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ABSTRACT 

The availability of comprehensive Structural 
Optimization Systems in the market is allowing 
designers direct access to software tools previously 
the domain of the specialist. The use of Structural 
Optimization is particularly troublesome requiring 
knowledge of finite element analysis, numerical 
optimization algorithms, and the overall design 
environment. 

The subject of the research is the application 
of Expert System methodologies to support non- 
specialists when using a Structural Optimization 
System. The specific target is to produce an Expert 
System as an adviser for a working structural 
optimization system. Three types of knowledge are 
required to use optimization systems effectively; 
that relating to setting up the structural 
optimization problem which is based on logical 
deduction; past, experience; together with run-time 
and results interpretation knowledge. A knowledge 
base which is based on the above is set, up and 
reasoning mechanisms incorporating case based and 
rule based reasoning, theory of certainty, and an 
object oriented approach are developed. 

The Expert SVstem described here concentrates on 
the optimization formulation aspects. It is able to 
set up an optimization run for the user and monitor 
the run-time performance. In this second mode the 
system is able to decide if an optimization run is 
likely to converge to a, solution and advice the user 
accordingly. 

The ideas and Expert System techniques presented 
in this thesis have been implemented in the 
development; of a prototype system written in C++. The 
prototype has been extended through the development 
of a user interface which is based on XView. 
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CHAPTER 1: 

INTRODUCTION 

1.1. EXPERT SYSTEM AND STRUCTURAL OPTIMIZATION. 

The design of a structure is a repetitive process 
involving a structural definition (synthesis) phase and an 
analysis phase to meet a set of requirements. A structure 
can be defined by choosing its type, configuration, and 
member sizes. The analysis is required to asses the struc- 
tural responses (stress, strain, displacement, etc. ) under 
environmental action (load, thermal, etc. ) . The structure 
performs satisfactorily if its responses are within accept- 
able values (allowable stresses, frequencies, etc. ) which 
constitute the design constraints. In addition, the 
designer might choose a certain goal to be satisfied. The 
common practice for an aircraft structure is to achieve a 
minimum weight structure. Figure 1-1 illustrates the 
interaction in a design process. 

Structural optimization methods have been developed to 
allow the design of minimum weight structures in an automa- 
tive manner. By the use of such methods the design process 
outlined in the above paragraph can be computerized. The 
development of computers with powerful capabilities make 
the implementation of structural optimization methods prac- 
tical proposition. Figure 1-2 shows the design flow which 
makes use of the optimization method. Most of the methods 
try to satisfy both the constraints and the goal. 

Most structural optimization methods exploit princi- 
ples developed in the allied discipline of mathematical 
programming. A certain degree of expertise is required to 
describe the structural problem in an appropriate mathema- 
tical form. This means the optimization methods and the 

physical behaviour of the structure to be considered must 
be well understood. 

For a large structure, the analysis stage is performed 
using the finite element method. This requires the designer 
to model the structure being optimized by a finite element 
model. The designer must, therefore, understand the rela- 
tion between a finite element analysis and an optimization 
method. 

The increasing complexity and size of the structural 
problems are making the use of optimization methods a 

reasonable, if not obligatory, choice as an aid to the 

design of a structure. Unfortunately, most of the optimiza- 
tion packages are rather cumbersome to use and require a 
thorough knowledge of the methods in order to match the 
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solution algorithm to the structural design problem. In ad- 
dition, the fact that the algorithms search for a solution 
in design space means that they can be subject to error and 
can give rise to misleading result if employed inexpertly. 
It is, therefore, imperative that a certain degree of 
expertise is required to use the optimization method 
correctly. 

Normally the suppliers of structural optimization 
packages provide training, but there is no substitute for 
extensive experience which takes time to build up. An al- 
ternative approach, followed here, is to develop an Expert 
System containing the relevant knowledge so that the de- 
signers can use these packages effectively and efficiently. 
In this way the user would not need to be an expert in the 
use of structural optimization methods and the methods 
would be available to structural designers. 

RESEARCH OBJECTIVE AND SYSTEM OVERVIEW. 

The subject of this research is the application of 
Expert System methodologies for improving the performance 
of structural optimization systems. The specific target is, 
therefore, to produce an expert system as an adviser for a 
working structural optimization system. 

No effort is devoted to developing a separate optimi- 
zation program as this is considered as impractical. 
Instead, for its optimization tool, the Expert System 
should be able to use the currently available structural 
optimization systems in the market such as ASTROS, STARS, 
SAMCEF, and NASTRAN Sol-200. This expert system will func- 
tion as a front end (and back end) to the optimization 
package. Assuming the user has sufficient knowledge of 
finite element modelling, the Expert System need concen- 
trate only on the optimization formulation aspects. 

Figure 1-3 gives an overall view of the interaction 
between the Expert System and the optimization package. The 

users interact with the expert system through a user inter- 
face. Based upon the information from the user (such as 
structural requirements, FEM model, and design variables) 
and the result of internal decision making within the 

system with respect to such aspects as the method and 
convergence criteria requirements (which can be overridden 
by the user) , the system will produce driver files to run 
the optimization package. The driver files required depend 

on the optimization software used. After the optimization 
run,, the Expert System can be consulted for the result. 
Based on the results a consultancy phase is entered and the 

driver files can be modified if necessary. 
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STRATEGY FOR SETTING UP AND MONITORING AN OPTI- 
MIZATION. 

To optimize a structure, in addition to preparing a 
finite element model of the structure, the designer needs 
to define the optimization algorithm and the design speci- 
fication. An optimization algorithm, in general, consists 
of the method to be used, the number of iterations requi- 
red, and the convergence criteria. Associated with this is 
the design specification which consists of design variables 
definitions, the constraints specifications (stress, 
displacement), and the gauges. The algorithm selection for 
a specified problem is a function of the analysis and cons- 
traints required. The finite element types used in finite 
element modelling have a profound influence on the method 
to be used. The size of the problem could also have an 
influence on the algorithm selection. The design specifica- 
tion usually is laid down by the designer. 

The task of the Expert System is to guide the user in 
setting up the optimization strategy and the design spe- 
cification. An Expert System is a knowledge based program 
that provides "expert quality" solutions to problems in a 
specific domain [Luger and Stubblefield 1989] which, in 
this research, is the structural optimization. Expert 
Systems are computer programs that use heuristic strategies 
to solve specific classes of problems. The common practice 
for an Expert System to reach a solution is by applying an 
inferencing strategy to a knowledge base. Thus the 
immediate task is to set up the knowledge base relating to 
the structural optimization and develop a reasoning or 
inferencing strategy for this knowledge base. 

Inferencing is a process that attempts to use the 

available information to find conclusions from a set of 
statements or finds objects that match. The knowledge base 

stores information about the subject domain. It contains 
symbolic representations of experts's judgement rules and 
experience in a form that enables the inference engine to 

perform logical deductions upon the knowledge set [Yazdani 
1986] . Forward or backward chaining (or their combination) 
is the inferencing strategy which is widely used. Forward 

chaining is sometimes called data driven because the 
inference engine uses the information which the user 
provides to move through a network of logical AND and OR 

statements until it reaches a terminal point, which is the 

goal. Backward chaining is the reverse of forward chaining. 
It starts with a hypothesis (an objective) and requests 
information to confirm or deny it. This method is also 

called goal driven. 

The Expert System strategy developed in this research 
tries to set up the optimization strategy uses the two 

approaches. The first approach applies to an inferencing 
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strategy which basically is a forward chain to a knowledge 
base written by using an object oriented approach. The 
knowledge base stores the apriori knowledge required for 
setting up an optimization algorithm. The second approach 
tries to set up the optimization by recalling the system's 
past experience. A solution is found if the system finds in 
its knowledge base a similar design case to the current de- 
sign problem. Using this second approach, during execution, 
the system searches its memory to find any similar case to 
the current design problem. If a similar design case is 
found, the solution for that case is proposed to the user. 
If no similar case is found the system will move to the 
first approach. This approach with past experience is used 
in case based reasoning. 

These two solution strategies work in a complementary 
manner. The second approach termed the "memory approach" is 
written as a separate module from the first which is termed 
the "conventional approach". Both modules together repre- 
sent a complete Expert System which is not only capable of 
finding a solution but also memorizing this solution and 
the details of the design case. with increasing design 
experience, the system becomes more capable in searching 
for a solution. 

The mechanism adopted in the memory approach discussed 
above raises the question of defining similarity criteria. 
This is not straight-forward as appropriate similarity 
rules do not exist and are defined as part of this study. 
It is noted that some of the similarity parameters might 
not be deterministic in nature. Figure 1-4 shows a simpli- 
fied sequence which represents the strategy discussed 
above. 

In addition to setting up the optimization, the user 
must be able to monitor the performance of an optimization 
run in order to decide if (1) a solution is being approach- 
ed and (2) at termination, the result is satisfactory. If 
the above situations are negative the system should offer 
appropriate explanations and indicate the required remedial 
action. This is implemented by developing a module which 
basically is an Expert System with forward chain inferenc- 
ing and production rules. The knowledge required in this 

module, which is called the back-end module, is associated 
with the run-time situation and results interpretation. In 

addition, if the optimization run does not produce satis- 
factory results, based on the proposed remedial actions the 

back-end module should be able to modify the optimization 
set-up. 
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SYSTEM IMPLEMENTATION. 

1.4.1. DRIVER FILES, FRONT-END, AND BACK-END. 

The strategy mentioned in (1.3) is required to produce 
an appropriate optimization algorithm for a structural de- 
sign problem. With regard to an optimization package, this 
algorithm should be written in a manner which is understood 
by that package. In addition to the algorithm, an optimiza- 
tion run requires the design specification and the finite 
element model. The design specification is related to the 
design variables, constraint set, and gauges. It is assumed 
that it is the user's responsibility to set up the FE 
model. A module is developed to write the optimization 
strategy and design specification into a file (or files) 
which can be read by the optimization package. These files 
are called driver files and the module which produces them 
is called the driver files module. 

The front-end is that part of the total system from 
the system start up to the production of driver files. The 
conventional and memory approaches mentioned in (1.3) are 
part of this system's f ront-end which contains both proce- 
dural and Expert System programming methods. When the 
front-end activity is complete this is followed by an 
optimization run. 

The system's back-end is invoked to monitor the 
progress of an optimization run. If an optimization run is 

predicted not to be heading for a solution (convergence) 
this module will cancel the run and advise the user of the 
possible explanation and actions to follow. At termination 
the result will be interpreted and if considered unsatis- 
factory the possible reason is explained with advice on 
actions to follow. Based on the actions proposed,, the 

optimization set up can be modified, and another optimiza- 
tion run can be executed. 

1.4.2. THE PROTOTYPE MODULES. 

For system implementation, the STARS optimization 

package jointly developed by DRA and SCICON is used as the 

optimization tool. For performing the associated structural 

analysis, STARS calls the MSC NASTRAN finite element 

package. STARS requires three files (driver files) to run, 

which consists of a command data file (CDF)., a design 

specification file (CONS), and a file which contains the FE 

model. The first two files are produced by the driver files 

module. Because STARS uses NASTRAN for its FE analysis, the 

FE model consists of a NASTRAN bulk data. The system is 

developed using C++ on a SUN SPARC II computer. 
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The command data file is an optimization algorithm 
which includes the optimization method, the number of ite- 
rations, and the convergence criteria. The design specifi- 
cation file (CONS) contains the design variable definition, 
the constraints specifications and the gauges. CDF and CONS 
are written in statements which are unique to STARS. 

Figure 1-5 shows an outline of the modules available 
in the program. These modules are written using the object 
oriented approach. 

- The controller is the module which controls the flow of 
information in the front end and basically is the main 
program. 

- The design input module asks the users about the design 
case. 

- The constraint module task is to handle information con- 
cerning constraint specifications and gauges. 

- The variable module deals with all aspects regarding the 
design variables definitions. 

- The element module deals with element data and opera- 
tions. This module also contains various element types. 
Currently this module contains some elements which are 
found in the MSC NASTRAN finite element package. 

- The driver f iles module has the task of producing driver 
files. Currently, it produces STARS files only. 

The memory module has the task of setting up the optimi- 
zation by recalling the system's past experience. 

The conventional module has the task of setting up the 
optimization by applying inferencing technique to apri- 
ori knowledge. 

The system's backend which consists of the Run-time, Re- 

sult Interpretation, and Modification modules, monitors 
the progress of an optimization run and at termination 
interprets the result. If there is any problems associ- 

ated with optimization run, the system will search for 

an explanation and propose actions to follow. If requi- 

red, based on these proposed actions, the modification 

module modifies the optimization set up. 
Although not indicated in the diagram, there are several 
front-end modules, the design input module, the cons- 
traint module, the variable module, the element module, 

and the driver-files module, which are also used 
(shared) by the modification module. 
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Figure 1-1 The conventional design process 
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CHAPTER 2: 

LITERATURE ON EXPERT SYSTEM FOR 
STRUCTURAL DESIGN AND OPTIMIZATION 

Numerous studies have been reported in the literature 
relating to the development of Expert Systems related to 
design optimization. Some of these are reviewed briefly in 
this chapter. However, the first section is more general 
and reviews some successful examples of Expert System in 
different subjects. The following section then reviews the 
use of Expert Systems for structural analysis and design. 

EXAMPLES OF SUCCESSFUL EXPERT SYSTEMS. 

Several successful applications of the Expert System 
technology in various fields have been developed since the 
revival of Artificial Intelligence as a legitimate subject 
of research. 

1. DENDRAL. 
DENDRAL was designed to infer the structure of organic 

molecules from their chemical formulas from mass spectro- 
graphic information about the chemical bonds present in the 
molecules. Because organic molecules tend to be very large, 
the number of possible structures for these molecules tends 
to be huge. This problem of large search space is addressed 
by applying the heuristic knowledge of expert chemists to 
the structure elucidation problem. It represents one of the 

earliest Expert Systems and was developed at Stanford in 
the late 1960s. 

2. MYCIN. 
Developed at Stanford in the mid-1970s, MYCIN 

[Buchanan and Shortliffe 1985] was one of the first 

programs to address the problem of reasoning with uncertain 
or incomplete information. This Expert System uses expert 

medical knowledge to diagnose and prescribe treatment for 

spinal meningitis and bacterial infections of the blood. 

Written in INTERLISP, a dialect of LISP, with around 450 

rules within its knowledge base,, MYCIN established the 

methodology of contemporary Expert System implementation. 

3. XCON. 
XCON is an Expert System for configuring DEC 

computers. In 1981, XCON had about 500 rules and could 
configure the VAX 780. It was progressively refined until 
in 1984 with about 4000 rules, it configured most of the 

DEC product line. 
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4. PROSPECTOR. 
This Expert System was developed at Stanford in the 

late 1970s. It is a diagnostic Expert System for determin- 
ing the probable location and type of ore deposits based on 
geological information about a site. Its knowledge base 
contains about 1600 rules. Bayesian probability is used for 
treating uncertainties in information and rules. 

5. INTERNIST. 
This is an Expert System for performing diagnosis in 

the area of internal medicine. Developed further (with the 
name CADUCEUS), its knowledge base includes about 500 
disease, 350 diseases manifestations, and about 100,000 
symptomatic associations. CADUCEUS covers about 25 percent 
of the diseases of internal medicine. 

The above Expert Systems can be regarded as classical 
Expert Systems and often mentioned in Expert System text 
books. These systems use rules (IF-THEN statements) for 
reasoning. Some systems, such as MYCIN and PROSPECTOR, 
address uncertainty in information and rules. As can be 
seen in later chapters, the Expert System presented in this 
thesis also use rules and has to deal with reasoning with 
uncertainty. 

2.2. EXPERT SYSTEMS FOR STRUCTURAL ANALYSIS AND DESIGN.. 

The first successful application of Expert System 
technology in the structural analysis field appears to be 
SACON (Structural Analysis Consultant) . Developed in LISP 
[Bennet and Engelmore 1979], SACON interacts with the user 
for the proper application of MARC finite element software. 
Rivlin et al. [1980] also attempted to develop a knowledge- 
based consultation system and to establish a finite element 
structural analysis knowledge base for the MARC finite 

element program in FORTRAN. 

Chen and Hajela [1987] developed an expert system 
which serves as a consultant for finite element modelling 
(FEMOD) . FEMOD gives the designer advice in modelling for 

a special finite element program EAL. It contains rules for 

selection of elements, node selection,, mesh generation, 
selection of subdivision lines, and mesh refinement. FEMOD 

was developed using an Expert System shell AESOP with rule- 
based knowledge representation and backward chain inferenc- 
ing. 

A widely cited design Expert System is HI-RISE [Maher 

19881 . HI-RISE is an Expert System for the preliminary 
structural design of high rise building of rectangular 

shape. The major concern of HI-RISE is to generate feasible 

configurations, to the level of detail needed to make a 
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selection from amongst alternatives, and to provide the 
initial estimate of geometric and mechanical properties for 
a detailed structural analysis. HI-RISE represents the 
design knowledge in the form of schemas and rules. The 
schemas contain the description of the design subsystems 
and components, and the rules represent design strategy and 
heuristic constraints. 

An extension of HI-RISE is ALL-RISE [Sriram 1987] . It 
provides a framework for a knowledge-based synthesizer for 
all types of buildings. Multiple solutions are generated 
simultaneously, i. e there is no need for backtracking 
because ALL-RISE generates all the feasible alternatives. 

Adeli and Al-Rijleh developed an Expert System for 
design of roof trusses, called RT-EXPERT. As described by 
Adeli and Balasubramanyam [1988] RT-EXPERT can advise the 
user on the appropriate type of the roof truss, selection 
of the layout of the truss, and the loading. The knowledge 
base and explanation facility is developed using INSIGHT 2+ 
Expert System shell. The mathematical computations, graphic 
algorithms, and the data file manipulation routines are 
developed in Turbo Pascal. 

An Expert System which employ mathematical optimiza- 
tion was developed by Rogers and Barthelemy [1987]. It is 
in the form of an Expert System "pre-processor" for select- 
ing the best combination of optimization techniques and one 
dimensional search method used in the optimization software 
Automated Design Synthesis (ADS) developed by Vanderplaats. 
This expert system does not address the problem of monitor- 
ing the optimization run and the result interpretation. 

Harris et. al [1990] developed an Expert System package 
as an interface to the STARS optimization package. This 
system addresses problems of algorithm selection, quality 
of convergence, and constraint satisfaction. The Expert 
System was written using FLEX (Fortran Library for Expert 
System) developed by RAE. The knowledge used in FLEX 

comprises rules and facts. Rules are represented in the 

standard production rules. FLEX supports both forward and 
backward chaining inferencing. This Expert System does not 
have the capabilities to learn from experience. 

Adelli and Balasubramanyam [1988] developed a coupled 
Expert System prototype for optimum (weight) design of 
bridge trusses subjected to moving loads. This prototype 
(called BTEXPERT) has the knowledge base which consists of 

the domain specific knowledge and control knowledge. The 
domain specific knowledge consists of parameters and rules 

where the rules are in the IF-THEN form. The control know- 

ledge consists of control command for solving the problem. 
The inferencing has both forward and backward chaining. 
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This system does not address structures other than truss 
structure. 

Berke et al. [1993] investigated the application of 
artificial neural networks to capture structural design 
expertise. An artificial neural network code,, NETS,, was 
used. A set of optimum design data were processed to obtain 
input and output pairs,. which were used to develop a 
trained artificial neural network with the code NETS. 
Optimum designs for new design conditions were predicted by 
using the trained network. The nature of neural network in 
producing the solution makes it difficult for the users to 
understand the reason of any decision given by the network. 
This makes this system unsuitable as an optimization 
training media for non-experts. 

This research is concerned with the development of an 
Expert System as an adviser for a working structural opti- 
mization system. The system is developed in such a manner 
that it covers the following: 

1. It is able to handle various types of structure. This 
implies the use of the Finite Element method in the ana- 
lysis stage. 

2. It accommodates various optimization softwares available 
in the market. 

3. It is able to perform the tasks associated with, 
setting-up the optimization strategyr 
monitoring the optimization run, 
interpreting the optimization result, 

and, in case of unsatisfactory results, advising the 
users on actions to follow. 

4. It has some capabilities to learn from past experience. 

5. It is able to function as a training media for the users 
in learning the design for optimum structure. This imp- 
lies the provision of a comprehensive explanation faci- 
lity. 
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CHAPTER 3: 

IDENTIFICATION OF TASKS INVOLVED 
IN A STRUCTURAL OPTIMIZATION 

This chapter is devoted to identifying the tasks 
involved in performing an optimization for a structural 
design problem. Before discussing the tasks associated with 
a structural optimization system, several optimization 
methods and some basic concepts will be described first. 
Detailed discussions of the methods employed are not consi- 
dered here as these are adequately considered elsewhere 
[Arora 1989; Morris 1982; Vanderplaats 1984]. The current 
chapter contains an overview to provide completeness. 

OPTIMIZATION METHODS AND BASIC CONCEPTS. 

The methods described in this section are those which 
are available in STARS optimization package and also 
commonly found in most commercial systems. These methods 
are quite well known and detail description of each method 
can be consulted in related references. Only general dis- 
cussion are presented here. 

3.1.1. FULLY STRESSED DESIGN. 

Fully Stressed Design, or FSD, is applicable to the 
design of stress (strength) critical designs only and 
cannot deal with more general constraints such as displace- 
ment or frequency. This method is not really an optimiza- 
tion method in the context of numerical programming but 
instead is an automatic form of a design technique which 
has been used for many years before the advent of the com- 
puter [Vanderplaats 1984]. 

Fully Stressed Design procedures are based upon the 
assumption that in an optimal structure each member is sub- 
jected to its allowable stress under at least one of the 
loading cases. There is no explicit reference to an object- 
ive function (e. g. weight) . This approach consists of the 
iterative application of analysis and redesign rule, where 
the redesign rule is based on stress ratio. 

FSD algorithm is quite simple. 
For member i of a structure : 

Xinew = 

(Yij 

x, old) 
max 
j=1,, NLC (Y 
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where x= size of member 
NLC = number of load cases 
(Yjj = stress at member 
(Y = allowable stress 

Reasons for the significance of FSD concepts include 
[Kirsch 1981] : 

Engineering experience indicates that a good design 
is often one in which each member is subjected to its 
allowable stress. 

2. FSD can be proved to be optimal (weight) under cer- 
tain circumstances. 

3. FSD procedures are relatively efficient in comparison 
with many mathematical programming methods. 

4. An FSD is often a good starting point for optimum de- 
sign procedures based on mathematical programming. 

3.1.2. OPTIMALITY CRITERIA. 

The optimality criteria methods aims to obtain a de- 
sign that satisfies a certain specified criterion and by so 
doing indirectly minimize the weight of the structure. The 
criterion is derived mathematically by differentiating the 
Lagrangian with respect to the design variables and impos- 
ing the Kuhn-Tucker optimality conditions. In deriving the 
optimality criterion and developing the algorithm, full use 
is made of the knowledge of the behaviour of the cons- 
traints imposed on the structure. Indeed, fully stressed 
design algorithm is a special case of optimality criteria 
based on stress constraint. The optimality criteria method 
is discussed in detail by Morris [1982]. 

MATHEMATICAL PROGRAMMING. 

In mathematical programming, the structural design 

problem is formulated into mathematical expression. The 

non-linear constrained optimization problem can be formula- 
ted by,, 

finding fX} so that 

objective Function 

Subject to constraints, 

9j(fxl) ý<, 0 

hk(IXI) = 

F (IX}) is minimum (3-2) 

(3-3) 

1 (3-4) 
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where JXJ = (X1 
I 

X21 X31 
... I Xj are design variables,, gj 

and hk is inequality and equality constraint respectively. 

In finding the optimum, the design is changed itera- 
tively. The iterative procedure is given by, 

lXq+l} = jXqj + (X. Sq (3-5) 

where S is the search direction in the design space and (x 
is the length of search in finding the optimum of that 
search. The search procedure can be described as finding an 
optimum in a design space. For a two variables case, the 
procedure is illustrated in Figure 3-1. It shows the search 
sequences from the initial design JX11 up to the optimum 
point. 

Pseudo-Newton Method. 

The Pseudo-Newton method is a second-order projection 
method which makes use of the concept of f inding an optimal 
searching along a Newton step which is projected onto the 
constraints. Based on a quadratic approximation to the ob- 
jective function and linearized constraints the problem is, 

min F({X}+Ihl) = F(IX}) + VFT h+ 1/2 hTH. h 

subject to IN qITh=0 

IN qI is the gradients of active constraintsf H is 

an matrix of the objective function, and h is the 
design variable changes. 

It can be shown that the Lagrange multipliers, X, 

X=( fN q}T H-1 fNqI) -1 1N qjT H-1 VF 

and consequently, 

H-1 INqI( {N q}T H-1 IN qj ) -1 

{N qjT ) H-1 VF 

(3-6) 

the Hessi- 
vector of 

are given 

(3-7) 

(3-8) 

Some of the advantages of using a Pseudo-Newton algo- 
rithm are that it both satisfies differential Kuhn-Tucker 

conditions and provides estimates of the Lagrange multipli- 
ers. 

In its operation, any projection algorithm requires 
that the active constraints set is determined at each ite- 

ration. A basic active set strategy can be constructed 

using following steps at the end of each iteration: 
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1. Drop constraints with negative lagrangian multipli- 
ers. 

2. Add violated constraints (after the analysis step) 
3. Apply anti-zigg-zagg rules. 

CONVERGENCE CRITERIA. 

Convergence criteria is used to detect whether a de- 
sign solution is an optimum one. There are several crite- 
ria commonly used. Some of them are, 

The relative change in the design variables is less 
than a small predetermined value. 

2. The relative change in the Objective Function is less 
than a specified tolerance. 

3. The difference between the 
tual weight is less than a 

4. The difference between the 
(weight) and a lower bound 
a specified tolerance. 
A lower bound for a design 
dual problem. 

feasible weight and the ac- 
small predetermined value. 

feasible objective function 
on the optimum is less than 

can be found by solving the 

3.2. OUTLINE OF SETTING-UP A TYPICAL STRUCTURAL OPTIMIZA- 
TION JOB. 

There are several standard tasks which have to be 

performed by structural designers in the optimization of a 
design. These tasks are concerned with the way the problem 
is defined and modelled. There are eight main tasks which 
are outlined below and then considered in detail: 

1. Problem Definition and Identification. 
(a). Identifying structural type (truss, frame, etc). 
(b). Problem type (static, non-linear, dynamic, etc). 

2. Finite Element Modelling. 
This includes all aspects of FE modelling such as 
meshing and element type selection. 

Definition of Objective Function. 
Minimum mass is common as a goal though other objective 
functions are now being actively considered as cost and 

manufacturability are key items in a modern concurrent 

engineering approach. 

4. Variable Selection. 
This requires considering two aspects: 
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(a). Defining variables. 
(b). Variable linking. 

5. Relations between Design Variables and Analysis Mo- 
del. 

6. Constraint Definition. 
Type of constraints (gauge, stress, displacement, etc) 

7. Algorithm Selection. 

8. Criteria of Convergence. 
The selection of criteria. 

3.2.1. PROBLEM DEFINITION. 

Firstly, the type of structure to be optimized should 
be identified. The structure could be a truss,, frame, 
plate, stiffened-shell, or other types, including combina- 
tions of structure types in a typical built-up construc- 
tion. An important aspect is the analysis type. This is a 
function of the environment which defines the loadings, 
displacements, etc.,, and how the structure responds subject 
to these loads. These responses may require a static 
analysis, a normal modes analysis, a dynamic analysis, etc. 

3.2.2. FINITE ELEMENT MODELLING. 

For a complicated structure with a large number of 
elements, the Finite Element Method is the obvious choice 
for structural analysis. Many structural optimization 
packages such as STARS, ASTROS [Johnson et al. 19891, and 
NASTRAN SOL-200 [Miura 1988], offer finite element analysis 
module (which is NASTRAN in those three mentioned 
packages). 

The finite element modelling problem involves tasks 

such as mesh generation,, element selection, constraint 
definition (single or multi point constraints), and loading 

application. Certain type of elements are suitable only for 

certain optimization algorithms. With regard to the Expert 
System discussed here, the FE model is input data and 
assumed to be built around NASTRAN finite element analysis. 

3.2.3. OBJECTIVE FUNCTION. 

An objective function is a mathematical formulation of 

the entity to be optimized and is a function of the design 

variables. In general terms, an objective function could be 

anything defined as a goal to be achieved. In a structural 

problem, it is common to design a structure for minimum 
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mass (especially for aerospace structure) and structural 
mass is the objective function in this research. 
Nevertheless, any Structural Optimization Expert System 
must be open to the inclusion of alternative objective 
functions. The pressure to move away from mass is coming 
from the requirement that the more advance CAD systems 
consider a range of design criteria. 

3.2.4. DESIGN VARIABLES. 

The variables in structural optimisation can be member 
sizes and the configuration of the structure. The parame- 
ters defining the size of a structural members can be 
complicated. For example in a truss structure, the struc- 
tural members might be a hollow tubes, where "size" can be 
defined as a combination of diameter and thickness. Hence, 
there are two variables for each member, the diameter and 
thickness. For different type of structural member (channel 
section, I-section, etc) . there are different types of va- 
riables, which depend on the parameters defining the size. 

Configuration optimization of a structure deals with 
finding an optimum (e. g. minimum mass) configuration of a 
structure. In many cases, the structural configuration is 
constrained by available space and structural functionality 
and has been fixed already when it goes to the optimization 
stage (hence only members size optimization is needed) . The 
optimization tool in this research does not handle optimi- 
zation of structural configuration. 

A second aspect in this section involves the linkage 
of specific element design variables into linked design va- 
riables. This linkage process involves examining the struc- 
tural behaviour patterns to define which elements are to be 
associated within a given design variable. The selection 
process can be augmented by the use of sensitivity analysis 
to improve the performance of the design variables through 

a relinkage process. 

3.2.5. RELATION BETWEEN DESIGN VARIABLE AND ANALYSIS 
PROPERTY. 

An optimization method deals with design variables 
whilst the finite element analysis deals with analysis 
properties. This means that a relationship between the 
design variable property and the analysis property must be 

determined. 

For example, consider a truss structure with a hollow 

tube beams as members. The design variables are normally 
the bar diameter and thickness. If a finite element analy- 

sis is based on truss analysis (CONROD element in NASTRAN) , 
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then the property analysis is cross-sectional area. A rela- 
tionship between the design variables (thickness, diameter) 
and the property analysis (area) has to be defined. This 
depends on the optimization packages being used. For 
example,, STARS (current version) only allows the cross- 
sectional area to be used as the design variable for its 
CONROD element. On the other hand, using the optimization 
module in NASTRAN (SOL 200), it is possible to define the 
relation function as 

f (D, t) (3-9) 

A= area 
D= diameter 
t= thickness 

which for a tube is 

3.1416 xDxt (3-10) 

3.2.6. CONSTRAINTS DEFINITION. 

An optimization procedure is not only aiming at 
minimizing (or maximizing) the objective function, but it 
must also satisfy the set of constraints imposed. The 
constraints should be in accordance with the analysis type 
selected. The constraint types which can be handled depend 
not only on the associated finite element systems solution 
capabilities but on the element types themselves. Certain 
elements cannot be employed if analytic derivatives are 
required by the solution algorithm. A complex interrelation 
exists between the analysis system, the elements used to 
model the structure, the solution algorithm, etc. 

3.2.7. ALGORITHM SELECTION. 

The specific optimum seeking method selected directly 

affects the optimization algorithm to be applied. Some me- 
thods require constraint derivative while others do not. In 
STARS there are three methods available: Fully Stressed 
Design, Optimality Criteria, and Pseudo Newton. It is also 
possible to use them in combination. The number of 
iterations also needs to be determined. The selection of a 
specific algorithm or combination of algorithms represents 
one of the most complex aspects of the setting-up of an 

optimization run. The suitability of a solution strategy is 

difficult to asses if the design problem covers a combina- 
tion of problem areas, statics, dynamics, aeroelasticity, 

etc, and the structure/ loadings are large. In forming a so- 
lution strategy, past experience is, often, the main source 
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of information. If no experience is available the user has 
to proceed with extreme caution. 

3.2.8. CRITERIA OF CONVERGENCE. 

The selection of the convergence criteria actually de- 
pends on the problem type and the capabilities of the sys- 
tem. Most systems have the usual criteria which stop on the 
basis of small rates of change in specific parameters, de- 
sign variables for example. Other systems can employ a dual 
bounding procedure but this may not be employed with non- 
derivative based algorithms. 
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CHAPTER 4: 

REASONING STRATEGIES 

This chapter discusses aspects of Expert System 
(Knowledge Base Systems) methodologies placing emphasis on 
two aspects, the implementation of object oriented concepts 
in constructing a knowledge base system, and case based 
reasoning employing past experiences. 

EXPERT SYSTEM: GENERAL DESCRIPTION. 

4.1.1. EXPERT SYSTEMS. 

An Expert System is a knowledge-based program that 
provides solutions to problems in specific domains [Luger 
and Stubblefield 1989]. Generally, its knowledge is 
extracted from a human expert (hence the term Expert 
System) . The knowledge relates to both theoretical and 
practical aspects in the domain. These systems are able to 
use heuristic strategies to solve specific classes of 
problems. Because of the heuristic,, knowledge intensive 
nature of expert level problem solving, Expert Systems are 
generally : 

- Open to inspection, both in presenting intermediate 
steps and in answering questions about solution pro- 
cess. 

- Easily modified, both in adding and deleting skills 
from the knowledge-base. 

- Heuristic, in using (often imperfect) knowledge to ob- 
tain solutions. 

Figure 4-1 shows a typical Expert System architecture. 

A. The Knowledge-Base. 

The three fundamental components of an expert sys- 
tem are the knowledge base, the inference engine, and the 

user interface. The knowledge base stores information about 
the subject domain. However,, information in a knowledge 

base is not a passive collection of records and items which 

are found in a conventional database. Rather it contains 

symbolic representations of experts' rules of judgement and 

experience, in a form that enables the inference engine to 

perform logical deductions upon it [Yazdani 1986]. 
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In general, knowledge can be represented in a number 
of ways. An example of four methods are shown below: 

1. Rules in IF-THEN format conditions are the rule ele- 
ment between IF and THEN, while the conclusions are ele- 
ments which follow THEN. 

2. Semantic Nets : these represent relations among ob- 
jects in the domain by links between nodes. Semantic 
nets can be drawn up to assist the development of rules. 

Frames : these are a generalized record structure with 
fields (or slots). 

4. Horn clauses : this is a form of predicate logic on 
which PROLOG is based. 

With the advent of Object Oriented Design programming, see 
(4.2), there are new developments which utilize this 
approach in constructing not only software but also 
knowledge base. Object oriented programming can also 
produce frames-like structure and simulate semantic nets. 
Object oriented programming is ideal to represent objects 
to be organized in taxonomies, and as optimization methods 
can be organized in this way then it is appropriate to 
employ this approach of programming. However, rules are a 
natural formalism for representing heuristic and problem 
solving knowledge [Luger, Stubblefield 1989]. For this 
reason rules are used in the Expert System for Structural 
Optimization for representing heuristic strategy and 
problem solving. 

B. The Inference Enqine. 

B. 1. Chaininq 

Inferencing is a reasoning process that attempts to 
use the available information to find matching conclusions 
or objects. The most commonly used inferencing strategies 
are forward-chain and backward-chain. 

Forward-chaining is sometimes called data-driven 
because the inference engine uses information that the user 
provides to move through a network of logical ANDs and ORs 

until it reaches a terminal point, which is the object. If 
the inference engine can not find an object by using the 

existing information, then it requests more. The only way 
to reach a solution is by satisfying all of its rules. 

Suppose that the user of a structural optimization 

system decides to use a stress ratioing algorithm to solve 

a displacement constrained problem. The inferencing process 

would start the requirement that the design problem has a 
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displacement constraint. The chaining process starts with 
the inference engine firing the rule whose condition part 
deals with the displacement constraint and progresses from 
this point. Sooner or later it encounters a rule which 
states: 

IF ( constraint = displacement ) and 
( algorithm = stress-ratioing ) 

THEN inappropriate algorithm selected 

Backward-chaining is the reverse of forward-chaining. 
It starts with a hypothesis (an object) and requests infor- 
mation to confirm or deny it. This method is also called 
goal-driven. 

To illustrate backward-chaining we consider the 
stress-ratioing, displacement constrained proposition dis- 
cussed above. In this case the inferencing mechanism works 
from a likely-looking conclusion to find the conditions 
which must apply for that conclusion to be true. The con- 
clusion being sought is that the stress-ratioing algorithm 
is acceptable. When the propositions associated with this 
conclusion are examined it will be found no rule exists 
which implies that stress ratioing is inappropriate when 
displacement constraints are present. 

The selection of chaining methods to 
on the nature of the problem. In our 
forward-chaining is used for reasoning 
knowledge for setting up the optimization 
time and result- interpretation knowledgE 
discussed in more details in chapter 6. 

be used depends 
Expert System, 

in the apriori 
and in the run- 

This will be 

There are often situations where the Expert System 

must attempt to draw correct conclusions from uncertain 
evidence using rules which are not one hundred percent 
reliable. There are several ways of managing these 

uncertainties with the commonly used being the Bayesian 

approach and theory for certainty. 

B. 2. Incorporatinq Uncertaintv. 

The Bayesian approach to uncertainty is based on 
formal probability theory. Assuming a random distribution 

of events,, probability theory allows the calculation of 
more complex probabilities from previously known results. 
Where the assumptions are met, Bayesian approaches offer 
the benefit of a well founded and statistically correct 
handling of uncertainty. However, many Expert System 

domains do not meet these requirements and must rely on 

more heuristic approaches. 
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The theory of uncertainty makes some simple assump- 
tions for creating confidence measures and has some equally 
simple rules for combining these confidences as the program 
moves toward its conclusion. Based on a piece of evidence 
the certaintiness of a hypothesis, called as the certainty 
factor (CF) . can be measured. The range of CF is between -1 
and 1. As the certainty factor approaches 1 the evidence is 
stronger for a hypothesis; as CF approaches -1 the confi- 
dence against the hypothesis gets stronger; and a CF around 
0 indicates that there is little evidence either for or 
against a hypothesis. In a rule base system, the reliabili- 
ty of a rule's conclusion (or hypothesis) can be measured 
if the CFs of rule premises and the CF associated with that 
rule is known. When two or more rules support the same re- 
sult, the multiple CFs also can be combined. 

