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Abstract 

Cervical cancer can be prevented if its precursors are recognised. Those lesions that 

justify preventive treatment are currently identified using methods that suffer from 

delayed results, false positives and subjective judgement. 

Optical coherence tomography (OCT) is a novel imaging modality that provides high-

resolution backscattering data similar to ultrasonography. It could potentially provide 

in vivo and real-time imaging from within the entire cervical epithelium, where cervical 

cancer predominantly develops. 

In this study, we used a bench top OCT system with a 1310 nm light source. It employs 

fibre optics and operates in the time domain. A collection of 1387 images from 212 

ex vivo tissue samples from 199 participants requiring a histopathologic examination of 

the cervix has been created. Images from this collection were assessed in respect to their 

benefit in providing markers or evidence of early developments representative of 

cervical cancer. 

In our images, the contrast in dense tissue is weak and specific markers that could be 

associated with a higher cancer risk were difficult to establish. For two reasons it was 

decided to use an algorithm for classifying the images: 1) Modern OCT systems acquire 

gigabytes of data per second which cannot be assessed in a clinically meaningful time. 

2) An unsupervised classification tool can provide an objective assessment. 

There is no established method for evaluating OCT images of dense tissue. A 

classification algorithm was designed that uses Principal Components Analysis as 

means of data reduction and Linear Discriminant Analysis as a classification tool. This 

approach does not rely on clinical markers to be designated a priori. 

The algorithm was applied to the clinical data set to separate samples with mild from 

severe risk of cancer progression. The performance after leave-one-patient-out cross-

validation reaches 61.5 % (sensitivity = 66.7 %, specificity = 47.3 %, kappa = 0.52). 

These results are not convincing enough to let OCT replace current systems as clinical 

tools in cervical precancer assessment. Routes for improving results are suggested. 

This thesis provides a novel, generic algorithm for rapidly classifying OCT data 

obtained from dense tissues. 
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1 The clinical need: improving cervical cancer management 

1.1 The disease “family”: epithelial cancer 

Cervical cancer is a narrowly defined clinical entity: It is confined to the uterine cervix, 

and the vast majority of cases arise in the epithelial layer. In contrast to non-epithelial 

cancers like sarcomas or leukaemia, epithelial cancers – carcinomas – constitute the 

majority of cancers in adults, because: 

• Epithelium is the common organ lining and ubiquitous in the body. 

• It is a defined interface, and a main purpose is to provide protection. 

• It is continuously exposed to oncogenic agents from the environment. 

• Its stem cells retain the ability to proliferate. 

• If errors in proliferation persist, cancerous growth can develop. 

• Exposure to oncogenes can further impede the body’s repair mechanisms. 

1.2 The specifics of cervical cancer 

It is difficult to categorise “cancers”, and usually a definition is based on the organ or 

tissue type. However, for cervical cancer, there are characteristics which let it stand out 

from other cancers: 

• The aetiology of the majority of cases is defined and linked to the inability to shed 

off high risk human papilloma virus (HPV) strains. 

• This knowledge has enabled the development of prevention programmes and 

diagnostic tools1. 

• Although the cervix is an organ whose examination requires endoscopic approaches, 

it has good accessibility. 

Decades of experience with cervical cancer prevention management have created a 

reference for prevention programs. 

                                                           
1 Many of the findings on the biochemical and molecular aetiology components are younger than the 

Papanicolau smear test. When this was introduced, the particularities of cervical cancer might not have 

been known. 
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1.2.1 Anatomy of the cervix uteri 

The cervix surrounds the os of the uterus, which in Latin simply means: The neck 

surrounds the mouth of the womb (Figure 1.1). It regulates the ability to conceive, keeps 

the uterus closed during pregnancy, can dilate to a diameter of ten centimetres during 

parturition, and is almost permanently remodelling. 

 
Figure 1.1: Artist impression of the cervical canal (coronal cross-section) and frontal view 
(modified after [1]). 

Two types of epithelium are characteristic for the cervix (Figure 1.2): 

• The inner canal, the endocervix, is lined with columnar epithelium, a single layer of 

elongated cylindrical cells (covering glands) which can secret mucus. The viscosity 

of this mucus can vary and defines its permeability. 

• The outer part, the ectocervix, has several layers of squamous cells which form a 

protective layer against the acidic environment of the vaginal fornix, in the manner 

of a regenerating shield. The squamous layers have a thickness of several 

hundred µm. 

The visible, sharp border between the two types is called the squamocolumnar junction 

(SCJ) and is a prominent feature for visual (colposcopic) examination. 
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 (A) (B) 

Figure 1.2: (A) artist impression of the uterus plus cervix (mid-sagittal cross-section) with zoom 
into the SCJ (arbitrary cross-section). The cervix measures a few centimetres in diameter. (B) 3 D 
artist impression of the SCJ (modified after [2] and [3]). The thickness of the layer of squamous 
epithelium is typically a few 100 µm. 

1.2.2 Aetiology of cervical precancer 

Columnar epithelium can undergo metaplasia (tissue remodelling) to squamous 

epithelium. This is normal and happens in the so-called transformation zone (TZ). 

Inherently, those cells who are able to regenerate tissue and remodel are the susceptible 

ones for oncogenic agents. This agrees with our understanding of carcinomas. 

The most prevalent form of cervical cancer is squamous cervical carcinoma. It is 

preceded by a long phase of preclinical disease. These early changes do not cause 

symptoms which would be noticeable by the patient. Precancerous dysplasia does not 

necessarily lead to cancer. With increasing severity of dysplasia the likelihood of this 

lesion to progress to cancer later in life rises (Figure 1.3). 

 

 
Figure 1.3: Artist impressions of key stages in cervical cancer: (A) asymptomatic dysplasia, 
(B) asymptomatic and curable, non-invasive cancer, (C) symptomatic cancer with poor prognosis 
(modified after [1]).  
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1.2.3 Risk factors 

Knowing the risk factors is the key for prevention. HPV plays the central role in 

cervical cancer (Figure 1.4): most risk factors are linked to exposure, persistence, and 

immune response to such an infection. It is not the HPV infection alone that is causing 

cancer, as it is a common virus almost every person can carry at some point in her or his 

life. 

 
Figure 1.4: Connections between several risk factors for acquiring HPV which may lead to cervical 
cancer. Three key factors are marked: The factor in a dashed line (antiviral treatment) is currently 
not an available option. Two factors with bold lines: † Persistence of a high risk strain is a target 
for cancer prevention. ‡ The vaccines’ mechanism of protection is providing prophylactic 
immunisation against HPV 16/18. 
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Figure 1.4 shows risk factors for development of CIN. There are further risk factors for 

the progression from CIN to invasive disease (multiple pregnancies, “western” life 

style, and infections with sexually transmissible diseases, such as Chlamydia and viral 

infections). It is however likely those other risk factors are related to a life style that can 

be associated with a higher risk for a HPV infection, and that they are not necessarily 

directly causing cancer. 

 
Figure 1.5: The role of HPV in cervical precancer. This scheme is valid for the vast majority of 
cervical cancers. As long as the basal lamina has not been dissolved and penetrated, these lesions 
have a very good diagnosis for almost 100 % curative rate. 

Smoking, alcohol or drug abuse are believed to act as a trigger: A plausible mechanism 

is that in cells which would undergo apoptosis, this salvage mechanism is seized by the 
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HPV infection. A detailed review on various risk factors is provided elsewhere [4]. 

Figure 1.5 shows a cascade of steps leading to cervical cancer. 

1.3 “Precancer” vs. “Cancer” 

In order to understand what cervical screening is aiming at, it is important to distinguish 

precancer from cancer. 

The key for all cancer management is prevention. Healing cancer is often impossible 

and usually involves a combination of chemical destruction of tissue and surgical 

removal of organs. There is a trade-off between the chance of cure and the harm from 

the clinical intervention. 

 
 PREVENT OBSERVE TREAT 

 
 PREVENT (OBSERVE) 

Figure 1.6: Top: Schematic of CIN stages during cancer progression. Presence of CIN2 justifies 
preventive treatment. Bottom: Successful management aims to prevent developing high-grade 
lesions and allows observation of low-grade lesions. The overlaid OCT images are not to scale 
(modified after [5]). 

Cancer management aims therefore to shift from treating to preventing. For most 

cancers, risk factors have been identified or are subject of ongoing research. Since 
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cancer is not a deterministic disease, such risk factors can only contribute to diagnosis 

and prognosis (Figure 1.6). 

The problem is the identification of the threshold between treatment and surveillance to 

justify treatment: Where shall one put the red line in Figure 1.6? 

Quite a few properties of cervical cancer can help justifying why an investigation into 

the merit of a technology such as optical coherence tomography as early diagnostic tool 

is worth being undertaken. 

1.4 Improving assessment of cervical precancer 

Management of cervical cancer is archetypical: In those countries which have 

established programs for screening, early detection, and preventive treatment, cancer 

rates have dropped [6]. In the UK, the Cervical Screening Programme of the National 

Health Service (NHSCSP), which was introduced in 1998, is estimated to save 4,500 

lives a year [7]. This is possible because squamous cervical carcinoma (SCC), the most 

prevalent form of cervical cancer2, is preceded by a long phase of pre-clinical 

alterations, which are commonly referred to as cervical intraepithelial neoplasia (CIN), 

and graded into mild (CIN1), moderate (CIN2), or severe (CIN3) [8]. The following 

paragraphs give a short summary of the present understanding of CIN and provide the 

common ground for understanding the mechanisms of precancer detection. 

1.4.1 Early changes 

What are the characteristics of the different steps in precancer development? 

Histological level: Epithelial cells originate from stem cells which are lying amongst 

the basal layer of cells on a supporting molecular network of collagen. The underlying 

connective tissue is called the basal lamina. The sophisticated regulatory system in the 

healthy body achieves a smooth gradient of cell maturity from the stem cell level 

towards the outside throughout the thickness of the epithelium (several 100 µm). The 

                                                           
2 It is difficult to provide an accurate percentage. Depending on socio-economic factors and the screening 

situation, prevalence can be 98-99 %. Cervical screening programmes have indeed resulted in a reduction 

of SCC, and a recent publication on the UK situation in 2007 indicates that the SCC ratio has dropped to 

70-80 % (Shafi 2007 [8]). This is an indicator for the success of screening programs. 
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development from a freshly divided unit to a mature cell can roughly be correlated with 

the distance from the basal layer (Figure 1.7). CIN is correlated with subcellular 

alterations which cause aberrations from this scheme. 

Cytological level: Mature cells have a reduced nucleus-to-cytoplasm ratio and are flat 

(“squamous”), thereby forming a protective layer. This goes in hand with biochemical 

changes: glycogen accumulation due to a cease in energy demand and depletion of 

metabolites with short half life, e.g. RNA or phosphorylated molecules. If there are 

deviations in cell shape and sub cellular architecture (dyskaryosis), and if there is 

metabolic activity in surface layers, this indicates problems in the proliferation at the 

basal level. However, such changes are not exclusive to precancer, benign conditions 

(e.g. inflammatory processes) can show similar deviations. 

 

     
   (A) (B) 

     
   (C) (D) 

     
 (E) (F) (G) (H) 
Figure 1.7: Scheme of CIN progression. (A) healthy squamous epithelium, (B) CIN1, (C) CIN1, 
(D) CIN2, (E) CIN2 progressed to cancer, (F,G) CIN3 progressed to cancer, (H) cancer 
transgressed basal membrane. It shall be emphasised that cancer may occur at any stage. The 
thickness of the epithelial layer is typically a few 100 µm or around 500 µm. 

The lower boundary: Growth of cells below the basal lamina is believed to be 

facilitated if this layer has been decomposed by proteins, the matrix metalloproteases 

(MMP). Viewed under the microscope, this can be noticed when the usually sharp 

border between epithelium and underlying tissue is interrupted (Figure 1.7H). 

Expression levels of MMPs allow correlation with CIN staging [9], and the ability to 
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transgress through tissue boundaries is a feature for determining severity. Cancer 

prevention aims at catching cells before they gain motility [10]. 

1.4.2 Current diagnostic criteria 

The diagnostic criteria for this are continually revised and duely published, e.g. by the 

British Society for Colposcopy and Cervical Pathology [11], or its American 

counterpart which provides an online practice recommendation [12]. The general 

criteria for a diagnosis are similar to other types of cancer: cellular immaturity, cellular 

disorganization, nuclear abnormalities, and increased mitotic activity [13]. These 

criteria may be timeless, but the diagnostic arsenal for establishing the presence of such 

criteria is subject to extensive research. It is noteworthy that – seemingly due to the 

difficulties in agreeing on defined markers – the current classification system in the UK 

is three-tiered (CIN1-3), whereas sources in the US use a two-tiered system which 

classifies into low-grade and high-grade lesions. Common markers to highlight nuclear 

material in tissue are the contrast agents hematoxylin and eosin (H&E). The exact 

mechanisms for these stains are not understood in their entirety. Haematoxylin is a 

basic/cationic agent that binds predominantly to basophilic molecules – the phosphoryl 

groups of nucleic acids, and also to carboxyl groups of e.g. acid proteins. It shows up in 

shades of violet/dark blue. Eosin is an acid agent and stains basic proteins, which are 

found in collagen or cytoplasm. Under the microscope it appears light red or pink. There 

are many different stains available, amongst which “H&E” is a dominating stain for 

establishing criteria for cancer, such as nucleus-to-cytoplasm ratio in tissue, under the 

microscope. It remains, however, unspecific to the exact types of molecules. The optical 

diagnostic tool investigated in this thesis is supposed to exhibit a similar(ly unspecific) 

contrast for nuclear material and interfaces, without the need for stains. It will therefore 

not aim to compete with immunohistologic stains, which provide the possibility of 

acting as antibodies to antigens that have been recognised as specific markers with high 

affinity, e.g. for the presence of a specific high-risk HPV strain. These have the 

potential to not only allow a better diagnosis, but maybe allow a prognosis on the 

progression of the precancerous lesion. An example for such a comparison is given in 

Figure 1.8. 
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Figure 1.8: Sections for histopathologic assessment (Columns from left to right: Normal Cervix – 
Cervical Dysplasia – Invasive Cervical Carcinoma). In the source of this figure, several different 
molecular markers were compared with the standard H&E (row ‘a’). p16INK4a, p15INK4b, and p14ARF 
(rows ‘b’-‘d’) are tumour suppressor proteins that play a role in cell cycle regulation. Their 
presence in dysplastic cells is explained by the fact that mechanisms of tumour suppression are 
being initiated without success. In the left column, the “brick layer” architecture of the normal 
epithelium is visible. Progressed CIN is displayed in the middle column and shows the increase in 
nuclear material, evident through the accumulation of nucleophile markers in the (row ‘a’), or 
suppressor markers (rows ‘b’-‘d’). The thickness of the epithelial layer is around 500 µm (modified 
after [14]). 
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1.4.3 Diagnostic challenge 

Progression of CIN1 to more severe stages is not definite: Rather, CIN stages serve as a 

marker for a likelihood of progressing to cancer, and a decreased likelihood of reverting 

back to normal without intervention (Figure 1.7E-G). Certain HPV strains have been 

shown to be involved and to be a necessity for cancer progression. A large body of 

evidence supports that the cancer risk is a consequence of the body’s inability to 

develop immunity against HPV, thereby failing to rid itself of the virus. This has led to 

the development of HPV vaccines. 

