

Bani-Mohammad, S. and Ould-Khaoua, M. and Mackenzie, L.M. and
Abaneh, I. and Ferguson, J.D. (2008) The effect of real workloads and
stochastic workloads on the performance of allocation and scheduling
algorithms in 2D mesh multicomputers. In: IEEE International
Symposium on Parallel and Distributed Processing. IPDPS 2008, 14-18
April 2008, Miami, USA.

http://eprints.gla.ac.uk/5928/

Deposited on: 28 May 2009

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

The Effect of Real Workloads and Stochastic Workloads on the Performance
of Allocation and Scheduling Algorithms in 2D Mesh Multicomputers

S. Bani-Mohammad, M. Ould-Khaoua,
and Lewis M. Mackenzie

Glasgow University, Computing
Science,

Glasgow G12 8RZ, UK.
{saad, mohamed, lewis}@dcs.gla.ac.uk

I. Ababneh
University of Science

and Technology,
Computing Science,

Irbid, Jordan.
ismael@just.edu.jo

J. D. Ferguson
Strathclyde University,

Computer and Information
Sciences,

Glasgow G1 1XH, UK.
john.ferguson@cis.strath.ac.uk

Abstract

The performance of the existing non-contiguous
processor allocation strategies has been traditionally
carried out by means of simulation based on a
stochastic workload model to generate a stream of
incoming jobs. To validate the performance of the
existing algorithms, there has been a need to evaluate
the algorithms’ performance based on a real workload
trace. In this paper, we evaluate the performance of
several well-known processor allocation and job
scheduling strategies based on a real workload trace
and compare the results against those obtained from
using a stochastic workload. Our results reveal that
the conclusions reached on the relative performance
merits of the allocation strategies when a real
workload trace is used are in general compatible with
those obtained when a stochastic workload is used.

1. Introduction

Efficient processor allocation and job scheduling
are critical if the full computational power of large-
scale multicomputers is to be harnessed effectively [2,
5]. Processor allocation is responsible for selecting the
set of processors on which parallel jobs are executed
whereas job scheduling is responsible for determining
the order in which the jobs are executed [2, 5, 12].

Most allocation strategies employed in a
multicomputer are based on contiguous allocation,
where the processors allocated to a parallel job are
physically contiguous and have the same topology as
that of the interconnection network of the
multicomputer [2, 5, 19]. Contiguous strategies often

result in high external processor fragmentation, as has
been shown in [19]. External fragmentation occurs
when a sufficient number of free processors are
available to satisfy a job request but they are not
allocated to it because they are not contiguous.

Several studies have attempted to reduce external
fragmentation [4, 14, 17]. One suggested solution is to
adopt non-contiguous allocation [4, 12, 17]. In non-
contiguous allocation, a job can execute on multiple
disjoint smaller sub-networks rather than always
waiting until a single sub-network of the requested size
and shape is available. Although non-contiguous
allocation increases message contention in the network,
lifting the contiguity condition is expected to reduce
processor fragmentation and increase processor
utilization [4, 12, 17]. It is the introduction of
wormhole switching [1, 15] that has lead researchers to
consider non-contiguous allocation on multicomputer
networks with a long communication distances, such as
the 2D mesh [1, 4, 12, 17]. This is due to the fact that
one of main advantages of wormhole switching over
earlier switching techniques, e.g. store-and-forward, is
that message latency depends less on the distance the
message travels from source to destination.

Most existing research on processor allocation has
been carried out in the context of the 2D mesh [2, 4, 5,
8, 14, 17, 19]. The mesh has been one of the most
common networks for multicomputers due to its
simplicity, scalability, structural regularity, and ease of
implementation [2, 5]. It has been used as the
underlying network in a number of practical and
experimental parallel machines, such as iWARP [3],
the IBM BlueGene/L [18], and Delta Touchstone [6].