Either the Bayesian approach or the theory of uncer- 
tainty can be critized for using numeric approaches to the 
handling of uncertain reasoning. Many would argue that it 
is unlikely that humans use these numeric valuation 
paradigms for reasoning with uncertainty. Some applications 
tend to require a more qualitative approach to the problem. 
If human experts are asked why their conclusions are uncer- 
tain,, they tend to answer in qualitative relationships 
between features of the problem instance. However, if some- 
one says that something is better than the other, one could 
ask how much better. If one compares ten systems and tries 
to put them in order with respect to their performances, 
probably numeric approach is better than qualitative rela- 
tionship. 

These probability aspects have an important role to 
play when questions relating to the similarity of design 
problems are addressed. As we shall observe, saying that 
two design problems are similar does not mean they are 
identical. Thus similarity has probability aspects associa- 
ted with its use. This will be discussed in more details in 

chapter 5. 

4.1.2. EXPERT SYSTEM DEVELOPMENT. 

Expert System development requires a non-traditional 
development cycle based on early prototyping and incremen- 
tal revision of the code. There is also complications due 
to the fact that (most) Expert Systems are jointly 
developed by the knowledge engineer (program builder) and 
the domain expert. 

Expert Systems are built by progressive approxima- 
tions, with the program's mistake leading to corrections 
and addition to the knowledge base. In a sense, the know- 

ledge base is "grown" rather than constructed. The second 

major feature of Expert System programming is that the pro- 
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gram needs never be considered "finished". The modularity 
and easy modification available in the production system 
(rules) model make it natural to add to or modify rules 
[Luger and Stubblefield 1989]. 

Many of the successful 
direct result of early resea 
of the 1960s. Classic Expert 
around fifty person-years 
successful system, DENDRAL, 
years to develop. 

Expert Systems have been the 
rch which has gone on since mid 

System such as MYCIN required 
to develop, while another 

required almost forty person- 

However, there is an important aspect of Expert System 
programs, the average development time for Expert Systems 
has been drastically reduced across the decades of evolu- 
tion. The emergence of Expert System shells was instrumen- 
tal in reducing the design time. 

An Expert System shell is an "expert" system which has 
everything (inference engine, explanation facility, know- 
ledge base editor, and user interface) except the knowledge 
base. The system designer needs only to insert domain 
knowledge into the system by using a knowledge base editor. 
There is no doubt, that this system is a great help to the 
designer of an Expert System. The drawback of this system 
is its limitation to the numerically complex domain pro- 
blems. With respect to the optimization problem it is dif- 
ficult (if at all possible) to interfacing the commercially 
available Expert System shells with an optimization module/ 
software. In this research, the Expert System is developed 
as a generic system specially to deal with structural 
optimization problems. 

4.2. OBJECT ORIENTED KNOWLEDGE BASE. 

4.2.1. BASIC CONCEPTS OF OBJECT ORIENTED PROGRAMMING 
[Meyer 1988; Schildt 1990; Booch 19911. 

Object oriented design is the construction of software 

systems in the form of structured collections of abstract 
data type implementations [Meyer 1988]. Every module in an 

object oriented architecture is built on a data 

abstraction. The principle of abstraction is used to 

construct solutions to problems without having to take into 

account the intricate details of the various component 

subproblems. 

The modules of object oriented systems are called 

classes. An object is not a class, but an object is an ins- 

tance of class. The class structure encompasses both pro- 

perties and behaviour of an object which it defines. In 

other wordsf class is the template of object. 
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An object is a dynamic and complete entity. It has 
properties unique to itself and a set of operations (func- 
tions) on its properties. When required, an object is also 
able to interact with other objects. Indeed,, an object 
oriented system is a system which operates on objects and 
objects interactions. Object also support the principle of 
data encapsulation which protects data within an object. 

Object oriented systems also support the principle of 
inheritance where a class is a descendant of one or more 
other. Inheritance permits objects to be organized in taxo- 
nomies in which specialized objects inherit the properties 
and functions of more generalized objects. However,, it 
might be possible for an object to redefine an inherited 
property or operation. 

Polymorphism is another concept supported by object 
oriented program. Polymorphism essentially means that one 
name can be used for several related but slightly different 
purposes. The purpose of polymorphism is to allow one name 
to be used to specify a general class of actions. However, 
depending upon what type of data it is dealing with, a 
specific instance of the general case is executed. 

Object oriented software is implemented using an 
object oriented language. The term object oriented language 
is used to separate this language type from conventional 
non-object-oriented languages such as Basic, Fortran, 
Pascal, and C. Examples of pure object oriented languages 
are Smalltalk, Eiffel and Simula; C++ is an extension of C 
which supports object oriented characteristics [Schildt 
1990] There are also available extensions of Lisp and 
Pascal which support object oriented principles. 

In this research C++ is used to build the prototype. 
Unlike Lisp or PROLOG, C++ is not a traditional expert sys- 
tem language. The advantage of C++ is that it is not only 
capable of handling operations on symbols, but it is also 
an excellent numerical processor. Together with Fortran and 
Pascal, C++ is widely used in numerical analysis softwares. 
This numerically excellent capability would be a great ad- 
vantage when it comes to the development of a coupled Ex- 

pert System which deals with number crunching. 

4.2.2. INFERENCING STRATEGY FOR THE OBJECT ORIENTED 

KNOWLEDGE BASE. 

The properties of object oriented programming are very 

useful for the design of knowledge bases. In addition to 

the benefits of class inheritance for representing taxono- 

mic knowledge, the objects interaction (message-pas sing) 

aspects of object oriented systems simplifies the represen- 
tation of interacting components. 
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Having mentioned the good things of object oriented 
programming in the design of knowledge bases, it must be 
said that, production system rules are a natural formalism 
for representing heuristic and problem solving knowledge. 
The prototype developed as part of the current work 
combines both object oriented schemes and production rules 
for constructing the knowledge base. The object oriented 
scheme represents domain properties while rules reason 
about them. A simple way to show this relation is by 
writing a production rules where rules could send messages 
to objects and test the response in their premises. For 
example, 

Rule : 
IF ( method. analysis testo = true ) and 

( method. constraint testo = true ) 
THEN ( method. to-consider = true ) (4-1) 

The rule tests the object method to see if it can do the 
analysis and handle the constraints. It is the object 
method itself which does the analysis test and the cons- 
traint test operations. The object will see if it can do 
the analysis and accommodate the constraints requirements 
of the current design problem. If the rule premises are 
satisfied,, then the object method will be considered for 
subsequent tests. 

The problem with the above rule is that it is written 
in a procedural way. This type of programming leads to dif- 
ficulties in writing the inference engine and the knowledge 
base as two separate modules. In an Expert System program, 
the user/programmer should be able to modify the rules 
(knowledge base) without interfering with the inference 
engine. A better way to code the above rule is, 

IF analysis 
- 

test = true and 
constraint test = true 

THEN ( method_to_consider = true (4-2) 

The premises variables (analysis test and constraint_test) 
have to be instantiated first. The instantiation is per- 
formed in an assignment/instantiation routine which sends 
enquiries to the appropriate object, in this case is 

method,, about its capabilities in handling the analysis and 
constraints required. Functions analysis test and 
constraint test in the object method will provide the 

answers to these enquiries. If the conditions of the rule 

are satisfied then the conclusion method to consider is 

instantiated to true. For certain informaCion-, instead of 

asking questions to various objects, this assignment rou- 
tine might ask the users to provide the answers. 

From the discussion above it is clear that inferencing 

is applied to the heuristic knowledge which is represented 
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by IF-THEN rules while the object oriented domain supplies 
the information for variable (in the rule premises) assign- 
ment. This mechanism is shown in figure 4-2 and is nothing 
more than an Expert System with a production rule knowledge 
base which contains the heuristic knowledge. Either forward 
or backward chaining can be applied to these rules. The 
distinction is in the fact that additional information is 
provided by the knowledge relating to the optimization me- 
thods stored in an object oriented fashion. 

The discussions above show a concept in which a know- 
ledge base consists of domain properties (object oriented 
scheme in our case above) and IF-THEN rules which reason 
about them. This concept can also work as efficiently using 
records or frames to represent the domain properties (in- 
stead of the object oriented way). 

4.3. CASE BASED REASONING. 

Case based reasoning is an AI technique that adapts a 
solution obtained from past experiences (cases) for solv- 
ing current problems. This reliance on previous experiences 
(or cases) is a hallmark of case-based reasoning. The idea 
of reasoning from relevant past cases is appealing because 
it corresponds to the process an expert uses to solve new 
problems. 

A case basically contains a list of features which re- 
present the nature of a case and a solution for that case. 
Any case specific information, such as possibility of case 
failure if a certain external perturbation is applied, can 
be added to a case. In case based systems, the case (or 

cases) itself is used as means of explanation. Hence a case 
should have adequate information about itself. 

Case based reasoning differs from other types of rea- 
soning and problem-solving techniques and is, in some 
instance, a direct reaction to the problems encountered in 

a rule-based (product ion- rules-based) reasoning system. The 

problems with rule-based systems which prompted a search 
for an alternative paradigm for problem solving concern 
knowledge acquisition and robustness: 

(1) . Knowledge Acquisition. It is known in rule based 

systems that collecting knowledge and encoding it into an 
IF-THEN form is difficult. It is often argued that experts 
do not actually use rules, it is their experience that 

makes them expert. An additional complication in setting-up 

rules is that it is necessary to trace interactions between 

rules to ensure that they could chain properly and that 

contradictions are eliminated. 
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(2) . Robustness. Since all their knowledge is recorded in 
terms of rules,, if a problem does not match any of the 
rules, the system could not solve it. In this context the 
rule based systems are brittle. 
In fact it is possible to regard this third problem as a 
problem which is related to the knowledge quantity and also 
applies to other type of reasonings. 

Case based reasoning offers advantages over rule-based 
system in the following ways: 

- Knowledge Acquisition. Cases are more memorable than 
abstract rules. It is often easier for experts to remember 
and articulate specific examples of the problems and their 
solutions to those problems, than it is for them to des- 
cribe their problem solving technique in terms of poten- 
tially large number of rules. 

- Learning from Experience. The learning process is a natu- 
ral mechanism in case based reasoning. Each time the system 
solves a problem, that problem and its solution are stored 
in memory as a new case. In this way, the case based sys- 
tems progressively has more capacity in dealing with more 
situations. 

- Adaptivity. The case based reasoning adapts the solution 
of similar past cases to solve new problems. 

While adaptivity is regarded as one of basic steps in case 
based reasoning algorithms, in fact we regard this as one 
of the most difficult parts. If an exactly similar case can 
be found then the solution of that case can be directly 
applied for current problem. Problems occur if no exactly 
similar case is available. Generating an adaptation algo- 
rithm is not easy and must include a few rules from its 

rule-based "competitor". Pure case based reasoning will be 

simply lost if there is no case found to be similar. Thus, 
case based reasoning should be regarded as a complimentary 
technique to the rule based reasoning and both are imple- 

mented in this research. 

The basic processing cycle of case based reasoning 
systems is "input a problem, retrieve similar past cases, 
adapt the selected case solution to the current problem, 
and store the new case along with its solution in "memory". 
The above cycle is elaborated as follows: 

(1) . Input a problem. Upon input of a problem, the key 

features are extracted for use in retrieving cases with 

similar features. These features are called indexes. 

(2) . Retrieve similar past cases. The indexes are used to 

retrieve cases from the memory and the process of case re- 
trieval is called case-indexing. A commonly used case- 
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indexing is the so called nearest-neighbour [Kolodner 
19931 . The nearest -ne ighbour approaches let the user 
retrieve cases based on a weighted sum of features in the 
input case that match cases in memory. 

(3) 
. Select most relevant case (s) . The similar cases retri- 

eved are ranked and the one with highest rank available to 
be selected. 

(4) Adapt the case solution for the current problem. If 
the current problem is the same or nearly the same as the 
selected case then the solution can be directly applied. 
However, often this is not true and the solution needs to 
be altered for the current problem. 

(5). Update memory. The current problem and its successful 
solution is stored as a new case in memory. 

With regard to our optimization problem, there are se- 
veral questions which need to be answered: 

1. What are the relevant features for any design case? 
2. How can the case be described to the computer? 
3. How to represent interdependency among features? 
4. How to judge similarity? 
5. How to address the ambiguities in similarity? 
6. What if there is no case found to be similar? 

These problems will be discussed in the next chapters. 
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CHAPTER 5 

REASONING THROUGH PAST EXPERIENCES 

STRUCTURAL OPTIMIZATION KNOWLEDGE. 

For a structural optimization system to be effectively 
used the users must be able to set up the data to run the 
system efficiently, analyze the behaviour of the system 
during the running of the solution algorithms, and inter- 
prete the results. Setting up the system requires knowledge 
of the optimization requirements and can exploit past expe- 
rience, where available. In addition to setting up the 
optimization the user must be able to monitor the perfor- 
mance of an algorithm at run-time in order to decide if a 
solution is being approached and., at termination if the 
result is satisfactory. Thus three types of knowledge can 
be identified as necessary to effectively use such systems: 

1. Knowledge relating to setting up the structural optimi- 
zation. 

2. Knowledge which is based on past experiences. 
3. Run-time and results interpretation knowledge. 

Both the first and second knowledge types have the task of 
setting-up the optimization. However, the first type of 
knowledge is based solely on logical deduction and is a- 
priori in nature, while the second type of knowledge is 
based on previous experiences (past cases) . 

When the users input the design requirements/specifi- 
cations, the system will consult the system past experi- 
ence. If there is a similar case found in the memory then 
the solution for that case is proposed. If no similar case 
is found, then a solution strategy is formulated with what- 
ever logical knowledge (a priori) is possessed by the 

system and is described in section 6.1. Once the optimiza- 
tion input data has been assembled the system initiates a 
solution run. Control is then handed over to the structural 
optimization program but the performance is monitored by 
the 'run-time' system. This assesses the effectiveness of 
the optimization run and intervenes as required. 

This chapter looks into the detail of the knowledge 
based on past experiences. The a-priori and results inter- 

pretation knowledges are discussed in the next chapter. 

5.2. KNOWLEDGE OF PAST EXPERIENCE. 

As a supplement to apriori knowledge it is possible to 

appeal to past experience. The knowledge now is based ex- 
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p icitly on the outcome of previous optimization runs. The 
basic idea behind this approach is to try to capture the 
past design experiences (previous optimization runs) and 
use it to solve current problems. Just as human beings try 
to remember what has been done to solve a similar problem in the past, the Expert System will search for a similar 
case in its memory and uses the optimization set-up of that 
case for solving the current design problem. This kind of 
approach of solving new problems by adapting solutions that 
were used in previous cases is called case-based reasoning 
(CBR). 

There are advantages of using the case-based reason- 
ing. The most obvious one is the availability of a memory 
which contains previous cases and their solutions. The 
case-based reasoning systems are built on a memory of prior 
cases. Each time the system solves a problem, that problem 
and its solution are stored in memory as a case. In this 
way CBR systems can easily learn from experience; they do 
not have to waste effort resolving a similar problem which 
has been solved before. Storing a new case in memory can be 
regarded as a means of knowledge acquisition. 

The case representation and similarity aspects depends 
on the nature of the problem at hands which in this case is 
structural optimization. Before discussing the structure of 
the past experience knowledge and its reasoning mechanism, 
the nature of setting up structural optimization design job 
will be described first. 

5.2.1. THE NATURE OF SETTING UP A STRUCTURAL OPTIMIZATION 
DESIGN JOB. 

Setting up an optimization job depends primarily on 
the design requirements. The type of analysis and 
constraint requirement directly affect the selection of 
optimization techniques. While a static case with stress 
constraint can be handled with fully stressing method, the 

addition of more complex constraints such as displacement 

or frequency will require more advanced optimization 
techniques. Some cases might require a combination of 
optimization techniques. 

As the Finite Element method is used in the analysis 
stage of the optimization, Finite Element models are need 
to be prepared. The models are represented among other 
things by the number of nodes or grid points, number of 

elements,, and type of elements. The FE model affects the 

selection of optimization algorithm as some elements 

require gradient information. 

If the user decides to employ a large number of design 

variables this may require many optimization iterations 
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before the optimum point is found. For methods which needs 
constraint gradients, the selection of a large number of 
potentially active constraints will give rise to a 
requirement for an unacceptable time to locate an optimum. 
In both of these situations it might be necessary to limit 
the number of iterations or start with a non gradient based 
method. Whilst the standard convergence criteria, based on 
changes in direct parameters (e. g. design variables) from 
iteration to iteration have no influence on the selection 
process, the use of complex criteria could be influential. 
For example, the use of dual bonding criterion requires 
gradient information which is not required by a fully 
stressing method. 

The above description points out that the type of 
analysis, constraint requirements, the Finite Element 
model, and the set up of design variables are important 
factors /parameters in setting up an optimization. This also 
means that, in the context of reasoning through past 
experience, those parameters should be considered in 
recalling the useful past cases. The influence of analysis 
and constraint are very obvious. Two designs with different 
analysis or (and) constraint requirements most probably 
need a different optimization approach. For example, a 
structure under static loads with stress constraint might 
be optimized using the fully stressed design method. The 
method can not be used for that same structure if the 
constraint set is changed to include displacements. 

Whilst a change of analysis or constraint has clear 
implications for the algorithm selection the situation is 
more confused in the case of design variables numbers. 
Suppose for example, two structures have the same analysis 
and constraint set and the FE model is similar (which 
implies similar node and element parameters) but have a 
different numbers of design variables. If the first 
structure has (say) 20 variables and the second structure 
has 19 variables then it is logical to say that the same 
algorithm can solve both problem. But if one structure has 
100 variables and a second 10 variables only, these two 

structure might need different solution approaches. The 

question of which number of design variables can be said to 
be similar and which ones are not remains, for the moment, 
an open question. We may also note that two problems may 
have the same number of design variables but number of 

elements within these variables and their pattern may be 

completely different. 

The striking nature of structural optimization which 

might cause problem is that a slight change in design re- 

quirements might produce unexpected results. For example, 

consider a static case with a single displacement 

constraint. This structure normally can be optimized with 
the optimality criterion method without problem. However, 
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an addition of another active displacement constraint in 
design requirement might make the optimality criterion 
method ineffective to optimize the structure. Another 
example is in the dynamic case with a frequency constraint. 
An algorithm can be used to minimize the structural weight 
while keeping the natural frequency above, say, 10 Hz. If 
the frequency limit is increased, say, to 40 Hz, the same 
algorithm might not be able to meet the requirements. The 
reason probably is not caused by the effectiveness of the 
algorithm used but by, among other things, the nature of 
the structural characteristics which makes it impossible to 
have natural frequency as high as 40 Hz. 

It has to be stressed here that the parameters 
mentioned above are not completely independent. For 
example, in a dynamic case, the number of degrees of 
freedom is important factor to consider in setting up the 
optimization. However, the number of degrees of freedom is 
not critical in a static case with stress constraints. The 
number of design variables is also more critical in non 
static cases than the static ones. 

The complicated nature of structural optimization as 
discussed above makes the nearest neighbour techniques 
[Kolodner 19931 which are commonly used in case based 
reasoning systems unsuitable in dealing with structural 
optimization. A different reasoning strategy needs to be 
implemented. 

5.2.2. KNOWLEDGE STRUCTURE AND SIMILARITY ASPECTS. 

As mentioned earlier, the basic idea behind reasoning 
through past experience is to try to capture the past 
design experiences (previous optimization runs) and use it 
to solve current problems. In this case the system will 
search for a similar case in its memory and uses the 
optimization set-up of that case for solving the current 
design problem. To find a similar case to the current 
design problem, it is necessary to define similarity. This 

requires selecting criteria so that a specific design case 
can be categorized as similar to the current design 

problem. These criteria need to be expressed in terms of 
parameters which need to be defined to judge the similarity 
between the current design problem and the past design 

cases in the memory. The selection of these parameters is 

very important as the matching of the current design with 
a previous one is based on them exclusively. In CBR this 

procedure of extracting features to use in cases comparison 
is called index extraction where the indexes in this report 

are called the similarity parameters. 

From the description on the nature of setting up an 

optimization strategyf the nearest neighbour strategy is 
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regarded as not suitable. Rules (IF-THEN rules) are more 
natural to represents the complexities and interdependency 
among the affecting parameters in setting up optimization. 
These parameters are adopted as the similarity parameters. 
Thus by using these similarity parameters, similarity rules 
can be defined. Using this approach a current design 
problem is defined as similar to a design case in the 
system memory if the similarity rules are satisfied. 

The requirements for the similarity parameters is that 
their contribution in setting up the optimization should be 
significant and they should be able to define the 
uniqueness of a design case. Currently these relate to: 

1. Analysis: statics, normal modes, dynamics, and combina- 
tions. 

2. Constraint: stress, displacement, strain, buckling, na- 
tural frequency, dynamics, and combinations. 

3. Node number: the number of nodes in the finite element 
model. 

4. Number of element: the number of elements used to model 
the structure. 

5. Element types: plate/membrane, beam, rod, and combina- 
tions. 

6. Number of design variables: the number of design varia- 
bles and the linkage pattern. 

Design cases which the memory stores are treated as a 
collection of knowledge entities (past experiences) in the 
form of records. Each record basically contains a design 
case and its solution. These are expressed in terms of si- 
milarity parameters together with their values and the 
design solution for that particular case. A design solution 
basically is a definition of an optimization set-up which 
consists an optimization algorithm (an optimization method 
or methods combination), number of iterations, and conver- 
gence criteria. If the current design problem and a past 
design case are considered as similar, then this optimiza- 
tion algorithm is proposed for use. 

Due to the nature of structural optimization problems, 
which has been discussed in 5.2.1, the use of past experi- 
ence introduces certain ambiguities because the similarity 
concept does not, necessarily, gives rise to hard and fast 

rules. For example it is difficult to state with certainty 
that, two structures are not similar because one has 10 de- 

sign variables and the other one 15 design variables and 
hence they need different optimization strategies, because 
it still might be possible that these two design problems 
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can be optimized effectively with exactly the same strate- 
gy. Similar ambiguities may arise in different situations, 
for example, in the case of two structure which have the 
same analysis and constraint requirements but a different 
number of nodes and elements. 

Although there are ambiguities with regard to the si- 
milarity parameters, there are still some basic principles 
which can be followed in deriving the similarity rules. 
These principles are as follow, 

1. Analysis. 
If the current design problem has the same analysis re- 
quirement as a design case in the memory record, then 
they are similar in analysis. 

2. Constraints. 
If the current design problem has the same constraint 
requirement as a design case in the memory then they are 
similar in constraint. 

If the system is not able to find in its data base a de- 
sign case with the same analysis and constraint set as 
the current design problem there is only a small possi- 
bility that any solution from the design cases in the 
memory can be used for the current problem. 

3. Node nuiWber. 
If the current design problem has fewer nodes than the 
target one in the memory record then, from node number 
point of view, the solution in that record is acceptable 
for the current design. 

4. Element number. 
If the current design problem has fewer elements than 
the target one in the memory record then, from element 
number point of view, the solution in that record is ac- 
ceptable for the current design. 

5. Element type. 
If the current design problem has same types of element 
as the one in the memory record then, from element point 
of view, the solution in that record is acceptable for 
the current design. 

6. Design Variable number. 
If the current design problem has fewer design variables 
than the one in the memory record, currently being con- 
sidered as similar, then the solution in that record is 

acceptable for the current design. 

The rules related to the conditions (1) and (2) are deter- 

ministic in nature while the rules related to the condi- 
tions (3) to (6) are more fuzzy. If, in addition to 
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conditions (1) and (2) the rules related to conditions (3) 
to (6) are satisfied then the solution (an optimization 
set-up) in the record can be used. But, if those rules are 
not met it does not necessarily mean that the solution used in the earlier problem will fail for the current design 
problem. 

As mentioned previously, the similarity parameters 
mentioned above are not completely independent and this to 
be taken into account in making judgments on similarity. A 
reasoning technique based on the production rules making 
use of the concept of certainty factors is implemented. 
Using the concept of case similarity, based on the similar- 
ity principles mentioned previously, the reasoner proposes 
an optimization strategy from a similar case for use. 

The judgment whether cases are similar could not be 
based on statistical observations. We consider that this 
type of decision making relies more on the expertise 
(beliefs) of the individual making the decision. It is 
inappropriate to say, for example, that the prior 
probability of a case to be statics is 0 (no static cases 
ever found), or 1 (all structural cases found are statics) . 
It is for this reason that in this research the concept of 
certainty factors is preferred to use than Bayesian 
conditional probability. 

The similarity rules are written using IF-THEN rules 
with certainty factors attached to them. Each certainty 
factor (CF) express the level of user confidence (or be- 
lief) with regard to the trueness of the rule a CF is 

attached. These CFs can also be regarded as weight factors. 

5.3. THE STRUCTURE OF DESIGN CASES. 

As described above the basic idea is to try to capture 
design experience in order to be able to solve future 

problems. Thus design experience is codified into knowledge 

stored in the memory which can be regarded as a file 

containing a collection of knowledge (past experience) 
records. Each record contains a (past) design case and its 

solution, held in the form of the similarity parameters 
with their values and the successful optimization strategy 
for that particular case. The similarity rules are written 
in the form of production rules (IF-THEN rules) and are 

used to capture the design case record which is similar to 
the current design problem. 

Each record in the knowledge base contains the follow- 
ing information (stored in fields), 
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- number of analysis, 
- analysis types, 
- number of constraints, 
- constraint types, 
- number of nodes, 
- number of elements, 
- element types, 
- number of design variables, 
- solution, 
- comments. 

Thus a typical record might be, 

- number of analysis: 1; 
- analysis types: statics; 
- number of constraints: 2; 
- constraints types: stress, displacement; 
- number of nodes: 5; 
- number of elements: 6; 
- element types: rod; 
- number of design variables: 6; 
- solution: pseudo-newton algorithm, n number of 

iterations, a type of convergence criteria 
- comments: a straight forward process 

In addition to the above fields, each case might store 
additional information which is unique to that case, for 
example storing the associated structural drawing. 

If the number of cases is small then the time spent 
for case searching and retrieval is unimportant. However it 
is inevitable that after many runs the number of cases 
stored becomes increasingly huge. Hence it is necessary to 
structure the cases to reduce the length of time spent for 
cases searching and retrieval. For our system it is pro- 
posed to classify cases as a tree structure. Cases are 
grouped according to the analysis type. The search will not 
go further in a group of cases if the analysis required by 
a current design problem does not match the analysis type 
of that group. 

5.4. SIMILARITY RULES. 

The contents of the rules are primarily based on the 
basic principles mentioned in (5.2) and the fact that 

similarity parameters are not completely independent has to 
be included in the rules. 

A certainty factor is attached to each rule and 

reflects the designer's confidence in his rule. Value of 
CFs range from -1 to 1. As a CF approaches 1 the confidence 
in the rule is stronger; as CF approaches -1 the confidence 
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against the rule gets stronger; and a CF around 0 indicates 
that there is little evidence either for or against the 
rule. 

Each rule consists of an IF-THEN statement and a cer- 
tainty factor CF. For example, the rule for similarity 
parameter relating to analysis, is in the form of: 

IF (analysis type of a design case) 
(analysis type of the current design 

THEN analysis_similar is TRUE 
CF=0.15 

problem) 

The above rule simply says that, if the current design pro- 
blem analysis requirement is the same as to the analysis 
type of a previous design case then the design is 11similar" 
from analysis point of view. The designer's confidence on 
his rule towards the similarity of a case is shown by the 
CF value, in this case is 0.15. The opposite of the above 
analysis rule, 

IF (analysis type of a design case) 
(analysis type of the current design problem) 

THEN analysis_similar is TRUE 
CF=-0.6 

The rule says that, if the analysis required in current 
problem is different to the analysis of a previous design 
case then the design is unlikely to be similar (CF=-O. 6) 
from analysis point of view. 

As can be seen from previous analysis rules, rule 
premises have no CF values attached to. All premises are 
deterministic in nature. There is no chaining process du- 
ring reasoning hence there is no CF propagation from a rule 
to another rule. The CF value contributes toward a final CF 
which is a combination of various CFs. The positive and 
negative values of CFs are judged and determined separate- 
ly, unlike statistical probability where the sum of a pro- 
bability and its negation is one. If fired, the second rule 
above will most probably kill off the chance of a case 
being similar, which is in accordance to the similarity 
principles discussed in (5.2). 

Another example is the rule relating to the design 

variable which has the form 

IF (number of variable of a design case) 
(number of variable of the current design) 

THEN variable_similar is TRUE 
CF=O. l 

The rule states that, if a design case has the same or 

areater number of design variables than the current design 
zi -- -- -- 
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problem then that design case is acceptable for this para- 
meter. The contribution of design variables towards the si- 
milarity of a case is rather small (0.1). 

The parameters dependency can be shown by another rule 
which also deals with number of variables, 

IF (number of variable 
(number of variable 

AND (analysis=static) 
THEN variable-similar is 
CF=0.05 

of a design case) 
of the current design) 

TRUE 

From the rule it is clear that the logic of previous rule 
is not met, the current design problem has a larger number 
of variables than the design case. Due to the fact that the 
analysis is statics, when fired, this rule will not kill 
off the chance of a case to be regarded as "similar". This 
illustrates the relative importance of an analysis type to 
number of design variables with regard to the use of an op- 
timization strategy. 

From the discussion above it is clear that each 
similarity parameter is represented by more than one rule. 
During the reasoning process, for each similarity parame- 
ter, only one rule which represents the true current situa- 
tion will be fired. The goal of the reasoning process is 
deciding whether a case is, based on similarity rules, 
acceptable (or unacceptable) and the confidence in the 
decision taken. The acceptability of a case is based on 
contribution of various similarity parameters and, hence, 
on the combination of CFs of the fired rules. This means 
that CF values play an important role in deciding whether 
a case could be regarded as similar. The CF value which is 
given to a rule should be based on the concept that that 
value at the end must support what the experts belief as 
true. In our problem, similarity, a case should be con- 
sidered of having a chance to be similar if the criteria 
related to the analysis and constraint are satisfied; on 
the other hand a case is not similar if the same criteria 
above not satisfied. Figure 5-1 shows the structure of the 

past experiences knowledge base which contains both the 

similarity rules and the past cases. 

Now it is necessary to calculate the contribution of 

various CFs toward a total CF value. This is identical to 

the problem of combining multiple CFs when two or more 

rules support the same result. Suppose CF(R1) is the cer- 
tainty factor associated with the rule R1, and CF(R2) is 

the certainty factor associated with the rule R2; then the 

CF combination of both rules is calculated by [Luger and 
Stubblefield 1989] : 
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CF (Rl) + CF (R2) -( CF (Rl) X CF(R2) when CF(Rl) and 
CF(R2) are posi- 
tive 

CF (Rl) + CF (R2) +( CF (Rl) 

CF (Rl) + CF (R2) 

X CF(R2) when CF(Rl) and 
CF(R2) are nega- 
tive 

1- MIN( ICF(Rl)IICF(R2)1 ) 

5.5. CASE SELECTION. 

otherwise. 

Faced with a problem, the task of a reasoner is to 
produce a solution by manipulating the knowledge to derive 
an effective solution strategy. From previous discussion it 
is clear that the knowledge structure consists of IF-THEN 
rules which addresses question of similarity and cases. The 
objective is to find an acceptable case in the memory and 
use its optimization set-up for solving the current pro- 
blem. 

The reasoning process is controlled by a case selec- 
tor. The selector starts the case selection by retrieving 
a case from memory. The similarity rules are applied to 
evaluate the acceptability of the case. A confidence 
scoring based on the CF calculation in section 5.4.1 is 
performed to find the CF of the case. This mechanism is 
shown on figure 5-2. The cases with 'acceptable' CF values 
(higher than 0.27) are sorted using the bubble-sort tech- 

nique and presented to the user for consideration. 

The threshold value,, 0.27,, is selected because this 
number represents a 'reasonable' level of belief in simi- 
larity. In fact this number is slightly less than CF 

combination of analysis and constraint rules when both are 
satisfied (a past case has the same types of analysis and 
constraint with the current problem), which is 0.2775. This 

was chosen to allow minor adjustments due to the influence 

of other parameters. 

However, due to the nature of structural optimization, 
there are situations in which the similarity-strategy 
proposed in this chapter could not cope well. Consider an 

optimization of a structure with natural frequency as the 

constraint and assume that only the first mode is 

considered. The constraint requires that at optimum the 

natural frequency of structure is higher or equal 20 Hertz. 

Suppose that in the system's memory, there is a design case 

which is exactly similar to the current design problem 
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(same structure,, FE model, type of analysis,, constraint,, 
etc. ), except that the case in the memory is required to 
have a natural frequency higher or equal 10 Hertz. Using 
our case based system with the strategy discussed above the 
optimization set up of the design case mentioned will be 
proposed with a high CF value. Still, there is no guarantee 
that the optimization will go to convergence in this case. 
There is possibility that due to the nature of structural 
configuration, it is impossible to achieve a natural 
frequency value of 20 Hz by resizing of structural 
components alone. Hence the optimization will not reach 
convergence. In the Expert System developed in this 
research, the task of finding the reasons of non- 
convergence in the situation illustrated above is given to 
the backend modules and the user will be given advice on 
modification required. 

The f inal CF depends on the CF values in the similari- 
ty rules and these values are subjective in nature. The 
system's users are able to interrogate the system as to the 
system's decision on case selection and its level of conf i- 
dence. It is important that users have control over the 
importance of a rule (represented by its CF) and can modify 
the CF values if appropriate. 

As previously mentioned, the cases are structured 
according to a tree structure. The tree's main branches are 
determined according to the analysis types used. The search 
at any specific time is performed only in one tree branch. 
In other words a search will go deeper only in the branch 
representing the required analysis type. This is due to the 
analysis similarity parameter being regarded as a hard 
rule. Furthermore, the case selector will look for the 
cases with identical constraint type first. By using these 
measures the search can be channelled toward the most rele- 
vant cases only. 

5.6. MEMORY UPDATE. 

After a successful optimization run, the memory is 

updated by storing the new case. An important aspect is 

where to put this case in memory. As previously mentioned, 
the cases are structured as a tree with analysis types as 
the main branches. A new case will be stored in the slot 
with the class of similar analysis types. 

The updating process also must include the "experi- 

ence" of a case, especially the difficulties or problems a 

case encountered during an optimization run. Not every 

optimization process can run smoothly. Even if the optimi- 

zation strategy itself is correct, there are still other 

sources of mistakes such as vibration restriction impos- 
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sible to achieve or constraints highly dependent on each 
other. For case based systems which rely on features 
comparison, it would be difficult to predict if an 
optimization run would end with any failures mentioned 
above. However, each type of structural case usually is 
associated with certain types of mistake possibilities. For 
example, an optimization of a static case with stress and 
displacement constraints might not go to convergence if the 
constraint values are mutually contradictory. Such mistake 
tendencies can be stored in the case in the comment field 
and serve as a reminder to the user not to repeat the same 
mistake. 
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CHAPTER 6: 

THE REASONING OF A-PRIORI 
AND RESULT INTERPRETATION KNOWLEDGE 

As indicated in earlier chapters, for a structural 
optimization system to be effectively used the users must 
be able to set up the data to run the system efficiently, 
analyze the behaviour of the system during the running of 
the solution algorithms, and interpret the results. Set- 
ting-up the optimization run can exploit past experiences, 
and this has been discussed in detail in chapter five. In 
this chapter, another way of doing the set-up, through a- 
priori knowledge, is discussed. Also presented in this 
chapter is the discussion about monitoring the optimization 
run and interpreting the result. 

1. KNOWLEDGE FOR SETTING UP THE STRUCTURAL OPTIMIZAý 
TION PROCESS. 

6.1.1. THE PHILOSOPHY. 

The knowledge being discussed here contains the 
information required to set up and efficiently run an 
optimization system. This basically consists of knowing 
which optimization technique (or their combination) to 
employ, the number of iterations, and the convergence 
criteria. The selection of the optimization strategy 
depends on the nature of the structural problem and the 
design requirements/specification. 

The structural design specification generally consists 
of the following: 

1. Type of structure (truss, stiffened panel, or others) 

2. Type of analysis (staticf dynamic, or others) . 

3. Constraints required (stress, displacement, or others) 

4. Gauges limits. 

5. Number of load cases. 

6. Finite element model. 

Once the specification is complete the selection of the 

solution algorithm is directly influenced by the decisions 

made at this early stage of the optimization process. 
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tion are -. 
The parameters which affects the algorithm selec- 

1. Analysis required (static, dynamic, or others) . Some methods are better suited to certain type of analy- 
sis, for example fully stressed design is appropriate 
for certain static analysis problems but will not work if a dynamic analysis is required. 

2. Constraints required (stress, frequency, or others) . Not every optimization method can handle all types of 
constraints. A Pseudo Newton method might work for a va- 
riety of constraints, but fully stressed design is ap- 
propriate for stress constraint only. In addition, for 
certain constraints such as flutter, their incorporation 
greatly augments the analysis requirements. 

3. Type of finite elements used (membrane, beam, shell, or 
others). 
For some elements obtaining analytic gradient informa- 
tion is difficult, hence these are suitable for certain 
optimization algorithms only unless numerically derived 
gradients are used. The use of complex elements is not 
precluded but many optimization systems do not always 
allow the use of other than simple elements. 

4. Number of load cases. 
The number of load cases affect the selection of optimi- 
zation methods insofar as it influences the size of the 
problem. On this basis a large number of load cases 
might invalidate the use of gradient based methods which 
inflate in size in proportion to the cases analyzed. 