The key issue in CIN management today remains: Justifying preventive treatment, 

without missing a lesion and without over treating healthy patients, in as few diagnostic 

procedures as possible. Diagnosis in modern screening programs, as summarised in 

Table 1.1, is initiated by cytological examination of exfoliated cells (superficial), 

colposcopy (superficial), and histopathologic assessment of biopsies (sub-surface) [15]. 

Findings of moderate or severe dyskaryosis on a smear or consecutive events of mild 

abnormalities prompt a referral to colposcopy [16]. Current findings support that 

women should be invited for colposcopy even after only one mild event [17]. 

Table 1.1: Management of cervical precancer in the UK (National Health Service Cervical 
Screening Programme, NHSCSP) involves various levels. It will take several decades before HPV 
vaccination can make the NHSCSP redundant. 

Level Approach / Technology Responsibility 
Prevention Public awareness 

HPV vaccination 
Several bodies, media, NHS 

individual 
Screening Cytology (“Pap test”) Provided via NHSCSP 

Early detection Visual assessment (colposcopy) 
Histopathology 

Part of NHSCSP, 
Gynaecology 

Treatment Removal of precancerous lesion Clinician with 
informed consent of patient 

Monitoring Shorter intervals for suspicious 
lesion(s), and after treatment 

Follow-up as part of NHSCSP 

 

Of the adequate tests in 2002/3, the follow-up results for around 96.6 % were negative 

or borderline for disease. Further surveillance was justified in 2.1 % of cases with mild 

dyskariosis. In 1.1 % of cases with moderate or severe dyskaryosis the protocol 

recommended preventive treatment [18]. Whilst normal and progressed CIN stages are 

distinguishable, false positives and false negatives are higher for distinguishing CIN1 
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from CIN2, and are also higher for differential diagnosis of other benign conditions 

(benign metaplasia and inflammation etc.) [19]-[22]. Women with mild dyskaryosis 

who are immediately seen in colposcopy have a higher rate of CIN confirmed by 

histopathology compared to women who are invited 2 years later, suggesting that 

regression can happen without intervention [17],[23]. However, larger intervals increase 

the risk of missing a developing high-grade lesion; therefore present management has to 

subject every mild lesion to further diagnostic procedures. Immediate colposcopy 

referral has a better rate of women attending the follow-up [19]. As a consequence, 

today’s clinical practice has to accept repeated tests, anxiety of patients, and potential 

over treatment of a lesion [24]. 

1.4.4 Logistic challenge 

In the UK, of 4.4 million women who are annually invited for screening, only about 

3.6 million actually attend [18]. About 10 % of these tests are inadequate for evaluation, 

resulting in over 4 million tests performed per year, at an average cost of £38 per test, or 

£157 million a year [7], for an estimated 4,500 lives saved due to cervical cancer as 

primary cause of mortality. 

It takes time to communicate these results to the screening participants, thereby causing 

anxiety and treatment delay: 48 % of the women are informed within 4 weeks and 74 % 

within 6 weeks. These figures of 2006/7 are “the highest level recorded” [25] and mean 

that any woman waiting up to one month for her result still has to consider herself to be 

better than the average. The treatment delay is tackled in the UK, by managing 

moderate and severe with higher priority. This short listing is however based on the 

subjective impression of the clinician at the time of the sampling, and inherently means 

a delay for women who do not seem to require urgent treatment. If a biopsy is then 

required for definitive diagnosis, this result reaches 25 % of women within 2 weeks and 

38 % of the women within 4 weeks. This correlates with a recent study on 600 women 

in England and Wales which states that the median time to initiate treatment is 50 days 

[26]. These figures show a potential for new diagnostic tools to improve the issues of 

time, cost, and anxiety which are linked to precancer screening.  
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1.4.5 Areas of improvement 

Therefore there are attempts to provide a clinical tool that is able to provide information 

about the tissue in near real-time, where necessary repeated over a longer surveillance 

time, and in a non-destructive fashion. The ultimate aim is replacing biopsies in order to 

monitor suspicious lesions and schedule preventive treatment [19]. More realistic is the 

aim of reducing and guiding better targeting of biopsies, and improving the prognostic 

value of the findings. This would allow a reduction of cost to healthcare and patient 

distress, as participants can be expected to prefer a “see-and-treat” protocol to a 

“diagnose-and-defer” approach [27]-[29]. 

A further consideration for researching new diagnostic tools is that treatment today is 

limited to methods which leave the tissue suitable for margin assessment, as this is 

relevant for prognosis and follow-up (Figure 1.9): Margin involvement is correlated 

with higher recurrence rates [30]-[34], specifically at the endocervical margin [35]. This 

margin assessment by histopathology is based on few sections (sampling a sample) and 

bears the possibility of misclassifying [36]. Destructive treatment may have less 

pregnancy-related morbidity than excision treatment [37]. If tissue can be characterised 

by a non-destructive tool, this provides destructive treatment options such as laser 

ablation, cryo surgery, or photodynamic therapy [38]-[41]. 

 
Figure 1.9: Drawing of a LLETZ procedure which preserves the excised tissue and allows 
subsequent, histopathologic margin assessment. 

These outlined clinical needs have driven the direction of this PhD project. The 

following chapter outlines a possible technique to achieve these goods. Optical 

coherence tomography has been explored throughout this body of work, as a tool for 

real-time tissue imaging and potential pathological analysis in the cervix. 
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2 The novel diagnostic tool: optical coherence tomography 

2.1 Introducing OCT 

There are over 15 years worth of research publications, numerous textbooks and 

encyclopaedic descriptions dedicated to optical coherence tomography (OCT). In view 

of this it is difficult to capture an essence of this technology as part of an introduction 

for a thesis. In an as concise as possible way, a description of the OCT system that is 

relevant for the development of this thesis shall be presented. This shall provide a 

framework for the understanding of this technology in those aspects that are relevant for 

the scope of this work. Some other developments of OCT shall only be touched on, so 

that the system used in this work can be put into context. 

2.1.1 Description of OCT3 

OCT is an imaging technology based on low coherence interferometry, first described 

by Huang et al. in 1991 [42]. OCT is often compared with ultrasound by its virtue of 

probing for the intensity of backscattered light (“echo”) from within a sample. Agreeing 

with this association, the classic OCT scanning protocol consists of adjacent 1 D 

A-scans, which are joined to form a 2 D image or a 3 D volume (Figure 2.1). 

In contrast to ultrasound, the “echo” of the incident light cannot be detected directly. 

The incident light beam is characterised by short “pulses” of coherent light, which are 

crucial for detection: Interference of this coherent part with a reference beam allows 

localising the path length and hence the location of the scattering with high precision. 

Typical OCT systems provide a resolution of 10 µm; “ultra-high” resolution is in the 

magnitude of 1 µm. When using near infrared light, penetration depths in soft tissue are 

in the magnitude of 1-2 millimetres. The mode of contrast in OCT is based on variations 

of the refractive index within a specimen. Specifically layers of different types of tissue 

can show up prominently on OCT images. Since the mid 1990s OCT has therefore been 
                                                           
3 Modified from a manuscript that was written as contribution to: Barr H, Hutchings J, Kendall C, 

Bazant-Hegemark F, Stone N. Endoscopic approaches to the treatment of early malignancy and their 

relationship to clinical outcome. Chapter 10 in: UK Key Advances In Clinical Practice Series, Colorectal 

Cancer 4th edn, 2008 (in press). 
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suggested to be promising for real-time optical biopsy. State of the art probe systems 

have dimensions of a few mm and can be readily used in endoscopy. 

 
Figure 2.1: Schematic working principle of OCT: Adjacent back-scattering profiles (“A-scans”) 
form a tomogram (“B-scan”). Sequential B-scans would form a volume. 

2.2 Time domain, frequency domain, and swept source OCT 

Interference is a fundamental concept for OCT. Figure 2.2 shall serve to show the 

similarities between the Michelson interferometer and an OCT system. 

 
Figure 2.2: Simple Michelson interferometer, and the general setup for an OCT system. The optical 
delay line (OD) is the reference arm; the object is placed under the probe arm. BS…beam splitter, 
DET…detector, LCS…low coherent source, OD…optical delay, Proc…processing, Disp…display, 
Arch…archiving, Eval…evaluation. 

Time domain (TD), frequency domain (FD), and swept source (SS) systems differ in the 

way the A-scan profile is obtained. In TDOCT, the reference mirror is moved to obtain 
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a sequence of reflection events along the A-scan. In FDOCT, this movement is avoided 

and the beam is separated into the spectral components. The Fourier transform (FT) of 

the obtained signal yields the intensity envelope of the A-scan. Another way to obtain 

the signal at different frequencies is to sweep the wavelength of the light source 

(SSOCT). The differences in the setup of these three methods are highlighted in Figure 

2.3. Practical differences concern SNR, scanning speed, mechanical movement, cost, 

and linearity of the signal. For the purpose of this thesis, these differences are not 

significant. A recent review on detailed aspects of TDOCT, FDOCT, and SSOCT can 

be found elsewhere [43]. 

 
Figure 2.3: Differences of TD, FD, and SSOCT when obtaining the A-scan profile. The general 
layout is described in Figure 2.2. The relevant alterations are surrounded by a dashed rectangle. 
CAM…camera, DET…detector, DG…diffraction grating, LCS…low coherent source, SS…swept 
source. 
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The configurations in Figure 2.3 sequentially measure A-scans as a base unit. A 

different approach is full field OCT, where a camera detector allows parallel detection 

of A-scans. 

2.3 Components of an OCT system 

For describing a system, it seems appropriate to follow the same path in which light will 

travel: Starting from the light source, via sample and reference arms, and to the detector. 

2.3.1 Light source 

Coherent light is necessary for interferometric detection and defines the axial resolution. 

In order to allow a high-resolution mapping, the coherence has to be partial. Such a 

partial coherence is commonly described as a light pulse. The central wavelength of the 

coherence window is the nominal wavelength of an OCT system. The width of the side 

lobes defines the axial resolution and the shape of the side lobes defines the quality of 

the resolution (Equation 2.1 and Figure 2.4)4. The ideal coherence function would have 

a very narrow rectangular envelope where interference is possible. 
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lc… coherence length, λ…centre wavelength of the light source, 
Δλ… lc at the full width at half maximum (FWHM) of the autocorrelation function. 
(after [44] and [45]) 

                                                           
4 For instance, the light source in this study (Superlum SLD-561) has a central wavelength of 1.3 µm with 

a FWHM ranging from 1270 to 1330 nm. The nominal resolution according to Equation 2.1 calculates as: 

lc = 0.44 × (13002 / 60) [nm2/nm] = 12393 nm ≅ 12.4 µm. 
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Figure 2.4: Axial resolution – long and short coherence length. In OCT, a shorter coherence length, 
per convention defined at the full width at half maximum (FWHM), correlates with higher 
resolution. lc… coherence length. 

The lateral (transverse) is resolution decoupled from the axial resolution, and depends 

on the beam shape (Equations 2.2-2.3 and Figure 2.5): 
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 (Equ. 2.2) 
Δx…lateral resolution, λ…centre wavelength of the light source, 
f…focal length, d…spot size on the objective lens (after [44] and [45]) 
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 (Equ. 2.3) 
b…depth of focus (after [44] and [45]) 

 
Figure 2.5: Left side: Lateral resolution – scheme of a focussed beam. b…depth of focus, 
Δx…lateral resolution, lc…axial resolution (decoupled). Right side: The highest resolution is only 
achieved at the focal point, where the coherence volume is minimal. This should lie below the tissue 
surface (modified after [47]). 
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2.3.2 Light guide 

In practice, two configurations exist: bulk optics or fibre optics. Bulk optics have the 

disadvantage of their size requirements, but allow precision adjustments and have fewer 

problems with refractive index mismatch. Fibres are sensitive to polarisation but allow 

reaching remote sites. Specifically for endoscopic applications they are therefore 

mandatory. 

2.3.3 Probe arm 

By analogy to older ranging technologies, the backbone of an OCT dataset is the 

A-scan. This is a 1 D back-scattering profile. The mechanical design of the probe arm 

defines how the light beam is guided across the sample for a 2 D or 3 D image. For 

ex vivo systems, precision stages can move the sample relative to the light beam. A 

common solution employable for in vivo measurements is to guide the light beam using 

a galvanometric turning mirror (Figure 2.6). 

 
Figure 2.6: Left: The general OCT setup as shown in Figure 2.2. Right: A more specific drawing of 
the probe arm (surrounded by dashed rectangle). It shows the beam guiding at the sample arm and 
the movement of the specimen using a precision stage. In either case, the movements are 
communicated with the processing unit. 

2.3.4 Specimen 

Prior knowledge of the specimen’s optical properties might help in the choice of the 

central wavelength. With higher wavelengths (up to near infrared), higher penetration 

can be achieved. In biological samples, the water absorption characteristics however set 
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a limit to the wavelength that can be utilised. This has coined the term “diagnostic 

window” [46]. 

2.3.5 Reference arm 

This component is integral to OCT systems. The light that is reflected from a specimen 

cannot be detected directly and the signal registration requires interference. The mirror 

used for this purpose is part of the reference arm. In the original time domain setup, it is 

this mirror that is moved in order to allow mapping over several depth points. The speed 

of such mirror movements is mechanically limited. Rapid scanning optical delay 

(RSOD) lines use galvanometer-mounted turning mirrors (Figure 2.7). It is imperative 

that the optical path of the reference and the sampling arm have equal length. This has 

to consider any path the light travels, and the optical density of the medium. For 

instance, the path of a RSOD as in Figure 2.7 measures 2 × from the fibre end to the 

diffraction grating, 8 × the focal distance and 2 × from the diffraction grating to the 

double pass mirror. 

 
Figure 2.7: Left: Layout and optical path of a rapid scanning optical delay line (RSOD). The 
scanning mirror is mounted on a galvanometer. Right: the RSOD implemented into an OCT system 
(modified after [47]). 
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2.3.6 Detector 

The intensity at the detector, for a standard Michelson Interferometer, is given by 

Equation 2.4: 
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 (Equ. 2.4) 
I0…intensity at the detector, Er…field of the reference, Es…field of the signal, 
Δl = lr - ls…length difference of signal arm and reference arm (after [44]) 

The SNR can be formulated by standard techniques from optical communications 

theory and reflects that a higher optical power is required when imaging with higher 

speed or resolution (Equation 2.5 and Figure 2.8): 
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 (Equ. 2.5) 
η…detector quantum efficiency, P…detected power, hν…photon energy, 
NEB…noise equivalent bandwidth of detection (after [45]) 

 
Figure 2.8: Trade-offs for information per time. FOV…field of view; SNR…signal-to-noise ratio; 
FPS…frames per second. 