Most existing allocation strategies employed in a
multicomputer have been evaluated by means of

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on May 28, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

simulation using a stochastic workload [2, 4, 5, 8, 12,
13, 14, 17, 19] based mostly on probabilistic
distributions. In this workload, the researchers have
used exponential distribution to generate inter-arrival
times. Job sizes (i.e., the number of processors
requested) have been generated using a variety of
probabilistic distributions including uniform, uniform
increasing, uniform decreasing, and exponential
distributions, while jobs execution times have been
generated with exponential distribution.

In this paper, the performance of the existing non-
contiguous allocation strategies is evaluated using a
real workload trace and the results are compared
against those obtained through a stochastic workload.
A real workload trace is a record of execution of
parallel jobs submitted to run on a practical parallel
machine in which each job arrives in the system,
requests a particular sized partition of the system’s
processors and executes on the partition for a period of
time. Although messages from other jobs may pass
through the new partition, the new job holds the
processors in this partition exclusively until it finishes
running. At this time, the job departs the system and its
processors are freed for use by another incoming job
[11, 16]. The partitions requested by the jobs typically
include job size and the execution time. Moreover,
each job in the workload is associated with an arrival
time, indicating when it is submitted to the scheduler
for consideration. A real workload trace can potentially
provide a very high level of realism when used directly
in performance evaluation experiments [16]. Our
results reveal that the conclusions reached on the
relative performance merits of the allocation strategies
when a real workload trace is used are compatible with
those obtained when a stochastic workload is used.

The rest of the paper is organized as follows.
Section 2 provides some preliminaries. Section 3
contains a brief overview of the non-contiguous
allocation strategies considered in this study while
Section 4 contains a brief overview of the scheduling
strategies. Section 5 presents simulation results.
Finally, Section 6 concludes this paper.

2. Preliminaries

The target system is a LW × 2D mesh, where W is
the width of the mesh and L is its length. Every
processor is denoted by a pair of coordinates (yx,),

where Wx <≤0 and Ly <≤0 [12]. Each processor

is connected by bidirectional communication links to
its neighbour processors, as depicted in Fig. 1. This
figure shows an example of a 4 × 4 2D mesh, where
allocated processors are denoted by shaded circles and

free processors are denoted by white circles. If a job
requests the allocation of sub-mesh of size 2 × 2
contiguous allocation fails because no 2 × 2 sub-mesh
of free processors is available, however the 4 free
processors can be allocated to the job if allocation is
non-contiguous. The following definitions have been
adopted from [12].
Definition 1: A sub-mesh),(lwS of width w and

length l , where Ww ≤<0 and Ll ≤<0 is specified
by the coordinates (yxyx ′′,,,), where (yx,) are the

coordinates of the base of the allocated sub-mesh and
(yx ′′,) are the coordinates of its end. For example (0,

0, 2, 1) represents the 3 × 2 sub-mesh S in Fig. 1. The
base node of the sub-mesh is (0, 0), and its end node is
(2, 1). The size of),(lwS is lw× processors.

Definition 2: An allocated sub-mesh is one whose
processors are all allocated to a parallel job.
Definition 3: A free sub-mesh is one whose processors
are all not allocated.
Definition 4: A suitable sub-mesh),(lwS is a free

sub-mesh that satisfies the conditions: aw ≥ and
bl ≥ assuming that the allocation of),(baS is

requested.
In this study, it is assumed that parallel jobs are

selected for allocation and execution using the First-
Come-First-Served (FCFS) and Shortest-Service-
Demand (SSD) (i.e., shortest execution times)
scheduling strategies. FCFS is chosen because it is fair
and it is widely used in other similar studies [4, 5, 17,
19], while SSD is adopted because it is expected to
reduce performance loss due to FCFS blocking [10].

3. Non-contiguous Allocation Strategies

Advances in switching techniques such as

wormhole switching [15], have made communication
latency less sensitive to the distance between
communicating nodes [4]. This has made allocating a
job to non-contiguous processors plausible in long-

: Free Node

Figure 1. An example of a 4×4 2D mesh

S

(0,3) (1,3) (2,3) (3,3)

 (0,2) (1,2) (2,2) (3,2)

 (0,0) (1,0) (2,0) (3,0)

 (0,1) (1,1) (2,1) (3,1)

: Allocated Node

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on May 28, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

diameters networks, such the 2D mesh. Non-contiguous
allocation allows jobs to be executed without waiting if
the number of available processors is sufficient [4, 17].
Below, we describe some non-contiguous allocation
strategies that have been proposed for the 2D mesh.