5. Number of design variables. 
A problem which occurs with a large number of design 
variables requires many optimization iterations before 
the optimum point is found. For methods which need cons- 
traint gradients, the time required to locate the opti- 
mum might be unacceptable. In this situation it might be 

necessary to limit the number of iterations or start 
with a non gradient based method. 

6. Convergence criteria required. 
Whilst the standard convergence criteria, based on chan- 
ges in direct parameters (e. g. design variables) from 
iteration to iteration, have no influence on the selec- 
tion process the use of complex criteria could be influ- 

ential. For example, the use of dual bounding criterion 
requires the use of gradient information which is not 
immediately available when using a fully-stressing 

method (say). 

The above provides an outline of the type of knowledge 

which allows the user to match the design requirement with 
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the capabilities of the optimization. The knowledge is not based explicitly on information obtained from previous runs but is derived by deducing the influence which the design 
model has on the selection of a solution strategy. Because 
it is based on logical deductions and not on past knowledge 
it is a priori in nature. 

THE KNOWLEDGE STRUCTURE. 

The set up knowledge base consists of production 
system rules and an object oriented scheme. The object 
oriented scheme is used to classify the optimization me- 
thods into objects with each method represented as an 
object. These objects contain information concerning the 
object capabilities and operations/functions to test whe- 
ther a particular object can handle the design require- 
ments. The production rules such as (4-2) are used to 
represent the heuristic and problem solving knowledge. 

The object oriented domain has (currently) a simple 
scheme with a top class, procedure which has a child class, 
method,. Procedure is a base class which contains a set of 
parameters and functions. These parameters and functions 
are inherited by method. Class method also has the cons- 
tructor function for object instantiation. The objects ins- 
tantiated by method are the optimization methods. The para- 
meters in procedure are, 

name, name of optimization method, 
analysis, type of analysis which can be handled by a me- 
thod,, 
constraint, type of constraints which can be handled by 
a method, 
element, type of elements suitable for a method, 
convergence, type of convergence criteria which can be 
handled by a method, 
Lagrange, indicating the method's capability to produce 
Lagrange multiplier. 

The purpose of class functions is to test whether an object 
(a method) can handle the design requirements. This is per- 
formed by comparing the design requirements with object 
capabilities. The functions required in procedure are, 

- ;; n;; lv. -, i-, s check() , to test whether an object can handle 
---- - -1 -- -_ -III 
the analysis requirement, 
constraint checko, to test whether 
the constraints requirement, 
element check(), to test whether an 
types 6f elements used in a finite 

an object can handle 

object can accept the 
element model. 

Currently there are five objects to be instantiated. 

These objects are optimization methods which can be run by 
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the structural optimization system, which, for the present 
report is taken to be STARS. In this case the methods are fully stressed design, optimality criteria, Pseudo Newton, 
and their combinations, fully stressing followed by optima- lity criteria or fully stressing followed by Pseudo Newton. 
The data/ information of each object (optimization method) is read from a data base. For five objects there are five 
database files, one file for each object. The user can mo- 
dify the data. More methods (for example from other optimi- 
zation package) can be added. Each data base includes 
information such as name, analysis capability, constraint 
capability, convergence criteria, and Lagrangian informa- 
tion. 

Figure 6-1 shows the knowledge base structure of the 
knowledge required to set up the optimization algorithm. 

6.2. RUN-TIME AND RESULT INTERPRETATION KNOWLEDGE. 

This is the knowledge which is concerned with aspects 
such as 
- deciding if an algorithm is heading for optimum, 
- deciding that an optimum has been reached, 
- the actions required if the above situations are nega- 

tive. 

Whether an optimization run is heading for an optimum 
usually can be predicted by studying the optimization 
trend. An extrapolation can be derived with respect to the 
convergence parameters on the change in structural weight 
or the gap between the actual weight and a lower bound. If 
an algorithm seems not to be heading for an optimum then 
the run-time knowledge should be able to explain the reason 
why it is not able to reach the optimum and give an alter- 
native solution strategy if any exists. Examples of optimi- 
zation routines having difficulties in locating a solution 
are numerous and occur, for example, in cases where vibra- 
tion restrictions are impossible to achieve, or where the 

constraints are highly dependent. 

In order to predict whether or not an optimization run 
is heading for an optimum we suspend the run after three or 
four iterations and studying its trend. An appropriate pro- 
cedure is to extrapolate the gap between feasible weight 
and lower bound using the dual bounding process. For me- 
thods which do not produce a lower bound on the optimum 
weight, such as FSD, the gap between the actual and feasi- 
ble weight is used. If it is predicted that an optimization 
run is not converging then this fact is presented to the 

user. However, the information presented has to cover a 

range of possibilities relating the failure, or otherwise, 

of the solution strategy. Some of these are related to the 
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form of the design problem itself and some are more 
algorithm based. It is worth noting impact that the user has when formulating the design problem is very significant in this area. 

An optimum is reached when the convergence criteria 
are met and constraint set satisfied. This is known only 
after an optimization run stops, either because the conver- 
gence criteria are satisfied or the maximum iterations are 
reached (both do not, however, necessarily mean the optimum 
is found) , and results produced which need interpretation. 
Successful results need to be explained to the user and 
offered to the 'past experience' data base but the inter- 
preter needs to be able to explain why an optimization run 
does not produce an optimum result. 

In the case where an optimization run does not result 
in an optimum, this is defined as a failure which can be 
associated with three situations, 

- failure to go to convergence, 
- false convergence, and 
- system crash. 

A" failure to converge' means that an optimization run is 
predicted not to go to convergence or that it does not meet 
the convergence criteria after the maximum iteration is 
reached. False convergence is basically also a failure to 
converge. As an example consider the case of an algorithm 
stopping because there is no further change in mass which 
gives the appearance of a converged solution but the cons- 
traints are not satisfied. The causes of the such a fail- 
ures cases are not easy to categorize. While there is 
theoretical base to trace the cause of convergence failure 
and false convergence there are situations where the 
failures are optimization software and machine dependent. 
The cause of a problem for one optimization software system 
might not be problem for an alternative optimization 
packages. 

A system crash failure is definitely optimization 
software and machine dependent. For example a structure 
with a large number of members subject to stress cons- 
traints might give rise to a large number of stress cons- 
traints. This large number might exceed the constraint 
array setting for certain software and lead to a system 
crash. Another source of system crash, error in coding the 
driver files, has been very much reduced by developing 

modules which have the task of writing driver files. 

The above situationsr which lead to difficulties in 

categorizing and drawing-up the taxonomy of the knowledge 

base, make the use of production rules a natural choice for 

the knowledge base scheme. The information in the knowledge 
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base is based upon failures encountered during running STARS for various optimization design problem. 

6.3. THE REASONER. 

Faced with a problem, the task of a reasoner is to 
produce a solution by manipulating the knowledge to derive 
an effective solution strategy. It also has an important 
role in generating explanations for the user. This is done 
by means of an inferencing process. In the case of setting- 
up an optimization run by using the apriori knowledge, the 
reasoner produces a solution in the form of a definition of 
an optimization set-up. In the case of either a runtime 
situation or when apparent convergence is reached, faced 
with a failure,, the task of the reasoner is to produce 
explanations why the failure occurs. 

In this prototype the reasoner is based on forward 
chain inferencing (data driven reasoning) with the produc- 
tion rules (IF-THEN rules) . The reasoning begins with the 
given facts of the problem which is the design requirement, 
and a set of rules. It searches for a solution by applying 
rules to facts to produce new facts which are,, in turn, 
used to produce more new facts. This process continues un- 
til the goal is found. Data driven reasoning was selected, 
as opposed to a goal driven reasoning (backward chain), 
because: 

1. Many of the data are already available as the design re- 
quirement. This is especially true for reasoning to pro- 
duce a definition of an optimization set-up where all 
data required is available in the form of the design re- 
quirement and domain knowledge. 

2. It is difficult to form a goal. In an optimization set- 
up it is difficult to predict values of the parameters 
used in an optimization set-up. With regard to the run- 
time and result interpretation problem it is also 
difficult to judge initially the reason for an error or 
failure. 

The same reasoning/inferencing technique is used for 

a-priori, run-time., and results interpretation knowledge 
bases. This is possible because the inferencing is applied 
only to the production rules (IF-THEN rules) of all the 
knowledge approaches. However some of the data required by 

the reasoner is supplied from a different source: 

1. The reasoning process for defining the optimization 

set-up with a priori knowledge requires information rela- 
ting to the design requirements and objects (optimization 

methods) capabilities. While the design requirement (stored 
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in object design, see chapter seven) are specified by the 
user, the information concerning the optimization methods is provided by the object oriented domain. Each method (or 
methods combination), represented as an object, is tested 
one by one against the rules. The goal of this reasoning 
process is to generate an appropriate optimization set-up (differences lie in the method being used) which can be 
used to solve the design problem. Figure 6-2 shows the 
diagram of this process. 

2. The goal of the reasoning process for the run-time and 
result interpretation knowledge base is the explanations 
associated with any run failure. The reasoning process re- 
quires data related to the optimization result and design 
specifications. The optimization results can be supplied by 
the users or automatically via interface to the optimiza- 
tion package. Figure 6-3 shows the diagram of the reasoning 
process of result interpretation. The diagram for the run- 
time process is similar. 

The knowledge and reasoning mechanisms required in the 
Expert System for Structural Optimization have been 
discussed in chapter five and this chapter. In order to 
validate the concepts,, it is necessary to assemble the 
required knowledge and programming requirement, and to 
construct the prototype. The prototype construction is 
discussed in the next chapter. 
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CHAPTER 7: 

PROTOTYPE DEVELOPMENT 

The subject of the research presented in this report 
is the application of Expert System methodologies for 
improving the performance of structural optimization 
systems. The target is to produce an Expert System as an 
adviser for working structural optimization systems. The 
results from the earlier chapters have considered how the 
required knowledge may be constructed and reasoned with in 
order to produce interconnected components of an Expert 
System. In order to move towards a functioning system it 
would now be normal to construct an overall architecture. 
However, the concepts developed represent research 
conjectures and need validating before an architecture can 
be constructed. Thus, a prototype computer program is 
required to test idea and start the process of constructing 
a usable system. 

This prototype is called ESSO (Expert System for 
Structural Optimization) and places the basic concepts into 
a program able to give guidance to designers who wish to 
employ optimization. The system will guide the user in set- 
ting up an optimization system, monitoring the optimization 
run, and interpreting the result or any failure associated 
with an optimization run. For trial implementation, the 
STARS optimization package is used as the optimization tool 
supported by ESSO. The prototype produces set-up files, 
which are called driver files,, to run an optimization 
system. These files become the STARS CDF (command data) and 
CONS (design specification) files. The third file required 
by STARS, a file contains the finite element model, is to 
be prepared by the user. 

At present, the prototype can handle static and 
dynamic problems only. But any type of constraint 
associated with both types of analysis can be handled. 
Currently, the prototype deals only with isotropic 

materials. 

The modules available in the prototype are, the 

modules which constitute the system's front end, 

- the design input module, 
- the memory module, 
- the conventional module, 
- the element module, 
- the variable module, 

the constraint module, 
the driver-files module, 
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and the modules which constitute the system back end, 

- the run-time module, 
- the result interpretation module, 
- the modification module. 

The prototype is written in C++ using object oriented 
design methodologies. Each module is written as a class 
with its own task. Some modules are defined with only one 
class while others have a parent and several child classes. 
Objects are created during executions and defined as global 
objects (similar in concept to global variables) which can 
be accessed by every module in the prototype. 

A user interface is developed using XView [Heller 
1990] . XView (X Window-System-based Visual/Integrated 
Environment for Workstations) is a user-interface toolkit 
to support interactive, graphics-based application running 
under the X Window System. XView applications are written 
using the C language. It features an object-oriented style 
interface and provides a set of prebuilt, user-interface 
objects such as canvases, scrollbars, menus and control 
panels. The appearance and functionality of these objects 
follow the OPEN LOOK Graphical User Interface (GUI) 
specification. 

THE DESIGN INPUT MODULE. 

The task of the design input module is to obtain 
information relating to the design requirement such as the 
analysis requirement, constraint requirement, number of 
design variables, and general information of the FE model. 
This module consists of one class, Desiqn, which has the 
parameters for defining the design requirement and the 
operations/functions relating to obtaining the design 

requirement. The class Desiqn defines the object design. 
All design specifications are stored in this object and 
these can be used by other modules through object passing. 
This object only deals with a general design requirement. 
More detail specifications are dealt with by other modules. 
For example, with regard to the constraint requirement, 
object design stores only type of constraints (such as 
stress, displacement) while details of the constraint 
values are handled by the module constraint. Figure 7-1 

shows the input-output diagram of this module. 

The data for this module,, 
specification, is supplied by 
design. Data in this object is 

conventional, variabler element, 
and back-end modules. Data transf 

object design to those modules. 

in the form of design 
the user and stored in 
required by the memory, 

constraint, driver-files, 
er is performed by sending 
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7.2. THE MEMORY MODULE. 

Following the execution of the design input module, 
the memory module is invoked. This contains the reasoner 
and the knowledge base for the past experience knowledge. 
The detail description of the mechanism inside this module 
has been discussed in chapter five. If there is a similar 
case found then the execution proceeds to the variable and 
element modules, otherwise the conventional module is 
executed. Figure 7-2 shows the input-output diagram of the 
memory module. 

The information required by the memory module is 
supplied by object design in the form of the design 
requirements. The output of this module, definition of the 
optimization set-up, is used by the driver-files module. 

7.3. THE CONVENTIONAL MODULE. 

The conventional module contains the reasoner and the 
knowledge base for the a priori knowledge. The mechanism 
inside the module has been described in detail in chapter 
six. Figure 7-3 shows the input-output diagram of this 
module. 

Similar to the memory module, the information required 
by the conventional module is supplied by object design. 
The output of this module, definition of the optimization 
set-up, is sent to the driver-files module. 

7.4. THE ELEMENT MODULE. 

The task of the element module is to deal with those 
operations related to the finite element model such as 
elements numbering and displaying elements characteristics. 
The details of the FE model are supplied by the user. This 

module has a base class, Element, which itself has three 

child classes, Pla te membrane,, Beam, and Axial rod. The 

class Beam has four child classes, those are I-beam, 

channel-beam, T-beam,, and rectangular beam. The classes 
under the class Element contain information about element 
characteristics and relations between design variable 
properties and analysis properties. Any element type used 
in the FE model is associated to an appropriate element 

class and entitles to the characteristics belong to that 

class. For example, a CBEAM (a NASTRAN element type) 

element type will be associated to the Beam class, and if 

the beam used is having a rectangular cross section then it 

will be associated further to the rectangular beam class. 
The output of this module is an FE data and element 
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characteristics stored in various element objects. The input-output diagram of this module is shown in figure 7-4. 

Other information required by this module is the 
design requirement which are concerned with the general FE 
model and supplied by object design. The output of this 
module is required by the variable and driver-files 
modules. 

7.5. THE VARIABLE MODULE. 

The variable module has the task of dealing with 
operations relating to variable formulation. This module 
consists of one class, Variable. Object variable is created 
from this class. The variable asks the user to supply 
variable specifications such as finite element types and 
element numbers in each design variable and stores them in 
this object. It also advises the users if incompatible 
element types (having different analysis properties) are 
grouped in the same design variable, for example if the rod 
elements is put under the same design variable as the plate 
elements. This module needs information relating to the 
element characteristics. The input-output diagram of the 
element module is shown in figure 7-5. 

In order for the variable module to run, it needs 
information relating to the design requirement which is 
supplied by object design, and the elements characteristics 
supplied by various element objects. The user also has to 
supply variable specifications. The object variable is 
required by the driver-files module. 

7.6. THE CONSTRAINT MODULE. 

The operations relating to details of the design cons- 
traints are handled by the constraint module. This module 
has a base class, Constraint. This class has several child 
classes which deal with more specific type of constraints 
namely, Static constraint, Normal_modes_constraint, 
Bucklinq 

- 
constrai , and Dynamic-constraint. Depending upon 

the analysis and constraint requirements, the appropriate 
objects are created. For example, if a static analysis with 
stress constraint is required, then an object which is 

called static constraint is instantiated. Figure 7-6 shows 
the input-out7p-ut diagram of this module. 

This module needs detail information which is related 
to constraint specification supplied by the user. Some of 
the information is supplied by the object design. The 
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products of this module, various constraint objects, are 
required by the driver-files module. 

7.7. THE DRIVER-FILES MODULE. 

The task of the driver-files module is to produce 
files which are used to run the optimization software. In 
this prototype, the driver-files module produces files for 
running the STARS optimization package, namely the command 
data file (CDF) and the design specification file (CONS) . We may note that STARS is being used to represent a general 
structural optimization system and the prototype is not 
written in a STARS specific manner. The ideas and concepts 
being trialed here are generally applicable to any system 
which employs driver files. The CDF consists of a set of 
instructions for running and controlling the optimization 
algorithms and includes the optimization method to use, 
number of iterations, and convergence criteria. The CONS 
defines the variable set-up and constraint set. The driver 
files module consists of two modules. The first module, the 
cdf-module, produces the CDF file while the second module, 
the cons-module, produces the CONS file. The information 
required by the driver files module to produce these two 
files is obtained from the modules executed previously. For 
different optimization packages, the driver files module 
has to be modified accordingly. Figure 7-7 shows the input- 
output diagram of this module. 

7.8. THE MODULES OF THE SYSTEM'S BACK-END. 

The back-end consists of the run-time module,, the 
result interpretation module, and the modification module. 
With the driver files and FE model (prepared by the user) 
available, the optimization system can be run. This will be 

suspended after three iterations to check whether the 

optimization is converging. This check is performed with 
the aid of an extrapolation routine in the run-time module. 
If convergence is predicted the optimization run is resumed 
otherwise the module searches for explanations. If a point 
is reached where the convergence criteria selected by the 

user are satisfied (or the maximum number of iterations is 

reached) the result interpretation module checks the 

optimization result to ensure that this point is indeed 

optimal. For satisfactory results, the current design 

problem and its optimization set up is appended to the case 

memory in the memory module. If this module regards the 

optimization result as unsatisfactory it offers an 

explanation of the reasons for failure and corrective 

actions to follow. If required, the modification module 
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wl modify the optimization set up for another 
optimization run. 

The run-time and result interpretation modules are Expert System modules and have been discussed in detail in 
chapter six. The modification module has the task of 
modifying the optimization set-up if required. The 
modification is based on the actions proposed by the run- 
time module or the result interpretation module. The 
modification module also needs design data and optimization 
set up produced by the front-end. For design/constraint 
data processing,, the modification module makes use the 
objects structures of the design input module, the variable 
module, the element module, and the constraint module. The 
modification instructions are sent to the driver files 
module. Figure 7-8 shows the input-output diagram for this 
module in a very simplified manner. 

7.9. THE DATA FLOW DIAGRAM. 

The overall architecture of the prototype is shown in 
figure 7-9. Figure 7-10 shows the data flow diagram. 

7.10. PROTOTYPE IMPLEMENTATION OF THE KNOWLEDGE. 

There are four modules in ESSO which contain the 
knowledge bases and reasoners namely, the memory module, 
the conventional module, the run-time module, and the 
result interpretation module. The tasks of the memory and 
conventional modules are for setting up the optimization. 
The run-time module monitors the optimization run. The 
optimization results will be interpreted by the result 
interpretation module. Details of how the knowledge may be 

constructed and reasoned with have been described in 

chapters five and six. The following sections describe 
their implementation in the prototype. 

The knowledge base of the run-time and result 
interpretation moduler were constructed using procedural 
rules,, IF-THEN rules. The knowledge base of the 

conventional modules combine the domain/subject knowledge 

with IF-THEN rules. This domain knowledge contains the 
domain properties while the rules reason about them. The 

program implementation of forward chain inferencing is 

adapted from the original code in Levine et al. [1990]. The 

approach used in the memory module is based on case based 

reasoning. Similarity rules were set up to find similar 

cases among the past cases recorded in the memory module. 
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The domain knowledge of the conventional module was 
structured according to object oriented methodologies. Each 
optimization method is treated as an object and stored in 
a file. This represents the optimization method 
capabilities in handling design problems. 

In the memory module, the domain knowledge contains 
past experiences in dealing with design problems. Each 
design experience is stored as a record. Each record, which 
represents a design case, contains the design problem and 
the set up of the optimization strategy for solving the 
design problem. Whether cases can be regarded as similar 
depend on the value of certainty factors of the cases after 
similarity rules are applied. 

7.11. THE CONVENTIONAL KNOWLEDGE BASE. 

The knowledge base of the conventional module combines 
both object oriented schemes and production rules. The 
object oriented scheme represents domain properties while 
rules reason about them. A simple way to show this relation 
is by writing production rules which send messages to 
objects and test the response in their premises. It must be 
noted that in an Expert System program, the user/programmer 
should be able to modify the rules (knowledge base) without 
interfering with the inference engine. This is shown in the 
following example, 

IF analysis_test = true and 
constraint test = true 

THEN ( method_to_consider = true (7-1) 

The premises variables (analysis test and constraint 
- 

test) 
have to be instantiated first. The instantiation is 
performed in an assignment/instantiation routine which 
sends enquiries to a candidate object, in this case is 

assumed to be fsd (the Fully Stressed Design method) , about 
its capabilities in handling analysis and constraints 
required. Functions analYsis-test and constraint-test in 
the object fsd will provide the answers to these enquiries. 
If the conditions of the rule is satisfied then the 

conclusion method to consider is instantiated to true. For 

certain information, instead of asking questions to various 
objects, this assignment routine might ask the users to 

provide the answers. 

The above illustration leads to the discussion about 
the domain/subject knowledge (written in an object oriented 

scheme) and production rules in the conventional module. 
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7.11.1 THE DOMAIN/SUBJECT KNOWLEDGE. 

The domain knowledge contains the information about 
objects capabilities. The objects in this case are the 
optimization methods. Object oriented methodologies are 
used to represents this domain knowledge. For this purpose, 
two classes are defined, those are class Procedure and 
class METHOD. Procedure is a base class with METHOD as its 
child class. 

The task of the class Procedure is to deal with 
matters relating to optimization algorithms. It contains 
parameters which def ine the capabilities and properties of 
optimization algorithms. This class also contains 
procedures for interrogating the available algorithms with 
regard to their capabilities in handling a current design 
problem. Object procedure is created from this class. The 
class Procedure is defined as follows (written in C++ 
terminology, 

class Procedure 
public : 

/* the parameters below refer to algorithm capabilities 
in dealing with */ 
max number of load case 

int load case, 

lagrange multiplier. 
lagrange; 

number of analysis types, number of constraint types. 
int analysis num, constraint num; 

number of-convergence type, number of element type 
available. 

int convergence num, elem avail num; 
// combine anal7ysis, comtUne constraint. 
int combine analysis, combine_constraint; 
// stress constraint; 
int stress constraint; 
// an algorithm might need stress constraint 
int need stress; 
// analysis types 
char analysis [10][401, 

constraint types 
constraint [10] [401., 

convergence criteria types 
convergence [101 [401, 

element (FE) types 
elem avail[101[40]; 

/* method currently available 
// number of method 
int num of method; 

FSD) . 



69 
// method name 
char method name [5] [20]; 

// procedure to invoke available methods. 
void case_method (void); 

/* procedures below are to test whether an algorithm can handle current design requirement with respect to fol- 
lowing aspects 
analysis 

int analysis checking(void); 
// constrain-t- 
int constraint 

- 
checking(void); 

// load case 
int loadcase checking(void); 
// element CFE) types 
int element-checking (void); 

J procedure; // object procedure is defined. 

class METHOD : public Procedure 
public : 

// method name 
char name[10]; 
// procedure for reading the file 
void Dbase read(char f[10]); 
method[5]; // five objects are created. 

The class METHOD is the child of the class Procedure. 
During program run several object are created where each 
object represents an algorithm. The name of the available 
algorithms is stored in a file called method. dat. The data 

relating to an algorithm is read from a file. For example, 
data for the fsd algorithm is stored in a file called 
fsd. dat. There are five algorithms available in ESSO. 
The data for each file is written in a standard sequence as 
follows, 

Parameters: 

analysis-num; 
analysis[i]; 
combine-analysis; 

constraint num; 
constraint [iI; 
combine_constraint; 

stress_constraint; 

Explanation: 

Number of analysis. 
Types of analysis (array). 
Capability in handling analysis com- 
bination. 
Number of constraints. 
Type of constraints (array). 
Capability in handling constraint 
combination. 
Capability in handling stress cons- 
traint. 
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need-stress; 

convergence_num; 
convergence[ i 
load case; 
lagrange; 

elem avail-num; 
eleuý_avail [i] ; 

If an algorithm needs stress cons- 
traint. 
Number of convergence criteria. 
Type of convergent criteria (array) 
Number of load case. 
Capability to calculate lagrange 
multiplier. 
Number of element types. 
Element names (array). 

For example, the capabilities of the optimality criterion 
algorithm is coded in opc. dat as follows, 

3 
static 
normal-modes 
buckling 
0 
4 
stress 
displacement 
buckling 
natural_frequency 
0 
0 
0 
3 
ENDP 
ENDF 
ENDT 
20 
1 

7 
CQUAD4 
CTRIA3 
CSHEAR 
CBEAM 
CBAR 
CROD 
CONROD 

number of analysis capability 

> not suited to analysis combination 
number of constraints capability 

not suited to constraint combination 
> can not handle stress constraint 

does not need stress constraint 

> number 
> able to 

plier 
> number 

7.11.2. THE IF-THEN RULES. 

of load cases capability 
calculate lagrange multi- 

of available element types 

The IF-THEN rules are used for reasoning. The rules 

are stored in a file called convrule. dat. The coding of 

these rules in C++ is implemented using switch - case 

operation as follows, 
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#ifdef RULE 

// if-then statements 

// if part: 
case 1: 

if ( ..... break; 
I 
case 2: 

if ( ..... break; 
I 

case 3: 
if ( ..... break; 

I 

case i: 
if ( ..... break; 

I 

) s=1; 

) s=1; 

) s=1; 

) s=1; 

case n: 
if ( ..... break; 

I 

I 

// see if the then part should be invoked, i. e s=1 
if (S! =l) 

goto ... I 

// invoke the then part 

switch (sn) f 
// then part 
case 1: 

instantiateo; 
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break; 
I 
case 2: 

instantiateo; 
break; 

case i: 

instantiateo; 
break; 

case n: 

instantiateo; 
break; 

j 

#endif 

#ifdef VARLIST 

// list of variables 
strcp_v (varl t [1 ], 11 ... 11) ; 
strcp_v (varl t [2], 

strcp_v (varl t [k], 

// list of variables in rule premises 
strcpy(clvarlt[11, 
st rcpy (cl va rl t [21, 
strcp_y(clvarlt[lll, FF); 

strcpy(clvarlt[21]t, 
st rcpy (cl va rl t [22 ], 
strcpy(clvarlt[231, 

11rule-1 

11rule-2 

11rule-n 

#endif 
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#ifdef CLASS PAR 

#endif 

#ifdef CHECK INST 

void apriori_reasoning:: check instantiation (METHOD object) 

while ( (strcmp(v, varlt[i]) ! =O) && i<=30 ) i++; 
if (instlt[i]! =l) 

instlt[i]=l; 

switch (i) 
case 1: 

........... break; 
j 
case 2: 

............ break; 
j 

case m: f 

............ break; 
I 

#endif 

This file consists of four sections in which each 
section is coded between Wdef and #endif statements. 
Those sections are, 

rules (between #ifdef RULE and #endif) 
list of variables (between #ifdef VARLIST and #endif) 

variable definition (between Wdef CLASS PAR and #endif) 
instantiation (between #ifdef CHECK INSf-and #endif) . 

In the rules section, the rules (referred to by rule 
number) to be considered depend on the value of sn. The 
number after case is the rule number, from 1 to n. In the 
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I if part' , if rule premises (within parentheses) are satisfied, then the value of s is instantiated to 1. In that case the 'then part' of that rule (within parentheses) 
will be fired. The function instantiateo is part of the inferencing mechanism. 

7.11.3. EXPLANATION FACILITY. 

Associated with each rule (IF-THEN statement) is an 
explanation-statement of that rule. This explanation- 
statement describe the contents of the rule using easy to 
understand sentences. When a rule is fired, the associated 
statement is recalled. The coding of the explanation- 
statement is as follow: 

11case 1: 
strcpy (texrule [11 

- text [0], 11 .... ir) ; 
strcpy(texrule[ll. text[l], " .... 

strcpy (texrule [1 text [q-2], 
strcpy(texrule[l]. text[q-1], " 
t exrul e [1 ]. t extn um=q; 

11case i: 
strcpy (texrule [i text [0],, 
strcpy(texrule[i]. text [1],, 

strcp_v(texrule[i]. text [r-2],, 
strcp_v(texrule[i]. text [r-11., 
t exrul e [i ]. t extn um=r; 

11case n: 
strcpy(texrule[n]. text [01, 
strcpy (texrule[n]. text [11, 

strcpy(texrule[n]. text [s-21, 
strcpy (texrule [n]. text [s-1 
t exrul e [n I-t extn um=s; 
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The number of explanation statements is the same as the 
number of rules which is n. The parameters q, r, and s are the number of "sentences"in each of statement. The 
explanation-statements for the conventional module are 
stored in the file convexpl. dat. The user should learn this 
file and the associated knowledge base file convrule. dat. 

7.12. IHE MEMORY KNOWLEDGE BASE. 

The knowledge base of the memory module also consists 
of the domain knowledge and the IF-THEN rules. The domain 
knowledge is the system's memory of its past experience 
which can be regarded as a file containing a collection of 
knowledge (past experience) records. Each record contains 
a (past) design case and its solution, held in the form of 
the similarity parameters (for similarity parameters and 
similarity rules please see chapter 5) with their 
associated values and the successful optimization strategy 
for that particular case. The IF-THEN rules are the 
similarity rules and are used to reason in capturing the 
design case record which is similar to the current design 
problem. 

7.12.1 THE DOMAIN KNOWLEDGE. 

Each record in the knowledge base contains the 
following information (stored in fields), 

number of analysis, 
- analysis types, 
- number of constraints, 
- constraint types, 
- number of nodes, 
- number of elements, 
- element types, 
- number of design variables, 
- solution which consists of algorithm, 

number of iterations, and convergence 
comments, comments on the optimization 
f ilename, the f ilename where the FE data 

Thus a typical record might be, 

- number of analysis: 
- analysis types: 
- number of constraints: 
- constraints types: 

- number of nodes: 
- number of elements: 
- element types: 

criteria, 
process, 

are stored. 

1; 

statics; 
2; 

stress, displacement; 
5; 
6; 

beam; 
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- number of design variables: 6; 
- solution: pseudo-newton algorithm, n number of iterations, a type of convergence criteria 
- comment: a straight forward optimization run 
- filename: framnsin. dat; 

Such record can be written in C++ using Structure. The 
DESIGN CASE structure below is used to represent the 
systemTs memory. 

struct DESIGN CASE 
int index; 
int num analysis; 
int num constraint; 
int element-tYPe num; 
int element num; 
int node num; 
int design var; 
int algor iteration; 
int fsd iteration; 
int used rule[20]; 
int num 7ýired rule; 
float used cf-[201; 
float cf value; 
char anallysis[7] [40]; 
char constraint[7][40]; 
char element type[7][401; 
char algor name[10]; 
char crit-conv[10]; 
char comment [101 [801; 
char filename[401; 
struct TEXTRULE explain_rule[25]; 

Records of the system's past experience can be seen in 

memo. ry. dat. Some members of the above data structure are 
used for reasoning process only and do not appear in the 
data f ile. The TEXTRULE is a structure which is used to 

store the explanation-statements and these statements are 
stored in mem-rule. dat together with the similarity rules. 

7.12.2. THE SIMILARITY RULES. 

The similarity rules are 
format: 

// rule 1 
if ( ............. && 

............. 
&& 

written in the following 
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............. 

rule[l]=TRUE; 

text rule 1 
strcpy (textrule [1 text [0], 
strcpy(textrule[l]. text[l], " .... 

strcpy (textrul e [1 text [q-2], 
strcpy (textrule [1]. text [q-11, "cf=x. xx") 
textrule [1 ]. textnum=q; 

// rule i 
if ( ............. && 

............. && 

............. 
................ rule [i ] =TRUE; 
cf[i]=x. xx; 

text rule i 
strcpy (textrule [i]. text [0]., 
strcpy(textrule[i]. text[l]., " 

strcpy(textrule[i]. text[r-2], " .... "); 
strcpy(textrule[i]. text[r-1l, "cf=x. xx"); 
textrule [i]. textnum=r; 

// rule n 
if ( ............. 

............. 
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............. 

................ rule[n]=TRUE; 
cf[n]=x. xx; 

I 
// text rule n 
strcpy (textrule [n]. text [0], 
strcpy (textrule [n]. text [1], 

strcpy(textrule[nl. text[s-2], " .... 11) ; 
strcpy (textrule [n]. text [s-1 ], "cf=x. xx 
textrule [n] . textnum=s; 

A certainty factor (cf) with a value of x. xx is attached to 
each similarity rule. Although the rules above show AND 
(&&) relationships, the rule premises could also include OR 
relationships. As shown above, the explanation-statements 
are written below associated rules. The similarity rules 
are stored in the file memrule. dat. 

7.13. THE KNOWLEDGE BASE OF RUN-TIME AND RESULT INTER- 
PRETATION MODULES. 

The run-time and result interpretation modules use 
procedural rules as the knowledge base. The structure of 
the rules (IF-THEN rules) are similar to the rules in the 
conventional module (omitting the objects) . The knowledge 
base of the run-time interpretation module is stored in 

runtrule. dat while the explanat ion- statements are in 

runtexpl. dat. The knowledge base of the result 
interpretation module is stored in res1rule. dat, while the 

explanation statements are in reslexpl. dat. 

7.14. OPTIMIZATION PROCEDURE. 

Figure 7-11 shows a flow chart of the procedure in an 

optimization job as implemented in the ESSO prototype. It 

shows the sequence of modules execution but it does not 

show the interactions which can occur at any stage during 

the optimization process. 

When the ESSO 
users have to do is 
design input module 
- type of analysis, 
- set of constraintf 

execution begins the first step the 
to supply the design requirements. The 

asks the user to supply 
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FE data which includes the number of nodes, number of 
elements, element types, and number of load cases, 
number of design variables. 

Based on the above information, the memory module 
searches for a similar case in its data base and if one is 
found the solution (the algorithm, number of iterations, 
and convergence criteria used) is proposed to the user. If 
required this solution can be modified. Having accepted the 
solution the execution moves to the design variables 
specification, otherwise the conventional module is 
invoked. 

The conventional module, similar to the memory module, 
searches for an optimization solution using the information 
provided during the design input stage. This is performed 
by a reasoning process to an a-priori knowledge (see chap- 
ter six) . The user can query the solution proposed by this 
module and accept or change it. Having accepted the solu- 
tion the execution moves to the element specification. 

To specify the design variables the user needs to de- 
fine the element types for every design variable. If incom- 
patible element types are grouped in one design variable 
the user will be warned and asked to make modification. The 
reason of incompatibility will be explained. If everything 
goes well then the user is asked to specifiy the element 
numbers for each design variable. 

Depending upon the type of analysis used the system 
asks the user to supply the associated set of constraints. 
For example, if a static analysis is required then the user 
will be asked to supply constraints such as displacement, 
stress, or strain, and not natural frequency. For an analy- 
sis type the user has to supply one or more constraint 
types associated with that analysis. Most constraints re- 
quire the users to supply upper and lower value of the 
constraint. The users are also asked to supply gauge limits 
for each design variable. 

At this stage the system runs the driver-files module. 
If required by the user the driver files can be displayed. 
With the driver files and FE model available (the FE model 
prepared by the user) the optimization system can start 
running. 

The performance of the optimization run is monitored 
by the run-time module which is part of the back-end 

module. As mentioned in (7.8) this is performed by 

suspending the run after three iterations to check whether 
the optimization is converging. If convergence is predicted 
the run is resumed. Optimization results will be 

interpreted by the result interpretation module. If results 

are not satisfactory, the system will search for 
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explanations and proposes actions to follow. Based on the 
proposed actions, if required the modification module will 
modify the optimization set up for another optimization 
run. 
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CHAPTER 8: 

VALIDATION 

The ideas and Expert System techniques presented in 
the previous chapters need validation and for that purpose 
a prototype Expert System For Structural Optimization 
(ESSO) has been constructed (see chapter seven) . Intensive 

tests using various design cases have been performed using the prototype and two of these, one static case and one dynamic case, are presented in this chapter. 

STATIC CASE EXAMPLE. 

8.1.1. PROBLEM DESCRIPTION. 

A wing structure (cant i lever-wing) is designed to 
carry a static load which is assumed to be applied at the 
wing tip. The structure consists of upper and lower panels, 
front and rear spars, and wing ribs. The length of the wing 
is 3600 mm (half-span) . The root-chord length is 2400 mm 
with a maximum thickness of 600 mm. The tip-chord length is 
800 mm with a maximum thickness of 200 mm. The finite 
element model of the wing is shown in figure 8-1 and 
consists of 90 nodal points and 112 elements. CQUAD4 
membrane elements are used for the wing panels and ribs. 
For front and rear spars CSHEAR elements are used. The FE 
model in NASTRAN format is shown in table 8-1. 

The tensile strength of the material is 250.0 MPa 
while the compressive strength is -120.0 MPa- The other 
material data used is: 

Modulus Young = 79000.0 MPa 

poisson's ratio = 0.33 
/MM3 mass density = 2.8E-6 Kg 

The structure is to be designed to be of minimum 
weight subject to limits on stresses given above and on the 
lateral displacement of 25 mm at nodes 81 to 85 (wing-tip) - 
The gauge limits are as follows, thickness of the 

structural elements should be not less than 0.6 mm. It is 

specified that maximum thickness of upper and lower panel 
is 10 mm, the maximum thickness of spars is 3.5 mm, and the 

maximum thickness of ribs is 2.5 mm. 

