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Abstract 
 

The performance of the existing non-contiguous 
processor allocation strategies has been traditionally 
carried out by means of simulation based on a 
stochastic workload model to generate a stream of 
incoming jobs. To validate the performance of the 
existing algorithms, there has been a need to evaluate 
the algorithms’ performance based on a real workload 
trace. In this paper, we evaluate the performance of 
several well-known processor allocation and job 
scheduling strategies based on a real workload trace 
and compare the results against those obtained from 
using a stochastic workload. Our results reveal that 
the conclusions reached on the relative performance 
merits of the allocation strategies when a real 
workload trace is used are in general compatible with 
those obtained when a stochastic workload is used. 
 
 

1. Introduction 
 

Efficient processor allocation and job scheduling 
are critical if the full computational power of large-
scale multicomputers is to be harnessed effectively [2, 
5]. Processor allocation is responsible for selecting the 
set of processors on which parallel jobs are executed 
whereas job scheduling is responsible for determining 
the order in which the jobs are executed [2, 5, 12].  

Most allocation strategies employed in a 
multicomputer are based on contiguous allocation, 
where the processors allocated to a parallel job are 
physically contiguous and have the same topology as 
that of the interconnection network of the 
multicomputer [2, 5, 19]. Contiguous strategies often 

result in high external processor fragmentation, as has 
been shown in [19]. External fragmentation occurs 
when a sufficient number of free processors are 
available to satisfy a job request but they are not 
allocated to it because they are not contiguous.   

Several studies have attempted to reduce external 
fragmentation [4, 14, 17]. One suggested solution is to 
adopt non-contiguous allocation [4, 12, 17]. In non-
contiguous allocation, a job can execute on multiple 
disjoint smaller sub-networks rather than always 
waiting until a single sub-network of the requested size 
and shape is available. Although non-contiguous 
allocation increases message contention in the network, 
lifting the contiguity condition is expected to reduce 
processor fragmentation and increase processor 
utilization [4, 12, 17]. It is the introduction of 
wormhole switching [1, 15] that has lead researchers to 
consider non-contiguous allocation on multicomputer 
networks with a long communication distances, such as 
the 2D mesh [1, 4, 12, 17]. This is due to the fact that 
one of main advantages of wormhole switching over 
earlier switching techniques, e.g. store-and-forward, is 
that message latency depends less on the distance the 
message travels from source to destination.  

Most existing research on processor allocation has 
been carried out in the context of the 2D mesh [2, 4, 5, 
8, 14, 17, 19]. The mesh has been one of the most 
common networks for multicomputers due to its 
simplicity, scalability, structural regularity, and ease of 
implementation [2, 5]. It has been used as the 
underlying network in a number of practical and 
experimental parallel machines, such as iWARP [3], 
the IBM BlueGene/L [18], and Delta Touchstone [6].  

Most existing allocation strategies employed in a 
multicomputer have been evaluated by means of 
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simulation using a stochastic workload [2, 4, 5, 8, 12, 
13, 14, 17, 19] based mostly on probabilistic 
distributions. In this workload, the researchers have 
used exponential distribution to generate inter-arrival 
times. Job sizes (i.e., the number of processors 
requested) have been generated using a variety of 
probabilistic distributions including uniform, uniform 
increasing, uniform decreasing, and exponential 
distributions, while jobs execution times have been 
generated with exponential distribution. 

In this paper, the performance of the existing non-
contiguous allocation strategies is evaluated using a 
real workload trace and the results are compared 
against those obtained through a stochastic workload. 
A real workload trace is a record of execution of 
parallel jobs submitted to run on a practical parallel 
machine in which each job arrives in the system, 
requests a particular sized partition of the system’s 
processors and executes on the partition for a period of 
time. Although messages from other jobs may pass 
through the new partition, the new job holds the 
processors in this partition exclusively until it finishes 
running. At this time, the job departs the system and its 
processors are freed for use by another incoming job 
[11, 16]. The partitions requested by the jobs typically 
include job size and the execution time. Moreover, 
each job in the workload is associated with an arrival 
time, indicating when it is submitted to the scheduler 
for consideration. A real workload trace can potentially 
provide a very high level of realism when used directly 
in performance evaluation experiments [16]. Our 
results reveal that the conclusions reached on the 
relative performance merits of the allocation strategies 
when a real workload trace is used are compatible with 
those obtained when a stochastic workload is used.  