Paging: In the Paging strategy [17], the entire 2D
mesh is divided into pages that are sub-meshes with

equal sides’ length of indexsize _2 , where indexsize _

is a positive integer. A page is the allocation unit. The
pages are indexed according to several indexing
schemes (row-major, shuffled row-major, snake-like,
and shuffled snake-like indexing). A paging strategy is
denoted as Paging(indexsize _). For example,

Paging(2) means that the pages are 4 × 4 sub-mesh. In
this paper, we only consider the row-major indexing
scheme because using the remaining indexing schemes
has only a slight impact on the performance of Paging,
as revealed in [17]. In Paging, there is some degree of
contiguity because of the indexing schemes used.
Contiguity can also be increased by increasing the
parameter indexsize _ . However, there is internal

processor fragmentation for 1_ ≥indexsize , and it

increases with indexsize _ [17].

Multiple Buddy Strategy (MBS): In MBS [17], the
mesh is divided into non-overlapping square sub-
meshes with side lengths equal to the powers of two
upon initialization. The number of processors, p ,

requested by an incoming job is factorized into a base-

4 representation of the form: () 
∑ ××
=

p

i

ii
id

4log

0
22 ,

where 30 ≤≤ id . The request is then considered for

allocation according to the factorized number, where

id blocks of size ii 22 × are required. If a required

block is unavailable, MBS searches for a larger block
and breaks it down into 4 buddies until it produces
blocks of the desired size. If that fails, the requested
block is broken into 4 requests for smaller blocks and
repeats the allocation process [17]. An issue with MBS
is that it may fail to allocate a contiguous sub-mesh
although one exists. In fact, contiguous allocation is
explicitly sought in MBS only for requests with sizes of

the form n22 , where n is a positive integer.
Greedy Available Busy List (GABL): GABL

combines the desirable features of both contiguous and
non-contiguous allocation, and partitions requests
based on the sub-meshes available for allocation [12].
In GABL [12], when a parallel job is selected for
allocation a sub-mesh suitable for the entire job is
searched for. If such a sub-mesh is found it is allocated
to the job and the allocation is done. Otherwise, the

largest free sub-mesh that can fit inside),(baS is

allocated. Then, the largest free sub-mesh whose side
lengths do not exceed the corresponding side lengths of
the previously allocated sub-mesh is searched for under
the constraint that the number of processors allocated
does not exceed ba× . This last step is repeated until

ba× processors are allocated. Allocated sub-meshes
are kept in a busy list. When a job departs the sub-
meshes it is allocated are removed from the busy list
and the number of free processors is updated. Note that
allocation always succeeds if the number of free
processors is ba×≥ . Moreover, it can be noticed that
the methodology used for maintaining contiguity is
greedy. GABL tries to allocate large sub-meshes first.

4. Job Scheduling Strategies

The order in which jobs are scheduled can have

considerable effect on system performance [10, 13]. In
this paper, we consider the FCFS and SSD scheduling
strategies. In FCFS, the allocation request that arrives
first is considered for allocation first. Allocation
attempts stop when they fail for the current FIFO queue
head. SSD considers the shortest job to be the one
having the shortest processor service demand [10, 13].

The performance of non-contiguous allocation can
be significantly affected by the type of the scheduling
strategy used. To illustrate this, the performance of the
allocation strategies considered in this study has been
evaluated under both FCFS and SSD scheduling
strategies. The results show that SSD is better than
FCFS; therefore, the scheduling and allocation
strategies have substantial effect on the performance of
the non-contiguous allocation in 2D mesh.

5. Simulation Results

Extensive simulation experiments have been carried

out to compare the performance of the allocation
strategies. We have implemented the allocation and
deallocation algorithms, including the busy list
routines, in the C language, and integrated the software
into the ProcSimity simulation tool for processor
allocation and job scheduling in highly parallel
systems. ProcSimity has been used to investigate the
processor allocation problems, such as fragmentation
and communication overhead problems [11].