8.1.2. ESSO SESSION. 

ESSO starts the session by asking the user to supply 
information relating to, 
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type of analysis, in this case statics, type of constraints, stress and displacement. 

The user must now supply a general description of the finite element model of the structure, which consists of, 

the number of nodal/grid points, which is 90, 
the element types, which in this case are CQUAD4 and CSHEAR,. 
the number of elements, which is 112, 
and the number of load cases, in this case is 1. 

Ideally the system should draw this information directly 
from the FE (NASTRAN) file, but at its current stage ESSO 
cannot do this. The user now informs the system of the 
number of design variables required, 6 in this example. It 
is up to the user to define the set up of the design 
variables which link specific finite elements to a design 
variable. For example if the panel of a wing bay (between 
two ribs) is desired to have a uniform thickness, then all 
finite elements in that bay are grouped in one design 
variable. 

Based on the above information, ESSO searches its 
memory using the reasoning process described earlier and 
finds one "similar" case, that is,, 

case index number 3 (from static 
number of analysis = 1, statics, 
number of constraint type is 2, 
number of nodal points = 24, 
number of elements = 26, 

cases in memory), 

stress and displacement, 

number of element types = 1r CQUAD4r 
number of design variables = 5, 
name of solution algorithm = Pseudo Newton, 
maximum number of solution iteration = 4, 
convergence criteria = dual gap. 

The finite element model for the above case is shown in 
figure 8-2. The certainty factor of this case (indicating 
the degree to which this solution algorithm can solve the 

current problem successfully) is 0.381. The same analysis 
and constraint types give positive contribution to 

similarity, though the number of nodal points, elements, 
and design variables of this past case are smaller than the 

current design problem. This lack of total agreement does 

not become a kill off factor because the analysis type is 

static and ESSO believes there is a reasonable chance of 

success in using this case. The resulting algorithm 

proposed as a result of this process is the Pseudo Newton 

with maximum iteration numbers of 4. It is assumed that the 

user agrees with this proposal. 
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The next step is design variables set up. The user informs ESSO of the element types in each design variable (there are six design variables in the present case), and ESSO will check whether the elements grouping is 
appropriate. The element types of the design variables are, 

variable-1 
variable-2 
variable-3 
variable-4 
variable-5 
variable-6 

= CQUAD41 
= CQUAD41 
= CQUAD4f 
= CQUAD41 
= CSHEAR, 
= CQUAD4. 

The above grouping is accepted by ESSO and the user then 
has to supply the element numbers for each of these design 
variables, 

variable-1 33,34,, 49,. 50,, 81,, 82,, 97,, 98 (the first upper and 
lower panel bays near the wing root) 

variable-2 35,36,51,52,83,84,99,100 (the second upper 
and lower panel bays) 

variable-3 37-48,53-64 (the rest of the upper panel) 
variable-4 85-96,101-112 (the rest of the lower panel) 
variable-5 = 65-80 (the front and rear spars) 
variable-6 = 113-144 (the ribs). 

The gauge and stress constraints are now supplied: 

Gaucres.: 

1. lower-limit = 0.6 
upper-limit = 10.0 
element = 33-64, 

2. lower-limit = 0.6 
upper-limit = 3.5 
element = 65-80 

81-112 (upper and lower panels) 

(front and rear spars) 

2. lower-limit = 0.6 
upper-limit = 2.5 
element = 113-144 (ribs) 

Stress: lower-limit -120.0 
upper-limit 250.0 
for elements 33-144. 

ESSO also asks the user to supply 
constraint: 

lower-limit -25.0 
upper-limit 25.0, to Y-direction 
at nodes = 81-85. 

the displacement 
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At this stage ESSO has performed the necessary 
reasoning to construct a solution strategy and the user has 
supplied the description of the design problem. It is now a relatively straightforward for ESSO to create appropriate input data sets for the structural optimization, thus, ESSO 
now informs the user that the front end session is 
completed and the STARS driver files "essocdf. dat" (see 
table 8-2) and "essocons. dat" (see table 8-3) are produced. ESSO also requests the user to run STARS. When executed, 
the STARS run is suspended after 3 iterations. This 
suspension is invoked to allow ESSO to examine the progress 
of the optimizer and asses the likely success of the 
current run to converge to an optimum. 

ESSO employs a number of parameters to predict 
convergence or otherwise as described earlier. In the 
present case the iteration history up to the third 
iteration (can be read from the STARS result file 
"essorslt. dat") is shown below. 

iteration feasible weight dual weight 
-------------------------------------------- 

0 127.9 48.3 
1 109.5 77.0 
2 106.5 99.6 
3 106.2 104.8 

Based on the above information, the run-time application 
predicts that the optimization will reach convergence at 
maximum iteration (maximum iteration=4) . In fact the above 
data shows that the optimization run has produced a very 
good design at iteration 3. 

The STARS run is resumed with one more iteration to 

complete. After the optimization stops at fourth iteration, 
the result application is invoked to check whether this 
design can be regarded as optimum. This ESSO application 
uses dual weight of the last iteration (iteration 4) and 
the most non-feasible constraint (if any) together with any 
violated limit value. In the present case we find that at 
the optimum, 

- feasible weight = 106.2, dual weight = 106.1, 

- the " violated" constraint is displacement at node 83 

equal to 25.0 mm. with the limit value of 25.0 mm. 

Based on this data,, ESSO concludes that the design at 
iteration 4 can indeed be regarded as optimum because the 

constraints are satisfied while the dual gap is satisfied. 
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Because the optimization produces an optimum design, the ESSO memory is updated with this design problem. 

8.2. DYNAMIC CASE EXAMPLE. 

8.2.1. PROBLEM DESCRIPTION. 

The same structure as in the first case (8.1) is used 
again for this second design case. Instead of the static design requirement, now the structure is desired to have a 
minimum weight while maintaining its lowest natural frequency above 2.50 cycles/second. This is a dynamic case 
with frequency constraint. The FE model and the set up of the design variables of the first case are retained. The 
same material is also used with similar gauge limits on 
elements. The FE model is similar to the one in figure 8-1 
omitting the static forces. Table 8-4 shows the NASTRAN 
data of the model. 

8.2.2. ESSO SESSION. 

Similar to the first case, ESSO starts the session by 
asking the user to supply information relating to, 

type of analysis, which in this case is dynamics, 
type of constraint, which is natural frequency. 

This is followed by the general description of the finite 
element model of the structure, and this consists of, 

- number of nodal/grid points, which 
- element types, which in this case 
- number of elements, which is 112, 
- and number of load cases, which in 

is 90, 
are CQUAD4 and CSHEAR, 

this case is 1. 

The user then must inform the system on the number of 
design variables required, which we have selected to be 6. 

Based on the above information, ESSO suggests the 
following as a suitable "similar" case, 

case index number 1 (from dynamic cases in memory), 
number of analysis = 1. dynamics, 
number of constraint type is 1, natural frequency, 

number of nodal points = 90, 
number of elements = 148, 
number of element types = 3f CQUAD4f CSHEAR, CONROD, 

number of design variables = 8f 

name of solution algorithm = Pseudo Newton, 

maximum number of solution iteration = 7, 

convergence criteria = dual gap 
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The finite element model of the above case can be seen in figure 8-3. The certainty factor of this case is 0.473. In addition to the front and rear spars, the structure in the "similar" proposed case has a middle spar. We now assume that the user is satisfied that there is a good chance of success in using this case to supply the optimization 
solution strategy for the present example. The algorithm 
proposed is the pseudo newton with maximum iteration 
numbers of 7. It is assumed that the user prefers to increase the maximum iteration numbers to 10. 

The next step is design variables set up. The element types associated with the design variables are, 

variable-1 
variable-2 
variable-3 
variable-4 
variable-5 
variable-6 

= CQUAD41 
= CQUAD41 
= CQUAD41 
= CQUAD4r 
= CSHEAR, 
= CQUAD41 

and the element within each design variable, 

variable-1 33f 34,, 49,, 50,81,, 82f 97,, 98 (the first upper and 
lower panel bays near the wing root) 

variable-2 35,36F 51F 52f 83f 84f 99f 100 (the second upper 
and lower panel bays) 

variable-3 37-48f 53-64 (the rest of the upper panel) 
variable-4 85-96,101-112 (the rest of the lower panel) 
variable-5 65-80 (the front and rear spars) 
variable-6 113-144 (the ribs). 

Similar to the first case, there is no fix-element. 

The gauges limit are specified as: 

1. lower-limit 
upper-limit 
element 

2. lower-limit 
upper-limit 
element 

2. lower-limit 
upper-limit 
element 

0.6 
10.0 
33-64,81-112 (upper and lower panels) 

0.6 
3.5 
65-80 (front and rear spars) 

0.6 
2.5 
113-144 (ribs) 

Next,, ESSO asks the user to supply the lower limit 

value of the frequency and the associated mode number. In 

this case, 

mode number =1 
natural frequency = 2.50. 
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At this stage ESSO inform 

session is completed and 
"essocdf. dat" (see table 8-5) a 
8-6) are produced. ESSO also 
STARS. As with the previous 
suspended after 3 iterations. 

the user that the front end the STARS driver files 
nd "essocons. dat" (see table 

requests the user to run "Statics" case the run is 

The iteration history for these initial iterations is: 

-------------------------------------------- 
iteration feasible weight dual weight 

-------------------------------------------- 
0 127.9 35.9 
1 80.4 35.9 
2 107.9 35.9 
3 168.7 35.9 

-------------------------------------------- 

Based on the above information, the run-time application 
predicts that the optimization will not converge to the 
optimum at maximum iteration (maximum iteration=10) . 

At this point, the optimizer has been able to raise 
the natural frequency of the structure from the starting 
value of 1.54 Hz to 2.0 Hz. However, ESSO believes that the 
optimum will not be reached because there is insufficient 
scope to make changes due to the design variable set up. 
ESSO,, thus, proposes that number of design variables be 
increased. In response to this the number of design 
variables is increased to 17. 

The element types associated with the design variables 
are, 

variable-1 = CQUAD4r 

variable-2 = CQUAD4f 

variable-3 = CQUAD4, 

variable-4 = CQUAD4, 

variable-5 = CQUAD41 

variable-6 = CQUAD4f 

variable-7 = CQUAD4, 

variable-8 = CQUAD4, 

variable-9 CQUAD4, 
variable-10 CSHEAR, 

the f irst bay of upper and lower 
panels, 

the second bay of upper and lower 
panels, 
the third bay of upper and lower 
panels, 

the f ourth bay of upper and lower 
panels, 

the fifth bay of upper and lower 
panels, 
the sixth bay of upper and lower 
panels, 
the seventh bay of upper and lo- 

wer panels 
the eighth bay of upper and lower 

panels, 
the ribs, 

the first bay of front and rear 
spars., 
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variable-11 = CSHEAR, 

variable-12 = CSHEAR, 

variable-13 = CSHEAR, 

variable-14 = CSHEAR, 

variable-15 = CSHEAR, 

variable-16 = CSHEAR, 

variable-17 = CSHEAR, 

the second bay of 
spars, 
the third bay of 
spars, 

the fourth bay of 
spars., 
the fifth bay of 
spars, 
the sixth bay of 
rear spars, 
the seventh bay 
rear spars, 

front and rear 

front and rear 

front and rear 

front and rear 

front and 

of front and 

the eighth bay of front and 
rear spars. 

The associated elements within each design variable can be 
seen in table 8-7. 

Having completed the modification, ESSO produces 
"essocdf. dat" and "essocons. dat". The "essocons. dat" is 
shown in table 8-7. ESSO then asks the user to run STARS. 

After 3 iterations STARS run is suspended. The ESSO's 
run-time application asks the user to supply data on 
feasible and dual weights from iteration 0 to iteration 3 
which is shown below, 

-------------------------------------------- 
iteration feasible weight dual weight 

-------------------------------------------- 
0 127.9 35.9 
1 72.1 34.7 
2 71.6 48.3 
3 76.8 56.4 

-------------------------------------------- 

Based on the above information, the run-time application 
predicts that the optimization will reach convergence at 
maximum iteration (maximum iteration=10) and asks the user 
to resume the optimization run. 

The optimization run stops at maximum iteration and 
the ESSO' s result application is called to check the 

results. It asks the user to supply the feasible and dual 

weights of the last iteration (iteration 10) and also the 

most non-feasible constraint (if any) together with the 

violated limit value. From the "essorslt. dat", 

- feasible weight = 78.3. dual weight = 66.0, 

- the "violated" constraint is the natural frequency of 
2.39 Hz which is still below the limit value of 2.5 Hz. 
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From the data above ESSO concludes that the design is not 
satisfactory, but the constraint-gap is relatively small, 
under five percent. At this stage, ESSO asks the user to 
supply the history of frequency during optimization run 
which is as follow, 

-------------------------------------------------------- 
fo fl f2 f3 f4 f5 f6 f7 f8 f9 flo 

-------------------------------------------------------- 
1.54 1.73 2.05 2.29 2.42 2.36 2.42 2.38 2.41 2.40 2.39 

-------------------------------------------------------- 

The data above shows the frequency at every iteration from 
initial value, fO, to the last iteration, f1O. Based only 
on the above data, in fact the optimization is converging 
to a design point where the natural frequency of the 
structure is close to 2.4 Hz (still infeasible) . From this 
fact ESSO concludes that the problem is caused by the 
algorithm itself (pseudo newton) . To solve this problem (an 
infeasible design) ESSO suggests the user to increase 
slightly the constraint value. This is accepted by 
increasing the natural frequency to 2.65 Hz. 

With this slight modification, the STARS is re-run. 
The optimization data after ten iteration is 

- feasible weight = 95.9, dual weight = 72.5, 

- the natural frequency is 2.53 Hz which is above the 
original limit value of 2.50 Hz. 

The data above shows that the design is not yet optimum but 
it is a useful feasible design (with respect to the 
original design requirement) and probably not that far away 
from the optimum point. The frequency history as shown 
below, 

-------------------------------------------------------- 
fo fl f2 f3 f4 f5 f6 f7 f8 f9 flo 

-------------------------------------------------------- 
1.54 1.75 2.09 2.37 2.56 2.48 2.56 2.48 2.54 2.48 2.53 

-------------------------------------------------------- 

shows that the optimization is converging to a design point 

with the frequency close to 2.5 Hz- This supports the fact 

points out by ESSO that the pseudo newton method of STARS 

could not cope well with this dynamic problem. 

Finally ESSO updates its memory by appending 
. 

this case 

and asking the user to put comments on the running of the 

optimization. The comments might look like this, 

natural frequency requirement of at least 2.5 Hz. 

initial frequency of structure (iter-0) = 1.54 Hz. 
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- needs effective material distribution through appro- 
priate design variable set-up 

- optimization tends to point to a slightly infeasible 
design 

- the trick is to slightly increase the constraint to 2.65 
Hz. 
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Table 8-1: The FE data of the Static Case Example. 

TITLE = WING STATIC-CASE STRESS-DISPLACEMENT CONSTRAINT 
SUBCASE=l 
LOAD=l 
BEGIN BULK 
GRID 1 0. 300. 0. 123456 
GRID 2 0. 270. 600. 123456 
GRID 3 0. 221.052 -600. 123456 
GRID 4 0. 142.104 -1200. 123456 
GRID 5 0. 140. 1200. 123456 
GRID 6 0. -142.105 -1200. 123456 
GRID 7 0. -200. 1200. 123456 
GRID 8 0. -221.052 -600. 123456 
GRID 9 0. -300. 600. 123456 
GRID 10 0. -300. 0. 123456 
GRID 11 450. 275. 0. 456 
GRID 12 450. 247.5 550. 456 
GRID 13 450. 202.631 -550. 456 
GRID 14 450. 130.813 1100. 456 
GRID 15 450. 130.262 -1100. 456 
GRID 16 450. -130.263 -1100. 456 
GRID 17 450. -186.875 1100. 456 
GRID 18 450. -202.632 -550. 456 
GRID 19 450. -275. 550. 456 
GRID 20 450. -275. 0. 456 
GRID 21 900.0001 250. 0. 456 
GRID 22 900.0001 225. 500. 456 
GRID 23 900.0001 184.21 -500. 456 
GRID 24 900.0001 121.625 1000. 456 
GRID 25 900.0001 118.421 -1000. 456 
GRID 26 900.0001 -118.421 -1000. 456 
GRID 27 900.0001 -173.75 1000. 456 
GRID 28 900.0001 -184.211 -500. 456 
GRID 29 900.0001 -250. 500. 456 
GRID 30 900.0001 -250. 0. 456 
GRID 31 1350. 225. 0. 456 
GRID 32 1350. 202.5 450. 456 
GRID 33 1350 . 165.789 -450. 456 
GRID 34 1350 . 

11L438900.0001 456 
GRID 35 1350. 106.579-900.000 456 

GRID 36 1350. -106.579-900.000 456 

GRID 37 1350. -160.625900.0001 456 

GRID 38 1350. -165.79 -450. 456 

GRID 39 1350. -225. 450. 456 

GRID 40 1350. -225. 0. 456 

(continued) 
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Table 8-1 

--------- 
GRID 

------------- 
41 

--------------------------------- 
1800.200.0. 

--------- 
456 

GRID 42 1800.180.400. 456 
GRID 43 1800.147.368 -400. 456 
GRID 44 1800.103.25800.0001 456 
GRID 45 1800.94.73701-800.000 456 
GRID 46 1800. -94.7375-800.000 456 
GRID 47 1800. -147.369 -400. 456 
GRID 48 1800. -147.5800.0001 456 
GRID 49 1800. -200.400. 456 
GRID 50 1800. -200.0. 456 
GRID 51 2250.175.0. 456 
GRID 52 2250.157.5 350. 456 
GRID 53 2250.128.948 -350. 456 
GRID 54 2250.94.06251700.0001 456 
GRID 55 2250.82.89521-700.000 456 
GRID 56 2250. -82.8956-700.000 456 
GRID 57 2250. -128.948 -350. 456 
GRID 58 2250. -134.375700.0001 456 
GRID 59 2250. -175.350. 456 
GRID 60 2250. -175.0. 456 
GRID 61 2700.150.0. 456 
GRID 62 2700.135.300. 456 
GRID 63 2700.110.527 -300. 456 
GRID 64 2700.84.87501 600. 456 
GRID 65 2700.71.0535 -600. 456 
GRID 66 2700. -71.0537 -600. 456 
GRID 67 2700. -110.527 -300. 456 
GRID 68 2700. -121.25 600. 456 
GRID 69 2700. -150.300. 456 
GRID 70 2700. -150.0. 456 
GRID 71 3150.125.0. 456 
GRID 72 3150.112.5 250. 456 
GRID 73 3150.92.10591 -250. 456 
GRID 74 3150.75.68751 500. 456 
GRID 75 3150.59.21181 -500. 456 
GRID 76 3150. -59 , . 

2119 -500. 456 

GRID 77 3150. -92.1059 -250. 456 

GRID 78 3150. -108.125 500. 456 

GRID 79 3150. -125.250. 456 

GRID 80 3150. -125.0. 456 

GRID 81 3600.100.0. 456 

GRID 82 3600.90-00001 200. 456 

GRID 83 3600.73.68501 -200. 456 

GRID 84 3600.66.50001 400. 456 

GRID 
--------- 

85 
------------ 

3600.47.37001 -400. 
--------------------------------- 

456 
---------- 

(continued) 
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Table 8-1 

---------- 
GRID 

------- 
86 

--------- --------------- 
3600. -47.3700 

---------- 
-400. 

------- ------ 
456 

GRID 87 3600. -73.6850 -200. 456 
GRID 88 3600. -95.0000 400. 456 
GRID 89 3600. -100. 200. 456 
GRID 90 3600. -100. 0. 456 
MAT1 1 79000. 0.33 2.80-6 
PSHELL 33 1 1. 
PSHEAR 65 1 1. 
FORCE 1 81 5000.0 0.0 1.0 0.0 
FORCE 1 82 10000.0 0.0 1.0 0.0 
FORCE 1 83 12000.0 0.0 1.0 0.0 
FORCE 1 84 10000.0 0.0 1.0 0.0 
FORCE 1 85 5000.0 0.0 1.0 0.0 
CQUAD4 33 33 5 14 12 2 0. 
CQUAD4 34 33 2 12 11 1 0. 
CQUAD4 35 33 14 24 22 12 0. 
CQUAD4 36 33 12 22 21 11 0. 
CQUAD4 37 33 24 34 32 22 0. 
CQUAD4 38 33 22 32 31 21 0. 
CQUAD4 39 33 34 44 42 32 0. 
CQUAD4 40 33 32 42 41 31 0. 
CQUAD4 41 33 44 54 52 42 0. 
CQUAD4 42 33 42 52 51 41 0. 
CQUAD4 43 33 54 64 62 52 0. 
CQUAD4 44 33 52 62 61 51 0. 
CQUAD4 45 33 64 74 72 62 0. 
CQUAD4 46 33 62 72 71 61 0. 
CQUAD4 47 33 74 84 82 72 0. 
CQUAD4 48 33 72 82 81 71 0. 
CQUAD4 49 33 1 11 13 3 0. 
CQUAD4 50 33 3 13 15 4 0. 
CQUAD4 51 33 11 21 23 13 0. 
CQUAD4 52 33 13 23 25 15 0. 
CQUAD4 53 33 21 31 33 23 0. 
CQUAD4 54 33 23 33 35 25 0. 
CQUAD4 55 33 31 41 43 33 0. 
CQUAD4 56 33 33 43 45 35 0. 

CQUAD4 57 33 41 51 53 43 0. 

CQUAD4 58 33 43 53 55 45 0. 

CQUAD4 59 33 51 61 63 53 0. 

CQUAD4 60 33 53 63 65 55 0. 

CQUAD4 61 33 61 71 73 63 0. 

CQUAD4 62 33 63 73 75 65 0. 

CQUAD4 63 33 71 81 83 73 0. 

CQUAD4 
---------- 

64 
------- 

33 
-------- 

73 
------- 

83 
--------- 

85 
--------- 

75 
-------- 

0. 
------ 

(continued) 
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Table 8-1 

--------- 
CQUAD4 

---------- 
81 

-------- 
33 

-------- 
6 

-------- 
16 

-------- 
18 

-------- 
8 

----- 
0 CQUAD4 

CQUAD4 
82 
83 

33 
33 

8 18 20 10 . 0. 
CQUAD4 84 33 

16 
18 

26 
28 

28 
30 

18 0. 
CQUAD4 85 33 26 36 38 

20 
28 

0. 
0 CQUAD4 86 33 28 38 40 30 . 0 CQUAD4 87 33 36 46 47 38 . 0 CQUAD4 88 33 38 47 50 40 . 0 CQUAD4 89 33 46 56 57 47 . 0 CQUAD4 90 33 47 57 60 50 . 0 CQUAD4 91 33 56 66 67 57 . 0 CQUAD4 92 33 57 67 70 60 . 0 CQUAD4 93 33 66 76 77 67 . 0 CQUAD4 94 33 67 77 80 70 . 0 CQUAD4 95 33 76 86 87 77 . 0 CQUAD4 96 33 77 87 90 80 . 0 CQUAD4 97 33 10 20 19 9 . 0 CQUAD4 98 33 9 19 17 7 . 0 CQUAD4 99 33 20 30 29 19 . 0 CQUAD4 100 33 19 29 27 17 . 0 CQUAD4 101 33 29 39 37 27 . 0 CQUAD4 102 33 30 40 39 29 . 0 CQUAD4 103 33 40 50 49 39 . 0 CQUAD4 104 33 39 49 48 37 . 0. CQUAD4 105 33 50 60 59 49 0. CQUAD4 106 33 49 59 58 48 0. CQUAD4 107 33 60 70 69 59 0. CQUAD4 108 33 59 69 68 58 0. CQUAD4 109 33 70 80 79 69 0. 

CQUAD4 110 33 69 79 78 68 0. 
CQUAD4 111 33 80 90 89 79 0. 
CQUAD4 112 33 79 89 88 78 0. 
CQUAD4 113 33 17 14 12 19 0. 
CQUAD4 114 33 19 12 11 20 0. 
CQUAD4 115 33 20 11 13 18 0. 
CQUAD4 116 33 18 13 15 16 0. 
CQUAD4 117 33 27 24 22 29 0. 
CQUAD4 118 33 29 22 21 30 0. 
CQUAD4 119 33 30 21 23 28 0. 
CQUAD4 120 33 28 23 25 26 0. 
CQUAD4 121 33 37 34 32 39 0. 
CQUAD4 122 33 39 32 31 40 0. 
CQUAD4 123 33 40 31 33 38 0. 
CQUAD4 

---------- 
124 

--------- 

33 

-------- 

38 

-------- 

33 

-------- 

35 

-------- 

36 

-------- 

0. 

----- 
(continued) 
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Table 8-1 

---------- 
CQUAD4 

--------- 
125 

-------- 
33 

-------- 
48 

-------- 
44 

-------- 
42 

-------- 
49 

----- 
0 

CQUAD4 126 33 49 42 41 50 . 0 CQUAD4 127 33 50 41 43 47 . 0. CQUAD4 128 33 47 43 45 46 0. 
CQUAD4 129 33 58 54 52 59 0. 
CQUAD4 130 33 59 52 51 60 0. 
CQUAD4 131 33 60 51 53 57 0. 
CQUAD4 132 33 57 53 55 56 0. 
CQUAD4 133 33 68 64 62 69 0. 
CQUAD4 134 33 69 62 61 70 0. 
CQUAD4 135 33 70 61 63 67 0. 
CQUAD4 136 33 67 63 65 66 0. 
CQUAD4 137 33 78 74 72 79 0. 
CQUAD4 138 33 79 72 71 80 0. 
CQUAD4 139 33 80 71 73 77 0. 
CQUAD4 140 33 77 73 75 76 0. 
CQUAD4 141 33 88 84 82 89 0. 
CQUAD4 142 33 89 82 81 90 0. 
CQUAD4 143 33 90 81 83 87 0. 
CQUAD4 144 33 87 83 85 86 0. 
CSHEAR 65 65 5 14 17 7 
CSHEAR 66 65 14 24 27 17 
CSHEAR 67 65 24 34 37 27 
CSHEAR 68 65 34 44 48 37 
CSHEAR 69 65 44 54 58 48 
CSHEAR 70 65 54 64 68 58 
CSHEAR 71 65 64 74 78 68 
CSHEAR 72 65 74 84 88 78 
CSHEAR 73 65 4 15 16 6 
CSHEAR 74 65 15 25 26 16 
CSHEAR 75 65 25 35 36 26 
CSHEAR 76 65 35 45 46 36 
CSHEAR 77 65 45 55 56 46 
CSHEAR 78 65 55 65 66 56 
CSHEAR 79 65 65 75 76 66 
CSHEAR 80 65 75 85 86 76 
ENDDATA 

(end of table) 
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Table 8-2: The command data file of the Static Case 
Example. 

START 
COMMAND DATA PNEWTON 
C 

SET NSIV=l; 
SET MXIT=4; 
SET APRT=YES; 
SET ACTG=YES; 
SET IFLM=YES; 
DO NSIN; 
DO OPTIN; 

C 

c 
L010: 

L031: 

L032: 

L033: 

L034: 

L040: 
c 

DO ANALYSIS; 
DO INSPECT; 
DO OPTX; 
PSEUDO NEWTON ITERATIONS 
DO ITER; 
DO QNEWTON; 
DO OPTX; 
IF(ENDC. EQ. YES) GOTO L031; 
IF(NOIT. EQ. 3) DO HISTORY; 
IF(NOIT. EQ. 3) SUSPEND; 
IF(ENDI. EQ. YES) GOTO L040; 
GOTO L010; 
DISPLAY CONVERGENCE TO THE 
GOTO L050; 

LOWER BOUND WEIGHT; 

DISPLAY CONVERGENCE TO DESIGN VARIABLES; 
GOTO L050; 
DISPLAY CONVERGENCE TO FEASIBLE VS ACTUAL WEIGHT; 
GOTO L050; 
DISPLAY CONVERGENCE TO FEASIBLE WEIGHT; 
GOTO L050; 
DISPLAY MAX. NUMBER OF ITERATIONS REACHED; 

L050: SET APRT=YES; 
DO ANALYSIS; 
DO INSPECT; 
DO HIST; 
STOP; 
END; 

C ANALYSIS PROCEDURE; 
PROC OPTX; 
DO ANALYSIS; 
DO ACTSET; 
DO DERV; 
DO CONV; 
DO INSPECT; 
END OPTX; 

ENDATA 
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Table 8-3: The design/ constraint file of the Static Case 
Example. 

C234567890123456789012345678901234567890123456789012345678901234567890 
DESIGN 1 33 
DESIGN 1 34 
DESIGN 1 49 
DESIGN 1 50 
DESIGN 1 81 
DESIGN 1 82 
DESIGN 1 97 
DESIGN 1 98 
DESIGN 2 35 
DESIGN 2 36 
DESIGN 2 51 
DESIGN 2 52 
DESIGN 2 83 
DESIGN 2 84 
DESIGN 2 99 
DESIGN 2 100 
DESIGN 3 37 
DESIGN 3 38 

to 

DESIGN 3 47 
DESIGN 3 48 

to 

DESIGN 3 63 
DESIGN 3 64 

to 

DESIGN 4 95 
DESIGN 4 96 
DESIGN 4 101 
DESIGN 4 102 

to 

DESIGN 4 
DESIGN 4 112 
DESIGN 5 65 

---------- ------- ----------- ----------- --------------- (continued) 
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Table 8-3 

--------- 
DESIGN 

------------ 
5 

------------ 
66 

------------------------------------ 

to 

DESIGN 5 79 
DESIGN 5 80 
DESIGN 6 113 
DESIGN 6 114 

to 

DESIGN 6 143 
DESIGN 6 144 
DESIGN 6 117 
GAUGE 0.600000 10.0000 33 
GAUGE 0.600000 10.0000 34 

to 

GAUGE 0.600000 10.0000 63 
GAUGE 0.600000 10.0000 64 
GAUGE 0.600000 10.0000 81 
GAUGE 0.600000 10.0000 82 

to 

GAUGE 0.600000 10.0000 
GAUGE 0.600000 10-0000 112 
GAUGE 0.600000 3.50000 65 
GAUGE 0.600000 3.50000 66 

to 

GAUGE 0.600000 3.50000 79 
GAUGE 0.600000 3.50000 80 
GAUGE 0.600000 2.50000 

. 
113 

GAUGE 0.600000 2.50000 114 

to 

GAUGE 0.600000 2.50000 143 
GAUGE 0.600000 2.50000 144 
STRESS -120.000 250.000 33 
STRESS -120.000 250.000 34 
STRESS -120.000 250.000 35 
STRESS -120.000 250.000 36 

------------------ ------- --------- ------------ ----------- ----- 
(continued) 



ill 

Table 8-3 

-------------------------------------- 
STRESS -120.000 250.000 37 
STRESS -120.000 250.000 38 

to 

STRESS -120.000 250.000 143 
STRESS -120.000 250.000 144 
DISP-Y -25.0000 25.0000 81 
DISP-Y -25.0000 25.0000 82 
DISP-Y -25.0000 25.0000 83 
DISP-Y -25.0000 25.0000 84 
DISP-Y -25.0000 25.0000 85 
ENDATA 

(end of table) 
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Table 8-4: The FE data of the Dynamic Case Example. 

TITLE = WING DYNAMIC-CASE FREQUENCY CONSTRAINT 
BEGIN BULK 
GRID 1 0. 300. 0. 123456 
GRID 2 0. 270. 600. 123456 
GRID 3 0. 221.052 -600. 123456 
GRID 4 0. 142.104 -1200. 123456 
GRID 5 0. 140. 1200. 123456 
GRID 6 0. -142.105 -1200. 123456 
GRID 7 0. -200. 1200. 123456 
GRID 8 0. -221.052 -600. 123456 
GRID 9 0. -300. 600. 123456 
GRID 10 0. -300. 0. 123456 
GRID 11 450. 275. 0. 456 
GRID 12 450. 247.5 550. 456 
GRID 13 450. 202.631 -550. 456 
GRID 14 450. 130.813 1100. 456 
GRID 15 450. 130.262 -1100. 456 
GRID 16 450. -130.263 -1100. 456 
GRID 17 450. -186.875 1100. 456 
GRID 18 450. -202.632 -550. 456 
GRID 19 450. -275. 550. 456 
GRID 20 450. -275. 0. 456 
GRID 21 900.0001 250. 0. 456 
GRID 22 900.0001 225. 500. 456 
GRID 23 900.0001 184.21 -500. 456 
GRID 24 900.0001 121.625 1000. 456 
GRID 25 900.0001 118.421 -1000. 456 
GRID 26 900.0001-118.421 -1000. 456 
GRID 27 900.0001 -173.75 1000. 456 
GRID 28 900.0001 -184.211 -500. 456 
GRID 29 900.0001 -250. 500. 456 
GRID 30 900.0001 -250. 0. 456 
GRID 31 1350. 225. 0. 456 
GRID 32 1350. 202.5 450. 456 
GRID 33 1350. 165.789 -450. 456 
GRID 34 1350. 112.438900-0001 456 
GRID 35 1350. 106.579- 900.000 456 
GRID 36 1350. -106.579- 900.000 456 
GRID 37 1350. -160.625900-0001 456 
GRID 38 1350. -165.79 -450. 456 
GRID 39 1350. -225. 450. 456 
GRID 40 1350. -225. 0. 456 

GRID 41 1800. 200. 0. 456 

GRID 42 1800. 180. 400. 456 

(continued) 
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Table 8-4 

--------- 
GRID 

------------- 
43 

--------------------------------- 
1800.147.368 -400. 

--------- 
456 

GRID 44 1800.103.25800.0001 456 
GRID 45 1800.94.73701-800.000 456 
GRID 46 1800. -94.7375-800.000 456 
GRID 47 1800. -147.369 -400. 456 
GRID 48 1800. -147.5800.0001 456 
GRID 49 1800. -200.400. 456 
GRID 50 1800. -200.0. 456 
GRID 51 2250.175.0. 456 
GRID 52 2250.157.5 350. 456 
GRID 53 2250.128.948 -350. 456 
GRID 54 2250.94.06251700.0001 456 
GRID 55 2250.82.89521-700.000 456 
GRID 56 2250. -82.8956-700.000 456 
GRID 57 2250. -128.948 -350. 456 
GRID 58 2250. -134.375700.0001 456 
GRID 59 2250. -175.350. 456 
GRID 60 2250. -175.0. 456 
GRID 61 2700.150.0. 456 
GRID 62 2700.135.300. 456 
GRID 63 2700.110.527 -300. 456 
GRID 64 2700.84.87501 600. 456 
GRID 65 2700.71.0535 -600. 456 
GRID 66 2700. -71.0537 -600. 456 
GRID 67 2700. -110.527 -300. 456 
GRID 68 2700. -121.25 600. 456 
GRID 69 2700. -150.300. 456 
GRID 70 2700. -150.0. 456 
GRID 71 3150.125.0. 456 
GRID 72 3150.112.5 250. 456 
GRID 73 3150-92.10591 -250. 456 
GRID 74 3150.75.68751 500. 456 
GRID 75 3150.59.21181 -500. 456 
GRID 76 3150. -59.2119 -500. 456 

GRID 77 3150. -92.1059 -250. 456 

GRID 78 3150. -108.125 500. 456 

GRID 79 3150. -125.250. 456 

GRID 80 3150. -125.0. 456 

GRID 81 3600.100.0. 456 

GRID 82 3600-90-00001 200. 456 

GRID 83 3600.73.68501 -200. 456 

GRID 84 3600.66.50001 400. 456 

GRID 
--------- 

85 
------------ 

3600.47.37001 -400. 
------- -------------------------- 

456 
---------- 

(continued) 
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Table 8-4 

---------- 
GRID 

------- 
86 

--------- --------------- 
3600. -47.3700 

---------- 
-400. 

-------- ----- 
456 

GRID 87 3600. -73.6850 -200. 456 
GRID 88 3600. -95.0000 400. 456 
GRID 89 3600. -100. 200. 456 
GRID 90 3600. -100. 0. 456 
MAT1 1 79000. 0.33 2.80-6 
PSHELL 33 1 1. 
PSHEAR 65 1 1. 
CQUAD4 33 33 5 14 12 2 0. 
CQUAD4 34 33 2 12 11 1 0. 
CQUAD4 35 33 14 24 22 12 0. 
CQUAD4 36 33 12 22 21 11 0. 
CQUAD4 37 33 24 34 32 22 0. 
CQUAD4 38 33 22 32 31 21 0. 
CQUAD4 39 33 34 44 42 32 0. 
CQUAD4 40 33 32 42 41 31 0. 
CQUAD4 41 33 44 54 52 42 0. 
CQUAD4 42 33 42 52 51 41 0. 
CQUAD4 43 33 54 64 62 52 0. 
CQUAD4 44 33 52 62 61 51 0. 
CQUAD4 45 33 64 74 72 62 0. 
CQUAD4 46 33 62 72 71 61 0. 
CQUAD4 47 33 74 84 82 72 0. 
CQUAD4 48 33 72 82 81 71 0. 
CQUAD4 49 33 1 11 13 3 0. 
CQUAD4 50 33 3 13 15 4 0. 
CQUAD4 51 33 11 21 23 13 0. 
CQUAD4 52 33 13 23 25 15 0. 
CQUAD4 53 33 21 31 33 23 0. 
CQUAD4 54 33 23 33 35 25 0. 
CQUAD4 55 33 31 41 43 33 0. 
CQUAD4 56 33 33 43 45 35 0. 
CQUAD4 57 33 41 51 53 43 0. 
CQUAD4 58 33 43 53 55 45 0. 
CQUAD4 59 33 51 61 63 53 0. 
CQUAD4 60 33 53 63 65 55 0. 
CQUAD4 61 33 61 71 73 63 0. 
CQUAD4 62 33 63 73 75 65 0. 
CQUAD4 63 33 71 81 83 73 0. 
CQUAD4 64 33 73 83 85 75 0. 
CQUAD4 81 33 6 16 18 8 0. 
CQUAD4 82 33 8 18 20 10 0. 