The rest of the paper is organized as follows. 
Section 2 provides some preliminaries. Section 3 
contains a brief overview of the non-contiguous 
allocation strategies considered in this study while 
Section 4 contains a brief overview of the scheduling 
strategies. Section 5 presents simulation results. 
Finally, Section 6 concludes this paper.  

 

2. Preliminaries 
 

The target system is a LW ×  2D mesh, where W is 
the width of the mesh and L  is its length. Every 
processor is denoted by a pair of coordinates ( yx, ), 

where Wx <≤0  and Ly <≤0  [12]. Each processor 

is connected by bidirectional communication links to 
its neighbour processors, as depicted in Fig. 1. This 
figure shows an example of a 4 × 4 2D mesh, where 
allocated processors are denoted by shaded circles and 

free processors are denoted by white circles. If a job 
requests the allocation of sub-mesh of size 2 × 2 
contiguous allocation fails because no 2 × 2 sub-mesh 
of free processors is available, however the 4 free 
processors can be allocated to the job if allocation is 
non-contiguous. The following definitions have been 
adopted from [12]. 
Definition 1: A sub-mesh ),( lwS  of width w  and 

length l , where Ww ≤<0  and Ll ≤<0  is specified 
by the coordinates ( yxyx ′′,,, ), where ( yx, ) are the 

coordinates of the base of the allocated sub-mesh and 
( yx ′′, ) are the coordinates of its end.  For example (0, 

0, 2, 1) represents the 3 × 2 sub-mesh S  in Fig. 1. The 
base node of the sub-mesh is (0, 0), and its end node is 
(2, 1). The size of ),( lwS  is lw× processors. 

 
 
 
 
 
 
 
 
 
 
 
 
Definition 2: An allocated sub-mesh is one whose 
processors are all allocated to a parallel job. 
Definition 3: A free sub-mesh is one whose processors 
are all not allocated. 
Definition 4: A suitable sub-mesh ),( lwS  is a free 

sub-mesh that satisfies the conditions: aw ≥  and 
bl ≥  assuming that the allocation of ),( baS  is 

requested. 
In this study, it is assumed that parallel jobs are 

selected for allocation and execution using the First-
Come-First-Served (FCFS) and Shortest-Service-
Demand (SSD) (i.e., shortest execution times) 
scheduling strategies. FCFS is chosen because it is fair 
and it is widely used in other similar studies [4, 5, 17, 
19], while SSD is adopted because it is expected to 
reduce performance loss due to FCFS blocking [10]. 

  

3. Non-contiguous Allocation Strategies 
 
Advances in switching techniques such as 

wormhole switching [15], have made communication 
latency less sensitive to the distance between 
communicating nodes [4]. This has made allocating a 
job to non-contiguous processors plausible in long-

: Free Node 

Figure 1. An example of a 4×4 2D mesh 

S

(0,3)      (1,3)        (2,3)         (3,3)    

               (0,2)       (1,2)        (2,2)         (3,2)    

    (0,0)       (1,0)       (2,0)         (3,0)  

    (0,1)        (1,1)        (2,1)         (3,1) 

: Allocated Node 
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diameters networks, such the 2D mesh. Non-contiguous 
allocation allows jobs to be executed without waiting if 
the number of available processors is sufficient [4, 17]. 
Below, we describe some non-contiguous allocation 
strategies that have been proposed for the 2D mesh. 