 In the results shown below, we model a 16 × 22
mesh. This size was selected to closely match the size
of the partition which generated the trace. Jobs are
served on the FCFS and SSD scheduling strategies.
The interconnection network uses wormhole switching.
Flits are assumed to take one time unit to move

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on May 28, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

between two adjacent nodes, and st time units to be

routed through a node. A flit is the smallest unit of data
transmission. Message sizes are represented by lenP .

Processors allocated to a job communicate with each
other using the all-to-all communication pattern [8, 15,
17]. In all-to-all communication, each processor
allocated to a job sends a packet to all other processors
allocated to the same job. This communication pattern
is considered because it causes much message collision
and it is known as the weak point for non-contiguous
allocation [8]. As in [17], the number of messages that
are actually generated by a given job is exponentially
distributed with a mean mesnum _ .

Unless specified otherwise, the performance figures
shown below are for a 16 × 22 mesh, st = 3 time units,

lenP = 8 flits and 5_ =mesnum packets. The values

we use for st and lenP were recommended in [11].

The main performance parameters used are the average
turnaround time of jobs, average service time, average
packet latency, average packet blocking time, and mean
system utilization. The turnaround time of a job is the
time that the job spends in the mesh from arrival to
departure. The average service time is the average time
it takes for jobs to execute once allocated to processors
[11]. The average packet latency is the average time for
message packets to reach their destination once they
are injected into the network [11]. The average packet
blocking time is the average time that message packets
spend blocked in network buffers, waiting for access to
their next channel [11]. The mean system utilization is
the percentage of processors that are utilized over time.
An important independent variable in the simulation is
the system load, defined as the inverse of the mean
inter-arrival time of jobs. Its values for the various
simulation points were determined through
experimentation with the simulator.

As in [7], to allow for both easy comparison with
previous experiments in [12] and for a realistic
evaluation of allocation strategies, our performance
evaluation includes the use of two different workloads.
The first workload is a stochastic workload. In this
workload, jobs are assumed to have exponential inter-
arrival times, the execution times of jobs are not
simulator inputs. They are determined by the simulator
and their values depend on st , lenP , the number of

messages sent, message contention, and distances
messages traverse. Two distributions are used to
generate the lengths and widths of job requests. The
first is the uniform distribution over [1, W] for the
width of the requested sub-mesh and over [1, L] for its
length, where the width and length of a request are
generated independently. The second distribution is the

exponential distribution, where the width and length of
job requests are exponentially distributed with a mean
of half the side width and length of the entire mesh.
These distributions have often been used in the
literature [4, 5, 17, 19]. Each simulation run consists of
1000 completed jobs. Simulation results are averaged
over enough independent runs so that the confidence
level is 95% and the relative errors do not exceed 5%.

The second workload is a real workload trace, a
stream of 10658 real production jobs from the Intel
Paragon at the San Diego Supercomputer Centre. The
traced job stream is taken only from the 352 nodes [7,
9]. The workload trace had the following statistical
characteristics: the mean interarrival time was 1186.7
seconds; the average job size was 34.5 nodes, and with
the distribution favouring sizes that are non-powers of
two. Our real workload trace uses the arrival times, job
execution times and job sizes. As in [7], to challenge
allocation strategies, we multiply job arrival times by a
constant factor f . When 1<f , the interarrival times

decrease, resulting in an increased system load.
The notation <allocation strategy>(<scheduling

strategy>) represents the strategies in the performance
figures. For example, GABL(SSD) refers to the Greedy
Available Busy List allocation strategy under the
Shortest-Service-Demand scheduling strategy.