CQUAD4 83 33 16 26 28 18 0. 

CQUAD4 84 33 18 28 30 20 0. 

CQUAD4 85 33 26 36 38 28 0. 

CQUAD4 86 33 28 38 40 30 0. 

CQUAD4 

---------- 

87 

------- 

33 

-------- 

36 

-------- 

46 

-------- 

47 

---------- 

38 

------- 

0. 

------ 
(continued) 
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--------- 
CQUAD4 

---------- 
88 

-------- 
33 

-------- 
38 

-------- 
47 

-------- 
50 

-------- 
40 

----- 
0 CQUAD4 89 33 46 56 57 47 . 0 CQUAD4 90 33 47 57 60 50 . 0 CQUAD4 91 33 56 66 67 57 . 0 CQUAD4 92 33 57 67 70 60 . 0 CQUAD4 93 33 66 76 77 67 . 0 CQUAD4 94 33 67 77 80 70 . 0 CQUAD4 95 33 76 86 87 77 . 0 CQUAD4 96 33 77 87 90 80 . 0 CQUAD4 97 33 10 20 19 9 . 0 CQUAD4 98 33 9 19 17 7 . 0 CQUAD4 99 33 20 30 29 19 . 0 CQUAD4 100 33 19 29 27 17 . 0 CQUAD4 101 33 29 39 37 27 . 0 CQUAD4 102 33 30 40 39 29 . 0 CQUAD4 103 33 40 50 49 39 . 0 CQUAD4 104 33 39 49 48 37 . 0 CQUAD4 105 33 50 60 59 49 . 0 CQUAD4 106 33 49 59 58 48 . 0. CQUAD4 107 33 60 70 69 59 0. CQUAD4 108 33 59 69 68 58 0. CQUAD4 109 33 70 80 79 69 0. CQUAD4 110 33 69 79 78 68 0. CQUAD4 111 33 80 90 89 79 0. 

CQUAD4 112 33 79 89 88 78 0. 
CQUAD4 113 33 17 14 12 19 0. 
CQUAD4 114 33 19 12 11 20 0. 
CQUAD4 115 33 20 11 13 18 0. 
CQUAD4 116 33 18 13 15 16 0. 
CQUAD4 117 33 27 24 22 29 0. 
CQUAD4 118 33 29 22 21 30 0. 
CQUAD4 119 33 30 21 23 28 0. 
CQUAD4 120 33 28 23 25 26 0. 
CQUAD4 121 33 37 34 32 39 0. 
CQUAD4 122 33 39 32 31 40 0. 
CQUAD4 123 33 40 31 33 38 0. 
CQUAD4 124 33 38 33 35 36 0. 
CQUAD4 125 33 48 44 42 49 0. 
CQUAD4 126 33 49 42 41 50 0. 
CQUAD4 127 33 50 41 43 47 0. 
CQUAD4 128 33 47 43 45 46 0. 
CQUAD4 129 33 58 54 52 59 0. 
CQUAD4 

---------- 

130 

--------- 

33 

-------- 

59 

-------- 

52 

-------- 

51 

-------- 

60 

-------- 

0. 

----- 
(continued) 
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CQUAD4 
CQUAD4 
CQUAD4 
CQUAD4 
CQUAD4 
CQUAD4 
CQUAD4 
CQUAD4 
CQUAD4 
CQUAD4 
CQUAD4 
CQUAD4 
CQUAD4 
CQUAD4 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 

131 33 60 51 53 57 132 33 57 53 55 56 133 33 68 64 62 69 134 33 69 62 61 70 
135 33 70 61 63 67 
136 33 67 63 65 66 
137 33 78 74 72 79 
138 33 79 72 71 80 
139 33 80 71 73 77 
140 33 77 73 75 76 
141 33 88 84 82 89 
142 33 89 82 81 90 
143 33 90 81 83 87 
144 33 87 83 85 86 

65 65 5 14 17 7 
66 65 14 24 27 17 
67 65 24 34 37 27 
68 65 34 44 48 37 
69 65 44 54 58 48 
70 65 54 64 68 58 
71 65 64 74 78 68 
72 65 74 84 88 78 
73 65 4 15 16 6 
74 65 15 25 26 16 
75 65 25 35 36 26 
76 65 35 45 46 36 
77 65 45 55 56 46 
78 65 55 65 66 56 
79 65 65 75 76 66 
80 65 75 85 86 76 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

ENDDATA 

(end of table) 
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Table 8-5: The command data file of the Dynamic Case 
Example. 

START 
COMMAND DATA PNEWTON 
C 

SET NSIV=l; 
SET MASS=STR; 
SET MODE=l; 
SET MXIT=10; 
SET APRT=YES; 
SET ACTG=YES; 
SET IFLM=YES; 
DO NSIN; 
DO OPTIN; 

C 
DO ANALYSIS; 
DO INSPECT; 
DO OPTX; 

C PSEUDO NEWTON ITERATIONS 
L010: DO ITER; 

DO QNEWTON; 
DO OPTX; 
IF(ENDC. EQ. YES) GOTO L031; 
IF(NOIT. EQ. 3) DO HISTORY; 
IF(NOIT. EQ. 3) SUSPEND; 
IF(ENDI. EQ. YES) GOTO L040; 
GOTO L010; 

L031: DISPLAY CONVERGENCE TO THE 
GOTO L050; 

LOWER BOUND WEIGHT; 

L032: DISPLAY CONVERGENCE TO DESIGN VARIABLES; 
GOTO L050; 

L033: DISPLAY CONVERGENCE TO FEASIBLE VS ACTUAL WEIGHT; 
GOTO L050; 

L034: DISPLAY CONVERGENCE TO FEASIBLE WEIGHT; 
GOTO L050; 

L040: DISPLAY MAX. NUMBER OF ITERATIONS REACHED; 
C 
L050: SET APRT=YES; 

DO ANALYSIS; 
DO INSPECT; 
DO HIST; 
STOP; 
END; 

C ANALYSIS PROCEDURE; 
PROC OPTX; 
DO ANALYSIS; 
DO ACTSET; 
DO DERV; 
DO CONV; 
DO INSPECT; 
END OPTX; 

ENDATA 
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Table 8-6: The design/constraint file of the Dynamic Case 
Example. 

C234567890123456789012345678901234567890123456789012345678901234567890 
DESIGN 1 33 
DESIGN 1 34 
DESIGN 1 49 
DESIGN 1 50 
DESIGN 1 81 
DESIGN 1 82 
DESIGN 1 97 
DESIGN 1 98 
DESIGN 2 35 
DESIGN 2 36 
DESIGN 2 51 
DESIGN 2 52 
DESIGN 2 83 
DESIGN 2 84 
DESIGN 2 99 
DESIGN 2 100 
DESIGN 3 37 
DESIGN 3 38 

to 

DESIGN 3 47 
DESIGN 3 48 

to 

DESIGN 3 63 
DESIGN 3 64 

to 

DESIGN 4 95 
DESIGN 4 96 
DESIGN 4 101 
DESIGN 4 102 

to 

DESIGN 4 
DESIGN 4 112 
DESIGN 5 65 

------------------------------------ ------------ ---------- ------------ (continued) 
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---------------------------- 
DESIGN 5 66 

to 

DESIGN 5 79 
DESIGN 5 80 
DESIGN 6 113 
DESIGN 6 114 

to 

DESIGN 6 143 
DESIGN 6 144 
DESIGN 6 117 
GAUGE 0.600000 10.0000 33 
GAUGE 0.600000 10.0000 34 

to 

GAUGE 0.600000 10.0000 63 
GAUGE 0.600000 10.0000 64 
GAUGE 0.600000 10.0000 81 
GAUGE 0.600000 10.0000 82 

to 

GAUGE 0.600000 10.0000 
GAUGE 0.600000 10.0000 112 
GAUGE 0.600000 3.50000 65 
GAUGE 0.600000 3.50000 66 

to 

GAUGE 0.600000 3.50000 79 
GAUGE 0.600000 3.50000 80 
GAUGE 0.600000 2.50000 113 
GAUGE 0.600000 2.50000 114 

to 

GAUGE 0.600000 2.50000 143 
GAUGE 0.600000 2.50000 144 
NFREQ 1 2.50 
ACTNFREQ 1 
ENDATA 

(end of table) 
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Table 8-7: The modified design/ constraint file of the 
Dynamic Case Example. 

C234567890123456789012345678901234567890123456789012345678901234567890 
DESIGN 1 33 
DESIGN 1 34 
DESIGN 1 49 
DESIGN 1 50 
DESIGN 1 81 
DESIGN 1 82 
DESIGN 1 97 
DESIGN 1 98 
DESIGN 2 35 
DESIGN 2 36 
DESIGN 2 51 
DESIGN 2 52 
DESIGN 2 83 
DESIGN 2 84 
DESIGN 2 99 
DESIGN 2 100 
DESIGN 3 37 
DESIGN 3 38 
DESIGN 3 53 
DESIGN 3 54 
DESIGN 3 85 
DESIGN 3 86 
DESIGN 3 101 
DESIGN 3 102 
DESIGN 4 39 
DESIGN 4 40 
DESIGN 4 55 
DESIGN 4 56 
DESIGN 4 87 
DESIGN 4 88 
DESIGN 4 103 
DESIGN 4 104 
DESIGN 5 41 
DESIGN 5 42 
DESIGN 5 57 
DESIGN 5 58 
DESIGN 5 89 
DESIGN 5 90 
DESIGN 5 105 
DESIGN 5 106 
DESIGN 6 43 
DESIGN 6 44 
DESIGN 6 59 
DESIGN 6 60 

(continued) 
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------------ 
DESIGN 

----------- 
6 

------- 
91 

DESIGN 6 92 
DESIGN 6 107 
DESIGN 6 108 
DESIGN 7 45 
DESIGN 7 46 
DESIGN 7 61 
DESIGN 7 62 
DESIGN 7 93 
DESIGN 7 94 
DESIGN 7 109 
DESIGN 7 110 
DESIGN 8 47 
DESIGN 8 48 
DESIGN 8 63 
DESIGN 8 64 
DESIGN 8 95 
DESIGN 8 96 
DESIGN 8 ill 
DESIGN 8 112 
DESIGN 9 113 
DESIGN 9 114 

to 

DESIGN 9 143 
DESIGN 9 144 
DESIGN 10 65 
DESIGN 10 73 
DESIGN 11 66 
DESIGN 11 74 
DESIGN 12 67 
DESIGN 12 75 
DESIGN 13 68 
DESIGN 13 76 
DESIGN 14 69 
DESIGN 14 77 
DESIGN 15 70 
DESIGN 15 78 
DESIGN 16 71 
DESIGN 16 79 
DESIGN 17 72 
DESIGN 17 80 

(continue) 
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---------- 
GAUGE 

----------- 
0.600000 

------------ 
10.0000 

--------------------------- 
33 

GAUGE 0.600000 10.0000 34 

to 

GAUGE 0.600000 10.0000 63 
GAUGE 0.600000 10-0000 64 
GAUGE 0.600000 10-0000 81 
GAUGE 0.600000 10-0000 82 

to 

GAUGE 0.600000 10.0000 
GAUGE 0.600000 10-0000 112 
GAUGE 0.600000 3.50000 65 
GAUGE 0.600000 3.50000 66 

to 

GAUGE 0.600000 3.50000 79 
GAUGE 0.600000 3.50000 80 
GAUGE 0.600000 2.50000 113 
GAUGE 0.600000 2.50000 114 

to 

GAUGE 0.600000 2.50000 143 
GAUGE 0.600000 2.50000 144 
NFREQ 1 2.50 
ACTNFREO 1 
ENDATA 

(end of table) 
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Figure 8-1 The FE model of the Static Case Example. 
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Figure 8-2 The FE model of the "similar" static past 
case. 
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Figure 8-3 The FE model of the "similar" dynamic past 
case. 
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CHAPTER 9 

FURTHER DEVELOPMENT 

The research and development of an Expert System for 
structural optimization has been discussed in the previous 
chapters. Currently, the system prototype (ESSO) functions 
as an adviser for the user of structural optimization 
systems. It assists the user in constructing the 
optimization strategy, monitoring the optimization run, interpreting the optimization results, and in case of 
unsatisfactory results modifying the optimization set up. 
At this present stage ESSO can deal with static and dynamic 
problems and includes within the constraint set limits on 
stress, displacement, natural frequency, dynamic amplitude, 
and element gage. 

However, in order for the prototype to work more 
effectively in dealing with the design optimization of 
aircraft structures it is necessary to investigate the 
following aspects: 

1. Deepening the present knowledge. 
2. Extending the knowledge to include aeroelastic design. 
3. Extending the knowledge to include the design for 

manufacturing. 

In the following sections,, the above aspects and their 
implication for the ESSO are discussed in more detail. 

DEEPENING THE PRESENT KNOWLEDGE. 

Other than direct inputs from experts, relevant inputs 

research papers are an important sources of knowledge for 
the expert system for structural optimization. For example, 
research done by Kellerer [1992] gives a better 

understanding of the effect of design variable linking on 
the optimization of wing structures under static loading. 
This shows the effect of design variable definition for the 

wing region (spars, ribs, upper and lower panels), and the 
influence of the number of design variables in 

characterising the optimization problem. 

Brooker [1992] attempted to reduce vibration levels of 
helicopter structures through structural redesign utilising 

optimization techniques. Both STARS and NASTRAN solution 
200 were used in his research. This provides considerable 
insight into the use of optimization for dynamic modelling 

of structures. 
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Currently the expert system described here only deals 
with the isotropic materials. To be able to deal 
effectively with modern structures, the system should also posses the capability to work with composite structures. The system should be able to advise the user in the following aspects: 

1. Selection of suitable material types such as, carbon, kevlar, or glass fibres, for the parts to be designed. 
2. Combination of ply orientations in a laminate. 

It is unnecessary to include all possible ply orientations 
(from 0 to 90 degree), from practical point of view it is 
sufficient to consider [01, [901, and [45/-45] only. 

Much of the decision making in a design process is 
based on the functionality of the components, the type of 
forces applied to the structure (axial, shear, etc. ), and 
the environment in which the components operate. To deepen 
the structural optimization knowledge of the system, it is 
necessary to be more specific about the functionality of 
the structure. With regard to the aircraft structure, the 
expert system should classify the structures into wing, 
fuselage, horizontal stabilizer, fin, engine nacelle, 
undercarriage, etc. The decision on the linkage of design 
variables, material selection, advice on the type of finite 
elements used, depend on the functionality of the 
component. For example, in setting up the design variables, 
wing spars is not usually linked to the upper or lower 
panel; the shear element (CSHEAR in NASTRAN) is normally 
used to model the spar structure; to effectively carry the 
shear load, a [45/-45] laminate or a laminate with a high 
portion of plies in this orientation is normally used if 
composite material is preferred. In the upper wing panel, 
it is normally preferred to link the panel in one bay 
(between two ribs) to a single design variable; Al-7075 is 
appropriate if isotropic material is selected, or if 

composite material is preferred then a carbon laminate with 
majority of plies orientated to [0] is appropriate. A plate 
element is normally used for the finite element modelling 
and the user advised not to forget the compression buckling 

constraint. The kind of knowledge mentioned above is very 
much depended on the functionality of the part/component to 
be designed. 

Figure 9-1 shows a simplified diagram of an aircraft 
structural component with arrows indicating the flow of 
information. It is interesting to note that knowledge 

stored in the spar is not only appropriate for the wing but 

also for the fin and horizontal stabilizer. This suggests 
that there are a number of similarities between the design 

considerations for, and structural modelling of spars for 

wing, fin, or horizontal stabilizer. 
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9.2. DESIGN OPTIMIZATION FOR AEROELASTICITY. 

Aeroelasticity is concerned with those physical phenomena which involve significant mutual interaction 
among inertial, elastic and aerodynamic forces [Dowell et al. 1989] . This section is concerned only with structural 
optimization which includes flutter as a design 
requirement. Structural optimization with aeroelastic design requirements has been performed in the past and is 
reported in several reports [Souahi 1986; Kiusalaas 1972; 
Lansing et al. 1977; Wilkinson et al. 1976; Haftka 1973] . 

Flutter calculation is concerned with finding the 
critical flutter speed and involves [Rodden et al. 1979] : 

1. Modelling the structure with finite elements. 
2. Calculating the aerodynamic forces based on 

and the aerodynamic considerations. 
3. Performing a modal analysis which requires 

of the free-vibration eigenvalue problem. 
4. Performing a flutter analysis by solving the 

flutter equation. 

geometric 

the solution 

appropriate 

The task involve in flutter optimization is enormous. This 
is due to the fact that a complete description of the 
aeroelastic behaviour of the structure must be provided at 
each step of the optimization routine requiring the 
solution of a free-vibration eigenvalue problem, the 
interconnection of structural and aerodynamic grids, and 
the generation of unsteady air forces. The theory used in 
developing air forces depends on flight speed (subsonic, 
supersonic, or transonic) . The f lutter solution is defined 
in terms of complex eigenvalues and the corresponding 
complex eigenvectors. The details of the approach used to 
perform flutter optimization is outside the scope of this 
thesis and should be consulted in the relevant references 
some of them are already mentioned above. 

To optimize a structure with respect to strength and 
flutter requirements, it is common to obtain a design which 
is strength optimum followed by flutter optimization. The 

strength optimum design can be achieved by the fully 

stressing method. It is known that the fully stressing 
method does not always produce the least weight design. 
However it is unnecessary to use more advanced method to 

meet the strength requirement as at the end it is the 
flutter requirement which is more likely to be active. 

The flutter optimization phase can be performed by two 

approach. The first approach consists of two stages; the 

first stage involves a structural redesign to achieve the 

required flutter speed; the second stage minimized the 

weight by keeping the flutter speed constant. In the second 
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approach,, the weight is minimized with at the same time trying to meet the flutter speed requirement. 

The knowledge base required to assist the designer in 
optimizing for strength and flutter requirements should include the following guidelines: 

1. An indication that the system should optimize the struc- ture for strength requirements first (possibly using the fully stressed design method). 
2. For this strength optimization a large number of design 

variables can be used. 
3. Due to the enormous calculation required, a large number 

of design variables is prohibitive in flutter optimiza- tion. Hence the flutter optimization stage is divided 
into two stages. 

4. The first involves optimizing the structure with a rea- 
sonably small number of design variables. 

5. The second stage increase the number of design variables 
in the region where the elements are more effective 
(high constraint sensitivity). 

9.3. DESIGN FOR MANUFACTURING KNOWLEDGE. 

IMPLICATION OF MANUFACTURING TO DESIGN PROCESS. 

The manufacturing cost of an aircraft structure 
(airframe) is a significant factor in the success of the 
design. Thus it is necessary, during the design process, to 
consider the manufacturing implications of a design 
decision. The product should be designed so that it can be 
economically manufactured. This means that the designers 
should have information with respect to the manufacturing 
aspects. 

A designer has to ensure that his design is not only 
functionally good but also optimum from a production point 
of view. A good design is one in which the components are 
designed for the selected material and manufacturing 
processes to meet a specific functionality. Thus,, it is 

useless to have a structural design which is optimum (say, 
least weight) and meet all strength and stiffness 
constraints but too complicated and expensive to be 

manufactured. When a structural designer decides that a 

part should be made of composite instead of aluminium, or 

a part should be machined from solid instead of forging, 

the designer makes one of the most important decision in 

the whole design procedure by committing production to a 

particular manufacturing process. Such a decision should be 

made only after examining all possible manufacturing 

processes and the costs associated with it. 
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It is recognized that many designers do not posses the required manufacturing knowledge and rely on the input from 

production engineers when a manufacturing process decision has to be made. In an automated design process this gap should be bridged, and AI is potentially useful for this 
purpose. The manufacturing and production implications of the design can be relayed to the designer in the early stages of the design process through the use of AI techniques. Research on this subject has been performed by 
Saggu [1991] using the design of aircraft flap as a 
specific example. The rest of this section is devoted to 
the implications of design for manufacturing for the 
structural optimization knowledge base. 

9.3.2. DESIGN FOR MANUFACTURING IN EXPERT SYSTEM 
FOR STRUCTURAL OPTIMIZATION. 

In performing a structural design and moving that 
design into manufacturing stage, optimization is part of 
the design stage. Any optimization method is mathematical 
in nature. This suggests that providing the problem can be 
formulated in mathematical terms, it is probable that the 
optimization process will run happily and find the optimum 
(say, minimum weight) without taking into account the 

manufacturability of the design. 

It is, however, possible for part of the optimization 
task set up process to take into account manufacturing 
aspects in a limited way via minimum gauges on thickness. 
It is known, for example, that a milling process should not 
be applied to machine sheet plate below certain thickness 
due to problems of vibrations in the sheet. ESSO does not 
directly hold this kind of information in its knowledge 
base, hence it is the designers responsibility to specify 
the correct minimum thickness (associated with the intended 
machining process) for the gauge constraint. 

Design for manufacturing is directly associated with 
material selection, the machining, and assembly process and 
their associated costs. These aspects should always be 
taken into account during the design process. To include 
these aspects in the ESSO knowledge base requires an 
extension to the present base. To perform this extension, 
the scheme mentioned in (9.1) and illustrated in figure 9-1 
is still applicable because design for manufacturing is 

directly associated with the type of component being 

considered. 

Let us consider an upper wing panel. From a 
functionality point of view, there are two material types 

which are suitable, those are Al-7075 aluminium (high 

strength aluminium) and carbon fibre composite. The final 

selection between the two depends not only on which 
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material is superior, or which material produced at least 
weight, but also on other factors such as: 

- the material cost, 
- the manufacturing capability possessed in producing the design made of aluminium or composite, 
- the cost of producing the design made of aluminium or composite, 
- the capability and the cost associated with parts assem- bly. 

Clearly there is no point in designing the panel in 
composite, eventhough it produces a least weight structure, if the company does not have the production facility for 
manufacturing composite parts such as autoclave, tape 
laying, or composite material cutter. In this situation, 
the question arises as to whether it is cost effective to 
make new investments in composite production facilities. 

If aluminium is selected it is still necessary to 
decide which type of panel is to be used, conventional 
(riveted skin-stiffener) type or integral (integral skin- 
stiffener machined from block of aluminium) type. Selecting 
the integral type of panel requires heavy milling machine 
facilities, especially for large airplanes. When 
conventional panel type is selected there will be questions 
such as what kind of cross-sectional shape adopted for 
stiffeners. From a buckling point of view, the use of a 
stiffer stiffener (high EI) is better, but this might lead 
to a more complicated shape (such as top-hat or Y 
stiffeners) which is more difficult and expensive to 
produce. There is also question as to whether plate bending 
process is adequate or extrusion process is needed for 
manufacturing stiffeners. 

The discussion above suggests that design for 
manufacturing depends on the structural component being 
considered. As mentioned previously the scheme mentioned in 
(9.1) is appropriate to accommodate design for 

manufacturing. Each component can be treated as an object. 
The information relating to design for manufacturing 
associated with each component can be stored in the form of 
component objects. For example, with respect to 

manufacturing, an object could contain information relating 
to: 

- possible materialf either composite or aluminium, 

- possible machining process and gauges associated with 

each type of process, 
assembly process (bondingf riveting), 
costs associated with a manufacturing type, etc. 

In addition to the information associated with the 

manufacturing process, each object also contains 
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information related to the functionality of the component. 
In this respect, an object could contain: 

function of the component, e. g. ribs stabilize the panel 
and transfer air pressure on panels, webs carry shear 
loads, etc, 

- type of loading associated with the component, e. g. 
stiffeners mainly carry axial load, webs carry shear 
loads,, 

- possible material, e. g. AL-7075 aluminium for upper pa- 
nel, AL-2024 aluminium for lower panel, 

- if composite material, suggested laminate orientationsf 
e. g. [45/-45] for shear webs, 

- suggested finite element type, e. g. NASTRAN C-SHEAR for 
shear websf CQUAD4 for panels, 

- behavioral constraints required, e. g. buckling constraint 
for stiffener, von Misses strength for lower panel, etc. 

With this scheme, the optimization process would be 
performed only when the task associated with design for 
functionality and manufacturing is completed. 
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SUMMARY 

A research and development program focused on the 
creation of an Expert System for Structural Optimization has been carried out. The ideas and techniques presented in the preceding chapters have indicated the potential of using Expert System as an adviser for the user of working structural optimization systems. 

Three types of knowledge are identified as necessary 
components for a structural optimization knowledge base in 
order for it to work effectively: 

- knowledge relating to setting up the structural optimiza- 
tion based on logical deduction, and which is a-priori in 
nature, 

- knowledge based on past experience, 
- run-time and results interpretation knowledge. 

Associated with each type of knowledge, a knowledge base 
structure and a reasoning strategy have been developed. The 
ideas and techniques advanced in this thesis have been 
implemented in the development of a prototype system called 
ESSO (Expert System for Structural Optimization) . 

This Expert System uses the Finite Element Method, in 
the form of MSC NASTRAN, for the analysis stage to deal 
with various types of structure. The DRA/PSI STARS struc- 
tural optimization package is used for the optimization 
tool. Although the selection of a specific optimization 
(and Finite Element) package restricts the portability of 

the Expert System, it has validated the concept developed 
during the research programme. 

The prototype was written using C++ on a SUN SPARC-II 

computer. This has been extended with the development of a 
user-interf ace which is based on XView. A User's Manual had 
been prepared which contains a guidance on using ESSO and 
details of the prototype programming. The prototype system 
had been trialed successfully using static and dynamic 

optimization problem examples. 

For an Expert System for structural optimization to 

work effectively, it should have access to the optimization 
data (structural responses, constraint values, sensitivity 
data, objective function values, etc. ) during system run. 
This issue becomes important for an Expert System which is 

intended to work with proprietary optimization system 

packages because the optimization codes (computer programs) 

are usually not available (for outsider) . The direct 

application to a specific system requires an agreement 

which opens the way for the Expert System developer to have 



135 

access to the optimization package. Unfortunately, in the development of ESSO,, we do not have means to access the 
optimization data during a STARS session. This means that 
for interpreting the optimization trend or results ESSO 
requires the users to read STARS output and enter the data 
manually for ESSO which is not an ideal way for an Expert 
System to work. 

Research on Expert Systems for Structural Optimization 
is an on-going research and by no means complete. Further 
development is necessary and is anticipated. The author 
suggests that the "final" form of this Expert System should 
be an Expert System for aircraft structural design with 
structural optimization as part of the system. The Expert 
System should be extended to include the problems of 
aeroelasticity. The proposed system should also take into 
account the implication of manufacturing and production in 
structural design. 

In chapter nine, the direction of further prototype 
development as mentioned above is discussed in detail. It 
is suggested that for the system to be able to deal 
effectively with aircraft structural design problems, it is 
necessary to be more specific with the functionality of the 
structures. This requires the system to classify the 
aircraft structure into its components such as wing, 
fuselage, fin, and treats these components as objects. 
Design for manufacturing is directly associated with the 
type of component being considered and its functionality, 
hence the classification of structure is considered to be 
the proper way to represent the knowledge. 
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CHAPTER 1-. 

BASICS OF OPEN LOOK GRAPHICAL USER INTERFACE 

The user interface for the Expert System for 
Structural Optimization (ESSO) is implemented using the 
XView (XWindow-System-Based Visual/Integrated Environment 
for Workstations) toolkit running under the X Window 
System. XView provides a set of prebuilt, user-interface 
objects such as canvases, scrollbars, menus and control 
panels. XView is written in the C language. The appearance 
and functionality of these objects follow the OPEN LOOK 
Graphical User Interface (GUI) specification. Basic 
operations of the OPEN LOOK GUI is presented in this 
chapter. Only subjects which are directly related to the 
Expert System for Structural Optimization (ESSO) are 
presented. 

1.1. OVERVIEW OF X WINDOW SYSTEM. 

X controls a bit-mapped display in which every pixel 
(dot on the screen) is individually controllable. This 
allows drawing of pictures in addition to text. Like other 
windowing systems, X divides the screen into multiple input 
and output areas called windows. Each window can act as an 
independent virtual terminal. Using a terminal emulator, 
not only can windows run ordinary text-based applications 
but also applications designed to take advantage of the 
graphic power of the bitmapped display. 

Similar to other window systems, the user provides 
input through a pointer, usually a mouse but could just as 
well be a trackball or tablet, and a keyboard. The pointer 
allows the user to point at 

' 
certain graphics on the screen 

and use the buttons on the mouse to control a program 
without using the keyboard. It is also used to direct the 
input focus of the keyboard from window to window with only 
one application at a time able to receive keyboard input. 

Each application in X need not consist of only a 
single window. Any part of an application can have its own 
separate window. Such child windows are only visible within 
the confines of their parent window. An application can 
also creates multiple frames, each of which has its own 
window (or windows). 

xView provides a set of windows that inclýide: 

Canvases on which programs can draw. 
Text subwindows with built-in editing capabilities. 
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Panels containing items such as buttons, choice items, 
and sliders. 
TTY subwindows that emulate character-based terminals. 

These windows are arranged as subwindows within frames, 
which are themselves windows. Frames can be transitory or 
permanent. Transient interactions with the user can also 
take place in menus which can pop-up anywhere on the 
screen. 

As mentioned before, the XView implements the OPEN 
LOOK GUI. The OPEN LOOK can be implemented on any operating 
system, windowing system or graphic display. It can be 
mapped easily into the X Window System. Figure 1-1 shows a 
sample of OPEN LOOK workspace. 

Draw 

( -Re-c t-a -ng-l-e ) (ý 
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Figure 1-1 A Sample of OPEN LOOK workspace 
(from Heller [1990]) 
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1.2. MOUSE. 

The operation on a window can be activated through a 
mouse. The mouse is primarily used to move the cursor 
(symbolized usually as an arrow or a solid box) around the 

windows. The mouse has three buttons (see Figure 1-2) which 
in XView their actions are defined as: 

- The Left Mouse Button (also called select button) which 
is normally used to select or activate an operation asso- 
ciated with a panel button, 

- the Middle Mouse Button (also called adjust button) which 
can be set to activate certain operations depending on 
the application, and 

- the Right Mouse Button (also called menu button) which is 
normally used to display menu from which a selection is 
made. 

The basic terminologies which are related to mouse opera- 
tion are: 

- Click, to quickly press and release the mouse button. 

- Double-click, to click the mouse button twice in rapid 
succession. 

- Drag, to hold down the mouse button while moving the 
mouse. 

- Point, to move the mouse until the mouse pointer on the 
screen rests on the item of choice. 

SELE, 

Figure 1-2 Three-button mouse, 
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1. FRAmE. 

A frame is a container of other windows. It manages 
the geometry and placement of subwindows that do not 
overlap and are fixed within the boundary of the frame. In 
OPEN LOOK, the subwindows in a frame do not overlap one 
another. However frames might overlap. Subwindow types 
include canvases, text subwindows, panels, and scrollbars. 
These subwindow cannot exist without a parent frame to 
manage them. Figure 1-3 shows an example of a screen that 
displays several frames, each one containing at least one 
subwindow. 

Figure 1-4 shows a typical frame and its elements. 
- Title bar is part at the top of the frame and usually 
contains the frame label. The title, Edit No file, suggests 
that this is a frame which contain a Text subwindow. 

- ]Resize corner is used to change the size of a frame. This 
is performed by pointing the cursor to the resize corner 
push the select button and drag the frame corner to its 
required new size. 

- The close button is used to close (iconize) the frame 
(and its subwindows). 

- The control panel (if available) contains one or more 
panel items. In our example it has 'Button' button and 
'Menu Button' menu. A menu button is recognized by the 
small triangle near it. To activate a panel button, place 
the cursor on top of the button and select it by clicking 
the select (left) button of the mouse. 
To activate the menu button, point to the menu, push the 
mouse's menu (right) button, drag the mouse to the required 
menu-item (a f ile, a value, or others) and release the mou- 
se's button to select. 

- The vertical scrollbar is used to scroll the window up 
and down. If required, the horizontal scrollbar can also be 
created. 

1.4. PANELS. 

A panel (or control area) is an unbordered region of 
a window where controls such as buttons and settings are 
displayed. The panel shown in Figure 1-4 represents the 
typical positioning of the control area, that is under the 
title bar and above the subwindow. Figure 1-5 shows 
examples of panel items from the OPEN LOOK GUI. 
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Figure 1-3 A screen with several frames. 
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1.5. SUBWINDOWS. 

Subwindows differ from frames in several basic ways. 
They never exist independently; they are always owned and 
maintained by a frame or another window, and they may not 
themseleves own frames. While frames can be moved freely 
around the screen, subwindows are constrained to f it within 
the borders of the frame to which they belong. Subwindows 
also tiled, they do not overlap each other within their 
frame. 

1.5.1. Canvas. 

The canvas is the most basic type of subwindow. It 
provides a drawing surface. Figure 1-6 shows a frame with 
a canvas subwindow in it. A control menu can be invoked by 
pushing mouse's menu button anywhere inside the subwindow. 

CANTILEVER-TRUSS 

2500 

1 

6 

Task: Optimize the structure shown. 

A truss structure with 6 nodes and 10 mem-, 
bers with a static load P at node G. 

The structure was modelled using NASTRAN, 

truss members were modelled with CROD. 

The tensile strength is 400 MP@, compres- 

sive strength is 250 MPa. E= 69,000 M Pa, 

x 

and Poisson's ratio is 0.3. 

The downward displacement at node 6 shoul 
be less than 50 mm, 
P= 10,000 N. 
At optimum, the size of members 1,2,3A mu 

be the same, and members 5,6,7, B, 9,10 also 

must haye the same size (could be different 

from members 1,2,3,, 1), 

Figure 1-6 Canvas subwindow. 

14 6 

2500 2500 
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Text Subwindow. 

Another basic window type is a text subwindow. It 
provides basic text editing capabilities. Figure 1-7 shows 
a frame with a text subwindow in it. Similar to a canvas 
subwindow, a control menu can be invoked by pushing mouse's 
menu button anywhere inside the subwindow. 

START 
COMMAND DATA FSD 
c 

SET MXIT=8; 
SET APRT=YES; 
SET ACTG=YES; 
DO NSIN; 
DO OPTIN; 

C 
DO NASTRAN; 
DO ACTSET; 
DO INSPECT; 
SET APRT=NO; 

C FULLY STRESSING ITERATIONS 
L010: DO ITER; 

IF(NOIT. EQ. 4) SUSPEND; 
DO FULLY STRESSING; 
IF(ENDT. EQ. YES) COTO L032; 
IF(ENDF. EQ. YES) COTO L033; 
IF(ENDP. EQ. YES) COTO L034; 
IF(ENDI. EQ. YES) COTO L040; 
DO NASTRAN; 
DO ACTSET; 
DO INSPECT; 
COTO L010; 

L031 DISPLAY CONVERGENCE TO THE LOWER BOUND WEIGHT; 
COTO L050; 

L032: DISPLAY CONVERGENCE TO DESIGN VARIABLES, 
COTO L050; 

L033: DISPLAY CONVERGENCE TO FEASIBLE VS ACTUAL WEIGHT; 
GOTO L050; 

L034: DISPLAY CONVERGENCE TO FEASIBLE WEIGHT; 
GOTO L050; 

L040: DISPLAY MAX. NUMBER OF ITERATIONS REACHED; 
C 
L050: SET APRT=YES; 

DO NASTRAN; 
DO INSPECT; 
DO HIST; 
STOP; 
END; 

ENDATA 

Figure 1-7 Text subwindow. 



1.5.3. TTY Subwindow. 

The TTY (or terminal emulator) 
standard terminal. The ESSO uses 
Basically it is a TTY subwindow that 
text subwindow. It may also contain a 
shows a term subwindow with a control 
a text field and a button. 

10 

subwindow emulates a 
the term subwindow. 
can be edited like a 

scrollbar. Figure 1-8 
panel which contains 

Figure 1-8 Term subwindow. 



11 

CHAPTER 2: 

ESSO: ITS ENVIRONMENT AND RUN PROCEDURE 

ESSO WORKSPACE. 

ESSO workspace is shown in Figure 2-1. It consists of 
a base frame with Expert System for Structural Optimiza- 
tion title written on the title bar. Underneath the title 
bar is a control panel with several buttons. The subwindow 
on the upper left under the control panel is a term 
subwindow which emulates the terminal. The rest of 
workspace on the right side and underneath the term 
subwindow is provided for subframes which are activated by 
the relevant buttons in the control panel. 

Figure 2-2 shows an example of a subframe on the right 
side of the term subwindow which contains a canvas and a 
text subwindow. This subframe is dedicated for presenting 
the examples. Figure 2-2 shows "Example 11, as indicated by 
the subframe title. 

Figure 2-3 shows an example of a subframe underneath 
the term subwindow. This subframe contains a text editor (a 
text subwindow) . The user can use the text editor to browse 
the information and data involved in the system's run. The 
editor also can be used to edit and save the file. 

2.2. ESSO PANEL FUNCTIONALITY. 

The control panel consists of several panel buttons. 
The action activated by each button is presented here. 

2.2.1. Quit Button. 

As the name implies this button is used to quit the 
ESSO application. To do this, point the cursor on top of 
this button and select. 

2.2.2. MSC/XL Button. 

MSC/XL is a CAD package from the Macneal-Schwendler 
Corporation which is built specially for NASTRAN pre/post- 
processor. To call MSC/XL, select the MSC/XL button. In 
ESSO, MSC/XL is used to visualize the FE model of similar 
past cases. For drawing the structural geometry and 
developing the FE model, MSC/XL should be invoked from the 
system's command/shell window. 
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Figure 2-1 ESSO Workspace. 
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Figure 2-3 ESSO with text editor active. 
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2.2.3. STARS Button. 

STARS button is used to 
STARS, developed by DRA/PSI. 
the cursor on this button and 
STARS optimization run in the 

run the optimization routine, 
This is performed by pointing 

select. Figure 2-4 shows the 
term subwindow. 