Time domain systems allow heterodyne detection: Part of the light is used as baseline 

for noise reduction of the signal [43]. For this, the detector registers the signal with two 

photodiodes (Figure 2.9). 
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Figure 2.9: Left: The general OCT setup as shown in Figure 2.2. Right: heterodyne detection as 
used in this study. SLD…super luminescent diode. 

2.4 Contrast, penetration depth and resolution in OCT 

The mode of interaction that is registered from a scan is the depth-dependent back-

scattering. Here it might be worthwhile to put OCT in relation to other technologies that 

acquire back-scattering profiles (confocal microscopy (CM) and ultrasonography): 

According to Figure 2.10, OCT nicely fills the gap between the two in regard to 

resolution and penetration depth. 

Contrast may be enhanced by either reducing the refractive index mismatch of clinically 

insignificant tissue matrix, or by increasing the mismatch of the clinical markers. 

 
Figure 2.10: OCT, ultrasound, and confocal microscopy put into contrast in terms of their 
penetration depth and typical resolution (modified after [47]). 

In practice, this is not straightforward as application of agents raises issues such as 

tissue interaction, time dependency, protocol adherence and the dynamic range of the 
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contrast enhancement. Most critical for OCT, introducing agents creates an invasive 

procedure. 

2.4.1 Autochthonic contrast enhancers 

Certain conditions or organs could have native or acquired contrast agents, which would 

avoid issues associated with foreign agent. E.g., the assessment of lung tissue may be 

facilitated by the abundant carbon depositions in smokers’ lungs [48]. In functional 

OCT, the non-structural measurement may give stronger contrast: The reported 

penetration depths in blood vessel Doppler measurements are generally deeper than for 

standard OCT imaging. The information in these cases is not structure, but high (spatial) 

resolution velocity profiles. 

2.4.2 Chemical agents 

Contrast agents aim at altering the usual scattering behaviour. This is either achieved by 

altering scattering or by reducing the refractive index mismatch. Organic chemicals can 

alter the optical clearance behaviour in tissue [49],[50]. Along with increased 

penetration depth, the feasibility to pick up optically different features in less deep 

regions has been reported. 

During colposcopy, acetic acid and iodine are standard contrast agents. Acetic acid has 

been displayed as influential in fluorescence spectroscopy and confocal microscopy 

[51],[52]. This might turn out to be relevant for clinical OCT measurements. 

2.4.3 Engineered contrast enhancers 

More sophisticated contrast agents that have been investigated are oil filled 

microspheres [53], and plasmon-resonant gold nano-cages or nano-shells which have a 

high scattering cross-section [54],[55]. Their signal strength increases exponentially 

with higher concentration. Application of dyes which are absorbing parts of the infrared 

spectrum have also shown to give notable contrast [56]. 

The so far mentioned contrast agents are changing the refractive pattern in a passive 

way. The magnetomotive contrast displayed by Oldenburg et al. makes use of agents 

which are known from magnetic resonance imaging, such as superparamagnetic iron 

oxide nanoparticles [57]. Their motion, which can be induced by external magnetic 

fields, shows up on the OCT image. 
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2.5 OCT in the clinical setting 

We now understand OCT as a method for distance ranging, based on interferometric 

detection that allows mapping of reflection events with an accuracy of a few 

micrometres. For dense tissue, only areas just about a millimetre below the surface have 

a sufficient signal-to-noise ratio (SNR) to allow imaging. It is however non-destructive 

and quick. Table 2.1 gives a brief overview where OCT can be expected to be of 

benefit. 

Table 2.1: Clinical features which render themselves to assessment with OCT 
Clinical category Clinical feature When can this be expected 

Localisation Within penetration depth Clinical markers positioned few mm in (dense) tissue 
or a few cm in clear medium 

Superficial 
presentation 

Sub-surface Does not have to be evident on surface 

Above resolution >10 µm The disorder provides markers of this magnitude 
Topical assessment In reach of fibre optics Endoscopic applications 
Contrast Difference in refractive 

index 
Architectural changes represent disorder or correlate 
with its state 

 

The essence of Table 2.1 is: It is necessary to identify a marker that becomes relevant 

for the staging of the disease (diagnosis) or its likely progression (prognosis). This 

marker should be within the range of the imaging modality and correlated with the 

staging. It cannot be excluded that nuclear material with higher refractive index than 

surrounding tissue has a contrast similar to the H&E stain, and would therefore show up 

on an OCT image. This is the supporting opinion for investigating the benefit of OCT in 

epithelial malignancies. 
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3 The research question: OCT for cervical precancer? 

The previous chapters have served as introduction for two topics: The clinical need for 

improving the situation in precancer management of the cervix, and the possibility to 

improve this situation with OCT. It was therefore the aim of the project to assess the 

possibility of OCT in the clinical setting. For the purpose of this thesis, this project is 

broken down into aims and objectives: 

3.1 Aims and objectives 

The aim of this thesis is to characterise the potential of OCT in cervical precancer 

management. At this point it has to be reminded that the existing management is already 

successful in reducing the incidence and that even a promising result might not be 

sufficient for improving the current situation. Findings might however make their way 

to the management of other diseases which are not currently covered by a screening 

program. 

The following chapters are organised in the way the objectives were tackled: 

3.1.1 Chapter 4: Review of OCT and competitor technologies 

There are other optical high-resolution non-destructive measurement methods which are 

being investigated for their future role in disease management or characterisation. This 

chapter shall explore the mechanism of detecting cancer markers and position OCT 

amongst its competitors. 

3.1.2 Chapter 5: Review of OCT data analysis 

We will establish that OCT instrumentation has progressed to a point where it 

accumulates large amounts of data. There will undoubtedly be a need for means of 

assisting data evaluation. Publications on automated evaluation of OCT data are 

explored for their potential in the context of this work. 

3.1.3 Chapter 6: Pre-processing OCT data 

For the subsequent classification it is crucial to perform pre-processing of data. 

Although this normalising is the basis for a successful discrimination model, it is an 

independent step that is explained in this Chapter. 
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3.1.4 Chapter 7: Introducing PC-fed LDA 

Structural features in OCT images of dense tissue are not always pronounced and may 

be too weak for recognising cancer markers. It would be desirable to have an algorithm 

at hand that does not require prior knowledge of the disease marker. A classification 

algorithm is designed and explored on non-clinical samples. 

3.1.5 Chapter 8: Application to clinical study 

A collection of clinical OCT images is created. Using standard histopathology as 

reference method, OCT images are classified using the proposed algorithm. The results 

of this classification shall serve as an indicator of the possible performance of OCT in 

the clinical setting. 

3.1.6 Chapter 9: Discussion 

The intention of the last chapter is to put the achievements in this work into context of 

the aims and objectives and shall highlight the value of the findings. 

3.1.7 Appendix chapters 

Further work has been undertaken during this project, but is not necessarily essential for 

following the thought processes. However, this work is related to the developing of the 

algorithm and a potentially successful application in the medical field. These parts have 

therefore been put into the appendix for reference: 

• Appendix B: Optimal parameters for PC-fed LDA 

• Appendix C: Ethics files 

• Appendix D: Portability: OCT for prognosis of Port-Wine Stains 
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3.2 Summary 

A listing of the questions investigated in this thesis is given in Table 3.1: 

Table 3.1: Summary of the hypotheses investigated in this thesis, methods to test them and rejection 
criteria. 

Research question Expected answer Method Aim 
Can OCT be used as 
staging tool for pre-
cancerous lesions in the 
cervix? 

“Well it could be used, 
but…” type of answer. 

Split into further 
hypotheses. 

Define a role of OCT 
for the clinical setting in 
the near future. 

Does OCT perform 
different than other 
high-resolution imaging 
tools? 

Some difference in 
speed, contrast, 
invasiveness. 

Undertake review to put 
OCT into contrast with 
competitor 
technologies. 

Define advantages of 
OCT over other 
technologies. 

Can OCT data 
evaluation in dense 
tissue be automated? 

If a certain feature can 
be defined, an algorithm 
can be programmed to 
classify it. 

Undertake review of 
data evaluation in OCT 
dense tissue images. 

Define conditions under 
which these algorithms 
work. 

Is linear discriminant 
analysis a suitable tool 
for OCT data 
classification? 

Depends on appropriate 
pre-processing and 
variable normalisation. 

Use test images to 
evaluate algorithm. 

Investigate whether a 
classification has a 
correct rate (arbitrary) 
of >70 %. 

Does automated 
analysis of cervical 
OCT images have a 
clinical benefit? 

It should be applicable 
to identified markers. 

Acquire image 
collection and apply 
developed algorithm. 

Investigate whether the 
classification is worse 
than standard clinical 
histopathology scores in 
literature. 
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4 Modalities review: learning from prior work 

Optical micrometer resolution scanning scanning for 

non-invasive grading of cervical precancer 

Florian Bazant-Hegemark1,2, Mike D Read3, and Nicholas Stone1,2 
1) Cranfield Health, Cranfield University at Silsoe, Bedfordshire MK45 4DT, UK 
2) Biophotonics Research Group, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK 
3) Women’s Health Directorate, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK 

 

Modified† from a manuscript that was published in 

Technology in Cancer Research and Treatment, 7(6), 483-496, (2008) 

 

4.1 Abstract 

Background: Management of cervical precancer is archetypical for other cancer 

prevention programmes but has to consider diagnostic and logistic challenges. 

Numerous optical tools are emerging for non-destructive and rapid imaging for early 

diagnosis of precancerous lesions of the cervix. Some of these have reached a pre-

commercial stage, but high-resolution mapping tools are not yet introduced in clinical 

settings. Methods: The NCBI PubMed webpage was searched using the keywords 

“CIN diagnosis” and the combinations of “cervix {confocal, optical coherence 

tomography, ftir, infrared, Raman, vibrational, spectroscopy}” and similar keywords. 

Suitable titles were identified and their relevant references followed. Results: 

Challenges in precancer management are discussed. Tools capable of non-destructive 

high-resolution mapping in a clinical environment were identified: confocal 

microscopy, optical coherence tomography, IR spectroscopy, and Raman spectroscopy. 

A critical review of the likely performance of these methods as diagnostic tool is 

provided. The rationale for carrying out research under the prospect of the HPV vaccine 

is given. 
                                                           
† Modifications include: British English spelling; cross-referencing; removing redundancies; and a greater 

level of detail. 
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Keywords: Optical Diagnostics, Cervical precancer 

4.2 Methods: Search strategy and selection criteria5 

This review aims to cover optical tools for staging of cervical precancer, capable of 

high-resolution imaging or mapping. Following an initial research, titles (not Mesh-

terms) of the NCBI PubMed data base [58] were queried for “CIN diagnosis” and the 

results back to the year 1990 were sieved for titles that seemed relevant for 

non-destructive grading. Following this initial sifting, the database was queried for 

“cervix confocal”, “cervix optical coherence tomography”, “cervix ftir”, 

“cervix infrared”, “cervix Raman”, “cervix vibrational”, and “cervix spectroscopy”, and 

their relevant references followed. These high spatial resolution mapping technologies 

were selected because they are being developed and/or subject to active research for 

their benefit in staging cervical precancer. The criterion was whether there was an 

amount of clinical studies on human tissue available that had the dedicated purpose of 

investigating markers for adding benefit to current management of cervical precancer. 

Technologies that may have potential for use in the cervix but where such studies have 

not been published were omitted. Although small animal studies can be helpful in 

investigating techniques, there was a focus on studies of human tissue. The distinction 

between ex vivo and in vivo is made where appropriate. This choice shall not be 

understood as exclusive in the sense that other technologies are not equally legitimate, 

but should be seen as a self-imposed limitation on what this manuscript aims to discuss. 

Most recent studies were accepted as such when no forward references were produced 

from the ISI Web of Knowledge webpage [59]. Literature before 1990 was not part of 

the initial query but included if recognised as relevant in reference lists. This report 

covers the key publications concerning high spatial resolution cervical precancer 

mapping since 1975. 

The emphasis was on high spatial resolution imaging at the micrometer scale, in 

contrast to wide-field imaging where some systems at pre-commercial stage are subject 

to advanced trials. The data provided by such systems is increasing rapidly and it seems 

appropriate to await a separate review of their performance in due course. In this 
                                                           
5 The introduction of this manuscript has been removed in this thesis for the sake of brevity. 
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context we would like to refer to earlier reviews on optical diagnosis of the cervix 

[6],[60]-[62], and on other reviews on molecular markers [63],[64] and methods of 

detecting HPV [65],[66]. 

4.3 Results: Emerging technologies for high-resolution mapping of 

the cervix 

Emerging technologies are leading to the possibility of a real-time, minimally invasive 

assessment of early cervical disease. This section discusses confocal microscopy (CM), 

OCT, infrared (IR) spectroscopy, and Raman spectroscopy (RS), as these four are likely 

contenders for high-resolution mapping. Table 4.1 shows that they provide information 

on structure which correlates with histology and cytology, or on molecular composition 

which can be explained with knowledge of biochemical processes. 

Table 4.1: Overview of modalities discussed in this review. 
Modality Confocal microscopy Optical coherence 

tomography 
Infrared spectroscopy Raman spectroscopy 

Probing for Subcellular structure Histological structure Molecular 
composition, 
biochemical patterns 

Molecular 
composition, 
biochemical patterns 

Contrast Backscattering and 
refraction 

Change of refractive 
index 

Peak intensities: 
absorption as function 
of molecule bonds 

Raman signals as 
function of molecule 
flexibility 

Axial resolution* ~1 µm ~5 µm - - 

Lateral resolution* ~3 µm ~5 µm Application / stage 
dependent 

Application / stage 
dependent 

Penetration depth* ~300 µm ~1 mm - - 

Field of view Microscopic area ~5 mm Microscopic area In vivo: point measure 
Microscopic area 

Main imaging mode En face, volumes from 
stacks 

B-scan, volumes from 
adjacent B-scans  

Point measurements 
and imaging 

Point measurements, 
scan modes for 
mapping 

Investigated precancer / 
proliferation features 

Sub-cellular structure, 
nucleus/cytoplasm ratio 

Histological structure, 
intact basement 
membrane 

Characteristics of 
biochemical processes: 
glycogen, 
methylisation, protein 
phosphorylation, DNA 
hydration, 
glycogen/phosphate 
ratio, RNA/DNA ratio 

Peak intensities and 
ratios of collagen, 
elastin, nucleic acids, 
phospholipids, glucose-
1-phosphate 

* for typically applied wavelengths in cervical tissue 

 

The differences in cervical epithelial cells which are surrogates for determining the 

malignant potential of a lesion are sound: size and shape of cells will alter the way light 

is reflected and scattered, different concentrations of cell components will result in 
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different amount of absorbance and transmission, and different amounts of fluorescent 

biochemical constituents would show semi-quantitative emission patterns. 

Let us remind the reader that colposcopy itself is an assessment of the visual appearance 

of different types of epithelium, in order to obtain a combination of optical diagnostic 

markers: A typical examination refers to interaction of white light as seen under a 

microscope, and makes use of contrast agents for proteins (acetic acid) and glycogen 

(iodine). The visual impression contributes to the prognosis of CIN progression. 