In Figs. 2, 3, and 4, the average turnaround time of
jobs are plotted against the system load for the all-to-all
communication pattern under both FCFS and SSD. It
can be seen from these figures that the results from a
stochastic workload and a real workload ranked the
scheduling and allocation algorithms in the same order
from best to worst in terms of performance parameter
used in these figures except that the performance of
MBS based on a real workload is inferior to that of
Paging(0) because the size of the sub-meshes requested
by jobs in this workload is non-power of two and the
contiguous allocation is explicitly sought in MBS only

for requests with sizes of the form n22 , where n is a
positive integer. The results reveal that GABL
performs better than all other allocation strategies for
both workloads and scheduling strategies considered in
this paper. In Fig. 2, for example, the difference in
performance in favour for GABL(FCFS) could be as
large as 33% to Paging(0)(FCFS), and 68% to
MBS(FCFS) under the job arrival rate 0.004 jobs/time
unit. Moreover, the results have shown that the effects
of the SSD scheduling strategy on the performance of
the allocation strategies are better than that of the FCFS
scheduling strategy under both workloads.

In Figs. 5, 6, and 7, the average service time of jobs
are plotted against the system load for the all-to-all
communication pattern under both the FCFS and SSD

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on May 28, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

scheduling strategies. Again, the results from both
workloads ranked the scheduling and allocation
algorithms in the same order from best to worst in
terms of performance parameter used in these figures;
GABL performs much better than all other allocation
strategies for both workloads considered in this paper.
Fig. 6, for example, depicts that when the job arrival
rate is 0.0305 jobs/time unit, the average service times
of GABL(FCFS) are 67% and 76% of that of
Paging(0)(FCFS) and MBS(FCFS), respectively.

Figs. 8, 9, and 10 depict the mean system utilization
of the allocation strategies for the all-to-all
communication pattern and both scheduling strategies
considered in this paper. The simulation results in these
figures are presented for a heavy system load. The load
is such that the waiting queue is filled very early,
allowing each strategy to reach its upper limits of
utilization. For both workloads considered in this
paper, the non-contiguous allocation strategies achieve
a mean system utilization of 72% to 89%. In each of
these workloads, the utilization of the three non-
contiguous strategies is approximately the same. This is
because the allocation strategies, considered in this
paper, have the same ability to eliminate both internal
and external processor fragmentation. They always
succeed to allocate processors to a job when the
number of free processors is greater than or equal the
allocation request.

0
500

1000
1500
2000
2500
3000

0 0.001 0.002 0.003 0.004 0.005A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 2. Turnaround time vs. system load for

all-to-all communication pattern and a real
workload in a 16 × 22 mesh.

0
1000
2000
3000
4000
5000
6000
7000

0 0.005 0.01 0.015 0.02 0.025 0.03A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 3. Turnaround time vs. system load for

all-to-all communication pattern and a
stochastic workload based on uniform side

lengths distribution in a 16 × 22 mesh.

0

2000

4000

6000

8000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 4. Turnaround time vs. system load for

all-to-all communication pattern and a
stochastic workload based on exponential
side lengths distribution in a 16 × 22 mesh.

0

500

1000

1500

0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02

A
ve

ra
ge

 S
er

vi
ce

 T
im

e

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 5. Service time vs. system load for all-

to-all communication pattern and a real
workload in a 16 × 22 mesh.

60

80

100

120

140

0.005 0.01 0.015 0.02 0.025 0.03A
ve

ra
ge

 S
er

vi
ce

 T
im

e

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 6. Service time vs. system load for all-
to-all communication pattern and a stochastic

workload based on uniform side lengths
distribution in a 16 × 22 mesh.

60

80

100

120

140

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05A
ve

ra
ge

 S
er

vi
ce

 T
im

e

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 7. Service time vs. system load for all-
to-all communication pattern and a stochastic
workload based on exponential side lengths

distribution in a 16 × 22 mesh.

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on May 28, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

FCFS FCFS FCFSSSD SSD SSD

0.02

0.22

0.42

0.62

0.82

1.02

GABL Paging(0) MBS

U
til

iz
at

io
n

All2All(FCFS) All2All(SSD)

Figure 8. System utilization vs. system load for
all-to-all communication pattern and a real

workload in a 16 × 22 mesh.

FCFS FCFS FCFSSSD SSD SSD

0.02

0.22

0.42

0.62

0.82

GABL Paging(0) MBS

U
til

iz
at

io
n

All2All(FCFS) All2All(SSD)

Figure 9. System utilization vs. system load for

all-to-all communication pattern and a
stochastic workload based on uniform side

lengths distribution in a 16 × 22 mesh.