2.2.4. Run ES Menu Button. 

This Run ES Menu is invoked by pointing the cursor to 
this button, pushing the mouse's menu button, drag to the 
application required and releasing the menu button. There 
are four applications which can be activated, Set-up, Run- 
time, Result, and Modify. The task of each is as follow: 

Set-up is for setting up the optimization run, 
Run-time is for monitoring the optimization run, 
Result is for interpreting the optimization result, and 
Modify is for modifying the optimization set up based on 

actions proposed by Run-time and Result. 

Figure 2-5 shows the term subwindow with Set-up active. 

2.2.5. EditFile Menu Button. 

As the name implies, this button's task is to activate 
the text-editor. When activatedf the menu shows the list of 
files. Drag the cursor to the file required and release the 
button. Figure 2-3 shows ESSO with the text editor active. 
To invoke editor functions (such as find and replace or 
saving file) push the mouse's menu button inside the text 
subwindow, drag the cursor, and release at the required 
operation. 

2.2.6. Example Menu Button. 

This button is used to invoke the examples provided 
with ESSO. Figure 2-2 shows "Example 1". There are two 

subwindows, the canvas (upper subwindow) shows the design 

problem and the structure being considered. The text 

subwindow (lower subwindow) contains the appropriate 
response for solving the design problem. A vertical 
scrollbar for going back and forth is provided in the text 

subwindow. 

2.2.7. Proposed-case Menu Button. 

In ESSO, one way of setting up an optimization is by 

recalling similar past cases. If similar past cases (to the 

current design problem) exist, these cases can be accessed 
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through the Proposed-case menu button. This menu button 
contains the proposed cases in descending order. The 
FE model of the past cases can be seen through MSC/XL by 
following the instructions given in one of the subwindows 
which appears when any proposed case is invoked. Figure 2-6 
shows a proposed case. The FE model is also shown through 
MSC/XL. 

2.2-8. Explain_reason Menu Button. 

This button is invoked if 
explanation or reason for any 
associated with optimization set up, 

2.2.9. ReadMe_first Button. 

the user requires an 
action/decision/advice 
run-time, and results. 

When invoked, a file which contains information 
relating to the requirements and procedure for running ESSO 
is open. It is very important that ESSO users read the 
information in this file carefully. 

2.3. RUNNING ESSO. 

ESSO needs a graphic terminal to run. ESSO workspace 
can be invoked by typing esso followed by enter in the 
shelltool or cmdtool window. The ESSO workspace (see figure 
2-1) will appear. It is important to make sure beforehand 
that all files required by ESSO are in the same directory 
(directory where ESSO is invoked) . It is users responsibi- 
lity to prepare the FE model of the structure. This should 
be in NASTRAN format without executive control cards. The 
FE model should be stored in a file called essonsin. dat. 

The typical sequence of running ESSO would be: 

Setting up the optimization by running Set-up applica- 
tion in Run ES menu. This will produce set-up files 
(driver files) required by optimization routine 
(STARS). 

2. Run the optimization routine (STARS) by selecting STARS 

button. Enter esso when STARS asks for userid and enter 

run at the prompt. 

3. When STARS stops, exit from STARS by entering exit at 
the prompt. Run the Run-time application from RUN ES 

menu. This predicts the possibility of an optimiza- 
tion run converging. If convergence is in sight go to 

step 4. If the optimization is not predicted to be 

converging the system will search for explanations and 
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propose actions to follow. To implement these actions, 
go to step 6. 

4. Resume the STARS run. This is done by selecting the 
STARS button, enter esso as userid, and enter resume at 
the prompt. 

5. When STARS stops, run the Result application from RUN 
ES menu. This application interprets the optimization 
result. If the result is satisfactory the ESSO session 
stops, otherwise the system will search for explana- 
tions and proposes actions to follow. To implement 
these actions, go to step 6. 

6. Run the modify application from RUN ES menu. This 
application will modify the optimization set up based 
on the actions proposed in step 3 or 4. 

Go to step 2. 

For first time users, the best way to become familiar 
with ESSO is by running the examples given in Example menu. 
Call the example and at the same time run the Run ES. Run 
the case in Example by supplying the information required 
by applications in Run Es according to the response given 
in the example. 

To exploit. MSC/XL from inside ESSO for viewing the 

structural model of proposed past cases (or to do other 
tasks) the users have to do the following: 

- Select the MSC/XL button after ESSO workspace appears on 
the screen. This action has to be done before the users 
run other ESSO applications. 

- Iconize the MSC/XL workspace into an icon. 

- At this stage the users can run ESSO applications as nor- 
mal. 

- When required the users can invoke MSC/XL by opening the 
MSC/XL icon. When the MSC/XL shows a blank window the 

users have to restore the MSC/XL window. This is done by 

pressing the menu button on the MSC/XL title bar, drag to 

the "restore" option and release the button. 

However, it is better to run MSC/XL from outside ESSO. To 
do this, open a conunand-tool or shell-tool window and 

make esso sub-directory as the active directory. Enter 

x13a at the prompt. 
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CHAPTER 3: 

EDITING ESSO KNOWLEDGE BASE 

For an Expert System to be able to work effectively, 
it is important that its knowledge can be easily modified. 
New knowledge needs to be added to the existing knowledge 
base. It is also necessary to modify the contents of the 
knowledge base when the current knowledge is no longer 
relevant. Another important aspect of any knowledge base 
system is explanation. when required, the system should be 
able to give its reasoning for any decision taken. This 
chapter explains the way the ESSO knowledge bases are coded 
in C++ language and how to edit or modify them. For any 
modification in the knowledge base, the associated 
explanation also needs modification, and this is also 
discussed in this chapter. 

ESSO KNOWLEDGE BASE. 

There are four modules in ESSO which contain the 
knowledge bases and reasoners namely, the memory module, 
the conventional module, the run-time module, and the 
result interpretation module. The task of the memory and 
conventional modules are for setting up the optimization. 
The run-time module monitors the optimization run. The 

optimization results will be interpreted by the result 
interpretation module. 

The knowledge base of the run-time and result 
interpretation modules were constructed using procedural 
rules,, IF-THEN rules. The knowledge base of the 

conventional module combines' the domain/subject knowledge 

with IF-THEN rules. This domain knowledge contains the 
domain properties while the rules reason about them. The 

approach used in the memory module is based on case based 

reasoning. Similarity rules were set up to find similar 

cases among the past cases recorded in the memory module. 

The domain knowledge of the conventional module was 

structured according to object oriented methodologies. Each 

optimization method is treated as an object and stored in 

a file. This represents the optimization method 

capabilities in handling design problems. 

In the memory module, the domain knowledge contains 

past experiences in dealing with design problems. Each 

design experience is stored as a record. Each record, which 

represents a design case, contains the design problem and 
the set up of the optimization strategy for solving the 
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design problem. Whether cases can be regarded as similar 
depend on the value of certainty factors of the cases after 
similarity rules are applied. 

3.2. THE CONVENTIONAL KNOWLEDGE BASE. 

The knowledge base of the conventional module combines 
both object oriented schemes and production rules. The 
object oriented scheme represents domain properties while 
rules reason about them. A simple way to show this relation 
is by writing production rules which send messages to 
objects and test the response in their premises. For 
example, 

Rule : 
IF ( fsd. analysis testo = true and 

( fsd. constraint testo = true 
THEN ( fsd. to-consider = true ) (3-1) 

The rule tests the object fsd (fully stressed design) if it 
can do both the analysis and constraints. It is the object 
fsd itself which does the analysis test and constraint-test 
operations. The object will see i7f it can do analysis and 
constraints requirements of current design problem. If the 
rule premises are satisfied, then the fsd method will be 
considered for subsequent tests. 

The problem with the above rule is that it is written 
in a procedural way. This type of programming leads to 
difficulties in writing the inference engine and the 
knowledge base as two separate modules. In an Expert System 

program, the user/programmer should be able to modify the 

rules (knowledge base) without interfering with the 
inference engine. A better way to code the above rule is, 

IF analysis_test = true and 
constraint test = true 

THEN ( method_to_consider = true (3-2) 

The premises variables (analysis test and constraint_test) 
have to be instantiated first. The instantiation is 

performed in an assignment/instantiation routine which 

sends enquiries to the appropriate object, in this case 
fsd, about its capabilities in handling analysis and 

constraints required. Functions analysis_test and 

constraint test in the object fsd will provide the answers 
to these enquiries. If the conditions of the rule is 

satisfied then the conclusion method_to_consider is 

instantiated to true. For certain information, instead of 

asking questions to various objects, this assignment 

routine might ask the users to provide the answers. 



23 

The above illustration leads to the discussion about the domain/subject knowledge (written in an object oriented 
scheme) and production rules in the conventional module and 
their editing. 

The Domain/Subject Knowledge. 

The domain knowledge contains the information about 
objects capabilities. The objects in this case are the 
optimization methods. Object oriented methodologies are 
used to represents this domain knowledge. For this purpose, 
two classes are defined,, those are class Procedure and 
class METHOD. Procedure is a base class with METHOD as its 
child class. 

The task of the class Procedure is to deal with 
matters relating to optimization algorithms. It contains 
parameters which define the capabilities and properties of 
optimization algorithms. This class also contains 
procedures for interrogating the available algorithms with 
regard to their capabilities in handling a current design 
problem. Object procedure is created from this class. The 
class Procedure is defined as follows (written in C++ 
terminology, 

class Procedure 
public : 

/* the parameters below refer to algorithm capabilities 
in dealing with */ 
max number of load case 

int load case, 
lagrange multiplier. 

lagrange; 
number of analysis types, number of constraint types. 

int analysis num, constraint num; 
ype, number of element type number of-convergence t- 

available. 
int convergence 

- 
num, elem avail-num; 

// combine analysis, combine constraint. 
int combine 

- 
analysis, combine_constraint; 

// stress constraint; 
int stress constraint; 
// an algorithm might need stress constraint (e. g. FSD). 
int need stress; 
// analysis types 
char analysis [10][40], 
// constraint types 

constraint [101 [40], 

convergence criteria types 
convergence [101 [40], 

element (FE) types 
elem-avail [101 [40]; 
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/* method currently available 
// number of method 
int num of method; 
// method -name 
char method name[5][20]; 

// procedure to invoke available methods. 
void case_method (void); 

/* procedures below are to test whether an algorithm can 
handle current design requirement with respect to fol- 
lowing aspects 
analysis 

int analysis - checking (void) 
// constraint 
int constraint checking(void); 

load case 
int loadcase checking (void) 
// element. (FE) types 
int element checking(void); 

) procedure; // object procedure is defined. 

class METHOD : public Procedure 
public : 

// method name 
char name[10]; 
// procedure for reading the file 
void Dbase-read(char f[101); 
method[5]; // five objects are created. 

The class METHOD is the child of the class Procedure. 
During program run several object are created where each 
object represents an algorithm. The name of the available 
algorithms are stored in a file called method. dat. The data 

relating to an algorithm is read from a file. For example, 
data for the fsd algorithm is stored in a file called 
fsd. dat. There are five algorithms available in ESSO. 

3.2.2. The IF-THEN rules. 

The IF-THEN rules are used for reasoning. The 

coding of these rules in C++ is implemented using switch - 
case operation as follows, 

swi t ch (sn) f 

// 1 part: 
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case 
if S=l; 
break; 

j 
case 2: 

if (. S=J; 
break; 

I 
case 3: 

if (. .... S=l; 
break; 

I 

case i: 
if ( ..... break; 

j 

case n: 
if ( ..... break; 

I 

I 

// see if the then part should be invoked, i. e s=1 
if (s! =l) 

goto ... 

// invoke the then part 

switch (sn) f 

// then part 
case 1: 

instantiateo; 
break; 

case 2: 

instantiateo; 
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break; 
j 

case i: 

instantiateo; 
break; 

case n: f 

instantiateo; 
break; 

j 

I 

Which rule (referred to by rule number) to be considered 
depends on the value of sn. The number after case is the 
rule number, from 1 to n. In the 'if part', if rule 
premises (within parentheses) are satisfied, then the value 
of s is instantiated to 1. In that case the 'then part' of 
that rule (within parentheses) will be fired. The function 
instantiateo is part of the inferencing mechanism and 
users should not worry about this. 

3.2.3. Editing the Knowledge Base. 

(1). The Domain Knowledge. 

The part of the domain knowledge which might need 
modification (editing) is the files which contain the data 

referring to the algorithm capabilities. The data for each 
file is written in a standard sequence as follows, 

Parameters: Explanation: 

analysis num; Number of analysis. 
analysisTil; Types of analysis (array). 

combine_analysis; Capability in handling analysis com- 
bination. 

constraint-num; Number of constraints. 
constraint[i]; Type of constraints (array). 

combine_constraint; Capability in handling constraint 
combination. 
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stress-constraint; 

need_stress; 

convergence num; 
convergence 
load case; 
lagrange; 

elem 
- 

avail-num; 
elem-avail[i]; 

Capability in handling stress cons- 
traint. 
If an algorithm needs stress cons- 
traint. 
Number of convergence criteria. 
Type of convergent criteria (array). 
Number of load case. 
Capability to calculate lagrange 
multiplier. 
Number of element types. 
Element names (array). 

For example, the capabilities of the optimality criterion 
algorithm is coded in opc. dat as follows, 

3 
static 
normal modes 
buckling 
0 
4 
stress 
displacement 
buckling 
natural-frequency 
0 
0 
0 
3 
ENDP 
ENDF 
ENDT 
20 
1 

7 
CQUAD4 
CTRIA3 
CSHEAR 
CBEAM 
CBAR 
CROD 
CONROD 

number of analysis capability 

> not suited to analysis combination 
> number of constraints capability 

> not suited to constraint combination 
> can not handle stress constraint 
> does not need stress constraint 

> number 
> able to 

plier 
> number 

The IF-THEN rules. 

of load cases capability 
calculate lagrange multi- 

of available element types 

The rules are stored in a file called conv-rule. dat 

which is coded as follows, 

#ifdef RULE 

// if-then statements 
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// if part: 
case 1: 

if ( ..... break; 
j 
case 2: 

if ( ..... break; 
j 
case 3: 

if ( ..... break; 
I 

case 
if 
break; 

j 

case n: 
if ( ..... break; 

j 

I 

) s=1; 

) s=1; 

) s=1; 

) s=1; 

) s=1; 

// see if the then part should be invoked, i. e s=1 
if (S! =l) 

goto ... j 

// invoke the then part 

switch (sn) f 
// then part 
case 1: 

instantiateo; 
break; 

case 2: 

instantiateo; 
break; 
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case i: 

instantiateo; 
break; 

case n: 

instantiateo; 
break; 

I 

#endif 

#ifdef VARLIST 

// list of variables 
strcpy(varlt[l], 
strcpy (varl t [2], 

st rcpy (va rl t [k 

// list of variables in rule premises 
strcpy(clvarlt[l], 
strcpy (cl varl t [2], 
strcpy (clvarl t [111, " --- ") ; 

strcpy(clvarlt[2111 FF ... FF) 
"t rcpy (cl va rl t [22 ], " --- ") ; 
" trcpy (cl va rl t [231, " --- ") ; 

11rule-1 

11rule-2 

11rule-n 

#endif 
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#ifdef CLASS PAR 

#endif 

#ifdef CHECK INST 

void apriori-reasoning:: check instantiation (METHOD object) 

while ( (strcmp(v, varlt[i]) ! =O) && i<=30 ) i++; 
if (instlt[i]! =l) 

instlt[i]=l; 

switch (i) 

case 1: 
............ break; 

case 2: 

............ break; 

case m: 
............ break; 

#endif 

This file consists of four sections in which each 

section is coded between #ifdef and #endif statements. 
Those sections are, 

rules (between #ifdef RULE and #endif) 
list of variables (between #ifdef VARLIST and #endif) 

variable definition (between #ifdef CLASS PAR and #endif) 

instantiation (between #ifdef CHECK INST and #endif). 

An editing process normally is started with modifying 
the rule premise and/or conclusion, adding new rules, or 
deleting any existing rules. The rule premise might be a 
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single premise or multiple premises with logical AND or OR. 
All new variables in rule premises should be written in the 
list of variables and list of variables in rule premise. 
Those new variables should be defined in the variable 
definition section. How a variable gets its value should be 
specified in the instantiation section. In carrying out the 
editing process, familiarity with C++ will help users. The 
users are advised to study the convrule. dat to understand 
the relation between those four sections. 

3.2.4. Explanation Facility. 

Associated with each rule (IF-THEN statement) is an 
explanation-statement of that rule. This explanation- 
statement describe the contents of the rule using easy to 
understand sentences. When a rule is fired, the associated 
statement is recalled. The coding of the explanation- 
statement is as follow: 

11case 1: 
strcpy (texrule [1 text [0], 
strcpy (texrule [i text [1 

strcpy(texrule[l]. text[q-2], " 
strcpy(texrule[ll. text[q-11,11 
t exrul e [1 ]. t extn um=q; 

11case i: 
strcpy(texrule[i]. text [0], 
strcpy (texrule [i]. text [11 

strcp_y (texrule[i] text [r-2], 
strcp_v (texrule [i] text [r-1], 
texrule[i]. textnum=r; 

11case n: 
strcpy(texrule[n]. text[Ol, " 

strcpy(texrule[nl. text[ll, " 
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strcp_y(texrule[n]. text [s-2], 
strcpy(texrule[n]. text [s-1], 
t exrul e [n] .t extnum=s; 

The number of explanation statements is the same as the 
number of rules which is n. The parameters q, r, and s are the number of "sentences" in each of statement. The 
explanation-statements for the conventional module are 
stored in the file convexpl. dat. The user should learn this 
file and the associated knowledge base file convrule. dat. 

3.3. THE MEMORY KNOWLEDGE BASE. 

The knowledge base of the memory module also consists 
of the domain knowledge and the IF-THEN rules. The domain 
knowledge is the system's memory of its past experience 
which can be regarded as a file containing a collection of 
knowledge (past experience) records. Each record contains 
a (past) design case and its solution, held in the form of 
the similarity parameters (for similarity parameters and 
similarity rules please see chapter 5 in the main thesis) 
with their associated values and the successful 
optimization strategy for that particular case. The IF-THEN 
rules are the similarity rules and are used to reason in 
capturing the design case record which is similar to the 
current design problem. 

The Domain Knowledge. 

Each record in the knowledge base contains the 
following information (stored in fields), 

- number of analysis, 
- analysis types, 
- number of constraints, 
- constraint types, 
- number of nodes, 
- number of elements, 
- element types, 
- number of design variables, 
- solution which consists of algorithm, 

and number of iterations, 
comments, comments on the optimization 
filename, the filename where the FE data 

Thus a typical record might be, 

number of analysis: 
analysis types: 

process, 
are stored. 

1; 

statics; 
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- number of constraints: 2; 
- constraints types: stress, displacement; 
- number of nodes: 5; 
- number of elements: 6; 
- element types: rod; 
- number of design variables: 6; 
- solution: pseudo-newton algorithm, n number of 

iterations 
- comments: a straight forward optimization run 
- filename: framnsin. dat; 

Such record can be written in C++ using Structure. The 
DESIGN 

- 
CASE structure below is used to represent the 

system's memory. 

struct DESIGN CASE 
int index; 
int num analysis; 
int num constraint; 
int element type num; 
int element num; 
int node num; 
int design var; 
int algor iteration; 
int fsd iEeration; 
int us(4-d rule[20]; 
int num ? ired rule; - 
float Used ci-[201; 
float cf value; 
char analysis[7][40]; 
char constraint[7][40]; 
char element type [ 7] [4 0] 
char algor name[10]; 
char filename[40]; 
char comment [101 [801; 
struct TEXTRULE explain_rule[25]; 

Records of the system" s past experience can be seen in 
memory. dat. Some members of the above data structure are 
used for reasoning process only and do not appear in the 
data file. The TEXTRULE is a structure which is used to 

store the explanation-statements and these statements are 
stored in memrule. dat together with the similarity rules. 

3.3.2. 

The 
format: 

The Similarity rules. 

similarity rules are written in the following 
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// rule 1 
if && 

............. && 

............. 
................ 
rule[l]=TRUE; 
cf[lj=x. xx; 

j 
// text rule 1 
strcpy(textrule[l]. text[O]., " .... strcpy(textrule[l]. text[l], " .... 

strcpy(textrule[l]. text [q-2], 
strcpy(textrule[l]. text[q-1]., "cf=x. xx"); 
textrule[l]. textnum=q; 

// rule i 
if ( ............. 

............. 

............. 
................ 
rule[i]=TRUE; 
cf[i]=x. xx; 

text rule i 
strcpy(textrule[i]. text[O], " 
strcpy(textrule[i]. text[l],, " 

strcp_y (textrule [i] text [r-21, 
strcp_y(textrule[i I text [r-11, "cf=x. xx"); 
textrule [i] . textnum=r; 
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// rule n 
if ( ............. 

............. 

............. 

................ rule[n]=TRUE; 
cf[nl=x. xx; 

j 
// text rule n 
strcpy(textrule[n]. text[O],, " 
strcpy(textrule[n]. text[l], " 

strcpy(textrule[nj. text[s-2j, " .... 11); 
strcpy (textrule [n]. text [s-1], "cf=x. xx") 
textrule [n] . textnum=s; 

A certainty factor (cf) with a value of x. xx is attached to 
each similarity rule. Although the rules above show AND 
(&&) relationships, the rule premises could also include OR 
relationships. As shown above, the explanation-statements 
are written below associated rules. The similarity rules 
are stored in the file memrule. dat. 

3.3.3. Editing The Knowledge Base. 

(1). The Domain Knowledqe. 

Editing the domain knowledge (past cases) is not 
normally required. The only situation where it is necessary 
to edit the domain knowledge is when the similarity 
parameters of the cases need modification. However this 

requires some modification in the code of the memory module 
(file memor_y. cxx) The domain knowledge is stored in the 
file memor_y. dat. 

Each past case also includes the FE model which is 

written in NASTRAN convention. Instead of a complete FE 

data, each case only stores the name of the file where the 

data is stored. All FE files are placed in the directory 

FE dat which is the child directory of ESSO working 
directory. 
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The similarity rules. 

The similarity rules are stored in memrule. dat. 
Although not normally recommendable the user can change the 
contents of the rules and certainty factor values. 

3.4. THE KNOWLEDGE BASE OF THE RUN-TIME AND RESULT 
INTERPRETATION MODULES. 

Both the run-time and result interpretation modules 
use procedural rules as the knowledge base. The structure 
of the rules (IF-THEN rules) are similar to the rules in 
the conventional module. Editing process also carried out 
in a similar way. The knowledge base of the run-time 
interpretation module is stored in runtrule. dat while the 
explanation-statements are in runtexpl. dat. The knowledge 
base of the result interpretation module is stored in 
res1rule. dat, while the explanation statements are in 
reslexpl. dat. 



37 

CHAPTER 4: 

THE COMPUTER PROGRAMS OF ESSO 

This prototype is called ESSO (Expert System for 
Structural Optimization) and it's task to give guidance to 
the designers who wish to employ optimization. The task of 
ESSO is to guide the users in setting up an optimization, 
monitoring the optimization run, and interpreting the 
results or any failure associated with an optimization run. 
For the trial implementation, the STARS optimization 
package is used as the optimization tool. The ESSO set-up 
application produces setup files, which are called driver 
files, to run the STARS optimization system. These files 
are CDF (command data) and CONS (design specification) 
files. The third file required by STARS, a file contains 
finite element model, is to be prepared by'the user. 

At present, the prototype can handle static and 
dynamic problems. Any set of constraints associated with 
both types of analysis can be handled by the system. 
Currently, the prototype deals only with isotropic 
materials. 

The modules available in the prototype are, 

(1) the design input module, 
(2) the memory module, 
(3) the conventional module, 
(4) the element module, 
(5) the variable module, 
(6) the constraint module, 
(7) the driver-files module, 
(8) the run-time module, 
(9) the result interpretation module, and 
(10) the modification module. 

Modules (1) to (7) are set-up modules with the task of 
setting up the optimization. The last three modules are 
part of the system's back end. For data processing, the 
modification module makes use the object structures of the 
design input module, element module, variable module, and 
constraint module. 

The prototype is written in C++ in object oriented 
approaches. Each module is written as a class with its own 
task. Some modules are defined with only one class while 
others have a parent and several child classes. Objects are 
created during executions and defined as global objects 
(similar in concept to global variables) which can be 

accessed by every module in the prototype. 
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The set-up modules are compiled and linked into an 
executable file called Set-up, the run-time interpretation 
module into Run-time, the result interpretation module into 
Result, and the modification module into modify. As 
discussed in chapters one and two of this manual, ESSO is 
run through a user interface based on XView. This user 
interface is written in C. All the programming was carried 
out in the SUN SPARC II workstation. 

In this chapter, the computer program of ESSO and its 
user interface is presented. 

THE DESIGN INPUT MODULE. 

The task of the design input module is to obtain 
information relating to the design requirements such as the 
analysis requirements, constraint requirements, number of 
design variables, and general information of the FE model. 
This module consists of one class, Desiqn, which has the 
parameters for defining the design requirement and the 
operations/functions relating to obtaining the design 
requirement. The class Design defines the object design. 
All design specifications are stored in this object and 
these can be used by other modules through object passing. 
This object deals only with a general design requirement. 
More detail specifications are dealt by other modules. For 
example, with regard to the constraint requirement, object 
design only stores type of constraints (such as stress, 
displacement) while details of the constraint values are 
handled by the module constraint. 

The data for this module, 
specification, is supplied by 
design. Data in this object is 

conventional, variable, element, 
and modification modules. Data 
sending object design to those m 

in the form of a design 
the user and stored in 
required by the memory, 

constraint, driver-filesf 
transfer is performed by 

odules. 

The design input module consists of one file, that is 
design. cxx. 

4.2. THE MEMORY MODULE. 

-Following the execution of the design input module, 
the memory module is invoked. This contains the reasoner 

and the knowledge base for the past experience knowledge. 

The detail description of the mechanism inside this module 
has been discussed in chapter five. If there is a similar 

case found then the execution proceeds to the variable and 

element module, otherwise the conventional module is executed. 
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The information required by the memory module is 
supplied by object design in the form of the design 
requirements. If similar cases are found then those cases 
are proposed for use. The output of this module, definition 
of the optimization set-up of the proposed case is used by 
the driver-files module. During its execution, the memory 
module needs data from several files, s case. dat, 
d_case. dat, and sd case. dat which stores records of 
system's experience, and memrule. dat which contains the 
similarity rules. Reasons on past cases selection are 
recorded in files which are produced during the module run. 

The memory module consists of the following files, 

- memory. cxx, the memory module program, 
- memrule. dat, which contains the similarity rules, 
-s case. dat, which contains static past cases, 
- d7case. dat, which contains dynamic past cases, 
- sj case. dat, which contains past cases with combination 

of static and dynamic analysis. 

4.3. THE CONVENTIONAL MODULE. 

The conventional module contains the reasoner and the 
knowledge base for the a priori knowledge. Similar to the 
memory module, the information required by the conventional 
module is supplied by object design. The output of this 
module, definition of the optimization set-up, is sent to 
the driver-files module. During execution, this module 
needs data from method. dat, which contains the names of 
available algorithms, and the following files, fsd, 

_pn. 
dat, 

fsd opc. dat, fsd. dat, opc. dat, and pn. dat, each stores 
information about the algorithm capabilities. 

The files which constitute this module are, 

- convent. cxx, the inference-engine of conventional module, 
- method. dat, which contains the algorithm names, 

fsd. dat, which contains the characteristics of fully 
stressed design algorithm, 

- opc. dat, which contains the characteristics of optimality 
criteria algorithm, 

- pn. dat, which contains the characteristics of pseudo 
newton algorithm, 

- fsd, 
_pn. 

dat, which contains the characteristics of the 

combination of fully stressed design and pseudo newton. 

- fsd opc. dat, which contains the characteristics of the 

combination of fully stressed design and optimality 
criteria. 

- convrule. dat, which contains the IF-THEN rules, 

- convexpl. dat, which contains explanation statements asso- 
ciated with the IF-THEN rules. 
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4.4. THE ELEMENT MODULE. 

The task of the element module is to deal with those 
operations related to the finite element model such as 
elements numbering and displaying elements characteristics. 
The details of the FE model are supplied by the user. This 
module has a base class, Element, which itself has three 
child classes, Plate membrane, Beam,, and Axial rod. The 
class Beam has four child classes, those are I-beam 

', channel-beam, T-beam, and rectanqular beam. The classes 
under the class Element contain information about element 
characteristics and relations between design variable 
properties and analysis properties. Any element type used 
in the FE model is associated to an appropriate element 
class and entitles to the characteristics belong to that 
class. For example, a CBEAM (a NASTRAN element type) 
element type will be associated to the Beam class, and if 
the beam used is having a rectangular cross section then it 
will be associated further to the rect ' anqular beam class. 
The output of this module is an FE data and element 
characteristics stored in various element objects. 

Other information required by this module is the 
design requirement which are concerned with the general FE 
model and supplied by object design. The output of this 
module is required by the variable and driver-files 
modules. 

The element module consists of the following files, 

- element. cxx, 
- beam. cxx, 
- rod. cxx, 
- plate membrane. cxx. 

4.5. THE vARIABLE MODULE. 

The variable module has the task of dealing with 
operations relating to variable formulation. This module 
consists of one class, Variable. Object variable is created 
from this class. The variable asks the user to supply 

variable specifications such as finite element types and 

element numbers in each design variable and stores them in 

this object. It also advises the users if incompatible 

element types (having different analysis properties) are 

grouped in the same design variable, for example if the rod 

elements is put under the same design variable as the plate 

elements. This module needs information relating to the 

element characteristics. 

In order for the variable module to run, it needs 
information relating to the design requirement which is 
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supplied by object design, and the elements characteristics 
supplied by various element objects. The user also has to 
supply variable specifications. The object variable is 
required by the driver-files module. 

This module contains two files, those are, 

- var. cxx, which handles variable operations, 
- el infer. cxx, which examined whether the grouping of ele- 

ments in a design variable is appropriate. 

4.6. THE CONSTRAINT MODULE. 

The operations relating to details of the design 
constraints are handled by the constraint module. This 
module has a base class, Constraint. This class has several 
child classes which deal with more specific type of 
constraints namely, Static constraint, Normal modes cons- 
traint, Bucklinq constrai-nt,, and DVnamic-const-raint. 
Depending upon the analysis and constraint requirements, 
the appropriate objects are created. For example, if a 
static analysis with stress constraint is required, then 
object static constraint is activated. 

This module needs detail information which is related 
to constraint specification supplied by the user. Some of 
the information is supplied by the object design. The 

products of this module, various constraint objects, are 
required by the driver-files module. 

This module consists of the following filesf 

- constr. cxx, 
- static. cxx, 
- buckling. cxx, 
- dynamic. cxx. 

4.7. THE DRIVER-FILES MODULE. 

The task of the driver-files module is to produce 
files which are used to run the optimization software. In 

this prototype, the driver-files module produces files for 

running the STARS optimization package, namely command data 

file (CDF) and design specification file (CONS) We may 

note that STARS is being used to represent a general 

structural optimization system and the prototype is not 

written in a STARS specific manner. The ideas and concepts 

being trialed here are generally applicable to any system 

which employs driver files. The CDF consists of a set of 

instructions for running optimization which includes the 
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optimization method to use, number of iterations, and 
convergence criteria. The CONS defines the variable set-up 
and constraint set. The driver files module consists of two 
sub-modules. The first sub-module, the cdf produces the CDF 
file, essocdf. dat, while the second sub-module, the cons 
produces the CONS file, essocons. dat. The information 
required by the driver files module to produce these two 
files is obtained from the modules executed previously. For 
different optimization packages, the driver files module 
has to be modified accordingly. 

The driver files module consists of these files, 

cdf. cxx, which produces the STARS command data file, 
cons. cxx, which produces the STARS design file. 

4.8. THE RUN-TIME MODULE. 

The run-time module is part of the backend module. 
With the driver files and FE model (prepared by the user) 
available, the optimization system can be run. This will be 
suspended after several iterations to check whether the 
optimization is converging. This check is performed with 
the aid of an extrapolation routine in the run-time module. 
If convergence is predicted the optimization run is resumed 
otherwise the module searches for explanations and proposed 
actions to follow. The proposed actions are printed in the 
file action. dat. 

The run-time module consists of the following files, 

es-run. cxx, which controls the run-time module, 
constype. cxx, which check if a constraint type is re- 
quired in the design requirement, 
runtime. cxx, the inference-engine, 
runtrule. dat, which contains the IF-THEN rules, 
runtexpl. dat, which contains the explanation-statements 
associated with the IF-THEN rules. 

4.9. THE RESULT INTERPRETATION MODULE. 

If a point is reached where the convergence cri eria 

selected by the user are satisfied (or the maximum number 

of iterations is reached) the result interpretation module 

checks the optimization results to ensure that this point 
is indeed optimal. For satisfactory results the current 
design problem and its optimization set up is appended to 

the case memory in the memory module. If this module 

regards the optimization result as unsatisfactory it offers 

explanation of the reasons of failure and proposed actions 
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to follow. The proposed actions are printed in the file 
action. dat. 

The result interpretation module consists of the 
following files, 

- es 
- 

res. cxx, which controls the run-time module, 
- result. cxx, the inference-engine, 
- constype. cxx, which check if a constraint type is re- 

quired in the design requirement, 
- case_upd. cxx, which updates the case memory of the me- 

mory module with the current design problem, 
- reslrule. dat, which contains the IF-THEN rules, 
- reslexpl. dat, which contains the explanation-statements 

associated with the IF-THEN rules. 

4.10. THE MODIFICATION MODULE. 

The modification module has the task of modifying the 
optimization set-up if required. The modification is based 
on the actions, stored in action. dat, proposed by the run- 
time module or the result interpretation module. The 
modification module also needs design data and the 
optimization set up produced by the front-end. For 
design/constraint data processing, the modification module 
makes use of the objects structures of the design input 

module, the variable module, the element module, and the 

constraint module. The memory and conventional modules are 
used for algorithm data processing. The modification 
instructions are sent to the driver files module. After 

modification, the new data is sent to (modified) 
buffer. dat. 

The modification module consists of the following 
files,. 

- act read. cxx, which reads the proposed actions stored in 

action. dat, 
- des-read. cxx, which reads the optimization set-up and 

design data stored in buffer. dat, 

- mod. cxx, which decides on what to do with the proposed 
actions. 

4.11. SEQUENCE OF MODULES EXECUTION. 

ESSO execution is started by running set-up. The first 

step the users have to do is to supply the design 

requirements. The design input module asks the user to 

supply, 
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- type of analysis, 
- the constraint set, 
- FE data which includes the number of nodes, number of 

elements, element types, and number of load cases, 
- number of design variables. 

Based on the ab( 
searches for a similar 
found the associated 
proposed to the user. 
also presented. Having 
moves to the element 
element module. 

we information 
, the memory module 

case in its data base and if one is 
optimization set up solution is 

The reason for proposing a case is 
accepted the solution the execution 
specification catered for by the 

The conventional module is invoked if the memory 
module can not find similar cases. As with-, the memory 
module, the conventional module searches for an 
optimization solution using the information provided during 
the design input stage. This is performed by a reasoning 
process employing a-priori knowledge. The user can query 
the solution proposed by this module. Having accepted the 
solution the execution moves to the design variables 
specification. 

To specify the design variables the user needs to 
define the element types for every design variable. If 
incompatible element types are grouped in one design 
variable the user will be warned and asked to make 
modifications. If everything goes well then the user is 
asked to specify the element numbers for each design 
variable. 

Depending upon the type of analysis used the system 
asks the user to supply the associated set of constraints. 
For example, if a static analysis is required then the user 
will be asked to supply constraints such as displacement, 
stress, or strain, and not natural frequency. For an 
analysis type the user has to supply one or more constraint 
types associated with that analysis. Most constraints 
require the users to supply upper and lower value of the 
constraint and gauge limits for each design variable. 

At this stage the system runs the driver-f iles module. 
If required by the user the driver files can be displayed. 
With the driver files and FE model available- (the NASTRAN 
FE model prepared by the user) the optimization system can 
start running. At this point the set-up phase is completed. 
In addition to the driver files, set-up phase also produces 
a file called buffer. dat. This file contains the design 
information which is required by the backend module. The 
file which controls the set-up phase is es-f. cxx. For 

producing the buffer. dat, es_f. cxx calls buffsave. cxx. 
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Figure 4-1 shows a flow chart of the procedure in 
setting-up an optimization job as implemented in the set-up 
phase. It shows the sequence of modules execution but does 
not show the modules interactions which can occur at any 
stage during the optimization process. 

The performance of the optimization run is monitored 
by the run-time module which is part of the system's 
backend. As mentioned in (4.8) this is performed by 
suspending the run after three iterations to check whether 
the optimization is converging. If convergence is predicted 
the run is resumed. The optimization results are 
interpreted by the result interpretation module. If the 
optimization results are satisfactory the ESSO session 
stops. In the case where the results are not satisfactory 
or the optimization run is predicted not to be heading for 
convergence, the system will search for explanations and 
proposed actions to follow. Based on the proposed actions, 
the modification module modifies the optimization set up 
for another optimization run. 

Figure 4-1 shows the sequence of modules execution but 
does not show the modules interactions which can occur at 
any stage during the optimization process. The data flow 
diagram among various modules is shown in figure 4-2. 
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CHAPTER 5: 

INSTALLATION PROCEDURE 

The ESSO programs are provided in two 3.51, floppy 
disks. Diskl contains all ESSO programs and data. Disk2 
contains FE structural models in NASTRAN format associated 
with past design cases. Except for the ESSO user interface 
program which is in C language, all other programs are in 
C++. Currently the provided disks are in MS-DOS format. It 
is possible that the programs are stored in different 
format (UNIX for example) and media (CD-ROM, tapes, etc. ). 
The programs, however, are intended to run in UNIX. 

