 0.600000 3.50000 68
GAUGE 0.600000 3.50000 69
GAUGE 0.600000 3.50000 70
GAUGE 0.600000 3.50000 71
GAUGE 0.600000 3.50000 72
GAUGE 0.600000 3.50000 73
GAUGE 0.600000 3.50000 74
GAUGE 0.600000 3.50000 75
GAUGE 0.600000 3.50000 76
GAUGE 0.600000 3.50000 77
GAUGE 0.600000 3.50000 78
GAUGE 0.600000 3.50000 79
GAUGE 0.600000 3.50000 80
GAUGE 0.600000 2.50000 113
GAUGE 0.600000 2.50000 114
GAUGE 0.600000 2.50000 115
GAUGE 0.600000 2.50000 116
GAUGE 0.600000 2.50000 117
GAUGE 0.600000 2.50000 118
GAUGE 0.600000 2.50000 119
GAUGE 0.600000 2.50000 120
GAUGE 0.600000 2.50000 121
GAUGE 0.600000 2.50000 122
GAUGE 0.600000 2.50000 123
GAUGE 0.600000 2.50000 124
GAUGE 0.600000 2.50000 125
GAUGE 0.600000 2.50000 126
GAUGE 0.600000 2.50000 127
GAUGE 0.600000 2.50000 128
GAUGE 0.600000 2.50000 129
GAUGE 0.600000 2.50000 130
GAUGE 0.600000 2.50000 131
GAUGE 0.600000 2.50000 132
GAUGE 0.600000 2.50000 133
GAUGE 0.600000 2.50000 134
GAUGE 0.600000 2.50000 135
GAUGE 0.600000 2.50000 136
GAUGE 0.600000 2.50000 137
GAUGE 0.600000 2.50000 138
GAUGE 0.600000 2.50000 139
GAUGE 0.600000 2.50000 140
GAUGE 0.600000 2.50000 141
GAUGE 0.600000 2.50000 142
GAUGE 0.600000 2.50000 143
GAUGE 0.600000 2.50000 144
NFREQ 1 2.50
ACTNFREQ 1
ENDATA

(end of table)

87

Table 6-7: The modified design/constraint file of the
Dynamic Case Example.

C234567890123456789012345678901234567890123456789012345678901234567890
DESIGN 1 33
DESIGN 1 34
DESIGN 1 49
DESIGN 1 50
DESIGN 1 81
DESIGN 1 82
DESIGN 1 97
DESIGN 1 98
DESIGN 2 35
DESIGN 2 36
DESIGN 2 51
DESIGN 2 52
DESIGN 2 83
DESIGN 2 84
DESIGN 2 99
DESIGN 2 100
DESIGN 3 37
DESIGN 3 38
DESIGN 3 53
DESIGN 3 54
DESIGN 3 85
DESIGN 3 86
DESIGN 3 101
DESIGN 3 102
DESIGN 4 39
DESIGN 4 40
DESIGN 4 55
DESIGN 4 56
DESIGN 4 87
DESIGN 4 88
DESIGN 4 103
DESIGN 4 104
DESIGN 5 41
DESIGN 5 42
DESIGN 5 57
DESIGN 5 58
DESIGN 5 89
DESIGN 5 90
DESIGN 5 105
DESIGN 5 106
DESIGN 6 43
DESIGN 6 44
DESIGN 6 59
DESIGN 6 60

(continued)

88

Table 6-7

DESIGN

6

--
91

DESIGN 6 92
DESIGN 6 107
DESIGN 6 108
DESIGN 7 45
DESIGN 7 46
DESIGN 7 61
DESIGN 7 62
DESIGN 7 93
DESIGN 7 94
DESIGN 7 109
DESIGN 7 110
DESIGN 8 47
DESIGN 8 48
DESIGN 8 63
DESIGN 8 64
DESIGN 8 95
DESIGN 8 96
DESIGN 8 ill
DESIGN 8 112
DESIGN 9 113
DESIGN 9 114
DESIGN 9 115
DESIGN 9 116
DESIGN 9 117
DESIGN 9 118
DESIGN 9 119
DESIGN 9 120
DESIGN 9 121
DESIGN 9 122
DESIGN 9 123
DESIGN 9 124
DESIGN 9 125
DESIGN 9 126
DESIGN 9 127
DESIGN 9 128
DESIGN 9 129
DESIGN 9 130
DESIGN 9 131
DESIGN 9 132
DESIGN 9 133
DESIGN 9 134
DESIGN 9 135
DESIGN 9 136
DESIGN

9

137
--

(continued)

89

Table 6-7

DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
DESIGN
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE
GAUGE

9
9
9
9
9
9
9
10
10
11
11
12
12
13
13
14
14
15
15
16
16
17
17

0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000
0.600000

138
139
140
141
142
143
144

65
73
66
74
67
75
68
76
69
77
70
78
71
79
72
80

10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

(continued)