FCFS FCFS FCFS
SSD SSD SSD

0.02

0.22

0.42

0.62

0.82

GABL Paging(0) MBS

U
til

iz
at

io
n

All2All(FCFS) All2All(SSD)

Figure 10. System utilization vs. system load

for all-to-all communication pattern and a
stochastic workload based on exponential
side lengths distribution in a 16 × 22 mesh.

In addition to the performance parameters above,

we have measured another two parameters for the non-
contiguous allocation strategies. These are the average
packet blocking time and the average packet latency
computed for all jobs. Packet blocking time is used to
measure the contention in the interconnection network.
Messages originate from a processor element and their
flits traverse the network in pipeline fashion to their
destination processor. If the header flit of a packet is
routed to a busy channel, that header flit and its trailing
flits stop moving and block whichever channels they
occupy in the network [17]. This results in packet

blocking time, due to contention, which can be
measured in the simulation. The non-contiguous
allocation introduces potential problems due to
message contention because the messages occupy more
links, yielding potential communication interference
amongst jobs. Therefore, the successful allocation
strategy is the strategy that has lower packet latency.

 In Figs. 11, 12, and 13, the average packet
blocking time is plotted against the system load for the
all-to-all communication pattern under FCFS and SSD
scheduling strategies. The results of the experiments
from a real workload and a stochastic workload ranked
the scheduling and allocation algorithms in the same
order from best to worst in terms of performance
parameter used in these figures; GABL has better
packet blocking time than the remaining strategies for
all loads. In Fig. 11, for example, the average packet
blocking times of GABL(SSD) are 81% and 51% of
that of Paging(0)(SSD) and MBS(SSD), respectively,
when the job arrival rate is 0.02 jobs/time unit.

In Figs. 14, 15, and 16, the average packet latency
is plotted against the system load for the all-to-all
communication pattern and the scheduling strategies
FCFS and SSD. The results from both workloads
ranked the scheduling and allocation algorithms in the
same order from best to worst in terms of performance
parameter used in these figures; GABL has lower
packet latency than all other strategies for both
workloads in this study. Fig. 14, for example, depicts
that when the job arrival rate is 0.02 jobs/time unit, the
average packet latency of GABL(FCFS) is 84% and
54% of that of Paging(0)(FCFS) and MBS(FCFS),
respectively. In Fig. 16, the average packet latency of
GABL(FCFS) is 66% and 71% of that of
Paging(0)(FCFS) and MBS(FCFS), respectively, when
the job arrival rate is 0.05 jobs/time units.

To sum up, the above performance results
demonstrate that both a real workload and a stochastic
workload gave the same ranking of the allocation
strategies from best to worst.

70
90

110
130
150
170
190
210

0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02

A
ve

ra
ge

 P
ac

ke
t

B
lo

ck
in

g
T

im
e

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 11. Packet blocking time vs. system

load for all-to-all communication pattern and a
real workload in a 16 × 22 mesh.

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on May 28, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

20

25

30

35

40

45

0.005 0.01 0.015 0.02 0.025 0.03

A
ve

ra
ge

 P
ac

ke
t

B
lo

ck
in

g
T

im
e

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 12. Packet blocking time vs. system

load for all-to-all communication pattern and a
stochastic workload based on uniform side

lengths distribution in a 16 × 22 mesh.

10
15
20
25
30
35
40
45

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

A
ve

ra
ge

 P
ac

ke
t

B
lo

ck
in

g
T

im
e

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 13. Packet blocking time vs. system

load for all-to-all communication pattern and a
stochastic workload based on exponential
side lengths distribution in a 16 × 22 mesh.

50
100
150
200
250
300

0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02

A
ve

ra
ge

 P
ac

ke
t

La
te

nc
y

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 14. Packet latency vs. system load for

all-to-all communication pattern and a real
workload in a 16 × 22 mesh.