All programs are provided as source codes, hence the 
computer needs to have C and C++ compiler. Furthermore the 
computer should have XView toolkit under the X Window 
System installed. This is required for ESSO user interface. 
The installation procedure described in this chapter 
applied to SUN SPARC-II workstation. For other systems, the 
user must consult the computer manager. 

TRANSFERRING ESSO FILES FROM STORING-MEDIA TO 
COMPUTER. 

To install the programs, a directory called esso and 
another subdirectory under esso which is called FEdat 
should be created. All the files in diskl should be copied 
to the directory esso. This is done by inserting the diskl 
into the floppy disk drive and making esso as the active 
directory. Then type the command, 

mcopy a: *. * 

in esso directory. This will copy all files- from diskl into 

esso directory. This command is only possible if the 
computer has MTOOLS installed which emulates DOS-like 
commands for floppy drives. Different way of transferring 
the files are required if these files are stored in 
different format and media. And this should be consulted 
from the relevant computer manual. 

The f iles in disk2 should be copied to directory 

FEdat. This is done by making FEdat as the active 
directory. Insert disk2 to the floppy drive and enter the 

command, 

mcopy a: *. * 
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in FEdat directory. All files in disk2 will be copied to the directory FE-dat. Again, if the files are stored in different format, different way of transferring the files 
are required. 

5.2. COMPILING AND LINKING. 

As the files provided for installation are in the form 
of source codes (in C and C++), it is necessary to compile 
and link these programs into executable files. ESSO 
executable files consist of three application programs and 
a user interface program. The application programs are, 

es_f, for setting-up optimization, 
es-run, for monitoring the optimization run, and, 
es-res, for interpreting the optimization results, 
es-mod, for set-up modification. 

The user interface program is esso. The compiling and 
linking process to obtain the above executable files is 
described in this section. 

-' OF ES F. COMPILING AND LINKINIC-7 

The compiling process for obtaining es -f includes all 
files in the modules, 

- the design input module, 
- the memory module, 
- the conventional module, 
- the variable module, 
- the element module, 
- the constraint module, 
- the driver-files module, 

and files associated with the front end controller. The 
command for compiling and linking these files using C++ 
compiler is, 

CC -o es-f es-f. cxx 

and entered from esso directory. 

5.2.2. COMPILING AND LINKING OF ES-RUN. 

The es-run is obtained from all files associated with 
the run-time module which is part of the backend module. 
The command for compiling and linking is, 

CC -o es-run es-run. cxx -lm 
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and entered from esso directory. The parameter -1m is 
required to include C++ mathematical routines which is not available in the standard header file stdlib. h. 

5.2.3. COMPILING AND LINKING OF ES-RES. 

The es-res is obtained from all files associated with the result interpretation module which is part of the backend module. The command for compiling and linking is, 

cc 
-o es_res es-res. cxx 

and entered from esso directory. 

5.2.4. COMPILING AND LINKING OF ES-MOD. 

The es-Mod is obtained from all files associated with 
the modification module which is part of the backend 
module. The command for compiling and linking is, 

CC -o es-mod es-mod. cxx 

and entered from esso directory. 

5.2.5. COMPILING AND LINKING OF ESSO. 

The user interface program, esso, was written in C 
language (esso. c) and based on XView. This requires that 
XView toolkit under the X Window System installed. The 
command for compiling and linking (in SUN SPARC II) is, 

cc -o esso esso. c -I/applics/voll/openwin3/include 
-1xview -lolgx -lXll 

entered from esso sub-directory. 

Another C file is xl_proc. c which is required for 
invoking MSC/XL. The command for compiling and linking is, 

cc -o xl_proc xl_proc. c -I/applics/voll/openwin3/include 
-1xview -lolgx -lxll 

entered from esso sub-directory. The executable xl_proc is 
called by esso when MSC/XL is needed. 
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CHAPTER 6: 

EXAMPLES 

In this chapter two examples of ESSO sessions are 
presented. The first example is concerned with a static 
case optimization. The second example deals with a dynamic 
problem. 

STATIC CASE EXAMPLE. 

6.1.1. PROBLEM DESCRIPTION. 

A wing structure (cant i lever-wing) is designed to 
carry a static load which is assumed to be applied at the 
wing tip. The structure consists of upper and lower panels, 
f ront and rear spars, and wing ribs. The length of the wing 
is 3600 mm. (half-span) . The root-chord length is 2400 mm 
with a maximum thickness of 600 mm. The tip-chord length is 
800 mm with a maximum thickness of 200 mm. The finite 
element model of the wing is shown in figure 6-1 and 
consists of 90 nodal points and 112 elements. CQUAD4 
membrane elements are used for the wing panels and ribs. 
For front and rear spars CSHEAR elements are used. The FE 
model in NASTRAN format is shown in table 6-1. 

The tensile strength of the material is 250.0 MPa 
while the compressive strength is -120.0 MPa. The other 
material data used is: 

Modulus Young = 79000.0 MPa 

poisson's ratio = 0.33 
/MM3 mass density = 2.8E-6 Kg 

The structure is to be designed to be of minimum 
weight subject to limits on stresses given above and on the 
lateral displacement of 25 mm at nodes 81 to 85 (wing-tip) . 
The gauge limits are as follows, thickness of the 

structural elements should be not less than 0.6 mm. It is 

specified that maximum thickness of upper and lower panel 
is 10 mm, the maximum thickness of spars is 3.5 mm, and the 

maximum thickness of ribs is 2.5 mm. 

6.1.2. ESSO SESSION. 

vccn t-hp- -, P-ssion bv askincf the user to supply J.: j k-1) k-. P %-., --- ---------L 

information relating to, 
type of analysis, in this case statics, 
type of constraints, stress and displacement. 
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The user must now supply a general description of the finite element model of the structure, which consists of, 

- the number of nodal/grid points, which is 90, 
- the element types, which in this case are CQUAD4 and CSHEAR,, 
- the number of elements, which is 112, 
- and the number of load cases, in this case is 1. 

Ideally the system should draw this information directly 
from the FE (NASTRAN) file, but at its current stage ESSO 
cannot do this. The user now informs the system of the 
number of design variables required, 6 in this example. It 
is up to the user to define the set up of the design 
variables which link specific finite elements to a design 
variable. For example if the panel of a wing bay (between 
two ribs) is desired to have a uniform thickness, then all 
finite elements in that bay are grouped in one design 
variable. 

Based on the above information, ESSO searches its 
memory using the reasoning process described earlier and 
finds one "similar" case,, that is, 

case index number 3 (from static 
number of analysis = 1, statics, 
number of constraint type is 2, 
number of nodal points = 24f 
number of elements = 26, 

cases in memory), 

stress and displacement, 

number of element types = 11 CQUAD4, 
number of design variables = 5, 
name of solution algorithm = Pseudo Newton, 
maximum number of solution iteration = 4f 
convergence criteria = dual gap. 

The finite element model for the above case is shown in 
figure 6-2. The certainty factor of this case (indicating 
the degree to which this solution algorithm can solve the 
current problem successfully) is 0.381. The same analysis 
and constraint types give positive contribution to 

similarity,, though the number of nodal points, elements, 
and design variables of this past case are smaller than the 

current design problem. This lack of total agreement does 

not become a kill off factor because the analysis type is 

static and ESSO believes there is a reasonable chance of 
success in using this case. The resulting algorithm 
proposed as a result of this process is the pseudo newton 

with maximum iteration numbers of 4. It is assumed that the 

user agrees with this proposal. 
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The next step is design variables set up. The user informs ESSO of the element types in each design variable (there are six design variables in the present case). and ESSO will check whether the elements grouping is 
appropriate. The element types of the design variables are, 

variable-1 
variable-2 
variable-3 
variable-4 
variable-5 
variable-6 

= CQUAD41 
= CQUAD41 
= CQUAD41 
= CQUAD41 
= CSHEAR, 
= CQUAD4. 

The above grouping is accepted by ESSO and the user then 
has to supply the element numbers for each of these design 
variables, 

variable-1 33,34,49,50,81,82,97,98 (the f irst upper and 
lower panel bays near the wing root) 

variable-2 35,36,51,52,83,84,99,100 (the second upper 
and lower panel bays) 

variable-3 37-48f 53-64 (the rest of the upper panel) 
variable-4 85-96,101-112 (the rest of the lower panel) 
variable-5 65-80 (the front and rear spars) 
variable-6 113-144 (the ribs). 

The gauge and stress constraints are now supplied: 

Gauqes: 

1. lower-limit = 0.6 
upper-limit = 10.0 
element = 33-64f 

2. lower-limit = 0.6 
upper-limit = 3.5 
element = 65-80 

81-112 (upper and lower panels) 

(front and rear spars) 

3. lower-limit = 0.6 
upper-limit = 2.5 
element = 113-144 (ribs) 

Stress: lower-limit -120.0 
upper-limit 250.0 
for elements 33-144. 

ESSO also asks the user to supply 
constraint: 

lower-limit -25.0 
upper-limit 25.0, to Y-direction 
at nodes = 81-85. 

the displacement 
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At this stage ESSO has performed the necessary 
reasoning to construct a solution strategy and the user has 
supplied the description of the design problem. It is now 
a relatively straightforward for ESSO to create appropriate input data sets for the structural optimization, thus, ESSO 
now informs the user that the front end session is 
completed and the STARS driver files "essocdf. dat" (see 
table 6-2) and "essocons. dat" (see table 6-3) are produced. 
ESSO also requests the user to run STARS. When executed, 
the STARS run is suspended after 3 iterations. This 
suspension is invoked to allow ESSO to examine the progress 
of the optimizer and asses the likely success of the 
current run to converge to an optimum. 

ESSO employs a number of parameters to predict 
convergence or otherwise as described earlier. In the 
present case the iteration history up to the third 
iteration (can be read from the STARS result file 
"essorslt. dat") is shown below. 

iteration feasible weight dual weight 
-------------------------------------------- 

0 127.9 48.3 
1 109.5 77.0 
2 106.5 99.6 
3 106.2 104.8 

Based on the above information, the run-time application 
predicts that the optimization will reach convergence at 
maximum iteration (maximum iteration=4) . In fact the above 
data shows that the optimization run has produced a very 
good design at iteration 3. 

The STARS run is resumed with one more iteration to 

complete. After the optimization stops at fourth iteration, 
the result application is invoked to check whether this 
design can be regarded as optimum. This ESSO application 
uses dual weight of the last iteration (iteration 4) and 
the most non-feasible constraint (if any) together with any 

violated limit value. In the present case we find that at 
the optimum, 

- feasible weight = 106.2, dual weight = 106.1, 

- the " violated" constraint is displacement at node 83 

equal to 25.0 mm. with the limit value of 25.0 mm. 

Based on this data,, ESSO concludes that the design at 
iteration 4 can indeed be regarded as optimum because the 

constraints are satisfied while the dual gap is satisfied. 
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Because the optimization produces an optimum design, 
the ESSO memory is updated with this design problem. 

6.2. DYNAMIC CASE EXAMPLE. 

6.2.1. PROBLEM DESCRIPTION. 

The same structure as in the first case (6.1) is used 
again for this second design case. Instead of the static 
design requirement, now the structure is desired to have a 
minimum weight while maintaining its lowest natural 
frequency above 2.50 cycles/second. This is a dynamic case 
with frequency constraint. The FE model and the set up of 
the design variables of the first case are retained. The 
same material is also used with similar gauge limits on 
elements. The FE model is similar to the one in figure 6-1 
omitting the static forces. Table 6-4 shows the NASTRAN 
data of the model. 

6.2.2. ESSO SESSION. 

Similar to the first case, ESSO starts the session by 
asking the user to supply information relating to, 

- type of analysis, which in this case is dynamics, 

- type of constraint, which is natural frequency. 

This is followed by the general description of the finite 
element model of the structure, and this consists of, 

number of nodal/grid points, which is 90, 
element types, which in this case are CQUAD4 and CSHEAR, 
number of elements, which is 112, 
and number of load cases, which in this case is 1. 

The user then must inform the system on the number of 
design variables required, which we have selected to be 6. 

Based on the above information, ESSO suggests the 
following as a suitable "similar" case, 

case index number 1 (from dynamic cases in memory), 
number of analysis = 1, dynamics, 
number of constraint type is 1, natural frequency, 

number of nodal points = 90, 

number of elements = 148f 
number of element types = 31 CQUAD4r CSHEAR, CONROD, 

number of design variables = 8, 

name of solution algorithm = Pseudo Newton, 

maximum number of solution iteration = 71 

convergence criteria = dual gap 
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The finite element model of the above case can be seen in figure 6-3. The certainty factor of this case is 0.473. In 
addition to the front and rear spars, the structure in the "similar" proposed case has a middle spar. We now assume that the user is satisfied that there is a good chance of 
success in using this case to supply the optimization 
solution strategy for the present example. The algorithm 
proposed is the pseudo newton with maximum iteration 
numbers of 7. It is assumed that the user prefers to 
increase the maximum iteration numbers to 10. 

The next step is design variables set up. The element 
types associated with the design variables are, 

variable-1 
variable-2 
variable-3 
variable-4 
variable-5 
variable-6 

= CQUAD41 
= CQUAD41 
= CQUAD41 
= CQUAD41 
= CSHEAR, 
= CQUAD4r 

and the element within each design variable, 

variable-1 33,34,49,50,81,82,97,, 98 (the first upper and 
lower panel bays near the wing root) 

variable-2 35,36,51,52,83,84,99,100 (the second upper 
and lower panel bays) 

variable-3 37-48,53-64 (the rest of the upper panel) 
variable-4 85-96,101-112 (the rest of the lower panel) 
variable-5 65-80 (the front and rear spars) 
variable-6 113-144 (the ribs). 

Similar to the first case, there is no fix-element. 

The gauges limit are specified as: 

1. lower-limit 
upper-limit 
element 

2. lower-limit 
upper-limit 
element 

2. lower-limit 
upper-limit 
element 

0.6 
10.0 
33-64,81-112 (upper and lower panels) 

0.6 
3.5 
65-80 (front and rear spars) 

0.6 
2.5 
113-144 (ribs) 

Next,, ESSO asks the user to supply the lower limit 

value of the frequency and the associated mode number. In 

this case, 

mode number =1 
natural frequency = 2.50. 
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2111C, this stage ESSO inform 
session is completed and 
"essocdf. dat" (see table 6-5) a 
6-6) are produced. ESSO also 
STARS. As with the previous 
suspended after 3 iterations. 

the user that the front end 
the STARS driver files 

nd 'vessocons. dat" (see table 
requests the user to run 

"statics" case the run is 

The iteration history for these initial iterations is: 

-------------------------------------------- 
iteration feasible weight dual weight 

-------------------------------------------- 
0 127.9 35.9 
1 80.4 35.9 
2 107.9 35.9 
3 168.7 35.9 

-------------------------------------------- 

Based on the above information, the run-time application 
predicts that the optimization will not converge to the 
optimum at maximum iteration (maximum iteration=10) . 

At this point, the optimizer has been able to raise 
the natural frequency of the structure from the starting 
value of 1.54 Hz to 2.0 Hz. However, ESSO believes that the 
optimum will not be reached because there is insufficient 
scope to make changes due to the design variable set up. 
ESSO, thus,, proposes that number of design variables be 
increased. In response to this the number of design 
variables is increased to 17. 

The element types associated with the design variables 
are, 

variable-1 = CQUAD4, 

variable-2 = CQUAD4, 

variable-3 = CQUAD4, 

variable-4 = CQUAD4, 

variable-5 = CQUAD41 

variable-6 = CQUAD4, 

variable-7 = CQUAD4f 

variable-8 = CQUAD41 

variable-9 CQUAD4, 
variable-10 CSHEAR, 

the f irst bay of upper and lower 
panels, 

the second bay of upper and lower 
panels, 
the third bay of upper and lower 
panels, 

the fourth bay of upper and lower 
panels, 
the f if th bay of upper and lower 
panels, 
the sixth bay of upper and lower 
panels, 
the seventh bay of upper and lo- 

wer panels 
the eighth bay of upper and lower 

panels, 
the ribs, 

the first bay of front and rear 
spars, 
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variable-11 = CSHEAR, the second bay of f ront and rear 
spars,, 

variable-12 = CSHEAR, the third bay of front and rear 
spars,, 

variable-13 = CSHEAR, the fourth bay of front and rear 
spars,, 

variable-14 = CSHEAR, the fifth bay of front and rear 
spars., 

variable-15 = CSHEAR, the sixth bay of front and 
rear spars, 

variable-16 = CSHEAR, the seventh bay of front and 
rear spars., 

variable-17 = CSHEAR, the eighth bay of front and 
rear spars. 

The associated elements within each design variable can be 
seen in table 6-7. 

Having completed the modification, ESSO produces 
"essocdf. dat" and "essocons. dat". The "essocons. dat" is 
shown in table 6-7. ESSO then asks the user to run STARS. 

After 3 iterations STARS run is suspended. The ESSO's 
run-time application asks the user to supply data on 
feasible and dual weights from iteration 0 to iteration 3 
which is shown below, 

-------------------------------------------- 
iteration feasible weight dual weight 

-------------------------------------------- 
0 127.9 35.9 
1 72.1 34.7 
2 71.6 48.3 
3 76.8 56.4 

-------------------------------------------- 

Based on the above information, the run-time application 
predicts that the optimization will reach convergence at 
maximum iteration (maximum iteration=10) and asks the user 
to resume the optimization run. 

The optimization run stops at maximum iteration and 
the ESSO' s result application is called to check the 

results. It asks the user to supply the feasible and dual 

weights of the last iteration (iteration 10) and also the 

most non-feasible constraint (if any) together with the 

violated limit value. From the "es sors lt. dat ",, 

- feasible weight = 78.3f dual weight = 66.0, 

- the "violated" constraint is the natural frequency of 
2.39 Hz which is still below the limit value of 2.5 Hz. 
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From the data above ESSO concludes that the design is not satisfactory, but the constraint relatively small, under five percent. At this stage, ESSO asks the user to supply the history of frequency during optimization run which is 
as follow, 

-------------------------------------------------------- 
fo fl f2 f3 f4 f5 f6 f7 f8 f9 flo 

-------------------------------------------------------- 
1.54 1.73 2.05 2.29 2.42 2.36 2.42 2.38 2.41 2.40 2.39 

-------------------------------------------------------- 

The data above shows the frequency at every iteration from 
initial value, fO. to the last iteration, f1O. Based only 
on the above data, in fact the optimization is converging 
to a design point where the natural frequency of the 
structure is close to 2.4 Hz (still infeasible) . From this 
fact ESSO concludes that the problem is caused by the 
algorithm itself (Pseudo Newton) . To solve this problem (an 
infeasible design) ESSO suggests the user to increase 
slightly the constraint value. This is accepted by 
increasing the natural frequency to 2.65 Hz. 

With this slight modification, the STARS is re-run. 
The optimization data after ten iteration is 

feasible weight = 95.9, dual weight = 72.5, 

the natural frequency is 2.53 Hz which is above the 
original limit value of 2.50 Hz. 

The data above shows that the design is not yet optimum but 
it is a useful feasible design (with respect to the 
original design requirement) and probably not that far away 
from the optimum point. The frequency history as shown 
below, 

-------------------------------------------------------- 
fo fl f2 f3 f4 f5 f6 f7 f8 f9 flo 

-------------------------------------------------------- 
1.54 1.75 2.09 2.37 2.56 2.48 2.56 2.48 2.54 2.48 2.53 

-------------------------------------------------------- 

shows that the optimization is converging to a design point 
with the frequency close to 2.5 Hz. This supports the fact 

points out by ESSO that the Pseudo Newton method of STARS 

could not cope well with this dynamic problem. 

Finally ESSO updates its memory by appending this case 

and asking the user to put comments on the running of the 

optimization. The comments might look like this, 

natural frequency requirement of at least 2.5 Hz. 

initial frequency of structure (iter-0) = 1.54 Hz. 
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- needs effective material distribution through appro- 
priate design variable set-up 

- optimization tends to point to a slightly infeasible 
design 

- the trick is to slightly increase the constraint to 2 . 65 
Hz. 
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Table 6-1: The FE data of the Static Case Example. 

TITLE = WING STATIC-CASE STRESS-DISPLACEMENT CONSTRAINT 
SUBCASE=l 
LOAD=l 
BEGIN BULK 
GRID 1 0.300. 0. 123456 
GRID 2 0.270. 600. 123456 
GRID 3 0.221.052 -600. 123456 
GRID 4 0.142.104 -1200. 123456 
GRID 5 0.140. 1200. 123456 
GRID 6 0. -142.105 -1200. 123456 
GRID 7 0. -200. 1200. 123456 
GRID 8 0. -221.052 -600. 123456 
GRID 9 0. -300. 600. 123456 
GRID 10 0. -300. 0. 123456 
GRID 11 450.275. 0. 456 
GRID 12 450.247.5 550. 456 
GRID 13 450.202.631 -550. 456 
GRID 14 450.130.813 1100. 456 
GRID 15 450.130.262 -1100. 456 
GRID 16 450. -130.263 -1100. 456 
GRID 17 450. -186.875 1100. 456 
GRID 18 450. -202.632 -550. 456 
GRID 19 450. -275. 550. 456 
GRID 20 450. -275. 0. 456 
GRID 21 900.0001 250. 0. 456 
GRID 22 900.0001 225. 500. 456 
GRID 23 900.0001 184.21 -500. 456 
GRID 24 900.0001 121.625 1000. 456 
GRID 25 900.0001 118.421 -1000. 456 
GRID 26 900.0001-118.421 -1000. 456 
GRID 27 900.0001 -173.75 1000. 456 
GRID 28 900.0001-184.211 -500. 456 
GRID 29 900.0001 -250. 500. 456 
GRID 30 900.0001 -250. 0. 456 
GRID 31 1350.225. 0. 456 
GRID 32 1350.202.5 450. 456 
GRID 33 1350.165.789 -450. 456 
GRID 34 1350.11-2.438900-0001 456 
GRID 35 1350.106.579-900.000 456 
GRID 36 1350. -106.579- 900.000 456 
GRID 37 1350. -160.625900.0001 456 
GRID 38 1350. -165.79 -450. 456 

GRID 39 1350. -225. 450. 456 

GRID 40 1350. -225. 0. 456 

(continued) 
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Table 6-1 

--------- 
GRID 

------------- 
41 

------------------- 
1800.200. 

-------------- 
0. 

--------- 
456 GRID 42 1800.180. 400. 456 GRID 43 1800.147.368 -400. 456 GRID 44 1800.103.25800.0001 456 GRID 45 1800.94.73701- 800.000 456 GRID 46 1800. -94.7375-800.000 456 GRID 47 1800. -147.369 -400. 456 GRID 48 1800. -147.5800.0001 456 

GRID 49 1800. -200. 400. 456 
GRID 50 1800. -200. 0. 456 
GRID 51 2250.175. 0. 456 
GRID 52 2250.157.5 350. 456 
GRID 53 2250.128.948 -350. 456 
GRID 54 2250.94.06251700.0001 456 
GRID 55 2250.82.89521-700.000 456 
GRID 56 2250. -82.8956- 700.000 456 
GRID 57 2250. -128.948 -350. 456 
GRID 58 2250. -134.375700.0001 456 
GRID 59 2250. -175. 350. 456 
GRID 60 2250. -175. 0. 456 
GRID 61 2700.150. 0. 456 
GRID 62 2700.135. 300. 456 
GRID 63 2700.110.527 -300. 456 
GRID 64 2700.84.87501 600. 456 
GRID 65 2700.71.0535 -600. 456 
GRID 66 2700. -71.0537 -600. 456 
GRID 67 2700. -110.527 -300. 456 
GRID 68 2700. -121.25 600. 456 
GRID 69 2700. -150. 300. 456 
GRID 70 2700. -150. 0. 456 
GRID 71 3150.125. 0. 456 
GRID 72 3150.112.5 250. 456 
GRID 73 3150.92.10591 -250. 456 
GRID 74 3150.75.68751 500. 456 
GRID 75 3150.59.21181 -500. 456 
GRID 76 3150. -59.2119 -500. 456 
GRID 77 3150. -92.1059 -250. 456 
GRID 78 3150. -108.125 500. 456 
GRID 79 3150. -125. 250. 456 
GRID 80 3150. -125. 0. 456 
GRID 81 3600.100. 0. 456 
GRID 82 3600-90-00001 200. 456 
GRID 83 3600.73.68501 -200. 456 
GRID 84 3600.66.50001 400. 456 
GRID 
--------- 

85 
------------ 

3600.47.37001 
------------------- 

-400. 
-------------- 

456 
---------- 

(continued) 
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---------- 
GRID 

------- 
86 

--------- --------------- 
3600. -47.3700 

---------- 
-400. 

------- ------ 
456 GRID 87 3600. -73.6850 -200. 456 GRID 88 3600. -95.0000 400. 456 GRID 89 3600. -100. 200. 456 GRID 90 3600. -100. 0. 456 MAT1 1 79000. 0.33 2.80-6 

PSHELL 33 1 1. 
PSHEAR 65 1 1. 
FORCE 1 81 5000.0 0.0 1.0 0.0 
FORCE 1 82 10000.0 0.0 1.0 0.0 
FORCE 1 83 12000.0 0.0 1.0 0.0 
FORCE 1 84 10000.0 0.0 1.0 0.0 
FORCE 1 85 5000.0 0.0 1.0 0.0 
CQUAD4 33 33 5 14 12 2 0. 
CQUAD4 34 33 2 12 11 1 0. 
CQUAD4 35 33 14 24 22 12 0. 
CQUAD4 36 33 12 22 21 11 0. 
CQUAD4 37 33 24 34 32 22 0. 
CQUAD4 38 33 22 32 31 21 0. 
CQUAD4 39 33 34 44 42 32 0. 
CQUAD4 40 33 32 42 41 31 0. 
CQUAD4 41 33 44 54 52 42 0. 
CQUAD4 42 33 42 52 51 41 0. 
CQUAD4 43 33 54 64 62 52 0. 
CQUAD4 44 33 52 62 61 51 0. 
CQUAD4 45 33 64 74 72 62 0. 
CQUAD4 46 33 62 72 71 61 0. 
CQUAD4 47 33 74 84 82 72 0. 
CQUAD4 48 33 72 82 81 71 0. 
CQUAD4 49 33 1 11 13 3 0. 
CQUAD4 50 33 3 13 15 4 0. 
CQUAD4 51 33 11 21 23 13 0. 
CQUAD4 52 33 13 23 25 15 0. 
CQUAD4 53 33 21 31 33 23 0. 
CQUAD4 54 33 23 33 35 25 0. 
CQUAD4 55 33 31 41 43 33 0. 
CQUAD4 56 33 33 43 45 35 0. 
CQUAD4 57 33 41 51 53 43 0. 
CQUAD4 58 33 43 53 55 45 0. 
CQUAD4 59 33 51 61 63 53 0. 
CQUAD4 60 33 53 63 65 55 0. 
CQUAD4 61 33 61 71 73 63 0. 
CQUAD4 62 33 63 73 75 65 0. 
CQUAD4 63 33 71 81 83 73 0. 
CQUAD4 

---------- 

64 

------- 

33 

-------- 

73 

-------- 

83 

-------- 

85 

--------- 

75 

-------- 

0. 

------ 
(continued) 
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--------- 
CQUAD4 

---------- 
81 

-------- 
33 

-------- 
6 

-------- 
16 

-------- 
18 

-------- 
8 

----- 
CQUAD4 
CQUAD4 

82 
83 

33 8 18 20 10 
0. 
0. 

CQUAD4 84 
33 
33 

16 
18 

26 
28 

28 18 0. 
CQUAD4 85 33 26 36 

30 
38 

20 
28 

0. 
0 CQUAD4 

CQUAD4 
86 
87 

33 28 38 40 30 . 0. 
CQUAD4 88 

33 
33 

36 
38 

46 
47 

47 38 0. 
CQUAD4 89 33 46 56 

50 
57 

40 
47 

0. 
0 CQUAD4 90 33 47 57 60 50 . 0 CQUAD4 91 33 56 66 67 57 . 0 CQUAD4 92 33 57 67 70 60 . 0 CQUAD4 93 33 66 76 77 67 . 0 CQUAD4 94 33 67 77 80 70 . 0 CQUAD4 95 33 76 86 87 77 . 0 CQUAD4 96 33 77 87 90 80 . 0 CQUAD4 97 33 10 20 19 9 . 0 CQUAD4 98 33 9 19 17 7 . 0 CQUAD4 99 33 20 30 29 19 . 0 CQUAD4 100 33 19 29 27 17 . 0 CQUAD4 101 33 29 39 37 27 . 0 CQUAD4 102 33 30 40 39 29 . 0 CQUAD4 103 33 40 50 49 39 . 0. CQUAD4 104 33 39 49 48 37 0. CQUAD4 105 33 50 60 59 49 0. CQUAD4 106 33 49 59 58 48 0. CQUAD4 107 33 60 70 69 59 0. CQUAD4 108 33 59 69 68 58 0. CQUAD4 109 33 70 80 79 69 0. CQUAD4 110 33 69 79 78 68 0. 

CQUAD4 111 33 80 90 89 79 0. 
CQUAD4 112 33 79 89 88 78 0. 
CQUAD4 113 33 17 14 12 19 0. 
CQUAD4 114 33 19 12 11 20 0. 
CQUAD4 115 33 20 11 13 18 0. 
CQUAD4 116 33 18 13 15 16 0. 
CQUAD4 117 33 27 24 22 29 0. 
CQUAD4 118 33 29 22 21 30 0. 
CQUAD4 119 33 30 21 23 28 0. 
CQUAD4 120 33 28 23 25 26 0. 
CQUAD4 121 33 37 34 32 39 0. 
CQUAD4 122 33 39 32 31 40 0. 
CQUAD4 123 33 40 31 33 38 0. 
CQUAD4 
---------- 

124 
--------- 

33 
-------- 

38 
-------- 

33 
-------- 

35 
-------- 

36 
-------- 

0. 
----- 

(continued) 
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---------- 
CQUAD4 

--------- 
125 

-------- 
33 

-------- 
48 

-------- 
44 

-------- 
42 

-------- 
49 

----- 
0 CQUAD4 126 33 49 42 41 50 . 0 CQUAD4 127 33 50 41 43 47 . 0 CQUAD4 128 33 47 43 45 46 . 0 CQUAD4 129 33 58 54 52 59 . 0. CQUAD4 130 33 59 52 51 60 0. CQUAD4 131 33 60 51 53 57 0. 

CQUAD4 132 33 57 53 55 56 0. 
CQUAD4 133 33 68 64 62 69 0. 
CQUAD4 134 33 69 62 61 70 0. 
CQUAD4 135 33 70 61 63 67 0. 
CQUAD4 136 33 67 63 65 66 0. 
CQUAD4 137 33 78 74 72 79 0. 
CQUAD4 138 33 79 72 71 80 0. 
CQUAD4 139 33 80 71 73 77 0. 
CQUAD4 140 33 77 73 75 76 0. 
CQUAD4 141 33 88 84 82 89 0. 
CQUAD4 142 33 89 82 81 90 0. 
CQUAD4 143 33 90 81 83 87 0. 
CQUAD4 144 33 87 83 85 86 0. 
CSHEAR 65 65 5 14 17 7 
CSHEAR 66 65 14 24 27 17 
CSHEAR 67 65 24 34 37 27 
CSHEAR 68 65 34 44 48 37 
CSHEAR 69 65 44 54 58 48 
CSHEAR 70 65 54 64 68 58 
CSHEAR 71 65 64 74 78 68 
CSHEAR 72 65 74 84 88 78 
CSHEAR 73 65 4 15 16 6 
CSHEAR 74 65 15 25 26 16 
CSHEAR 75 65 25 35 36 26 
CSHEAR 76 65 35 45 46 36 
CSHEAR 77 65 45 55 56 46 
CSHEAR 78 65 55 65 66 56 
CSHEAR 79 65 65 75 76 66 
CSHEAR 80 65 75 85 86 76 
ENDDATA 

(end of table) 
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Table 6-2: The command data file of the Static Case 
Example. 

START 
COMMAND DATA PNEWTON 
C 

SET NSIV=l; 
SET MXIT=4; 
SET APRT=YES; 
SET ACTG=YES; 
SET IFLM=YES; 
DO NSIN; 
DO OPTIN; 

C 
DO ANALYSIS; 
DO INSPECT; 
DO OPTX; 

C PSEUDO NEWTON ITERATIONS 
L010: DO ITER; 

DO QNEWTON; 
DO OPTX; 
IF(ENDC. EQ. YES) GOTO L031; 
IF(NOIT. EQ. 3) DO HISTORY; 
IF(NOIT. EQ. 3) SUSPEND; 
IF(ENDI. EQ. YES) GOTO L040; 
GOTO L010; 

L031: DISPLAY CONVERGENCE TO THE LOWER BOUND WEIGHT; 
GOTO L050; 

L032: DISPLAY CONVERGENCE TO DESIGN VARIABLES; 
GOTO L050; 

L033: DISPLAY CONVERGENCE TO FEASIBLE VS ACTUAL WEIGHT; 
GOTO L050; 

L034: DISPLAY CONVERGENCE TO FEASIBLE WEIGHT; 
GOTO L050; 

L040: DISPLAY MAX. NUMBER OF ITERATIONS REACHED; 
C 
L050: SET APRT=YES; 

DO ANALYSIS; 
DO INSPECT; 
DO HIST; 
STOP; 
END; 

C ANALYSIS PROCEDURE; 
PROC OPTX; 
DO ANALYSIS; 
DO ACTSET; 
DO DERV; 
DO CONV; 
DO INSPECT; 
END OPTX; 

ENDATA 
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Table 6-3: The design/constraint file of the Static Case 
Example. 