Paging: In the Paging strategy [17], the entire 2D 
mesh is divided into pages that are sub-meshes with 

equal sides’ length of indexsize _2 , where indexsize _  

is a positive integer. A page is the allocation unit. The 
pages are indexed according to several indexing 
schemes (row-major, shuffled row-major, snake-like, 
and shuffled snake-like indexing). A paging strategy is 
denoted as Paging( indexsize _ ). For example, 

Paging(2) means that the pages are 4 × 4 sub-mesh. In 
this paper, we only consider the row-major indexing 
scheme because using the remaining indexing schemes 
has only a slight impact on the performance of Paging, 
as revealed in [17]. In Paging, there is some degree of 
contiguity because of the indexing schemes used. 
Contiguity can also be increased by increasing the 
parameter indexsize _ . However, there is internal 

processor fragmentation for 1_ ≥indexsize , and it 

increases with indexsize _  [17].  

Multiple Buddy Strategy (MBS): In MBS [17], the 
mesh is divided into non-overlapping square sub-
meshes with side lengths equal to the powers of two 
upon initialization.  The number of processors, p , 

requested by an incoming job is factorized into a base-

4 representation of the form: ( ) 
∑ ××
=

p

i

ii
id

4log

0
22 , 

where 30 ≤≤ id . The request is then considered for 

allocation according to the factorized number, where 

id  blocks of size ii 22 ×  are required. If a required 

block is unavailable, MBS searches for a larger block 
and breaks it down into 4 buddies until it produces 
blocks of the desired size. If that fails, the requested 
block is broken into 4 requests for smaller blocks and 
repeats the allocation process [17]. An issue with MBS 
is that it may fail to allocate a contiguous sub-mesh 
although one exists. In fact, contiguous allocation is 
explicitly sought in MBS only for requests with sizes of 

the form n22 , where n  is a positive integer. 
Greedy Available Busy List (GABL): GABL 

combines the desirable features of both contiguous and 
non-contiguous allocation, and partitions requests 
based on the sub-meshes available for allocation [12]. 
In GABL [12], when a parallel job is selected for 
allocation a sub-mesh suitable for the entire job is 
searched for. If such a sub-mesh is found it is allocated 
to the job and the allocation is done. Otherwise, the 

largest free sub-mesh that can fit inside ),( baS  is 

allocated. Then, the largest free sub-mesh whose side 
lengths do not exceed the corresponding side lengths of 
the previously allocated sub-mesh is searched for under 
the constraint that the number of processors allocated 
does not exceed ba× . This last step is repeated until 

ba×  processors are allocated. Allocated sub-meshes 
are kept in a busy list. When a job departs the sub-
meshes it is allocated are removed from the busy list 
and the number of free processors is updated. Note that 
allocation always succeeds if the number of free 
processors is ba×≥ . Moreover, it can be noticed that 
the methodology used for maintaining contiguity is 
greedy. GABL tries to allocate large sub-meshes first. 

  

4. Job Scheduling Strategies 
 
The order in which jobs are scheduled can have 

considerable effect on system performance [10, 13]. In 
this paper, we consider the FCFS and SSD scheduling 
strategies. In FCFS, the allocation request that arrives 
first is considered for allocation first. Allocation 
attempts stop when they fail for the current FIFO queue 
head. SSD considers the shortest job to be the one 
having the shortest processor service demand [10, 13].  

The performance of non-contiguous allocation can 
be significantly affected by the type of the scheduling 
strategy used. To illustrate this, the performance of the 
allocation strategies considered in this study has been 
evaluated under both FCFS and SSD scheduling 
strategies. The results show that SSD is better than 
FCFS; therefore, the scheduling and allocation 
strategies have substantial effect on the performance of 
the non-contiguous allocation in 2D mesh. 

 

5. Simulation Results 
 
Extensive simulation experiments have been carried 

out to compare the performance of the allocation 
strategies. We have implemented the allocation and 
deallocation algorithms, including the busy list 
routines, in the C language, and integrated the software 
into the ProcSimity simulation tool for processor 
allocation and job scheduling in highly parallel 
systems. ProcSimity has been used to investigate the 
processor allocation problems, such as fragmentation 
and communication overhead problems [11]. 

 In the results shown below, we model a 16 × 22 
mesh. This size was selected to closely match the size 
of the partition which generated the trace. Jobs are 
served on the FCFS and SSD scheduling strategies. 
The interconnection network uses wormhole switching. 
Flits are assumed to take one time unit to move 
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between two adjacent nodes, and st  time units to be 

routed through a node. A flit is the smallest unit of data 
transmission. Message sizes are represented by lenP . 