However, the correct interpretation is based on the expert opinion of the clinician. In 

addition, aceto-whitening and iodine staining are not 100 % correlated with the cancer 

risk. 

4.3.1 Confocal microscopy 

A confocal microscope is generally described as a microscope which collects light that 

is coming from the focal plane only. The principle of CM was patented in 1957. Initial 

problems with the then available light sources were sample heating, focussing, and data 

transfer [67]. Mapping within a plane is achieved using galvanometer motors [68], 

altering the focal plane provides different slices for 3 D stacks. Today, lasers allow 

resolutions of around 1 µm, thereby providing images as shown in Figure 4.1. 

CM visualises en face planes of microscopic structures: Studies on smear samples 

showed that subcellular structures, such as mitotic figures and chromatin patterns, can 

be resolved and hence contribute to diagnosis [69],[70]. The light for detection is 

created by either reflection or fluorescence, which opens the possibilities of this 

technology for functional imaging and double selectivity of target volume [71]. 

Fluorescence CM allows mapping fluorophoric metabolites (NADH, FAD) within 

subcellular structures and distinguishes between cytoplasmic and peripheral 

fluorescence [72]. Fluorescence has been shown to distinguish basal cells from 

parabasal, intermediate, and superficial cells [73]. 
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Figure 4.1: CM en face images of biopsy samples: Normal tissue at 50 µm below the surface (b), an 
intermediate layer (c), and close to the basement membrane (d), and of CIN3 tissue at the 
equivalent distances (f-h). (a) and (e) show an overlay of an automated segmentation algorithm. 
Reprinted with kind permission [78]. 
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As the CM allows description of cellular DNA appearance, risk factors for cancer 

progression such as aneuploidy, morphological changes, nucleus-to-cytoplasm ratio, or 

irregularity of cell spacing, can be assessed [74],[72]. Simple chemicals can serve as 

contrast agent, e.g. acetic acid, which is a standard agent for colposcopy, improves the 

contrast for cell nuclei seconds after application [74],[75]. However, contrast agents can 

cause tissue swelling and complicate focussing [52]. 

The field of view for CM images is in the magnitude of a few 100 µm, mapping of 

larger areas would require sophisticated stitching software. Although tissue surfaces are 

not completely smooth it is possible to image cells near the surface and near the 

basement membrane, the ratio between the two can indicate the CIN stage [76]. The 

penetration depth (“working distance”) of modern probes is up to 250 µm, depending on 

the amount of scatterers in the tissue above. This can be significant in CIN2/3 biopsies; 

the basal layer cannot always be visualised [77]. However, as growth at the basement 

membrane would be difficult to distinguish from normal, 50 µm may be a sufficient 

depth for detecting progressed dysplastic features [78]. 

CM has been used for ex vivo sections in order to assess DNA aneuploidy as risk marker 

and also as measure for treatment outcome. Tissue sections for CM need to be 

considerably thicker (15-200 µm) than slices for routine histopathologic examination 

(~10 µm) [72],[74],[77]. Typical systems are capable of imaging a 515 × 660 µm2 area 

with 2 µm lateral resolution at 15 frames per second [79], or a 600 µm field of view 

with 1.3 µm lateral resolution at 12 frames per second [80], or at 6.5 frames per 

second [78]. Multiphoton confocal microscopes, which may achieve much higher 

resolutions, use slightly higher resolutions in what seems to be a trade-off between 

spatial image resolution and field of view, as discussed in Figure 2.8. Studies of human 

cervical tissue have not been published at the time of writing. A study on murine 

cervical tissue with a multiphoton microscope imaged 512 × 512 pixel for a field of 

approximately 150 × 150 µm [81], and a study on a cricetine cheek pouch model using a 

multiphoton laser scanning microscope imaged 512 × 512 pixel for a 283 × 283 µm 

field [82]. 

Although the technical realisation of an in vivo system has been demonstrated 

[80],[83],[84], there are also recent ex vivo studies on cervical tissue [78]. For 

volumetric imaging stepper motors have to ensure accurate positioning. Studies which 
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abstain from tissue embedding have to cope with handling problems, when trying to 

image the full epithelial thickness: In a recent study only 9 out of 52 biopsies could be 

evaluated successfully, 43 were too fragile or had insufficient contrast [78]. However, 

handling of cervical biopsies can be tricky in general: The small size and fragile nature 

of biopsies can result in about 50 % of samples not being available for CM imaging 

[77]. Whether volumetric imaging is advantageous, has to be assessed: There are 

significant differences of nuclear volume, surface area and spherical shape factor 

between normal and abnormal cells; these are more pronounced on volumetric images 

[85]. Another study found that for classification, standardising to epithelial thickness for 

sub-surface 2 D slices gives better classification than from volumetric images, such a 

protocol seems therefore better for in vivo imaging [78]. Volumetric data can however 

aide automated segmentation; in the case of failed auto detection [86], adjacent planes 

can be used for correction [78]. The potential of volumetric CM seems to be best 

realised where sample stability is not an issue. Recently, the possibility of adapting 

conventional wide field microscopes to reach both a contrast and a section thickness 

comparable to CM has been displayed on a cervical cancer cell line [87], at lower cost 

than CM. 

The majority of studies on the benefit of CM for cervical precancer assessment concerns 

establishing clinical features or system development. To the best of the authors’ 

knowledge, there is only one study subjecting findings from CM to standard 

histopathologic assessment. It included 19 participants and allowed detecting the 

distinction of high-grade dysplasia from normal tissue with 91 % specificity and 100 % 

sensitivity based on nucleus-to-cytoplasm ratio [88]. Studies for the relevant 

classification of CIN1 vs. CIN2/3 are anticipated. 

4.3.2 Optical coherence tomography 

Studies of cervical tissues use near infrared light sources in the range of 800-1500 nm 

and powers which are harmless for skin [45],[89]. The contrast for structural features is 

determined by changes in the refractive index. Contrast agents for OCT are an active 

research topic [90] but have not impacted on studies of the cervix. In contrast to the 

other modalities, conventional OCT does not acquire en face images (although such 

scanning regimens exist [91]). The depth (axial) resolution is decoupled from the lateral 
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resolution and both are a crucial specification. Typical resolutions are in the magnitude 

of 5 µm laterally and axially in tissue. The penetration depth in dense tissue is around 

1 mm. Strong absorbers in human tissue, e.g. melanin (visible range) and water 

(infrared range) limit the choice of wavelength. Typically applied are near infrared 

wavelengths where absorption curves have a minimum. Light sources for OCT have to 

fulfil stringent criteria in respect to partial coherence, in order to allow interferometric 

detection. The quality of a beams “pulse” directly determines the axial resolution. Ideal 

sources are not available for every wavelength and large efforts of OCT research 

concern laser sources. However, the advantage of the interferometric detection setup is 

that it is practically not confounded by ambient light. 

Research systems today can measure 106 to 107 A-scans per second, which allows 

several volumes per second and so-called 4 D OCT [92]. Cervical studies with such 

systems are however still awaiting their publication. Issues with OCT are the low 

contrast and the amount of data generated, which stretch modern data storage systems 

and will require automated data evaluation. 

The non-invasive, real-time OCT was a diagnostic revolution for ophthalmology. First 

images displaying endoscopic OCT assessment of cervical malignancy have been made 

in 1997 and 1998 [93],[94]. Because the resolution of OCT is smaller than epithelial 

cells, it should be possible to image cervical pathologies in real-time. A first ex vivo 

study on tissue of the female genital tract included 32 cervical specimens [95]. This 

study concluded that an intact basement membrane can be depicted as a feature of 

healthy epithelium, and included 21 healthy and 11 CIN3 or carcinoma specimens. 

Escobar et al. performed an in vivo study on 50 patients, and included the diagnostically 

more relevant samples, from CIN1, CIN2/3, and inflamed sites [96],[98]. It allowed 

concluding that the thickness of squamous epithelium is varying for healthy samples, 

and confirmed healthy epithelium as a marker for an intact basement membrane. This 

membrane itself is too thin for depiction on OCT images. Instead, the visible marker is a 

distinct boundary between squamous epithelium and underlying stroma. Zuluaga et al. 

reported a correlation in the backscattering intensity of normal and abnormal tissue [99]. 

Findings of a study with data from 212 patients resulted in the suggestion to use OCT 

for confirming positive colposcopic examinations prior to treatment, in low resource 
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settings [100]. All studies used 2 D images, such as shown in Figure 4.2, whereas state-

of-the-art OCT is volumetric. 

 
Figure 4.2: OCT images of ectocervix with apparent layer-structure (left) and less vertically 
structured (right) ectocervix. The bar measures 1 mm. 

Imaging of the gastrointestinal (GI) tract has shown that 3 D OCT gives a much better 

representation of the microscopic organisation of tissue structures [101]. However, 

further markers which can be definitely correlated with CIN progression remain to be 

established. In ophthalmology, OCT development could be targeted to successfully 

resolve the retinal layers. In contrast, dividing the cervical epithelium into basal, 

parabasal, intermediate, and superficial layers is a stratification based on relative 

cellular appearance; it is not based on a boundary of the organism as such. In absence of 

clear structural markers, individual A-scans may serve as measure for optical properties. 

An algorithm looking at scattering coefficients has been investigated, but seems to have 

stringent requirements in respect to tissue layering [102]. No algorithm has been 

evaluated for larger sample size of clinically relevant groups. 

In vivo probe design for volumetric data faces the challenge of guiding the laser beam 

accurately in 2 dimensions. For cardiovascular imaging and the oesophagus, helical 

scanning protocols exist to acquire tubular volumes from within [103]. This could 

provide useful for imaging of the endocervical canal. Such setups have the focal point at 

a distance relative to the helix axis, and have to assume a tissue surface with this 

cylindrical shape. Where this is not the case, e.g. at folds, data will therefore be of 

reduced quality or missing. This might be relevant when glandular carcinoma develops 

exactly in such folds. 
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Fluorescence and OCT 

An approach to overcome the limited contrast for biochemical processes is to combine 

OCT with fluorescence, and devices for such measurements have been built [104]. The 

diameter of the endoscopic device is 2 mm. Technical challenges arise because OCT 

requires a focused beam, whereas the optical setup for fluorescence imaging is designed 

to provide homogeneous, diffuse illumination. In vivo measurements on a mouse colon 

take 45 seconds for a 6 mm stretch. The two modalities are not completely overlapping, 

a 1300 nm OCT beam allows a ~15 µm resolution and penetration depth of about 1 mm, 

and the 325 nm excitation source for fluorescence penetrates approximately 200 µm 

into tissue. Housing both modalities in one system allows a reliable co-registration of 

measurements. This addresses a major issue for modalities at this level of resolution. 

Measurements for cervical tissue have not been published, but fluorescence-guided 

OCT has been attempted in other organs. 

4.3.3 IR spectroscopy 

IR spectroscopy measures wavelength-dependent absorption properties by probing 

vibrating energy levels of functional groups and intermolecular interactions. This is 

possible in molecules with an IR active dipole. Fourier transform infrared (FTIR) 

spectroscopy is the standard method today but still often referred to as “FT”IR to 

emphasise the method of spectral data collection using FT interferometry rather than 

dispersion gratings. For medical applications, near- or mid infrared light (between 

0.8 µm and 2 µm) sources give the best contrast. In contrast to analysis of pure 

substances, spectra from biological tissue represent a mixture of all different molecules 

in the interrogated micro-volume. 

The typical mode of operation is absorption spectroscopy. In order to obtain a sufficient 

SNR, transmission measurements have to be taken from thin tissue sections or thin cell 

layers. Initial publications are therefore on exfoliated cells [105]. A review with an 

emphasis on different IR spectroscopy instrumentations for cervical cancer screening 

has been published recently [106]. Wong et al. measured spectra from 156 samples, 

categorising into normal, dysplastic, and malignant [105]. They found that cancerous 

progression in mature epithelial cells, but also normal proliferation, go in hand with 

glycogen reduction, increased hydrogen bonding from phosphodiester groups, and a loss 
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of hydrogen bonding in alcoholic groups of amino acids. Such features are intuitive as 

they represent energy demand and mitotic activity, and have been reconfirmed by 

subsequent studies on cytological smears [107]-[109], cancer cell lines [110],[111], and 

tissue [112]-[115]. 

While peak ratios of glucose/phosphate (decrease) and RNA/DNA (increase) seem to 

correlate well with proliferation of cervical epithelial cells, detecting a malignant 

candidate is more difficult: An experienced spectroscopist might be able to interpret the 

shape of a spectrum or peak ratios, but this is not ideal for the diagnosis of precancer. 

Chemometrics can help giving a better estimation for classification 

[106],[107],[114],[116],[117]. The investigation of IR spectroscopy for precancer 

assessment coincides with the evolution of personal computers which facilitate such 

analysis. Computers allow objective and reproducible classification methods that are 

based on complex calculations, practically remove the need for staff training, and allow 

a statistical estimation in border areas. An appropriately trained classification model can 

separate inflammation, endocervical cells, and bacterial infection [107],[118]. As with 

conventional cytology, debris, red blood cells, polymorph cells, endothelial cells and 

other components can confound the analysis [110],[119]. 

Some of these findings deserve a closer look for their diagnostic value in addition to 

precancer staging. The type of cells and their maturity state is of great importance, and 

the spectral signatures of immature, benign cell types can obscure abnormal cells 

[118],[120],[121]. Sampling plays an important role and issues concern areas such as 

the origin of a sample [120], the homogeneity within the sampling volume [116], cell 

handling [107], or cleaning protocols [122]. Spectral signatures of cells change after two 

hours of being suspended in saline solution at room temperature [119]. Cells would 

therefore have to be stored at a defined low temperature, which for a large scale 

program would pose a logistical challenge. Essentially, a protocol needs to ensure that it 

is valid to assume that: a proliferative signature within the sampling volume can be 

considered as a diagnostic factor for CIN. Still, in a study on 301 cytological samples, 

IR spectroscopy classified better than cytology (98.6 % sensitivity and 98.8 % 

specificity vs. 86.6 % and 90.5 %) [108]. The main potential for improvement derived 

from a study on 2000 cells of 22 women seems to be that cytologically or 
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morphologically normal epithelial cells from abnormal smears have an abnormal 

biochemical signature [112]. 

In search for sampling types, lavage specimens have been investigated [123]. The issues 

with sample collection and the performance were not convincing enough to replace 

smears; yet it was suggested as an alternative where smears are not possible. 

Although IR spectroscopy is still being investigated for assisting cytology [124], it is 

not restricted to smear evaluation. In combination with a stage, tissue mapping is 

possible. IR systems can be designed for true imaging, in the sense that separate pixels 

are measured in parallel, rather than scanned sequentially. In order to be able to assume 

a homogeneous sampling volume, this is done on a few micrometre thin tissue sections. 