30
35
40
45
50
55
60
65
70
75

0.005 0.01 0.015 0.02 0.025 0.03

A
ve

ra
ge

 P
ac

ke
t

La
te

nc
y

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 15. Packet latency vs. system load for

all-to-all communication pattern and a
stochastic workload based on uniform side

lengths distribution in a 16 × 22 mesh.

30
35
40
45
50
55
60
65
70
75

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy

Load

GABL(FCFS) Paging(0)(FCFS)
MBS(FCFS) GABL(SSD)
Paging(0)(SSD) MBS(SSD)

Figure 16. Packet latency vs. system load for

all-to-all communication pattern and a
stochastic workload based on exponential
side lengths distribution in a 16 × 22 mesh.

6. Conclusion and Future Directions

This paper has investigated the impact of real

workload traces and stochastic workloads on the
performance of the non-contiguous allocation strategies
that have been proposed for 2D mesh connected
multicomputers. These strategies cover a wide range of
choices, including Paging strategy (Paging(0)),
Multiple Buddy Strategy (MBS), and Greedy Available
Busy List strategy (GABL). GABL differs from the
other allocation strategies in maintaining a high degree
of contiguity among processors allocated to a job
which decreases the number of sub-meshes allocated to
a job, hence the distance traversed by messages is
decreased, and which in turn decreases the
communication overhead. GABL achieves this by using
a busy list whose length is often small even when the
size of the mesh scales up.

Simulation results have shown that the relative
performance of the non-contiguous allocation strategies
has not been significantly affected by the choice of a
workload. In most experiments a real workload and a
stochastic workload ranked the performance of the non-
contiguous allocation algorithms in the same order
from best to worst in terms of performance parameters
used in this study. Moreover, the simulation results
have shown that the effects of the SSD scheduling
strategy on the performance of the allocation strategies
are better than that of the FCFS scheduling strategy in
terms of average turnaround time.

As a continuation of this research in the future, it
would be interesting to assess the performance of the
allocation strategies on other common multicomputer
networks, such as torus networks. Another possible
direction for future research is to implement the
allocation strategies based on other real workload
traces from different parallel machines and compare it
with our results by means of simulation.

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on May 28, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

7. Acknowledgment

We would like to thank Prof. Dror Feitelson,

School of Computer Science and Engineering, Hebrew
University, who provided us workload traces and
information regarding the traces. Also, we would like
to thank Dr. Eitan Frachtenberg, Hebrew University,
who helped us to get in touch with Prof. Feitelson
regarding the traces.

8. References

[1] A. Al-Dubai, M. Ould-Khaoua, K. El-Zayyat, I.

Ababneh, S. Al-Dobai, “Towards scalable collective
communication for multicomputer interconnection
networks”, Journal of Information Sciences, vol. 163,
no. 4, Elsevier Science, USA, 2004, pp. 293-306.

[2] B.-S.Yoo, C.-R. Das, “A Fast and Efficient Processor
Allocation Scheme for Mesh-Connected
Multicomputers”, IEEE Transactions on Parallel &
Distributed Systems, vol. 51, no. 1, IEEE Computer
Society, Washington, USA, January 2002, pp. 46-60.

[3] C. Peterson, J. Sutton, P. Wiley, “iWARP: a 100-
MPOS, LIW microprocessor for multicomputers”,
IEEE Micro, vol. 11, no. 3, IEEE Computer Society,
CA, USA, 1991, pp. 26-29, 81-87.

[4] C.-Y. Chang, P. Mohapatra, “Performance
improvement of allocation schemes for mesh-
connected computers”, Journal of Parallel and
Distributed Computing, vol. 52, no. 1, Academic
Press, Inc. Orlando, FL, USA, July 1998, pp. 40-68.

[5] I. Ababneh, “An efficient free-list submesh allocation
scheme for two-dimensional mesh-connected
multicomputers”, Journal of Systems and Software,
vol. 79, no. 8, Elsevier Science Inc., New York, NY,
USA, August 2006, pp. 1168-1179.

[6] Intel Corporation, A Touchstone DELTA system
description, 1991.