Processors allocated to a job communicate with each 
other using the all-to-all communication pattern [8, 15, 
17]. In all-to-all communication, each processor 
allocated to a job sends a packet to all other processors 
allocated to the same job. This communication pattern 
is considered because it causes much message collision 
and it is known as the weak point for non-contiguous 
allocation [8]. As in [17], the number of messages that 
are actually generated by a given job is exponentially 
distributed with a mean mesnum _ .   

Unless specified otherwise, the performance figures 
shown below are for a 16 × 22 mesh, st = 3 time units, 

lenP = 8 flits and 5_ =mesnum  packets. The values 

we use for st  and lenP  were recommended in [11]. 

The main performance parameters used are the average 
turnaround time of jobs, average service time, average 
packet latency, average packet blocking time, and mean 
system utilization. The turnaround time of a job is the 
time that the job spends in the mesh from arrival to 
departure. The average service time is the average time 
it takes for jobs to execute once allocated to processors 
[11]. The average packet latency is the average time for 
message packets to reach their destination once they 
are injected into the network [11]. The average packet 
blocking time is the average time that message packets 
spend blocked in network buffers, waiting for access to 
their next channel [11]. The mean system utilization is 
the percentage of processors that are utilized over time. 
An important independent variable in the simulation is 
the system load, defined as the inverse of the mean 
inter-arrival time of jobs. Its values for the various 
simulation points were determined through 
experimentation with the simulator. 

As in [7], to allow for both easy comparison with 
previous experiments in [12] and for a realistic 
evaluation of allocation strategies, our performance 
evaluation includes the use of two different workloads. 
The first workload is a stochastic workload. In this 
workload, jobs are assumed to have exponential inter-
arrival times, the execution times of jobs are not 
simulator inputs. They are determined by the simulator 
and their values depend on st , lenP , the number of 

messages sent, message contention, and distances 
messages traverse. Two distributions are used to 
generate the lengths and widths of job requests. The 
first is the uniform distribution over [1, W ] for the 
width of the requested sub-mesh and over [1, L ] for its 
length, where the width and length of a request are 
generated independently. The second distribution is the 

exponential distribution, where the width and length of 
job requests are exponentially distributed with a mean 
of half the side width and length of the entire mesh. 
These distributions have often been used in the 
literature [4, 5, 17, 19]. Each simulation run consists of 
1000 completed jobs. Simulation results are averaged 
over enough independent runs so that the confidence 
level is 95% and the relative errors do not exceed 5%.  

The second workload is a real workload trace, a 
stream of 10658 real production jobs from the Intel 
Paragon at the San Diego Supercomputer Centre. The 
traced job stream is taken only from the 352 nodes [7, 
9]. The workload trace had the following statistical 
characteristics: the mean interarrival time was 1186.7 
seconds; the average job size was 34.5 nodes, and with 
the distribution favouring sizes that are non-powers of 
two. Our real workload trace uses the arrival times, job 
execution times and job sizes. As in [7], to challenge 
allocation strategies, we multiply job arrival times by a 
constant factor f . When 1<f , the interarrival times 

decrease, resulting in an increased system load.  
The notation <allocation strategy>(<scheduling 

strategy>) represents the strategies in the performance 
figures. For example, GABL(SSD) refers to the Greedy 
Available Busy List allocation strategy under the 
Shortest-Service-Demand scheduling strategy. 

In Figs. 2, 3, and 4, the average turnaround time of 
jobs are plotted against the system load for the all-to-all 
communication pattern under both FCFS and SSD. It 
can be seen from these figures that the results from a 
stochastic workload and a real workload ranked the 
scheduling and allocation algorithms in the same order 
from best to worst in terms of performance parameter 
used in these figures except that the performance of 
MBS based on a real workload is inferior to that of 
Paging(0) because the size of the sub-meshes requested 
by jobs in this workload is non-power of two and the 
contiguous allocation is explicitly sought in MBS only 

for requests with sizes of the form n22 , where n  is a 
positive integer. The results reveal that GABL 
performs better than all other allocation strategies for 
both workloads and scheduling strategies considered in 
this paper. In Fig. 2, for example, the difference in 
performance in favour for GABL(FCFS) could be as 
large as 33% to Paging(0)(FCFS), and 68% to 
MBS(FCFS) under the job arrival rate 0.004 jobs/time 
unit. Moreover, the results have shown that the effects 
of the SSD scheduling strategy on the performance of 
the allocation strategies are better than that of the FCFS 
scheduling strategy under both workloads. 