Typical systems take about 20 minutes for 500 × 500 µm2 area (IR microscopy or 

microspectroscopy). Preparation of thin tissue sections, which presents a main cause for 

delay in today’s routine, requires an effort quite comparable to conventional 

histopathology: obtaining the biopsy, embedding or freezing, slicing, transferring to 

slide, fixing and staining [109],[113]. Spectral differences in tissue are less pronounced 

than in exfoliated cells, but still allow good classification [121]. On the other hand, 

mapping overrides some of the difficulties of correctly locating a cell in its histological 

environment. It allows characterisation of the different cell and tissue types in cervical 

epithelium, such as cervical stroma, epithelium, inflammation, blood vessels, mucus, 

and abnormalities thereof [109],[113],[125],[126]. The key advantage of IR 

spectroscopy is the objective evaluation to assist the histopathologist. The false positive 

rates can be as low as 9.04 % for CIN1 and 0.01 % for both CIN2 and CIN3 [127], or 

0.04 % [119], and can predict cancer in biopsies with 95 % accuracy [114]. 
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Figure 4.3: Left side: Mean spectra of different tissue types. These can serve as a reference for 
unknown spectra (multivariate models are more complex). Right side: Volumetric presentation of 
consecutive IR maps. The colour of each voxel represents the classification likelihood for a type of 
cervical tissue. The volume measures 1,400 × 1,400 × 16 μm3. Modified and reprinted with kind 
permission [128]. 

Wood et al. have taken this approach into the third dimension: By stacking maps from 

several consecutive tissue sections they created a 3 D stack (Figure 4.3). The whole 

process from taking the measurement to multi-slice analysis and volume rendering lasts 

less than 1 hour for a four-section model covering 1,400 × 1,400 × 16 μm3 [128]. 

Automation for cytological or histopathologic examination faces veritable challenges 

and requires a standardised sampling protocol. However, as a research tool it already 

has provided valuable evidence for understanding the biochemistry of precancer; and it 

can be imagined as an adjunct for ex vivo staging. 

4.3.4 Raman spectroscopy 

Raman spectroscopy (RS) is a spectroscopic method probing for a certain type of 

inelastic scattered light, the Raman-scattering. Raman signals are a function of the 

incident wavelength and light sources used are lasers operating at a single wavelength. 

Although the Raman Effect was discovered in 1928, it required the availability of 

appropriate laser sources to be investigated in the medial research field. RS differs from 

IR spectroscopy: The latter probes for absorption caused by changes in dipole moment. 

RS characterises molecules according to their change in polarizability, and aims to 

measure deviations from elastic scatter. Despite of these differences, evaluation and 
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presentation of Raman data are similar to IR spectroscopy (Figure 4.3). RS and IR 

spectroscopy together are commonly referred to as vibrational spectroscopy [129]. 

Raman signals from tissue are weak and occur, for applied wavelengths and powers, 

statistically only one time for 1010 incident photons. Other effects easily cover a Raman 

signal, e.g. fluorescence is about a million stronger [130]. A significant disturbance is 

fluorescence from biological tissues and from fibre optics (e.g. silica), and filter designs 

for contribution of optics are a crucial component of in vivo Raman systems [131]. The 

near infrared range around 780 nm is typically used for fibre optics probes; but also 

ex vivo studies using ultraviolet light (254 nm) exist [132]. Fluorescence which occurs 

at the same wavelength range as the Raman signal cannot be filtered out using normal 

filter design, and may require baseline subtraction [133]. Cross talk is also the reason 

why 2 D Raman data are mapped, rather than imaged. This makes RS a much slower 

technology than IR spectroscopy. Novel approaches which are stream-lining rather than 

scanning have a huge impact on scanning speed [134]. Systems employing time 

resolved technology to “time-gate” out the fluorescence signal require sophisticated 

hardware which can occupy a large room [135]. Although near IR light would penetrate 

deeper into tissue, it is estimated that a good Raman SNR from cervical tissue is only 

obtained from epithelial layers [136]. 

Raman active molecules and chemical groups allow characterising the presence, 

quantity, and composition of tissue [137]. Suggestions for using this technology to 

distinguish abnormal and normal tissue of the gynaecologic tract were mentioned in 

1992 [138]. Results from a system using a 254 nm light source on cell suspensions, 

allow distinction of normal from malignant cells due to peak ratios from different 

nucleic acid contents [132]. Recent studies use IR lasers. In vitro tissue samples (36 

biopsies of 18 patients) could be classified as precancerous or normal with 82 % 

sensitivity and 92 % specificity [139]. 

Results can be obtained from IR-inactive molecules and can be quite complementary to 

IR spectroscopy. However, the methods for statistical analysis of spectra are similar 

[140]. Utzinger et al. used peak ratios of cervical tissue spectra to distinguish normal 

from dysplastic areas [141]. Diagnostically significant molecules were demonstrated to 

be DNA, phospholipids, and collagen [141]. Analysis of characteristic peaks and 

fingerprint regions agrees with the biochemical picture provided by IR spectroscopy 
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[105]: basal cells show characteristic bands of nucleic acids, epithelial cells show high 

levels of glycogen in normal cells. Decreased levels of glycogen and increased levels of 

DNA and amino acids in epithelial layers are a feature of cancerous cells 

[136],[142],[143]. A study on 3 cell lines (keratinocytes representing normal, HPV 16 – 

infected keratinocytes, and a cervical cancer cell line), was able to distinguish pairs of 

these lines with 70-100 % sensitivity and 70-90 % specificity, i.e. also those cells 

regarded as normal but expressing a viral protein from normal ones [144]. 

In contrast to IR spectroscopy, in vivo probe systems which can probe for the 

biochemical changes exist and have been used for RS [145]. In vivo results differ from 

ex vivo measurements, but are still able to discriminate healthy or squamous dysplastic 

tissue [142]. Even spectra from formalin fixed discriminate well [146]. However such 

spectra are not comparable with fresh tissue, in fact RS is so sensitive to embedding 

resins that it proved useful for characterising the efficacy of dewaxing agents [147]. 

Hence Raman pilot studies should be performed in an environment the actual system is 

intended for: fresh tissue for in vivo applications [148], or on fixed cells for cytological 

measurements [144]. Unlike IR spectroscopy, RS can be used for both in vivo and 

ex vivo measurements of biochemical constituents. RS requires reduced ambient light to 

minimise spectral contribution. Taking measurements in a dark room or using a 

covering cloth can address this issue [141]. Recent in vivo probes require few seconds 

for measuring a (point-) spectrum and can be considered real-time [130],[143],[149]. 

In vivo mapping seems unlikely due to these time requirements, and exactly locating the 

measurement on the cervix is necessary. Even although motion artefacts could 

potentially be addressed by image registration methods [150], the length of the 

procedure would still have to be kept on an acceptable level for patients. 

The available tissue studies restrict themselves to classification between normal and 

high-grade or cancerous samples: Krishna et al. investigated 150 biopsies, 

distinguishing normal vs. malignant tissue nearly 100 % correct [136]. Lyng et al. 

subjected histological samples from 40 patients to classification [142]. Raman signals 

from CIN samples lie between normal and cancerous tissue, and can be distinguished 

with nearly 100 % sensitivity and specificity. CIN was not further staged and the 

clinically relevant distinction between CIN1 and CIN2/3 was not addressed in this 

paper. The latest in vivo study on data from 66 patients showed that RS has 89 % 
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sensitivity and 81 % specificity to distinguish high-grade dysplasia from benign tissue, 

higher than the colposcopy for these cases (87 % and 72 %, respectively) [143]. Here 

the classification performance against low-grade dysplasia was attempted; because of 

the small sample size (6 spectra) in that group this model cannot be considered strong. 

The introduction of new statistical algorithms for classifying spectral variations of 

disease groups might help improving the classification performance and is an active 

research field [151]. 

Recently, the technical feasibility of depth probing Raman signals has been displayed 

repeatedly [135],[152]. The possibility of probing biochemical processes opens another 

field: While the other modalities give a diagnostic snapshot at the time of the 

measurement, RS could potentially provide a prognosis [153]. 

4.4 Discussion 

Markers for an increased proliferative behaviour are intuitive, yet it remains difficult to 

directly conclude an increased risk of cancer progression from them. Better 

understanding even a rather defined entity as cervical cancer is challenging, and even 

more would be developing an appropriate a priori model for cervical cancer. For a 

complex system like human tissue, data evaluation requires multivariate statistics and 

data reduction techniques. Inevitably, a reference in the form of databanks has to be 

established in large clinical trials. 

Combining reflectance spectroscopy and fluorescence imaging has shown that 

non-destructive testing of epithelium is possible and such systems are close to 

commercialisation. Based on available trial data, these systems seem to increase the 

sensitivity for CIN2/3 on the expense of a reduced specificity for CIN1. However, their 

advantage lies in the objective judgement which does not require the immediate 

expertise of a trained colposcopist. In this context, when regarding a spectral peak as 

suitable for discrimination, it is not the raw spectrum, but the classification model based 

on such spectra, which allows good discrimination. This has to be kept in mind, and the 

choice of statistical classification might well influence the performance. 

Although systems utilising reflectance spectroscopy and fluorescence are near 

commercialisation, they are not 100 % definite in diagnosis [154],[155]. They are 

therefore intended as adjunct for colposcopy, in order to guide biopsies. For better 
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classifying disease and underlying mechanisms, it might however be beneficial to 

directly measure biochemical constituents and their relative concentration, or 

subcellular and sub-surface structure. High-resolution modalities which are being 

actively developed might be able to address these issues. For high-resolution in vivo 

measurements, it is important to realise how large the required area would be: Studies 

show that the radial location of a lesion on the cervix is random [156], and evaluation of 

the 2002 screening protocol of the International Federation for Cervical Pathology and 

Colposcopy showed that classifying the extent of a lesion (minor or major) and the 

localisation of a lesion in respect to the TZ - which is changing for each patient - are 

important for correct classification at the stage of colposcopy [21]. Therefore, tools 

aiming to replace colposcopy need to image the entire cervix. 

Although some technologies deliver astonishing data, the clinical value for managing 

cervical precancer might not be sufficient. However, even if new findings do not justify 

replacing the conventional management, diagnostic tools can be valuable in scenarios 

where a cervical management program has not been introduced, or serve as a basis for 

other organs where screening programs are not yet established. 

4.4.1 Continuing research under the prospect of HPV vaccines 

During this project, the development and promising results of clinical studies on HPV 

vaccines received much media attention. Although approval by the FDA is only of 

immediate relevance in the USA, it indicates a milestone in the actual market 

availability. Therefore, with the availability of FDA-approved vaccines which are aimed 

against HPV, there is now a prospect of having a new means of tackling this disease: A 

vaccination against cancer. These vaccines can be expected to reduce cervical cancer 

linked HPV 16/18, the two most common genotypes in precancerous lesions which 

account for an estimated 70-75 % of all cases [4],[157]. However, the aetiology of 

cervical cancer can not be reduced to infection by these two strains. The vaccine is 

prophylactic, which requires an individual not to have been exposed to these HPV 

strains prior to vaccination [158]. 

It remains to be observed whether the currently available HPV vaccines will eradicate 

cervical cancer. The “ESGO” statement of the European Society of Gynaecological 

Oncology reiterates that carefully conducted research and long time monitoring will 



Bazant-Hegemark – Towards automated classification of clinical OCT data… 

- 48 - 

remain necessary before HPV vaccination schemes may lead to a change in present 

cervical cancer prevention programmes [159]. Neither HPV nor CIN are the actual 

disease which causes worry. It is the higher risk of progression to cancer that is of 

concern. Disease management, including screening, superficial assessment, and 

sub-surface examinations as part of precancer prevention will remain necessary. 
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5.1 Abstract 

The native contrast of optical coherence tomography (OCT) data in dense tissues can 

pose a challenge for clinical decision making. Automated data evaluation is one way of 

enhancing the clinical utility of measurements. Methods for extracting information from 

structural OCT data are appraised here. A-scan analysis allows characterisation of layer 

thickness and scattering parameters, whereas image analysis renders itself to 

segmentation, texture and speckle analysis. All fully automated approaches combine 

pre-processing, feature registration, data reduction, and classification. Pre-processing 

requires de-noising, feature recognition, normalisation & refining. In the current 

literature, image exclusion criteria, initial parameters, or manual input are common 

requirements. The interest of the presented methods lies in the prospect of objective, 

quick, and/or post-acquisition processing. There is a potential to improve clinical 

decision making based on automated processing of OCT data. 

Keywords: Biomedical image processing, Biomedical optical imaging, Image analysis, 

Image classification, Medical diagnosis 

                                                           
† Modifications include: British English spelling; cross-referencing; removing redundancies; and a greater 

level of detail. 
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5.2 Introduction 

Specifically in the medical field, the non-destructive imaging provided by OCT is 

attractive (Chapter 2.5). Through rapid high-resolution imaging, detailed structural 

information becomes available – in vast datasets. 

Structural information is often intuitive to view, as shown in Figure 5.1. Strictly 

speaking however, an OCT image might not be relevant in itself. For clinical diagnosis, 

a new repertoire of image interpretation skills and artefact knowledge is necessary, 

which constitutes a learning threshold for the intended operator. There are therefore 

efforts to provide more than a structural image alone. 

  
Figure 5.1: Left image: B-scan of an oesophageal biopsy specimen, of about 2 × 2 mm2 size, 
obtained ex vivo by a 7.5 m resolution (in air) frequency domain system operating at 1300 nm 
(Michelson Diagnostics EX1301 OCT microscope, Michelson Diagnostics Ltd.). The faint tissue 
layers make it difficult to decide whether clear layers are amiss due to weak contrast or because of 
the clinical presentation of the disease. Right image: En face sub-surface section, viewed from top, 
of a volumetric data set composed of 500 such B-scans. The improved representation as opposed to 
2 D images is evident. The raw data requires several gigabytes of memory. The clinical requirement 
for this technique would be to contribute to diagnosis, and determine whether the patient should 
receive cancer treatment. N.B. the weak contrast of this Figure is not due to reproduction. 

5.2.1 Challenges with OCT 

Contrast 

In dense tissue, characteristic limitations of OCT are the penetration depth in the 

magnitude of 1 mm and the mode of contrast, created by the variations of the refractive 

index. This native contrast can be weak, especially when compared to other 

non-destructive high-resolution methods. E.g., fluorescence imaging or Raman 

spectroscopy are able to pick up single molecules or alterations of protein structures 
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[160],[161]. OCT has advantages over these techniques: It is able to maintain the high-

resolution over a large area; it is able to provide depth-resolved high-resolution in vivo; 

and the requirements of OCT instrumentation subsequently mean that OCT does not 

rely on imaging conditions such as reduced ambient light. 

Since it would be attractive to have the combination of a strong marker and the 

wide-field, high-resolution, depth-resolved, rapid data acquisition, there are efforts to 

engineer multimodal systems [162],[163]. Equally important, attention is brought to 

improving clinical contrast in OCT data: Contrast agents have the potential to provide a 

clear signal for clinical decision making and have become quite a large research field 

[56],[90]. In addition to the structural characteristics, OCT data can provide functional 

information. Functional OCT imaging includes Doppler OCT, polarisation sensitive 

OCT, second-harmonic OCT, or spectroscopic OCT. These carry the potential for 

providing physiological information about flow properties [164],[165], birefringence 

[166],[167], neural activity [168],[169], or water content and oxygenation states 

[170],[171]. 