[7] J. Mache, V. Lo, and K. Windisch, “Minimizing
Message-Passing Contention in Fragmentation-Free
Processor Allocation”, Proceedings of the 10th
International Conference on Parallel and Distributed
Computing Systems, IEEE Computer Society, 1997,
pp. 120–124.

[8] K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi, C.
Connelly, and M. Tsukamoto, “Multi-tasking Method
on Parallel Computers which Combines a Contiguous
and Non-contiguous Processor Partitioning
Algorithm”, Proceedings of the Third International
Workshop on Applied Parallel Computing, Industrial
Computation and Optimization, Springer-Verlag, UK,
1996, pp. 641-650.

[9] K. Windisch, V. Lo, D. Deitelson, B. Nitzberg, and R.
Moore, “A comparison of workload traces from two
production parallel machines”, Proceedings of the
Sixth Symposium on the Frontiers of Massively
Parallel Computation (Frontiers'96), IEEE Computer
Society Press, Annapolis, MD, USA, Oct. 1996, pp.

319-326.
[10] P. Krueger, T. Lai, V. A. Radiya, “Job scheduling is

more important than processor allocation for
hypercube computers”, IEEE Transactions on
Parallel and Distributed Systems, vol. 5, no. 5, IEEE
Press, Piscataway, NJ, USA, May 1994, pp. 488-497.

[11] ProcSimity V4.3 User’s Manual, University of
Oregon, 1997.

[12] S. Bani-Mohammad, M. Ould-Khaoua, and I.
Ababneh, A new processor allocation strategy with a
high degree of contiguity in mesh-connected
multicomputers, Simulation Modelling Practice and
Theory, vol. 15, no. 4, Elsevier Science, April 2007,
pp. 465-480.

[13] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh
and Lewis M. Mackhenzie, “An Efficient Processor
Allocation Strategy that Maintains a High Degree of
Contiguity among Processors in 2D Mesh Connected
Multicomputers”, 2007 ACS/IEEE International
Conference on Computer Systems and Applications
(AICCSA 2007), IEEE Computer Society Press,
Phiadelphia University, Amman, Jordan, 13-16 May
2007, pp. 934-941.

[14] T. Srinivasan, J. Seshadri, A. Chandrasekhar, J.
Jonathan, “A Minimal Fragmentation Algorithm for
Task Allocation in Mesh-Connected
Multicomputers”, Proceedings of IEEE International
Conference on Advances in Intelligent Systems –
Theory and Applications – AISTA 2004 in
conjunction with IEEE Computer Society, ISBN 2-
9599-7768-8, IEEE Press, Luxembourg, Western
Europe, 15-18 Nov 2004.

[15] V. Kumar, A. Grama, A. Gupta, and G. Karypis,
Introduction To Parallel Computing, The
Benjamin/Cummings publishing Company, Inc.,
Redwood City, California, 2003.

[16] V. Lo, J. Mache, and K. Windisch, “A Comparative
Study of Real Workload Traces and Synthetic
Workload Models for Parallel Job Scheduling”,
Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP’98), ISBN:
3-540-64825-9, Springer-Verlang, Berlin Heidelberg,
1998, pp. 25-46.

[17] V. Lo, K. Windisch, W. Liu, and B. Nitzberg, “Non-
contiguous processor allocation algorithms for mesh-
connected multicomputers”, IEEE Transactions on
Parallel and Distributed Systems, vol. 8, no. 7, IEEE
Press, Piscataway, NJ, USA, July 1997, pp. 712-726.

[18] Y. Aridor, T. Domany, O. Goldshmidt, Y. Kliteynik,
J. Moreira, and E. Shmueli, “Open Job Management
Architecture for the Blue gene/L Supercomputer”,
Proceedings of the 11th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP’05),
Springer Berlin / Heidelberg, Cambridge, MA, June
19, 2005, pp. 91-107.

[19] Y. Zhu, “Efficient processor allocation strategies for
mesh-connected parallel computers”, Journal of
Parallel and Distributed Computing, vol. 16, no. 4,
Elsevier, San Diego, CA, USA, 1992, pp. 328-337.

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on May 28, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

	coversheet.pdf
	http://eprints.gla.ac.uk/5928/