In Figs. 5, 6, and 7, the average service time of jobs 
are plotted against the system load for the all-to-all 
communication pattern under both the FCFS and SSD 
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scheduling strategies. Again, the results from both 
workloads ranked the scheduling and allocation 
algorithms in the same order from best to worst in 
terms of performance parameter used in these figures; 
GABL performs much better than all other allocation 
strategies for both workloads considered in this paper. 
Fig. 6, for example, depicts that when the job arrival 
rate is 0.0305 jobs/time unit, the average service times 
of GABL(FCFS) are 67% and 76% of that of 
Paging(0)(FCFS) and MBS(FCFS), respectively.  

Figs. 8, 9, and 10 depict the mean system utilization 
of the allocation strategies for the all-to-all 
communication pattern and both scheduling strategies 
considered in this paper. The simulation results in these 
figures are presented for a heavy system load. The load 
is such that the waiting queue is filled very early, 
allowing each strategy to reach its upper limits of 
utilization. For both workloads considered in this 
paper, the non-contiguous allocation strategies achieve 
a mean system utilization of 72% to 89%. In each of 
these workloads, the utilization of the three non-
contiguous strategies is approximately the same. This is 
because the allocation strategies, considered in this 
paper, have the same ability to eliminate both internal 
and external processor fragmentation. They always 
succeed to allocate processors to a job when the 
number of free processors is greater than or equal the 
allocation request. 
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Figure 2. Turnaround time vs. system load for 

all-to-all communication pattern and a real 
workload in a 16 × 22 mesh. 
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Figure 3. Turnaround time vs. system load for 

all-to-all communication pattern and a 
stochastic workload based on uniform side 

lengths distribution in a 16 × 22 mesh. 
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Figure 4. Turnaround time vs. system load for 

all-to-all communication pattern and a 
stochastic workload based on exponential 
side lengths distribution in a 16 × 22 mesh. 
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Figure 5. Service time vs. system load for all-

to-all communication pattern and a real 
workload in a 16 × 22 mesh. 
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Figure 6. Service time vs. system load for all-
to-all communication pattern and a stochastic 

workload based on uniform side lengths 
distribution in a 16 × 22 mesh. 
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Figure 7. Service time vs. system load for all-
to-all communication pattern and a stochastic 
workload based on exponential side lengths 

distribution in a 16 × 22 mesh. 
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Figure 8. System utilization vs. system load for 
all-to-all communication pattern and a real 

workload in a 16 × 22 mesh. 
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Figure 9. System utilization vs. system load for 

all-to-all communication pattern and a 
stochastic workload based on uniform side 

lengths distribution in a 16 × 22 mesh. 
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Figure 10. System utilization vs. system load 

for all-to-all communication pattern and a 
stochastic workload based on exponential 
side lengths distribution in a 16 × 22 mesh. 

 
In addition to the performance parameters above, 

we have measured another two parameters for the non-
contiguous allocation strategies. These are the average 
packet blocking time and the average packet latency 
computed for all jobs. Packet blocking time is used to 
measure the contention in the interconnection network. 
Messages originate from a processor element and their 
flits traverse the network in pipeline fashion to their 
destination processor. If the header flit of a packet is 
routed to a busy channel, that header flit and its trailing 
flits stop moving and block whichever channels they 
occupy in the network [17]. This results in packet 

blocking time, due to contention, which can be 
measured in the simulation. The non-contiguous 
allocation introduces potential problems due to 
message contention because the messages occupy more 
links, yielding potential communication interference 
amongst jobs. Therefore, the successful allocation 
strategy is the strategy that has lower packet latency. 