Automated data evaluation 

A further approach to enhance clinical utility is to analyze OCT data by computational 

methods. This area has the potential to provide unsupervised, reproducible and objective 

measures, and to provide both quick and/or post-acquisition classification. When 

engaging ourselves in this field, we found that research groups tend to use different 

approaches and the emphasis is often on the image acquisition rather than the data 

analysis. With OCT being a novel technique, there is still a tendency to treat the OCT 

image as a result rather than as a step towards a clinician decision following detailed 

analysis. Subsequently, some papers even describe their analysis in the results section. 

We wanted to investigate whether there is a common pattern or ideal algorithm which 

could be suggested for further research. 

5.3 Rationale for this review and limitations 

The topic of automating OCT data evaluation has to be seen in context with other 

contrast enhancing approaches. Algorithms can fail and a clear marker, be it from 

contrast enhancing or functional data, will facilitate processing. In this manuscript, we 

want to concentrate on automated algorithms for retrieving information from 
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conventional “intensity” data. We therefore refer the reader to the above mentioned 

literature for more detail on functional OCT and contrast enhancing. Even when 

limiting ourselves to structural data of dense tissues, we certainly cannot claim to 

provide an exhaustive summary of every attempt so far. However, with this manuscript 

we would like to provide a starting point from where further analysis attempts can be 

systematically explored, and combined with other image enhancing methods for OCT. 

5.3.1 Selection 

Table 5.1 gives an overview over the approaches discussed in this manuscript. In 

general, automation requires recognition of relevant features. Identifying such a feature 

has to be mastered by an automation algorithm, which requires calculation time and has 

the potential to introduce errors. The grouping in Table 5.1 is somewhat arbitrary, e.g., 

most of the texture based approaches are subsequently classified. However, Table 5.1 

shows for instance that A-scan analysis renders itself to measuring layer thickness or for 

deriving optical tissue parameters, while B-scans permit speckle and texture analysis. 
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Table 5.1: Articles employing feature recognition or automated steps for analysis of OCT data of dense tissues. ROI…region of interest 
 First author and year Specimen type Sample size for analysis Objective Remark 

Esenaliev 2001, [174] 
Kuranov 2006, [179] 

phantom, 
animal tissue 

-, 8 pigs monitor blood glucose levels automation not mentioned 
but seems feasible 

Levitz 2004, [176] arteries 151 regions, 14 images differentiate normal vs. 
atherosclerotic 

ROI and initial parameters required 

Turchin 2005, [102] phantom, epithelium 19 images, 1 patient classify normal vs. pre-malignant ROI and initial parameters required 
Jeon 2006, [177] rat brain tissue 19 ROIs of 3 images guide deep brain stimulation ROI marked manually 

Ramrath 2007, [178] rat brain tissue - guide deep brain stimulation feature correlates with distinct spikes, 
requires initial training O

pt
ic

al
 p

ro
pe

rti
es

 

Iftimia 2005, [204] 
Goldberg 2008, [205] 

breast tissue 3 biopsy samples 
158 scans, 58 patients 

guide fine needle aspiration biopsy feasibility study on 3 biopsy samples, 
low coherence interferometry 

Gossage 2003, 2006, [181], [185] Brodatz images, 
animal tissue, phantoms 

9 test, 
40 tissue images 

proof of principle 
(classify specimen type) 

equidistance probe – specimen 
 only for homogeneous bulk solutions 

MacNeill 2004, [187] blood vessels 160 images, 49 patients macrophage population as 
predictor for plaque rupture 

unsuitable images excluded manually 

Qi 2006, [188] upper GI tract 106 images, 13 patients classify pre-malignancy unsuitable images excluded manually 
Chen 2008, [189] upper GI tract 100 images, 3 patients provide measure for system resolution ROI marked manually Te

xt
ur

e 
/ s

pe
ck

le
 

an
al

ys
is

  (
B

-s
ca

n)
 

Lingley-Papadopoulos 2008, [190] bladder 182 images, 21 patients precancer staging  
Gamblicher 2007, [193] epithelium 114 images epithelial thickness ROI marked manually, 

unsuitable images excluded manually 
Rogowska 2002, 2003, 
[196],[191] 

rabbit cartilage - cartilage thickness - 

Weissman 2004, [192] forearm, lower leg  12 patients epithelial thickness - 
Korde 2006, [194] epithelium (forearm and

upper inner arm) 
764 images, 112 patients 
incl. 448 forearm images 

detect actinic keratosis unsuitable images excluded manually 
2 methods 

Hori 2006, [198] infundibula of cheek, 
forehead, forearm 

5 volunteers density of infundibula and 
role as acne risk contributors 

surface recognition for flat interfaces 

Se
gm

en
ta

tio
n 

(A
-s

ca
ns

) 

Bonnema 2008, [200] cell cultures on blood 
vessel mimic (BVM) 

12 BVM in total, 
longitudinal study 

monitor stent endothelialization exploits characteristic reflection and 
shadowing of metallic material 

Zysk 2006, [206] breast tissue 4015 A-scans, 4 patients classify normal – malignant – adipose bubbly appearance of adipose tissue 
Jørgenson 2007, [203] skin 78 lesions, 34 patients classify non-melanoma skin cancers features measured manually 

C
la

ss
ifi

ca
tio

n 

Cheng 2006, [201] fake/normal fingerprints 10-20 scans per finger, 
8 fingers plus dummies 

detect forgeries no mention about layer selection 
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5.4 Bulk optical properties 

Quantitative measurements from OCT data are a first step for establishing parameters 

and features for automation. 

5.4.1 Quantitative measures 

Examples of quantitative measurements from OCT data are work on the scattering 

properties and refractive index of skin [172] and tissue [173], monitoring blood glucose 

levels [174], differentiating atherosclerotic arteries [175],[176] and brain tissues [177] 

[178], or the determination of optical parameters of cervical tissue [102]. 

5.4.2 Blood glucose 

Monitoring blood glucose levels is a challenging topic. Esenaliev et al. report an inverse 

association between the slope of an averaged A-scan and the blood glucose 

concentration [174]. With the sample properties being related to OCT data, it is possible 

to determine and classify them automatically. In the original paper, the way of 

determining the slope has not been described in detail. In a more recent publication a 

strict imaging protocol ensures tight contact of a sapphire glass window as part of the 

probe tip with the tissue surface. This allows setting the maximum peak of an A-scan as 

the approximate surface point, which is a prerequisite for the slope determination [179]. 

5.4.3 Atherosclerotic lesions 

Levitz et al. presented an algorithm for determining the scattering coefficient, µS, and 

the anisotropy factor, geff, from regions of interest [176]. For the measurement, the 

average A-scan of a region of interest (ROI) area was calculated, and further smoothed 

by a median filter. In order to allow averaging, the biological specimens in this study 

were placed under a glass surface. The ROI had to be selected manually for this 

algorithm. This algorithm was tested for differentiation between normal and 

atherosclerotic arteries. 151 ROIs from 14 images could be classified into four clinically 

relevant disease states. An algorithm presented by van der Meer et al. in a proof-of-

principle study on 20 lesions of 13 samples showed that the light attenuation coefficient 

µt differs for lipid-rich regions, media, calcifications, and thrombi in ROIs [175]. There 

is no mention how the ROIs were selected and presumably this was done manually. An 
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interesting aspect is that the approach allows a localised determination of µt and 

visualisation as overlay over the B-scan, thereby providing a differentiation that would 

not be obvious from the intensity image. 

5.4.4 Brain tissue 

Jeon et al. used the maximum reflectance intensity and attenuation rate of the mean of 

5 A-scans to determine the different properties of different brain tissue types of rat 

brain. Distinguishing white and grey matter might contribute to guiding deep brain 

stimulation probes in treatment scenarios [177]. The study was performed on 19 

manually selected ROIs of 3 images in total. However, four tissue types (hippocampus, 

primary somatosensory cortex barrel field, external and internal capsule region, and 

optic tract area) were shown to have different optical properties. A different approach 

was suggested by Ramrath et al.: using a three step procedure, areas within an A-scan 

that contain white matter are identified [178]. The essential step to recognise a white 

brain matter peak amongst speckle noise is to transform the A-scan using a nonlinear-

energy-operator and a shift-and-multiply operator. Both are discrete counterparts of 

more complex operators and provide candidates for spikes, i.e. unlikely intensity peaks, 

amongst noisy data [180]. The identified spikes are validated by matching the 

attenuation coefficient µt within a window after this spike to a reference value for white 

brain matter. The reference coefficient needs to be provided, e.g. determined manually, 

but there is no requirement for a pre-defined surface or a ROI. Both approaches were 

demonstrated on images from small animal tissue. The size difference to a human organ 

might pose a challenge. 

The above mentioned publications have to be seen as examples for a wealth of research 

communications treating the determination of optical properties using OCT. The crucial 

point of automation seems to be how to determine the ROIs, or to have prior knowledge 

about a pronounced feature. Databases of such properties may well serve as reference 

for automated tissue characterisation. 

5.4.5 Epithelial neoplasia 

Turchin et al. assessed the scattering behaviour of phantoms and cervical tissue with 

progressing malignancy using various parameters including total scattering coefficient, 
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variance of a small-angle scattering phase function, and the probability of 

backscattering [102]. 

They noted that for the classification of epithelial images, layer disruption is not well 

associated with progression of precancerous lesions. Continuous layers can be seen in 

healthy and dysplastic tissue alike, and can be absent in leukoplakia, metaplasia, and 

neoplasia. They proposed an algorithm which reconstructs scattering properties of the 

sample. Three parameters, the total scattering coefficient, µS, the variance of a small-

angle scattering phase function, γ2, and the probability of backscattering, pb, together 

describe the signal as a function of depth. For a single-layer model, these parameters 

allow classification in the absence of layers. The calculation for many layers then 

becomes complex, but for 2-layer samples the computational effort appears manageable. 

A restriction is that there is an assumption that layers are parallel to the surface. In an 

approximation, epithelial tissue can be regarded as two parallel layers. Turchin et al. 

created single-layer and 2-layer models. Proof-of-principle was displayed on tissue 

phantoms consisting of polystyrene beads (0.14, 1, and 4.75 µm) suspended in water or 

glycerol. In addition to the tissue phantoms, the paper mentions that medical data from 

two clinical centres has been used to evaluate the algorithm. However, only the results 

for 19 images from one patient are shown. 

Their paper did not specify how images were selected for either the single-layer and 

2-layer model, how well the algorithm works for multiple patients or on samples where 

the precancerous lesions were unknown prior to collection of the OCT image. Such a 

proof-of-principle is however an important step in the realisation of a clinical 

classification tool. 

5.5 Texture and speckle analysis 

The information of OCT images does not exclusively consist of evident structure. 

Speckle noise carries characteristics which can be exploited for classification and even 

semi-quantitative analysis [181],[182]. This allows determination of properties of 

homogeneous bulk solutions of particles smaller than the resolution in the absence of 

intuitive structural information. Table 5.2 gives an overview of methods which classify 

OCT data on the basis of B-scan texture. 
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Table 5.2: Overview of approaches for classification on the basis of texture 

 Gossage et al. [185] MacNeill et al. 
[187] Qi et al. [188] Lingley-Papadopoulos 

et al. [190] 
Objective Classify 4 animal 

tissue types, tissue 
phantoms and texture 
images 

Macrophage 
density as 
measure for 
plaque 
vulnerability 

Classify pre-malignant 
oesophageal lesions 

Classify precancer of 
the bladder  

Valid images 40 160 of 225 106 of 405 182 
Pre-processing • Logarithm 

• Normalisation 
• Histogram 

equalisation 

• Median filter 
• Bimodal 

segmentation 

• Manual cap removal 
• Binary threshold 
• Centre- symmetric 

autocorrelation 

• Bimodal histogram to 
determine noise 
background 

• Binary threshold 

Feature(s) Spatial grey-level 
dependency matrix, 
2D Fourier transform 

Normalised 
standard deviation 

Textural features 
(intensity differences of 
centre pixel to its 8 
neighbour pixels) 

74 texture features 
reduced to 18 
independent features 

Classification Mahalanobis distance Statistical, 
ANOVA 

“Computer aided 
diagnosis” 

Discriminant function 
and decision tree 

 

5.5.1 Speckle patterns 

In early work, Hillman et al. have attempted to establish a correlation of speckle with 

the concentration of scatterers (polystyrene microspheres) within the probe volume 

[182]. The reference for the axial depth of a signal was the bottom of the sample – glass 

slide interface. 

Work by Gossage et al. was based on the fact that collagen does not show structural 

features on conventional OCT because of speckle [181]. Speckle noise however does 

carry information from sub-resolution features. The two representative measures for an 

image were 1) the spatial grey-level dependency matrix (SGLDM) and 2) a derivative 

of the complex 2D Fourier transform of a selected image region. The SGLDM in short 

is a measure of the likelihood of a pixel of a defined grey-level to be in the vicinity of 

another pixel of a defined grey-level. This then can be expressed by various parameters, 

e.g. energy, entropy, correlation, local homogeneity, or inertia. 

“Brodatz” images are photographs of textures and commonly used in texture analysis 

[183], examples are widely available in the internet, e.g. [184]. Nine Brodatz test 

images of specified texture and 10 images each from 4 types of animal tissue (skin, fat, 

normal lung, abnormal lung) were randomly split into training and classification sets. A 

Bayesian classification model selected the 3 best out of 24 total parameters. They were 

then classified according to their Mahalanobis distance. Mean classification rates range 
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from 37.6 % to 94.8 % for a 3-group-tissue-model, from 64.0 % to 98.5 % for 2-group-

tissue-models, and from 97 % to 100 % for the test images. In a more recent study, 

Gossage et al. showed the ability to classify phantoms consisting of particles of sub-

resolution size with the same method [185]. 

5.5.2 Macrophage density 

Macrophages play a role in inflammation and tissue degradation and are investigated for 

their role as contributors to atherosclerotic plaque rupture. Macrophage density could be 

an indicator for vulnerable plaques. Macrophages have a size of 20 – 50 µm and 

produce a distinct scattering signal in OCT images. MacNeill et al. automatically 

measured the macrophage density from OCT images [187]. The study consisted of 225 

images from 49 patients. 65 of the images had insufficient quality for analysis and 

hence were manually excluded, leaving 160 images for analysis. The automated 

segmentation was performed by separating a bimodal histogram. The normalised 

standard deviation of the signal intensity was calculated from this segmented area and 

found to correlate with macrophage density, thereby serving as a potential predictor for 

unstable plaques. Whilst the automated algorithm works on selected images, an operator 

would still have to select suitable images. As the authors themselves state, this could be 

a source of bias. 