C234567890123456789012345678901234567890123456789012345678901234567890 
DESIGN 1 33 
DESIGN 1 34 
DESIGN 1 49 
DESIGN 1 50 
DESIGN 1 81 
DESIGN 1 82 
DESIGN 1 97 
DESIGN 1 98 
DESIGN 2 35 
DESIGN 2 36 
DESIGN 2 51 
DESIGN 2 52 
DESIGN 2 83 
DESIGN 2 84 
DESIGN 2 99 
DESIGN 2 100 
DESIGN 3 37 
DESIGN 3 38 
DESIGN 3 39 
DESIGN 3 40 
DESIGN 3 41 
DESIGN 3 42 
DESIGN 3 43 
DESIGN 3 44 
DESIGN 3 45 
DESIGN 3 46 
DESIGN 3 47 
DESIGN 3 48 
DESIGN 3 53 
DESIGN 3 54 
DESIGN 3 55 
DESIGN 3 56 
DESIGN 3 57 
DESIGN 3 58 
DESIGN 3 59 
DESIGN 3 60 
DESIGN 3 61 
DESIGN 3 62 
DESIGN 3 63 
DESIGN 3 64 
DESIGN 4 85 
DESIGN 4 86 
DESIGN 4 87 
DESIGN 4 88 
DESIGN 4 89 
DESIGN 
----------- 

4 
----------- 

90 
------------------------------------------------ (continued) 



69 

Table 6-3 

------------ 
DESIGN 

---------- 
4 

----------------------------------------------- 
91 

DESIGN 4 92 
DESIGN 4 93 
DESIGN 4 94 
DESIGN 4 95 
DESIGN 4 96 
DESIGN 4 101 
DESIGN 4 102 
DESIGN 4 103 
DESIGN 4 104 
DESIGN 4 105 
DESIGN 4 106 
DESIGN 4 107 
DESIGN 4 108 
DESIGN 4 109 
DESIGN 4 110 
DESIGN 4 ill 
DESIGN 4 112 
DESIGN 5 65 
DESIGN 5 66 
DESIGN 5 67 
DESIGN 5 68 
DESIGN 5 69 
DESIGN 5 70 
DESIGN 5 71 
DESIGN 5 72 
DESIGN 5 73 
DESIGN 5 74 
DESIGN 5 75 
DESIGN 5 76 
DESIGN 5 77 
DESIGN 5 78 
DESIGN 5 79 
DESIGN 5 80 
DESIGN 6 113 
DESIGN 6 114 
DESIGN 6 115 
DESIGN 6 116 
DESIGN 6 117 
DESIGN 6 118 
DESIGN 6 119 
DESIGN 6 120 
DESIGN 6 121 
DESIGN 6 122 
DESIGN 6 123 

(continued) 
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DESIGN 6 124 
DESIGN 6 125 
DESIGN 6 126 
DESIGN 6 127 
DESIGN 6 128 
DESIGN 6 129 
DESIGN 6 130 
DESIGN 6 131 
DESIGN 6 132 
DESIGN 6 133 
DESIGN 6 134 
DESIGN 6 135 
DESIGN 6 136 
DESIGN 6 137 
DESIGN 6 138 
DESIGN 6 139 
DESIGN 6 140 
DESIGN 6 141 
DESIGN 6 142 
DESIGN 6 143 
DESIGN 6 144 
GAUGE 0.600000 10.0000 33 
GAUGE 0.600000 10.0000 34 
GAUGE 0.600000 10.0000 35 
GAUGE 0.600000 10.0000 36 
GAUGE 0.600000 10.0000 37 
GAUGE 0.600000 10.0000 38 
GAUGE 0.600000 10.0000 39 
GAUGE 0.600000 10-0000 40 
GAUGE 0.600000 10.0000 41 
GAUGE 0.600000 10.0000 42 
GAUGE 0.600000 10.0000 43 
GAUGE 0.600000 10.0000 44 
GAUGE 0.600000 10.0000 45 
GAUGE 0.600000 10-0000 46 
GAUGE 0.600000 10-0000 47 
GAUGE 0.600000 10-0000 48 
GAUGE 0.600000 10-0000 ' 49 
GAUGE 0.600000 10-0000 50 
GAUGE 0.600000 10-0000 51 
GAUGE 0.600000 10-0000 52 
GAUGE 0.600000 10-0000 53 
GAUGE 0.600000 10-0000 54 
GAUGE 0.600000 10-0000 55 
GAUGE 0.600000 10-0000 56 
GAUGE 0.600000 10-0000 57 

--------------------------------------------------------------------- (continued) 
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--------- 
GAUGE 

------------ 
0.600000 

------------ 
10.0000 

-------------------------------- 
58 

GAUGE 0.600000 10.0000 59 
GAUGE 0.600000 10.0000 60 
GAUGE 0.600000 10.0000 61 
GAUGE 0.600000 10.0000 62 
GAUGE 0.600000 10.0000 63 
GAUGE 0.600000 10.0000 64 
GAUGE 0.600000 10.0000 81 
GAUGE 0.600000 10.0000 82 
GAUGE 0.600000 10.0000 83 
GAUGE 0.600000 10.0000 84 
GAUGE 0.600000 10.0000 85 
GAUGE 0.600000 10-0000 86 
GAUGE 0.600000 10-0000 87 
GAUGE 0.600000 10-0000 88 
GAUGE 0.600000 10-0000 89 
GAUGE 0.600000 10-0000 90 
GAUGE 0.600000 10-0000 91 
GAUGE 0.600000 10-0000 92 
GAUGE 0.600000 10-0000 93 
GAUGE 0.600000 10-0000 94 
GAUGE 0.600000 10-0000 95 
GAUGE 0.600000 10-0000 96 
GAUGE 0.600000 10-0000 97 
GAUGE 0.600000 10-0000 98 
GAUGE 0.600000 10-0000 99 
GAUGE 0.600000 10-0000 100 
GAUGE 0.600000 10-0000 101 
GAUGE 0.600000 10-0000 102 
GAUGE 0.600000 10-0000 103 
GAUGE 0.600000 10-0000 104 
GAUGE 0.600000 10-0000 105 
GAUGE 0.600000 10-0000 106 
GAUGE 0.600000 10-0000 107 
GAUGE 0.600000 10-0000 108 
GAUGE 0.600000 10-0000 109 
GAUGE 0.600000 10-0000 110 
GAUGE 0.600000 10-0000 ill 
GAUGE 0.600000 10-0000 112 
GAUGE 0.600000 3.50000 65 
GAUGE 0.600000 3.50000 66 
GAUGE 0.600000 3.50000 67 
GAUGE 0.600000 3.50000 68 
GAUGE 0.600000 3.50000 69 
GAUGE 0.600000 3.50000 70 
GAUGE 0.600000 3.50000 71 

(continued) 
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--------- 
GAUGE 

------------ 
0.600000 

------------ 
3.50000 

------------------------------------ 
72 

GAUGE 0.600000 3.50000 73 
GAUGE 0.600000 3.50000 74 
GAUGE 0.600000 3.50000 75 
GAUGE 0.600000 3.50000 76 
GAUGE 0.600000 3.50000 77 
GAUGE 0.600000 3.50000 78 
GAUGE 0.600000 3.50000 79 
GAUGE 0.600000 3.50000 80 
GAUGE 0.600000 2.50000 113 
GAUGE 0.600000 2.50000 114 
GAUGE 0.600000 2.50000 115 
GAUGE 0.600000 2.50000 116 
GAUGE 0.600000 2.50000 117 
GAUGE 0.600000 2.50000 118 
GAUGE 0.600000 2.50000 119 
GAUGE 0.600000 2.50000 120 
GAUGE 0.600000 2.50000 121 
GAUGE 0.600000 2.50000 122 
GAUGE 0.600000 2.50000 123 
GAUGE 0.600000 2.50000 124 
GAUGE 0.600000 2.50000 125 
GAUGE 0.600000 2.50000 126 
GAUGE 0.600000 2.50000 127 
GAUGE 0.600000 2.50000 128 
GAUGE 0.600000 2.50000 129 
GAUGE 0.600000 2.50000 130 
GAUGE 0.600000 2.50000 131 
GAUGE 0.600000 2.50000 132 
GAUGE 0.600000 2.50000 133 
GAUGE 0.600000 2.50000 134 
GAUGE 0.600000 2.50000 135 
GAUGE 0.600000 2.50000 136 
GAUGE 0.600000 2.50000 137 
GAUGE 0.600000 2.50000 138 
GAUGE 0.600000 2.50000 139 
GAUGE 0.600000 2.50000 140 
GAUGE 0.600000 2.50000 141 
GAUGE 0.600000 2.50000 142 
GAUGE 0.600000 2.50000 143 
GAUGE 0.600000 2.50000 144 
STRESS -120.000 250.000 33 
STRESS -120.000 250.000 34 
STRESS -120.000 250.000 35 
STRESS -120.000 250.000 36 

(continued) 
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--------- 
STRESS 

------------ 
-120.000 

----------- 
250.000 

-------------------------------------- 
37 

STRESS -120.000 250.000 38 
STRESS -120.000 250.000 39 
STRESS -120.000 250.000 40 
STRESS -120.000 250.000 41 
STRESS -120.000 250.000 42 
STRESS -120.000 250.000 43 
STRESS -120.000 250.000 44 
STRESS -120.000 250.000 45 
STRESS -120.000 250.000 46 
STRESS -120.000 250.000 47 
STRESS -120.000 250.000 48 
STRESS -120.000 250.000 49 
STRESS -120.000 250.000 50 
STRESS -120.000 250.000 51 
STRESS -120.000 250.000 52 
STRESS -120.000 250.000 53 
STRESS -120.000 250.000 54 
STRESS -120.000 250.000 55 
STRESS -120.000 250.000 56 
STRESS -120.000 250.000 57 
STRESS -120.000 250.000 58 
STRESS -120.000 250.000 59 
STRESS -120.000 250.000 60 
STRESS -120.000 250.000 61 
STRESS -120.000 250.000 62 
STRESS -120.000 250.000 63 
STRESS -120.000 250.000 64 
STRESS -120.000 250.000 65 
STRESS -120.000 250.000 66 
STRESS -120.000 250.000 67 
STRESS -120.000 250.000 68 
STRESS -120.000 250.000 69 
STRESS -120.000 250.000 70 
STRESS -120.000 250.000 71 
STRESS -120.000 250.000 72 
STRESS -120.000 250.000 ý3 
STRESS -120.000 250.000 74 
STRESS -120.000 250-000 75 
STRESS -120.000 250.000 76 
STRESS -120.000 250.000 77 
STRESS -120.000 250.000 78 
STRESS -120.000 250-000 79 
STRESS -120.000 250-000 80 
STRESS -120.000 250-000 81 

-------------------------------- --------- ------------ ----------- ----- 
(continued) 
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--------- 
STRESS 

------------ 
-120.000 

------------ 
250.000 

------------------------------------ 
82 

STRESS -120.000 250.000 83 
STRESS -120.000 250.000 84 
STRESS -120.000 250.000 85 
STRESS -120.000 250.000 86 
STRESS -120.000 250.000 87 
STRESS -120.000 250.000 88 
STRESS -120.000 250.000 89 
STRESS -120.000 250.000 90 
STRESS -120.000 250.000 91 
STRESS -120.000 250.000 92 
STRESS -120.000 250.000 93 
STRESS -120.000 250.000 94 
STRESS -120.000 250.000 95 
STRESS -120.000 250.000 96 
STRESS -120.000 250.000 97 
STRESS -120.000 250.000 98 
STRESS -120.000 250.000 99 
STRESS -120.000 250.000 100 
STRESS -120.000 250.000 101 
STRESS -120.000 250.000 102 
STRESS -120.000 250.000 103 
STRESS -120.000 250.000 104 
STRESS -120.000 250.000 105 
STRESS -120.000 250.000 106 
STRESS -120.000 250.000 107 
STRESS -120.000 250.000 108 
STRESS -120.000 250.000 109 
STRESS -120.000 250.000 110 
STRESS -120.000 250.000 ill 
STRESS -120.000 250.000 112 
STRESS -120.000 250.000 113 
STRESS -120.000 250.000 114 
STRESS -120.000 250.000 115 
STRESS -120.000 250.000 116 
STRESS -120.000 250.000 117 
STRESS -120.000 250.000 118 
STRESS -120.000 250.000 119 
STRESS -120.000 250.000 120 
STRESS -120.000 250.000 121 
STRESS -120.000 250.000 122 
STRESS -120.000 250.000 123 
STRESS -120.000 250.000 124 
STRESS -120.000 250.000 125 
STRESS -120.000 250.000 126 

(continued) 
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STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
STRESS 
DISP-Y 
DISP-Y 
DISP-Y 
DISP-Y 
DISP-Y 
ENDATA 

-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-120.000 
-25.0000 
-25.0000 
-25.0000 
-25.0000 
-25.0000 

250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
250.000 
25.0000 
25.0000 
25.0000 
25.0000 
25.0000 

127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
81 
82 
83 
84 
85 

(end of table) 
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Table 6-4: The FE data of the Dynamic Case Example. 

TITLE = WING DYNAMIC-CASE FREQUENCY CONSTRAINT 
BEGIN BULK 
GRID 1 0. 300. 0. 123456 
GRID 2 0. 270. 600. 123456 
GRID 3 0. 221.052 -600. 123456 
GRID 4 0. 142.104 -1200. 123456 
GRID 5 0. 140. 1200. 123456 
GRID 6 0. -142.105 -1200. 123456 
GRID 7 0. -200. 1200. 123456 
GRID 8 0. - 221.052 -600. 123456 
GRID 9 0. -300. 600. 123456 
GRID 10 0. -300. 0. 123456 
GRID 11 450. 275. 0. 456 
GRID 12 450. 247.5 550. 456 
GRID 13 450. 202.631 -550. 456 
GRID 14 450. 130.813 1100. 456 
GRID 15 450. 130.262 -1100. 456 
GRID 16 450. - 130.263 -1100. 456 
GRID 17 450. - 186.875 1100. 456 
GRID 18 450. - 202.632 -550. 456 
GRID 19 450. -275. 550. 456 
GRID 20 450. -275. 0. 456 
GRID 21 900.0001 250. 0. 456 
GRID 22 900.0001 225. 500. 456 
GRID 23 900.0001 184.21 -500. 456 
GRID 24 900.0001 121.625 1000. 456 
GRID 25 900.0001 118.421 -1000. 456 
GRID 26 900.0001 -118.421 -1000. 456 
GRID 27 900.0001 -173.75 1000. 456 
GRID 28 900.0001-184.211 -500. 456 
GRID 29 900.0001 -250. 500. 456 
GRID 30 900.0001 -250. 0. 456 
GRID 31 1350. 225. 0. 456 
GRID 32 1350. 202.5 450. 456 
GRID 33 1350. 165.789 -450. 456 
GRID 34 1350. 11 

, 
2.438900-0001 456 

GRID 35 1350. 106.579 -900.000 456 
GRID 36 1350. -106.579-900.000 456 
GRID 37 1350. -160.625900.0001 456 
GRID 38 1350. -165.79 -450. 456 
GRID 39 1350. -225. 450. 456 
GRID 40 1350. -225. 0. 456 
GRID 41 1800. 200. 0. 456 
GRID 42 1800. 180. 400. 456 

(continued) 
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--------- 
GRID 

------------- 
43 

-------------------------------- 
1800.147.368 -400. 

---------- 
456 

GRID 44 1800.103.25800.0001 456 GRID 45 1800.94.73701-800.000 456 
GRID 46 1800. -94.7375-800.000 456 
GRID 47 1800. -147.369 -400. 456 
GRID 48 1800. -147.5800.0001 456 
GRID 49 1800. -200.400. 456 
GRID 50 1800. -200.0. 456 
GRID 51 2250.175.0. 456 
GRID 52 2250.157.5 350. 456 
GRID 53 2250.128.948 -350. 456 
GRID 54 2250.94.06251700.0001 456 
GRID 55 2250.82.89521-700.000 456 
GRID 56 2250. -82.8956-700.000 456 
GRID 57 2250. -128.948 -350. 456 
GRID 58 2250. -134.375700.0001 456 
GRID 59 2250. -175.350. 456 
GRID 60 2250. -175.0. 456 
GRID 61 2700.150.0. 456 
GRID 62 2700.135.300. 456 
GRID 63 2700.110.527 -300. 456 
GRID 64 2700.84.87501 600. 456 
GRID 65 2700.71.0535 -600. 456 
GRID 66 2700. -71.0537 -600. 456 
GRID 67 2700. -110.527 -300. 456 
GRID 68 2700. -121.25 600. 456 
GRID 69 2700. -150.300. 456 
GRID 70 2700. -150.0. 456 
GRID 71 3150.125.0. 456 
GRID 72 3150.112.5 250. 456 
GRID 73 3150.92.10591 -250. 456 
GRID 74 3150.75.68751 500. 456 
GRID 75 3150.59.21181 -500. 456 
GRID 76 3150. -59.2119 -500. 456 
GRID 77 3150. -92.1059 -250. 456 
GRID 78 3150. -108.125 500. 456 
GRID 79 3150. -125.250. 456 
GRID 80 3150. -125.0. 456 
GRID 81 3600.100.0. 456 
GRID 82 3600-90-00001 200. 456 
GRID 83 3600.73.68501 -200. 456 
GRID 84 3600.66.50001 400. 456 
GRID 
--------- 

85 
------------ 

3600.47.37001 -400. 
--------------------------------- 

456 
---------- 

(continued) 
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GRID 86 
GRID 87 
GRID 88 
GRID 89 
GRID 90 
MAT1 1 79000. 
PSHELL 33 1 
PSHEAR 65 1 
CQUAD4 33 33 
CQUAD4 34 33 
CQUAD4 35 33 
CQUAD4 36 33 
CQUAD4 37 33 
CQUAD4 38 33 
CQUAD4 39 33 
CQUAD4 40 33 
CQUAD4 41 33 
CQUAD4 42 33 
CQUAD4 43 33 
CQUAD4 44 33 
CQUAD4 45 33 
CQUAD4 46 33 
CQUAD4 47 33 
CQUAD4 48 33 
CQUAD4 49 33 
CQUAD4 50 33 
CQUAD4 51 33 
CQUAD4 52 33 
CQUAD4 53 33 
CQUAD4 54 33 
CQUAD4 55 33 
CQUAD4 56 33 
CQUAD4 57 33 
CQUAD4 58 33 
CQUAD4 59 33 
CQUAD4 60 33 
CQUAD4 61 33 
CQUAD4 62 33 
CQUAD4 63 33 
CQUAD4 64 33 
CQUAD4 81 33 
CQUAD4 82 33 
CQUAD4 83 33 
CQUAD4 84 33 
CQUAD4 85 33 
CQUAD4 86 33 
CQUAD4 87 33 

3600. -47.3700 
3600. -73.6850 
3600--95.0000 
3600. -100. 
3600. -100. 

0.33 

5 
2 

14 
12 
24 
22 
34 
32 
44 
42 
54 
52 
64 
62 
74 
72 

1 
3 

11 
13 
21 
23 
31 
33 
41 
43 
51 
53 
61 
63 
71 
73 

6 
8 

16 
18 
26 
28 
36 

14 
12 
24 
22 
34 
32 
44 
42 
54 
52 
64 
62 
74 
72 
84 
82 
11 
13 
21 
23 
31 
33 
41 
43 
51 
53 
61 
63 
71 
73 
81 
83 
16 
18 
26 
28 
36 
38 
46 

-400. 
-200. 

400. 
200. 

0. 
2.80-6 

12 
11 
22 
21 
32 
31 
42 
41 
52 
51 
62 
61 
72 
71 
82 
81 
13 
15 
23 
25 
33 
35 
43 
45 
53 
55 
63 
65 
73 
75 
83 
85 
18 
20 
28 
30 
38 
40 
47 

2 
1 

12 
11 
22 
21 
32 
31 
42 
41 
52 
51 
62 
61 
72 
71 

3 
4 

13 
15 
23 
25 
33 
35 
43 
45 
53 
55 
63 
65 
73 
75 

8 
10 
18 
20 
28 
30 
38 

456 
456 
456 
456 
456 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

(continued) 
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--------- 
CQUAD4 
CQUAD4 

---------- 
88 
89 

-------- 
33 
33 

-------- 
38 

-------- 
47 

-------- 
50 

-------- 
40 

----- 
0. 

CQUAD4 90 33 
46 
47 

56 
57 

57 47 0. 
CQUAD4 91 33 56 66 

60 
67 

50 
57 

0. 
0 CQUAD4 

CQUAD4 
92 
93 

33 
33 

57 67 70 60 . 0. 
CQUAD4 94 33 

66 
67 

76 
77 

77 
80 

67 
70 

0. 
CQUAD4 95 33 76 86 87 77 

0. 
0 CQUAD4 96 33 77 87 90 80 . 0 CQUAD4 97 33 10 20 19 9 . 0 CQUAD4 98 33 9 19 17 7 . 0 CQUAD4 99 33 20 30 29 19 . 0 CQUAD4 100 33 19 29 27 17 . 0 CQUAD4 101 33 29 39 37 27 . 0 CQUAD4 102 33 30 40 39 29 . 0 CQUAD4 103 33 40 50 49 39 . 0 CQUAD4 104 33 39 49 48 37 . 0 CQUAD4 105 33 50 60 59 49 . 0 CQUAD4 106 33 49 59 58 48 . 0 CQUAD4 107 33 60 70 69 59 . 0 CQUAD4 108 33 59 69 68 58 . 0. CQUAD4 109 33 70 80 79 69 0. CQUAD4 110 33 69 79 78 68 0. CQUAD4 111 33 80 90 89 79 0. 

CQUAD4 112 33 79 89 88 78 0. 
CQUAD4 113 33 17 14 12 19 0. 
CQUAD4 114 33 19 12 11 20 0. 
CQUAD4 115 33 20 11 13 18 0. 
CQUAD4 116 33 18 13 15 16 0. 
CQUAD4 117 33 27 24 22 29 0. 
CQUAD4 118 33 29 22 21 30 0. 
CQUAD4 119 33 30 21 23 28 0. 
CQUAD4 120 33 28 23 25 26 0. 
CQUAD4 121 33 37 34 32 39 0. 
CQUAD4 122 33 39 32 31 40 0. 
CQUAD4 123 33 40 31 33 38 0. 
CQUAD4 124 33 38 33 35 36 0. 
CQUAD4 125 33 48 44 42 49 0. 
CQUAD4 126 33 49 42 41 50 0. 
CQUAD4 127 33 50 41 43 47 0. 
CQUAD4 128 33 47 43 45 46 0. 
CQUAD4 129 33 58 54 52 59 0. 
CQUAD4 
---------- 

130 
--------- 

33 
-------- 

59 
-------- 

52 
-------- 

51 
-------- 

60 
-------- 

0. 
----- 

(continued) 
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CQUAD4 131 33 60 51 53 57 
CQUAD4 132 33 57 53 55 56 
CQUAD4 133 33 68 64 62 69 
CQUAD4 134 33 69 62 61 70 
CQUAD4 135 33 70 61 63 67 
CQUAD4 136 33 67 63 65 66 
CQUAD4 137 33 78 74 72 79 
CQUAD4 138 33 79 72 71 80 
CQUAD4 139 33 80 71 73 77 
CQUAD4 140 33 77 73 75 76 
CQUAD4 141 33 88 84 82 89 
CQUAD4 142 33 89 82 81 90 
CQUAD4 143 33 90 81 83 87 
CQUAD4 144 33 87 83 85 86 
CSHEAR 65 65 5 14 17 7 
CSHEAR 66 65 14 24 27 17 
CSHEAR 67 65 24 34 37 27 
CSHEAR 68 65 34 44 48 37 
CSHEAR 69 65 44 54 58 48 
CSHEAR 70 65 54 64 68 58 
CSHEAR 71 65 64 74 78 68 
CSHEAR 72 65 74 84 88 78 
CSHEAR 73 65 4 15 16 6 
CSHEAR 74 65 15 25 26 16 
CSHEAR 75 65 25 35 36 26 
CSHEAR 76 65 35 45 46 36 
CSHEAR 77 65 45 55 56 46 
CSHEAR 78 65 55 65 66 56 
CSHEAR 79 65 65 75 76 66 
CSHEAR 80 65 75 85 86 76 
ENDDATA 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

(end of table) 
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Table 6-5: The command data file of the Dynamic Case 
Example. 

START 
COMMAND DATA PNEWTON 
C 

SET NSIV=l; 
SET MASS=STR; 
SET MODE=l; 
SET MXIT=10; 
SET APRT=YES; 
SET ACTG=YES; 
SET IFLM=YES; 
DO NSIN; 
DO OPTIN; 

C 
DO ANALYSIS; 
DO INSPECT; 
DO OPTX; 

C PSEUDO NEWTON ITERATIONS 
L010: DO ITER; 

DO QNEWTON; 
DO OPTX; 
IF(ENDC. EQ. YES) GOTO L031; 
IF(NOIT. EQ. 3) DO HISTORY; 
IF(NOIT. EQ. 3) SUSPEND; 
IF(ENDI. EQ. YES) GOTO L040; 
GOTO L010; 

L031: DISPLAY CONVERGENCE TO THE 
GOTO L050; 

LOWER BOUND WEIGHT; 

L032: DISPLAY CONVERGENCE TO DESIGN VARIABLES; 
GOTO L050; 

L033: DISPLAY CONVERGENCE TO FEASIBLE VS ACTUAL WEIGHT; 
GOTO L050; 

L034: DISPLAY CONVERGENCE TO FEASIBLE WEIGHT; 
GOTO L050; 

L040: DISPLAY MAX. NUMBER OF ITERATIONS REACHED; 
C 
L050: SET APRT=YES; 

DO ANALYSIS; 
DO INSPECT; 
DO HIST; 
STOP; 
END; 

C ANALYSIS PROCEDURE; 
PROC OPTX; 
DO ANALYSIS; 
DO ACTSET; 
DO DERV; 
DO CONV; 
DO INSPECT; 
END OPTX; 

ENDATA 
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Table 6-6: The design/ constraint file of the Dynamic Case 
Example. 

C234567890123456789012345678901234567890123456789012345678901234567890 
DESIGN 1 33 
DESIGN 1 34 
DESIGN 1 49 
DESIGN 1 50 
DESIGN 1 81 
DESIGN 1 82 
DESIGN 1 97 
DESIGN 1 98 
DESIGN 2 35 
DESIGN 2 36 
DESIGN 2 51 
DESIGN 2 52 
DESIGN 2 83 
DESIGN 2 84 
DESIGN 2 99 
DESIGN 2 100 
DESIGN 3 37 
DESIGN 3 38 
DESIGN 3 39 
DESIGN 3 40 
DESIGN 3 41 
DESIGN 3 42 
DESIGN 3 43 
DESIGN 3 44 
DESIGN 3 45 
DESIGN 3 46 
DESIGN 3 47 
DESIGN 3 48 
DESIGN 3 53 
DESIGN 3 54 
DESIGN 3 55 
DESIGN 3 56 
DESIGN 3 57 
DESIGN 3 58 
DESIGN 3 59 
DESIGN 3 60 
DESIGN 3 61 
DESIGN 3 62 
DESIGN 3 63 
DESIGN 3 64 
DESIGN 4 85 
DESIGN 4 86 
DESIGN 
------------ 

4 
---------- 

87 
------------------------------------------------ 

(continued) 
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------------ 
DESIGN 

---------- 
4 

----------------------------------------- 
88 

DESIGN 4 89 
DESIGN 4 90 
DESIGN 4 91 
DESIGN 4 92 
DESIGN 4 93 
DESIGN 4 94 
DESIGN 4 95 
DESIGN 4 96 
DESIGN 4 101 
DESIGN 4 102 
DESIGN 4 103 
DESIGN 4 104 
DESIGN 4 105 
DESIGN 4 106 
DESIGN 4 107 
DESIGN 4 108 
DESIGN 4 109 
DESIGN 4 110 
DESIGN 4 ill 
DESIGN 4 112 
DESIGN 5 65 
DESIGN 5 66 
DESIGN 5 67 
DESIGN 5 68 
DESIGN 5 69 
DESIGN 5 70 
DESIGN 5 71 
DESIGN 5 72 
DESIGN 5 73 
DESIGN 5 74 
DESIGN 5 75 
DESIGN 5 76 
DESIGN 5 77 
DESIGN 5 78 
DESIGN 5 79 
DESIGN 5 80 
DESIGN 6 113 
DESIGN 6 114 
DESIGN 6 115 
DESIGN 6 116 
DESIGN 6 117 
DESIGN 6 118 
DESIGN 6 119 
DESIGN 6 120 
DESIGN 6 121 

--------------------------------------------------------------- (continued) 
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DESIGN 6 122 
DESIGN 6 123 
DESIGN 6 124 
DESIGN 6 125 
DESIGN 6 126 
DESIGN 6 127 
DESIGN 6 128 
DESIGN 6 129 
DESIGN 6 130 
DESIGN 6 131 
DESIGN 6 132 
DESIGN 6 133 
DESIGN 6 134 
DESIGN 6 135 
DESIGN 6 136 
DESIGN 6 137 
DESIGN 6 138 
DESIGN 6 139 
DESIGN 6 140 
DESIGN 6 141 
DESIGN 6 142 
DESIGN 6 143 
DESIGN 6 144 
GAUGE 0.600000 10.0000 33 
GAUGE 0.600000 10.0000 34 
GAUGE 0.600000 10.0000 35 
GAUGE 0.600000 10.0000 36 
GAUGE 0.600000 10.0000 37 
GAUGE 0.600000 10-0000 38 
GAUGE 0.600000 10.0000 39 
GAUGE 0.600000 10-0000 40 
GAUGE 0.600000 10-0000 41 
GAUGE 0.600000 10-0000 42 
GAUGE 0.600000 10-0000 43 
GAUGE 0.600000 10-0000 44 
GAUGE 0.600000 10-0000 45 
GAUGE 0.600000 10-0000 46 
GAUGE 0.600000 10-0000 47 
GAUGE 0.600000 10-0000 48 
GAUGE 0.600000 10-0000 49 
GAUGE 0.600000 10-0000 50 
GAUGE 0.600000 10-0000 51 
GAUGE 0.600000 10-0000 52 
GAUGE 0.600000 10-0000 53 
GAUGE 0.600000 10-0000 54 

---------------------------- ----------- ---------- ----------- --- 
(continued) 
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--------- 
GAUGE 

------------ 
0.600000 

------------ 
10.0000 

------------------------------ 
55 

GAUGE 0.600000 10.0000 56 
GAUGE 0.600000 10.0000 57 
GAUGE 0.600000 10.0000 58 
GAUGE 0.600000 10.0000 59 
GAUGE 0.600000 10.0000 60 
GAUGE 0.600000 10.0000 61 
GAUGE 0.600000 10.0000 62 
GAUGE 0.600000 10.0000 63 
GAUGE 0.600000 10.0000 64 
GAUGE 0.600000 10.0000 81 
GAUGE 0.600000 10.0000 82 
GAUGE 0.600000 10.0000 83 
GAUGE 0.600000 10.0000 84 
GAUGE 0.600000 10.0000 85 
GAUGE 0.600000 10-0000 86 
GAUGE 0.600000 10-0000 87 
GAUGE 0.600000 10-0000 88 
GAUGE 0.600000 10-0000 89 
GAUGE 0.600000 10-0000 90 
GAUGE 0.600000 10-0000 91 
GAUGE 0.600000 10-0000 92 
GAUGE 0.600000 10-0000 93 
GAUGE 0.600000 10-0000 94 
GAUGE 0.600000 10-0000 95 
GAUGE 0.600000 10-0000 96 
GAUGE 0.600000 10-0000 97 
GAUGE 0.600000 10-0000 98 
GAUGE 0.600000 10-0000 99 
GAUGE 0.600000 10-0000 100 
GAUGE 0.600000 10-0000 101 
GAUGE 0.600000 10-0000 102 
GAUGE 0.600000 10-0000 103 
GAUGE 0.600000 10-0000 104 
GAUGE 0.600000 10-0000 105 
GAUGE 0.600000 10-0000 106 
GAUGE 0.600000 10-0000 107 
GAUGE 0.600000 10-0000 108 
GAUGE 0.600000 10-0000 109 
GAUGE 0.600000 10-0000 110 
GAUGE 0.600000 10-0000 ill 
GAUGE 0.600000 10-0000 112 
GAUGE 0.600000 3.50000 65 
GAUGE 0.600000 3.50000 66 
GAUGE 
-------- 

0.600000 
------------- 

3.50000 
----------- 

67 
------------------------------- 

(continued) 
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GAUGE 0.600000 3.50000 68 
GAUGE 0.600000 3.50000 69 
GAUGE 0.600000 3.50000 70 
GAUGE 0.600000 3.50000 71 
GAUGE 0.600000 3.50000 72 
GAUGE 0.600000 3.50000 73 
GAUGE 0.600000 3.50000 74 
GAUGE 0.600000 3.50000 75 
GAUGE 0.600000 3.50000 76 
GAUGE 0.600000 3.50000 77 
GAUGE 0.600000 3.50000 78 
GAUGE 0.600000 3.50000 79 
GAUGE 0.600000 3.50000 80 
GAUGE 0.600000 2.50000 113 
GAUGE 0.600000 2.50000 114 
GAUGE 0.600000 2.50000 115 
GAUGE 0.600000 2.50000 116 
GAUGE 0.600000 2.50000 117 
GAUGE 0.600000 2.50000 118 
GAUGE 0.600000 2.50000 119 
GAUGE 0.600000 2.50000 120 
GAUGE 0.600000 2.50000 121 
GAUGE 0.600000 2.50000 122 
GAUGE 0.600000 2.50000 123 
GAUGE 0.600000 2.50000 124 
GAUGE 0.600000 2.50000 125 
GAUGE 0.600000 2.50000 126 
GAUGE 0.600000 2.50000 127 
GAUGE 0.600000 2.50000 128 
GAUGE 0.600000 2.50000 129 
GAUGE 0.600000 2.50000 130 
GAUGE 0.600000 2.50000 131 
GAUGE 0.600000 2.50000 132 
GAUGE 0.600000 2.50000 133 
GAUGE 0.600000 2.50000 134 
GAUGE 0.600000 2.50000 135 
GAUGE 0.600000 2.50000 136 
GAUGE 0.600000 2.50000 137 
GAUGE 0.600000 2.50000 138 
GAUGE 0.600000 2.50000 139 
GAUGE 0.600000 2.50000 140 
GAUGE 0.600000 2.50000 141 
GAUGE 0.600000 2.50000 142 
GAUGE 0.600000 2.50000 143 
GAUGE 0.600000 2.50000 144 
NFREQ 1 2.50 
ACTNFREQ 1 
ENDATA 

(end of table) 
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Table 6-7: The modified design/constraint file of the 
Dynamic Case Example. 

C234567890123456789012345678901234567890123456789012345678901234567890 
DESIGN 1 33 
DESIGN 1 34 
DESIGN 1 49 
DESIGN 1 50 
DESIGN 1 81 
DESIGN 1 82 
DESIGN 1 97 
DESIGN 1 98 
DESIGN 2 35 
DESIGN 2 36 
DESIGN 2 51 
DESIGN 2 52 
DESIGN 2 83 
DESIGN 2 84 
DESIGN 2 99 
DESIGN 2 100 
DESIGN 3 37 
DESIGN 3 38 
DESIGN 3 53 
DESIGN 3 54 
DESIGN 3 85 
DESIGN 3 86 
DESIGN 3 101 
DESIGN 3 102 
DESIGN 4 39 
DESIGN 4 40 
DESIGN 4 55 
DESIGN 4 56 
DESIGN 4 87 
DESIGN 4 88 
DESIGN 4 103 
DESIGN 4 104 
DESIGN 5 41 
DESIGN 5 42 
DESIGN 5 57 
DESIGN 5 58 
DESIGN 5 89 
DESIGN 5 90 
DESIGN 5 105 
DESIGN 5 106 
DESIGN 6 43 
DESIGN 6 44 
DESIGN 6 59 
DESIGN 6 60 

(continued) 
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------------ 
DESIGN 

---------- 
6 

------------------------------------------ 
91 

DESIGN 6 92 
DESIGN 6 107 
DESIGN 6 108 
DESIGN 7 45 
DESIGN 7 46 
DESIGN 7 61 
DESIGN 7 62 
DESIGN 7 93 
DESIGN 7 94 
DESIGN 7 109 
DESIGN 7 110 
DESIGN 8 47 
DESIGN 8 48 
DESIGN 8 63 
DESIGN 8 64 
DESIGN 8 95 
DESIGN 8 96 
DESIGN 8 ill 
DESIGN 8 112 
DESIGN 9 113 
DESIGN 9 114 
DESIGN 9 115 
DESIGN 9 116 
DESIGN 9 117 
DESIGN 9 118 
DESIGN 9 119 
DESIGN 9 120 
DESIGN 9 121 
DESIGN 9 122 
DESIGN 9 123 
DESIGN 9 124 
DESIGN 9 125 
DESIGN 9 126 
DESIGN 9 127 
DESIGN 9 128 
DESIGN 9 129 
DESIGN 9 130 
DESIGN 9 131 
DESIGN 9 132 
DESIGN 9 133 
DESIGN 9 134 
DESIGN 9 135 
DESIGN 9 136 
DESIGN 
------------ 

9 
---------- 

137 
------------------------------------------ 

(continued) 
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DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
DESIGN 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 
GAUGE 

9 
9 
9 
9 
9 
9 
9 
10 
10 
11 
11 
12 
12 
13 
13 
14 
14 
15 
15 
16 
16 
17 
17 

0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 
0.600000 

138 
139 
140 
141 
142 
143 
144 

65 
73 
66 
74 
67 
75 
68 
76 
69 
77 
70 
78 
71 
79 
72 
80 

10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 
10.0000 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

(continued) 
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GAUGE 0.600000 10.0000 54 
GAUGE 0.600000 10.0000 55 
GAUGE 0.600000 10.0000 56 
GAUGE 0.600000 10.0000 57 
GAUGE 0.600000 10.0000 58 
GAUGE 0.600000 10.0000 59 
GAUGE 0.600000 10.0000 60 
GAUGE 0.600000 10.0000 61 
GAUGE 0.600000 10.0000 62 
GAUGE 0.600000 10.0000 63 
GAUGE 0.600000 10.0000 64 
GAUGE 0.600000 10.0000 81 
GAUGE 0.600000 10-0000 82 
GAUGE 0.600000 10.0000 83 
GAUGE 0.600000 10-0000 84 
GAUGE 0.600000 10-0000 85 
GAUGE 0.600000 10-0000 86 
GAUGE 0.600000 10-0000 87 
GAUGE 0.600000 10-0000 88 
GAUGE 0.600000 10-0000 89 
GAUGE 0.600000 10-0000 90 
GAUGE 0.600000 10-0000 91 
GAUGE 0.600000 10-0000 92 
GAUGE 0.600000 10-0000 93 
GAUGE 0.600000 10-0000 94 
GAUGE 0.600000 10-0000 95 
GAUGE 0.600000 10-0000 96 
GAUGE 0.600000 10-0000 97 
GAUGE 0.600000 10-0000 98 
GAUGE 0.600000 10-0000 99 
GAUGE 0.600000 10-0000 100 
GAUGE 0.600000 10-0000 101 
GAUGE 0.600000 10-0000 102 
GAUGE 0.600000 10-0000 103 
GAUGE 0.600000 10-0000 104 
GAUGE 0.600000 10-0000 105 
GAUGE 0.600000 10-0000 106 
GAUGE 0.600000 10-0000 107 
GAUGE 0.600000 10-0000 108 
GAUGE 0.600000 10-0000 109 
GAUGE 0.600000 10-0000 110 
GAUGE 0.600000 10-0000 ill 
GAUGE 0.600000 10-0000 112 
GAUGE 0.600000 3.50000 65 
GAUGE 0.600000 3.50000 66 
GAUGE 0.600000 3.50000 67 

(continued) 
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---------- 
GAUGE 

----------- 
0.600000 

------------ 
3.50000 

------------------------------ 
68 

GAUGE 0.600000 3.50000 69 
GAUGE 0.600000 3.50000 70 
GAUGE 0.600000 3.50000 71 
GAUGE 0.600000 3.50000 72 
GAUGE 0.600000 3.50000 73 
GAUGE 0.600000 3.50000 74 
GAUGE 0.600000 3.50000 75 
GAUGE 0.600000 3.50000 76 
GAUGE 0.600000 3.50000 77 
GAUGE 0.600000 3.50000 78 
GAUGE 0.600000 3.50000 79 
GAUGE 0.600000 3.50000 80 
GAUGE 0.600000 2.50000 113 
GAUGE 0.600000 2.50000 114 
GAUGE 0.600000 2.50000 115 
GAUGE 0.600000 2.50000 116 
GAUGE 0.600000 2.50000 117 
GAUGE 0.600000 2.50000 118 
GAUGE 0.600000 2.50000 119 
GAUGE 0.600000 2.50000 120 
GAUGE 0.600000 2.50000 121 
GAUGE 0.600000 2.50000 122 
GAUGE 0.600000 2.50000 123 
GAUGE 0.600000 2.50000 124 
GAUGE 0.600000 2.50000 125 
GAUGE 0.600000 2.50000 126 
GAUGE 0.600000 2.50000 127 
GAUGE 0.600000 2.50000 128 
GAUGE 0.600000 2.50000 129 
GAUGE 0.600000 2.50000 130 
GAUGE 0.600000 2.50000 131 
GAUGE 0.600000 2.50000 132 
GAUGE 0.600000 2.50000 133 
GAUGE 0.600000 2.50000 134 
GAUGE 0.600000 2.50000 135 
GAUGE 0.600000 2.50000 136 
GAUGE 0.600000 2.50000 137 
GAUGE 0.600000 2.50000 138 
GAUGE 0.600000 2.50000 139 
GAUGE 0.600000 2.50000 140 
GAUGE 0.600000 2.50000 141 
GAUGE 0.600000 2.50000 142 
GAUGE 0.600000 2.50000 143 
GAUGE 0.600000 2.50000 144 
NFREQ 1 2.50000 
ACTNFREQ 1 
ENDATA 

(end of table) 
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Figure 6-1 The FE model of the static case example. 
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Figure 6-2 The FE model of the similar static past 
case. 
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Figure 6-3 The FE model of the similar dynamic past 

case. 
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