 In Figs. 11, 12, and 13, the average packet 
blocking time is plotted against the system load for the 
all-to-all communication pattern under FCFS and SSD 
scheduling strategies. The results of the experiments 
from a real workload and a stochastic workload ranked 
the scheduling and allocation algorithms in the same 
order from best to worst in terms of performance 
parameter used in these figures; GABL has better 
packet blocking time than the remaining strategies for 
all loads. In Fig. 11, for example, the average packet 
blocking times of GABL(SSD) are 81% and 51% of 
that of Paging(0)(SSD) and MBS(SSD), respectively, 
when the job arrival rate is 0.02 jobs/time unit. 

In Figs. 14, 15, and 16, the average packet latency 
is plotted against the system load for the all-to-all 
communication pattern and the scheduling strategies 
FCFS and SSD. The results from both workloads 
ranked the scheduling and allocation algorithms in the 
same order from best to worst in terms of performance 
parameter used in these figures; GABL has lower 
packet latency than all other strategies for both 
workloads in this study. Fig. 14, for example, depicts 
that when the job arrival rate is 0.02 jobs/time unit, the 
average packet latency of GABL(FCFS) is 84% and 
54% of that of Paging(0)(FCFS) and MBS(FCFS), 
respectively. In Fig. 16, the average packet latency of 
GABL(FCFS) is 66% and 71% of that of 
Paging(0)(FCFS) and MBS(FCFS), respectively, when 
the job arrival rate is 0.05 jobs/time units. 

To sum up, the above performance results 
demonstrate that both a real workload and a stochastic 
workload gave the same ranking of the allocation 
strategies from best to worst.  
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Figure 11. Packet blocking time vs. system 

load for all-to-all communication pattern and a 
real workload in a 16 × 22 mesh. 
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Figure 12. Packet blocking time vs. system 

load for all-to-all communication pattern and a 
stochastic workload based on uniform side 

lengths distribution in a 16 × 22 mesh. 
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Figure 13. Packet blocking time vs. system 

load for all-to-all communication pattern and a 
stochastic workload based on exponential 
side lengths distribution in a 16 × 22 mesh. 
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Figure 14. Packet latency vs. system load for 

all-to-all communication pattern and a real 
workload in a 16 × 22 mesh. 
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Figure 15. Packet latency vs. system load for 

all-to-all communication pattern and a 
stochastic workload based on uniform side 

lengths distribution in a 16 × 22 mesh. 
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Figure 16. Packet latency vs. system load for 

all-to-all communication pattern and a 
stochastic workload based on exponential 
side lengths distribution in a 16 × 22 mesh. 
 

6. Conclusion and Future Directions 
 
This paper has investigated the impact of real 

workload traces and stochastic workloads on the 
performance of the non-contiguous allocation strategies 
that have been proposed for 2D mesh connected 
multicomputers. These strategies cover a wide range of 
choices, including Paging strategy (Paging(0)), 
Multiple Buddy Strategy (MBS), and Greedy Available 
Busy List strategy (GABL). GABL differs from the 
other allocation strategies in maintaining a high degree 
of contiguity among processors allocated to a job 
which decreases the number of sub-meshes allocated to 
a job, hence the distance traversed by messages is 
decreased, and which in turn decreases the 
communication overhead. GABL achieves this by using 
a busy list whose length is often small even when the 
size of the mesh scales up. 

Simulation results have shown that the relative 
performance of the non-contiguous allocation strategies 
has not been significantly affected by the choice of a 
workload. In most experiments a real workload and a 
stochastic workload ranked the performance of the non-
contiguous allocation algorithms in the same order 
from best to worst in terms of performance parameters 
used in this study. Moreover, the simulation results 
have shown that the effects of the SSD scheduling 
strategy on the performance of the allocation strategies 
are better than that of the FCFS scheduling strategy in 
terms of average turnaround time. 

As a continuation of this research in the future, it 
would be interesting to assess the performance of the 
allocation strategies on other common multicomputer 
networks, such as torus networks. Another possible 
direction for future research is to implement the 
allocation strategies based on other real workload 
traces from different parallel machines and compare it 
with our results by means of simulation. 
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