5.5.3 Epithelial lesions and precancers 

Qi et al. have used centre-symmetric autocorrelation on endoscopic OCT images to 

automatically recognise clinically relevant features of Barrett’s oesophagus, which is a 

precancerous condition of rising importance in the Western world [188]. Their data 

consisted of 405 images from 13 patients, however only 106 of these images were used 

for the study. The presented algorithm required manual removal of the probe cap from 

the image. The image was then globally thresholded with a binary mask to remove noise 

areas. This pre-processed image served as the substrate for the extraction of six 

statistical textural descriptors for the distribution of pixels, and pixels of similar value 

on an image. These six parameters, as well as 2 principal components of them, were 

analyzed for their correlation with disease status using a “computer aided diagnosis” 

which is not further specified. The best results were obtained from the local intensity 

variation (of 1 pixel and surrounding 8 pixels), and the between-pair intensity variation. 
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The scores from the principal components analysis (PCA) gave poorer results than the 

original six parameters. 

A publication by Chen et al. used 100 images, of normal tissue and Barrett’s 

oesophagus, imaged with both standard resolution and ultra-high-resolution (UHR) 

OCT, using the discriminatory power of textural features between these disease groups, 

in order to establish whether there is a statistical measure to quantify the difference 

between normal and UHR OCT images [189]. The textural features were calculated 

from ROIs whose selection was not further specified. Features were reduced to 2 

principal components which were used for determining 2 linear discriminants. The 

scores show that UHR images provide a better basis to discriminate normal from 

dysplastic oesophageal epithelium. These data were not cross-validated and therefore 

provide a distance measure, not a prediction on the performance in clinical staging. 

Lingley-Papadopoulos et al. used texture features to assess a progressing lack in 

structure which may be indicative of bladder cancer [190]. In their study, 18 

independent texture features, identified from a pool of 74 features, were used to 

discriminate 182 images of precancerous stages of the bladder, and achieved a 

sensitivity of 92 % and a specificity of 62 %. These studies have in common that the 

textural features are classified using a discriminatory function. More attention on 

classification is given later in this manuscript. 

5.6 Segmentation 

The vast majority of literature cited so far relies on manual selection of a ROI or some 

knowledge about a reference point from where to calculate optical tissue coefficients. 

Work towards automated segmentation and thickness measurements has been 

undertaken for cartilage thickness [191], epithelial thickness [192],[193], and sub-

surface layer assessment [194], thereby providing a clinically relevant measure rather 

than a set of images. Table 5.3 shows a comparison of their approaches. 
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Table 5.3: Comparison of automated tissue layer recognition approaches. 

Pre-processing Gamblicher et al. 
[193] 

Rogowska et al. 
[191] 

Weissman et al. 
[192] Korde et al. [194] 

Feature 
enhancement 

Averaging Rotating Kernel 
Transformation 

Factor analysis 
de-noising 

Tilt / slant image 

Median filter 

Feature recognition Peak – valley 
distance, or area 

Sobel edge detection Shapelet convolution 
(several shapes) 

Sobel edge detection 
Skeletonization 

Correction - Edge linking 
cost function 

Least median of 
squares 

Linear interpolation,
Rule for multiple 

candidates, 
Exclusion of top 10 
(artefact-rich) pixel 

 

5.6.1 Layer thickness 

Gamblicher et al. report two ways for determining epithelial thickness [193]: 

1) Averaging of several A-scans, and taking the first peak – valley distance as thickness 

measure. This requires a second peak to be present, and they report that 40 % of their 

A-scans have to be excluded from analysis for this reason. This approach is automated 

but has poor correlation with histopathology, hence was deemed unacceptable for 

clinical application by the authors. 2) Manually encircling the epithelium, and 

determining the average thickness geometrically by dividing the area by its length. This 

approach is not automated but provided that the epithelium can be marked by a 

thresholding approach similar to the macrophage approach, would carry potential for 

automation. 

Rogowska’s et al. work can be regarded as pioneering for dense tissue segmentation 

from OCT images [191]. They have introduced and explored the Rotating Kernel 

Transformation (RKT) filter for speckle treatment [195]. The RKT filter emphasises 

straight lines within the intensity image and facilitates characterisation of the surface 

and lower boundary of a cartilage layer [196]. It is however computationally expensive; 

edge linking methods can correct for errors. The edge linking used in this approach is 

semi-automated as it requires start and end nodes to be set manually. 

The approach of Weissman et al. aims to recognise the dermis-epidermis junction by 

convolution with various shapelets (functions based on a Gaussian curve) [192]. Since 

the contrast of epidermal OCT data was not suitable for this surface recognition, 

transformed tilt and slant image representations were used instead. Several length scales 

of the Gaussian shape ensured good convolution results for varying shapes. This pool of 
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convolution results then allows exclusion of outliers, and the optimal candidate for the 

position of the junction is determined by a least median of squares function. Since 

several shapes can be adapted for convolution, this approach is not restricted to tissue 

interfaces and 2 D scans. 

While both approaches are fully automated, it seems interesting that they were not 

implemented in the more recent works of Gamblicher, or compared with each other. 

This indicates that, although the methods seem to work well in the way they are 

presented by the authors, they are not straightforward to implement. 

Korde et al. have worked towards differentiating skin lesions from actinic keratosis, a 

precursor of squamous cell carcinoma [194]. Their algorithm utilises parameters 

obtained from edge detection and employs a surface recognition algorithm. The slope of 

the mean A-scan was taken as representative for the “average skin attenuation”. The 

very surface pixels are excluded from this fit as they generally contain strong reflection 

features. A second structural feature was obtained by using a vertical Sobel edge 

detection which emphasises horizontal lines. Short edge lines were likely to stem from 

noise and were therefore excluded. The amount of remaining pixels was defined as 

“horizontal edge detection”; this could be characterised as a ratio of cohesive layer 

boundaries per image area. Whereas the “average skin attenuation” did not show a 

significant correlation with skin lesions, the “horizontal edge detection” had a 

sensitivity and specificity of 73 % and 65 % for recognising actinic keratosis. 

5.6.2 Ophthalmic layers 

In ophthalmology, the many interfaces between air, corneal structure, vitreous humour, 

and retinal layers provide strong OCT contrast. The eye is an ideal organ for OCT 

imaging owing to its optical properties and layered structures which are thin enough to 

allow full penetration and are yet wide enough for full resolving. Being able to observe 

such layers has revolutionised ophthalmology. By providing a means of automating 

layer recognition and providing a means of objective classification it is possible to 

enhance the clinical benefit of these features in the process of clinical decision making. 

Clinically important features are corneal thickness, retinal damage, damage of the fovea 

or optical nerve, and hence efforts have been undertaken to characterise data 

automatically. 
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The success of OCT in ophthalmology might be best illustrated by the progress in 

automated analysis, which has no equivalent in dense tissue measurements: As an 

example, we want to cite the work of Fernandez et al. who have demonstrated that 7 

layers of the retina can be readily characterised from ophthalmic images and that the 

retinal layers can be registered from the anterior and posterior side [197]. Data 

processing follows an extensive protocol. A threshold cut-off is used for noise reduction 

followed by a complex diffusion filter for speckle suppression. From this image the 

structure-coherence matrix of the image is obtained. The internal limiting membrane is 

determined by the first inner peak, and the retinal pigment epithelium is determined by 

the maximum outer peak. Further peaks are correlated with the remaining layers. 

Outliers are corrected by linear interpolation. This algorithm worked reliably for data 

from 72 healthy subjects. It can fail in pathologies where initial assumptions on layer 

composition are not met. However it allows automated generation of 2 D thickness 

maps of separate retinal layers, and therefore also longitudinal and observational 

studies. The authors want to point out that this study has to be seen as an example for 

segmentation algorithms for retinal layers, and the analysis and comparison of them 

would probably merit a separate review. 

5.6.3 Segmentation of dense tissue 

Hori et al. automated the registration of the infundibula in skin, which are being 

investigated for their role in the development of acne [198]. The surface recognition was 

performed by assuming the maximum peak as the surface. This was corrected by a 

median filter and a so-called “Olympic” exclusion (which excludes a set amount of 

minimum and maximum values regardless of them being outliers or not). The epidermal 

junction is defined as the first intensity minimum between the first two maxima of an 

A-scan. 

Both values, surface and epidermal junction, were smoothed with a polynomial function 

to provide a thickness map of the epidermis. Whilst compared to the more sophisticated 

shapelet approach this seems to yield rough results, Hori et al. claim that the difference 

between their uncorrected points and the fitted curve was within the magnitude of their 

system resolution [198]. Such a finding opens the question of whether a – 

computationally expensive – correction would by necessary in first place. 
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After establishing the epidermal thickness, a band (volume) below the epidermis was 

defined. This band was then treated as an en face image, a “shadowgram” of this image 

is characterised by thresholding. From the resulting binary image, infundibula were then 

characterised as circular structures and extracted using the Danielsson distance mapping 

algorithm [199]. Distance maps, or distance transforms, are representations of Euclidean 

distances in a different parametric ordinate system. This facilitates finding set 

geometries, in this case circles on a 2 D image. 

The algorithm is able to deliver epidermal thickness parameters of the imaged volume 

as well as distribution of infundibula. The surface of such a volume covered 4 × 4 mm2, 

however no information about the speed of the fully automated algorithm was given. 

Simplifying the determination of the epidermal thickness in contrast to Weissman’s 

shapelet analysis [192] seems to work well on the volumetric data. 

Bonnema et al. have used a protocol to determine stent endothelialization on blood 

vessel mimics [200]. The clinical interest is to monitor the coverage by endothelial cells 

under different growth conditions. An algorithm thus has to distinguish superficial stent, 

overgrown (sub-surface) stent, and tissue without a stent mesh. A strut cross-section 

provides a round shape with a diameter of a few pixels on a B-scan. Characteristic 

reflection and shadow artefacts from the strut can be exploited, although the protocol 

remains an extensive set of rules. Briefly, a combination of thresholding and median 

filtering allows determining sharp (strut) peaks and surface peaks amongst artefacts 

from debris and reflection. This fully automated approach shows a way of providing 

clinically relevant information without the need of assessing separate B-scans. 

5.7 Classification 

We have already mentioned quantitative measures which seem fit for automated 

classification. An autocorrelation score can be suitable for expressing the likelihood of 

an expected shape to correlate with an OCT image. When a relation is complex, 

statistical tools can become essential for automated classification. There are many 

reduction and clustering algorithms, such as Least Median of Squares, PCA, Genetic 

Algorithms, or Linear Discriminant Analysis (LDA). 

It is common practice to express the likelihood of a data point to belong to a group as a 

Mahalanobis distance. This is a score representing the distance between groups, taking 
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into account the distribution of data points of one group. These techniques can be 

combined, or applied in a decision tree. E.g., the structural features obtained by 

Lingley-Papadopoulos were differentiated in a decision tree, where in each step a 

2-group classification model was designed [190]. 

Autocorrelation scores of an A-scan with itself have been shown to characterise spoof 

fingerprints [201]. Fingerprint dummies are created by using materials like wax or 

silicone rubber with a plasticine mould. These materials are homogenous and therefore 

have rapidly decreasing correlation scores. For fingerprints, de-correlation happens as 

well less strongly, and this difference is clear enough to distinguish artificial material 

from human tissue. There is no mention how exactly the area of an A-scan is selected 

for autocorrelation and hence we assume this was done manually. However the surface 

peaks of both spoof fingerprint and tissue can be expected to be pronounced and 

distinguishable, which should make it possible to automate layer recognition. 

Weissman et al. used PCA to compare the agreement of their surface recognition 

algorithm with the line drawn by human operators [192]. Chen et al. used a combination 

of PCA and LDA to compare the performance of two systems with different axial 

resolution [189]. These studies, rather than assessing clinical parameters such as 

sensitivity and specificity, used classification as an objective performance measure. Qi 

et al. used PCA for reducing six statistical measures for texture features to two principal 

components PC1 and PC2 [188]. As mentioned before, this approach did not provide a 

benefit over using the six-dimensional data. 

5.7.1 Glaucoma 

Again we refer to ophthalmology for what is possible when feature parameters are 

readily available: In order to differentiate normal from glaucomatous eyes, Huang and 

Chen applied several classification methods [202]: LDA, Mahalanobis distance (MD), 

artificial neural networks (ANN), combined PCA/LDA, PCA/MD, and PCA/ANN. The 

parameters for classification were extracted from a set of 25 morphological parameters 

(retinal thickness and size measures). The study involved scans from 89 participants. 

Inclusion requirements for analysis were: 100 % of the A-scans had to be of good 

quality and above a specified SNR, and one of the features (cup/disc ratio) had to be big 

enough for automated detection. 
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This is noteworthy in respect to dense tissue assessment: Even although this 

classification approach was developed for images which usually allow extracting a 

wealth of morphological parameters, some images did not meet these criteria. In dense 

tissue OCT imaging, outside the ophthalmologic field, it is even less likely to encounter 

specimens which show a layered structure to this extent. As shown above, the 

characteristics of dense tissue layers pose a much greater challenge for reliable 

demarcation. This might be one reason why in dense tissue imaging textural features are 

candidates for classification. 

5.7.2 Skin cancer 

Jørgenson et al. used 14 image features which were fed into a support vector machine 

model to classify actinic keratosis from basal cell carcinomas [203]. Although the 

approach manages to classify 60 of 78 images correctly, there is no exact specification 

on how features were detected; e.g. “layer thickness” is “measured by ruler on the 

screen”, or a degree of “graininess” is categorised. The evaluators needed therefore 

training on feature recognition. However, the characteristics seem to have a degree of 

correlation with disease. It may be assumed that at least some characteristics can be 

described by methods mentioned above. This would have the potential for an objective 

and fully automated classification. 

5.7.3 Breast tissue 

Breast tissue contains human adipocytes that measure between 50 and 150 µm. These 

seem to render themselves to frequency based analysis: Iftimia et al. describe a system 

intended to guide fine needle aspirations for breast biopsies via A-scans (“reflectivity 

profiles”) [204]. Three groups of tissue, (adipose, fibroglandular, and cancerous) have 

different profiles and the A-scans therefore have a different slope and standard 

deviation. In this feasibility study three tissue specimens were measured. A study by 

Goldberg et al. was performed on 158 out of 260 scans from 58 patients [205]. In this 

study, the determination of the slope was automated: Noise reduction was performed by 

cutting off below the average noise level, determined by the signal from the first 

200 µm. The surface was then defined as 100 µm below the first zero crossing of the 1st 

order derivative, in order to avoid contributions from specular reflection. Slope, 

standard deviation and spatial frequency content served as parameters to be separated by 
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a multivariate Gaussian classification model. The performance for a validation set 

consisting of 86 samples was 91.9 %. 

Zysk and Boppart reported three methods to classify A scans of breast cancer biopsies 

into three relevant groups (adipose, cancerous, stroma); 1) Taking the Fourier domain 

component of an A-scan and compare with the mean of a training set 2) Periodicity 

analysis which looks at the distance between high intensity sub-surface peaks to the 

surface peak, and 3) a combination of both [206]. The periodicity analysis seems to 

benefit from the above mentioned bubbly structural pattern in OCT images of adipose 

breast tissue, resulting in A-scans with several distinct spikes. Cancerous tissue has a 

less characteristic structure and the A-scans are merely a loosely correlated decrease in 

intensity with increasing penetration depth. They calculated the frequency component 

for each A-scan and attempted to distinguish three types of tissue: This classification 

model was trained with data of three patients; data of a fourth patient was used for 

prediction. The number of available A-scans was 4015 in total (1666 adipose, 1408 

cancerous, and 941 stroma). 