90

Table 6-7

GAUGE 0.600000 10.0000 54
GAUGE 0.600000 10.0000 55
GAUGE 0.600000 10.0000 56
GAUGE 0.600000 10.0000 57
GAUGE 0.600000 10.0000 58
GAUGE 0.600000 10.0000 59
GAUGE 0.600000 10.0000 60
GAUGE 0.600000 10.0000 61
GAUGE 0.600000 10.0000 62
GAUGE 0.600000 10.0000 63
GAUGE 0.600000 10.0000 64
GAUGE 0.600000 10.0000 81
GAUGE 0.600000 10-0000 82
GAUGE 0.600000 10.0000 83
GAUGE 0.600000 10-0000 84
GAUGE 0.600000 10-0000 85
GAUGE 0.600000 10-0000 86
GAUGE 0.600000 10-0000 87
GAUGE 0.600000 10-0000 88
GAUGE 0.600000 10-0000 89
GAUGE 0.600000 10-0000 90
GAUGE 0.600000 10-0000 91
GAUGE 0.600000 10-0000 92
GAUGE 0.600000 10-0000 93
GAUGE 0.600000 10-0000 94
GAUGE 0.600000 10-0000 95
GAUGE 0.600000 10-0000 96
GAUGE 0.600000 10-0000 97
GAUGE 0.600000 10-0000 98
GAUGE 0.600000 10-0000 99
GAUGE 0.600000 10-0000 100
GAUGE 0.600000 10-0000 101
GAUGE 0.600000 10-0000 102
GAUGE 0.600000 10-0000 103
GAUGE 0.600000 10-0000 104
GAUGE 0.600000 10-0000 105
GAUGE 0.600000 10-0000 106
GAUGE 0.600000 10-0000 107
GAUGE 0.600000 10-0000 108
GAUGE 0.600000 10-0000 109
GAUGE 0.600000 10-0000 110
GAUGE 0.600000 10-0000 ill
GAUGE 0.600000 10-0000 112
GAUGE 0.600000 3.50000 65
GAUGE 0.600000 3.50000 66
GAUGE 0.600000 3.50000 67

(continued)

91

Table 6-7

GAUGE

0.600000

3.50000

68

GAUGE 0.600000 3.50000 69
GAUGE 0.600000 3.50000 70
GAUGE 0.600000 3.50000 71
GAUGE 0.600000 3.50000 72
GAUGE 0.600000 3.50000 73
GAUGE 0.600000 3.50000 74
GAUGE 0.600000 3.50000 75
GAUGE 0.600000 3.50000 76
GAUGE 0.600000 3.50000 77
GAUGE 0.600000 3.50000 78
GAUGE 0.600000 3.50000 79
GAUGE 0.600000 3.50000 80
GAUGE 0.600000 2.50000 113
GAUGE 0.600000 2.50000 114
GAUGE 0.600000 2.50000 115
GAUGE 0.600000 2.50000 116
GAUGE 0.600000 2.50000 117
GAUGE 0.600000 2.50000 118
GAUGE 0.600000 2.50000 119
GAUGE 0.600000 2.50000 120
GAUGE 0.600000 2.50000 121
GAUGE 0.600000 2.50000 122
GAUGE 0.600000 2.50000 123
GAUGE 0.600000 2.50000 124
GAUGE 0.600000 2.50000 125
GAUGE 0.600000 2.50000 126
GAUGE 0.600000 2.50000 127
GAUGE 0.600000 2.50000 128
GAUGE 0.600000 2.50000 129
GAUGE 0.600000 2.50000 130
GAUGE 0.600000 2.50000 131
GAUGE 0.600000 2.50000 132
GAUGE 0.600000 2.50000 133
GAUGE 0.600000 2.50000 134
GAUGE 0.600000 2.50000 135
GAUGE 0.600000 2.50000 136
GAUGE 0.600000 2.50000 137
GAUGE 0.600000 2.50000 138
GAUGE 0.600000 2.50000 139
GAUGE 0.600000 2.50000 140
GAUGE 0.600000 2.50000 141
GAUGE 0.600000 2.50000 142
GAUGE 0.600000 2.50000 143
GAUGE 0.600000 2.50000 144
NFREQ 1 2.50000
ACTNFREQ 1
ENDATA

(end of table)

92

Figure 6-1 The FE model of the static case example.

93

Figure 6-2 The FE model of the similar static past
case.

94

Figure 6-3 The FE model of the similar dynamic past

case.

95

REFERENCES.

Heller, D. 1990.
XView Programming Manual - An OPEN LOOK Toolkit
for X11.
O'Reilly & Associates, Inc. USA.

Kuntjoro, W. 1994.
Expert System for Structural Optimization Exploiting
Past Experience and A-priori Knowledge.
PhD Thesis, College of Aeronautics, Cranfield Univer-
sity, UK.