Adjacent results were clustered to determine the presence of A-scans which had been 

classified as cancerous within a B-scan. An interesting approach mentioned in this paper 

is the classification of sliding windows on an A-scan, thereby allowing classification of 

different sub-surface areas. 

5.8 Discussion 

5.8.1 Common patterns and suggestions 

There is a common pattern of five steps involved in extracting information from OCT 

data: Obtaining the measurements, pre-processing, feature registration, data reduction, 

and classification of data. 

Pre-processing is the essential part of automation in feature description and effectively 

increases robustness for further analysis: A common pattern is de-noising, feature 

recognition, normalisation & refining. There are principally two approaches for 

evaluating OCT data: Evaluating features of the A-scan, or applying image analysis 

tools to B-scans. Knowledge about the specimen surface is a common requirement. This 

can be achieved by the measurement protocol, e.g. by pressing a surface with a glass 
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slide, or computationally. A frequently encountered method seems to be the crude 

cut-off threshold that is determined by the noise level above the specimen. 

The ideal choice of pre-processing and analysis method depends on the sample type, the 

scan mode, and the actual research question asked. However it is possible to draw a 

variety of conclusions from automation algorithms considered in this review: All fully 

automated approaches rely on a combination of several steps. A-scan based analysis 

usually profits from averaging several A-scans in order to increase the SNR. Outlier 

A-scans can be corrected for by using a sliding median window or Olympic exclusion 

(removing a set of extreme values). Some publications disregard the first 10 pixel or 

~100 µm of a surface due to reflection artefacts [194],[205]. This seems appropriate 

when the sub-surface data, rather than the exact surface location, is relevant. Textural 

features seem to show a potential for distinguishing pathologies that are related to a 

vaguely progressing lack of structure, where sifting B-scans would become a straining 

task. Cross-correlation techniques need to employ several shapes to cover biological 

variation [192],[201]. Several publications exclude unsuitable data manually. For proof-

of-concept this is acceptable, but this carries the potential of introducing bias and should 

be based on an objective parameter, e.g. overall intensity or dynamic range of an image. 

Statistical methods therefore have a large potential for helping automated classification 

of OCT data. 

5.8.2 Outlook 

Automation is a way of helping an operator with image interpretation. Unfortunately, 

algorithms cannot be expected to achieve 100 % accuracy. This should not be regarded 

as a major disadvantage: Even if data evaluation is only able to provide clear results 

from data with sufficient diagnostically relevant contrast, resources can be channelled to 

concentrate on the more difficult cases. Furthermore, automation has the potential to 

provide an objective measure. A classification performance lower than 100 % can still 

outperform human judgment, where for some conditions agreement can be considerably 

lower: Studies assessing the consensus of expert histopathologists on the same study 

material, which represent the gold standard in tissue grading, have found kappa values 

(which illustrate the chance-corrected agreement) as low as 0.36 between eight experts 

for cervical biopsies [207], or 0.49 between three experts when classifying oesophageal 
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specimens [153]. Such statistics become relevant when assessing how accurate a 

method would need to be before it can be used as a clinical tool. E.g., when trying to 

replace biopsy-dependent histopathology with a realtime diagnostic tool, the novel tool 

may have a similar or slightly worse performance, but may have logistic benefits. 

Acquisition speed and resolution, which presented early challenges in OCT 

development, have experienced remarkable improvements. Limitations caused by data 

transfer rate, storage, and computing power are ceasing to be an issue: volumetric 

movies (4-D OCT) can become standard. This is a double edged sword; with the 

possibility of obtaining vast data sets in near real-time, it becomes inherently 

impractical for a human operator to evaluate this amount of data, and virtually 

impossible to do so at the rate of data acquisition. OCT allows real-time data 

acquisition, and it would be a pity not to exploit the speed benefit of computational 

approaches to provide a real-time diagnosis. In private conversations, the authors gained 

the impression that at least some OCT experts seem to have the opinion that the lack of 

real-time diagnosis is not a restriction. The authors want to emphasise that – even if this 

opinion is not commonplace – we strongly feel that information should be available as 

quickly as possible. For instance, topical diffusion of contrast agents takes time, 

therefore ruining the advantage of having a real-time imaging modality. There are 

pitfalls for automation, some papers find that assessment by a trained operator fairs 

better than the unsupervised approach [193],[194]. Algorithms do, however, have the 

potential to run in parallel to the scanning procedure and to provide an objective support 

for clinical decision making in real-time. This might even make displaying the OCT 

image redundant, much in the way spectroscopic techniques may show maps rather than 

raw spectral data. One field of interest today is therefore data evaluation in near 

real-time (Figure 5.2). 

 

 
Figure 5.2: Scheme of landmark developments for OCT. TD: Time domain OCT, FD: Frequency 
domain OCT; 3 D: Volumetric OCT. The present challenge is automated data evaluation in near 
real-time. 
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After all, this manuscript would not have been possible without all the efforts towards 

automated classification of OCT data, which may be the next chapter in the success 

story of OCT. 
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6 Designing a classification algorithm 

6.1 Introduction 

Classification of OCT data is an emerging field and as a consequence there are a lot of 

makeshift approaches (Chapter 5). The rationale behind the choice of pre-processing 

steps is often difficult to establish. This is fair at a proof-of-principle stage: certain 

assumptions have to be made in the view of limitations of computing power, 

programming language specifications, and quality and comparability of the data that is 

to be analysed. This is by no means a bad thing as often it’s is only worthwhile to put 

resources into improving an approach when the proof-of-principle has been displayed. 

For this reason, the following section decsribes how features are extracted from OCT 

data so that they can be used for Principal Components Analysis. For clarity, Table 6.1 

shows the steps of the pre-processing algorithm and which Chapter describes them in 

more detail. 

Table 6.1: Overview of approaches for classification on the basis of texture 
Visual representation Description 

 

Chapter 6.2.1 

The image, denoised using a cut-off 

 

Chapter 6.2.2 

Binary mask with a intensity threshold 

(here a 0.95 threshold, meaning that the 

5 % most intense pixels are white) 

 

Chapter 6.2.2 

The top values in each row are assumed as 

surface 
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Chapter 6.2.3 

The surface from the binary threshold. The 

effect of outliers may be mitigated using a 

sliding median window 

 

Chapter 6.2.3 

The surface as overlay on the B-scan 

 

Chapter 6.2.4 

The B-scan normalised to the surface 

using the surface vector, here with a white 

line indicating the original lower border 

 

Chapter 6.2.4 

The surface normalised B-scan as 

substrate for analysis. This is equally 

applicable to volumetric data. 

 �  

Chapter 6.2.5 

In this case, the mean A-scan is chosen as 

descriptor. 

  

  

Chapter 7 

The idea is now that different structures 

(which result from different pathology) 

can be represented by different descriptors. 

These descriptors serve as vectors to be 

fed into multivariate analysis. 
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6.2 Feature extraction 

Having learned from the previous analysis attempts, it seems worthwhile to investigate 

whether a classification algorithm based on A-scans would allow separation of different 

tissues. Similar to spectroscopic techniques which require shifting of a spectrum as 

normalisation, we expect that A-scans need to be normalised to the surface. Figure 6.1 

displays 2 essential steps to achieve this: Firstly, the surface vector needs to be 

established. Secondly, this surface vector needs to be applied to the sample data in a 

process which we shall refer to as “wrapping”. 

 
Figure 6.1: Scheme of surface normalisation, i.e., normalising an OCT image to the surface. The 
2 steps are: a) surface recognition and b) the wrapping algorithm. 

Although very precise algorithms do exist, they can be very time consuming and 

therefore delay what is only one of many pre-processing steps.  

Surface vector 

4 3 

Original image Surface recognition 

Original image 
(Top row marked 

for clarity) 

Wrapped image 
(Mind the original 

top row) 

Wrapping algorithm 
 

3 2 2 2 2 3 3 4 
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6.2.1 Noise reduction 

All images used in this study measure 300 × 500 pixels, covering 3 mm width and 

approximately 5 mm depth6. The log of the intensity data (time domain signal) was 

stored as a matrix. Values were handled in double precision format. For the automated 

noise reduction, a ribbon of “air”, intensity information above the surface, was regarded 

as the background noise level [197], as indicated in Figure 6.2 (top row). 

 

 

 
Figure 6.2: Noise reduction by cutting off the noise level Top row: original noisy image, 3 D 
intensity matrix, and mean reflection profile. The two red lines enclose an area above the surface 
which is considered as noise level. Middle row: The noise level determined from the top row plus 
1.5 × its standard deviation. Note that the profile shows the same graph, at a different scale. Bottom 
row: the cut-off has been applied and the dynamic range normalised. 

                                                           
6 This is not the penetration depth within the specimen, but the height of the scanned window as allowed 

by the distance change achieved by the reference mirror. 
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The mean of this plus 7 × the standard deviation of this background signal was used as 

the intensity threshold. This relatively high threshold does crudely cut off low level 

signals from deeper areas (Figure 6.2, middle row, which shows the cut-off with the 

scale and colormap of the top row, and Figure 6.2, bottom row, which has a normalised 

scale and colormap). We found it, however, to be more important for our subsequent 

surface recognition to have a noise-free image, with the surface not being obscured by 

artefacts or layers. 

6.2.2 Surface recognition 

When using the structural time domain information as basis for classification, it is 

essential to ensure that the image rows equal the depth position within the tissue.  

Surface recognition belongs to the family of pattern and boundary recognition within 

the field of digital image processing. As a rule of thumb, but not necessarily, exact 

results inherently require more processing time than an estimate. When classifying OCT 

data, which easily fills gigabytes of storage, processing speed is an issue. 

For OCT there is no established method for unsupervised surface recognition. This is 

not straightforward as the point with the highest intensity within one A-scan is not 

necessarily correlated with the sample surface. This is also true for taking the first 

derivative of the intensity; the biggest change in intensity is not necessarily at the 

surface. Were this the case, surface recognition could be done quickly and elegantly 

using a weighing of the magnitude and the derivative of the signal intensity over the 

single A-scan. Specifically for biological samples this is prone to errors (cf. Figure 6.3). 

 
Figure 6.3: A) De-noised B-scan of a biological sample (porcine oesophagus). B) White dots mark 
the point of highest intensity within one A-scan (overlay over dimmed intensity image). C) White 
dots mark maximum rate of change in intensity within one A-scan. B & C show that the maximum 
intensity and derivative do not necessarily correlate with the surface. D) Surface pixels as 
recognised from a binary threshold mask. 
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There is a small amount of literature about surface recognition in OCT and research 

groups seem to have methods which seem fit for the purpose of their publication, but are 

not always useful to implement for a different specimen type. In the literature of the 

previous Chapter there are methods such as shapelet based boundary recognition [192], 

Rotating Kernel Transformation (which emphasises straight lines within an image 

[191], erosion/dilation techniques on a binary threshold image [188], or polynomial 

fitting through median-blurred intensity peaks [198]. 

Binary thresholding is chosen throughout this work because it is accurate and fast. A 

visualisation of the full process is shown in Figure 6.4: The original image may be too 

noisy for surface recognition (Figure 6.4A). The binary filter creates a rule (stencil) 

which defines the pixels that shall be chosen for surface recognition (Figure 6.4B). 

After cutting off noise, it can be assumed that mask pixels are equivalent to tissue 

pixels, and the top pixels coincide with the surface. The top pixel of each A-scan in 

Figure 6.4B is therefore equivalent to the tissue surface (Figure 6.4C). It is important to 

note that this binary mask is only applied for surface recognition, not for the later 

analysis. The surface vector recognised from the binary image can then be used as 

correction factor for the original image (Figure 6.4D). The detailed process is described 

in Chapter 6.2.4. 

 
Figure 6.4: Surface normalising: A) Original noisy OCT image (false colour log of intensity 
envelope data), representative for many ex vivo scans: The sample surface, although somewhat 
straight, is not exactly parallel to the scanning direction. B) Binary image using a 0.90 quantile 
threshold. C) Surface recognised from B. D) Denoised image after surface normalisation using the 
vector recognised from the binary image for wrapping. 

6.2.3 Refining the surface vector 

Binary thresholding may fail due to of noise, a superficial layer, or reflection artefacts 

(cf. Figure 6.5). 



Chapter 6 – Designing a classification algorithm 

- 77 - 

 
Figure 6.5: Reflection artefacts result in incorrectly detected surface pixels. 

Such outliers can be corrected computationally or manually (semi-automated). Manual 

correction takes time and can introduce observer bias. Automated correction can be 

computationally expensive and therefore we want to justify and optimise its 

implementation. 

Smoothing is visually pleasing, but that is not an argument for a classification 

algorithm. When the correct assignment of the surface is necessary, as e.g. for 

quantitative thickness measurements [196],[192], this is essential for maintaining the 

quality of results. However, for a classification algorithm, such deviations might not be 

significant. After all, correction takes time and poses the risk of unduly altering original 

data. 

6.2.4 Applying surface vector correction (“wrapping”) 

The application of surface data on the respective A-scans, e.g. transforming Figure 6.4C 

into Figure 6.4D), is straightforward in programming terms (Figure 6.1). However, the 

choice of many scientists for a proof-of-principle will probably be some kind of for-

loop, in which the shift of data points is calculated for each column separately. This 

approach can easily become very time consuming. Specifically for large datasets, which 

are encountered in high-resolution 3 D volume imaging, such for-loops are a bottleneck 

which would make this approach for real-time imaging impossible. The solution for this 

is vectorisation, as shown in Figure 6.6. 

Many software packages have built in abilities for vectorising code. However, if this is 

not the case, vectorisation of such an algorithm can put the inexperienced programmer 

in front of a steep learning curve and it might help having an approach laid out step by 

step. Hence we describe this in detail: 
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Figure 6.6: For-loops vs. vectorisation. The for-loop processes each column subsequently. 
Vectorisation reorders a matrix in one step. 

We want to shift the z data of an A-scan by a known amount which is not necessarily 

correlated to any neighbour. The amount of shift is a function of the surface vector or 

surface matrix which has been established by the surface recognition. In a for-loop, each 

A-scan would be shifted with the corresponding amount located at the surface vector. 

For the vectorisation, we sort the data points per column in a way that the reordered 

sequence can serve for indexing the original data. For our example, let the B-scan be a 

10 × 10 pixel array. A column vector for each A-scan is created. According to the 

Wrapping via vectorisation 1: Re-indexing matrix (see Fig.9) 
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surface vector, this vector is wrapped around; e.g. if the surface is at pixel 3, the index 

for re-ordering this A-scan has to be [9 10 1 2 … 7 8], in order to yield the seqeuence 

[3 4 5 6 … 10 1 2]. This reordering sequence is created for each A-scan, and by using a 

gradient this can be done simultaneously. Taking the modulus ensures that every 

reordering vector ranges from 1…10. It is then necessary for the re-indexing matrix to 

consist of sequential numbers, e.g. a reordering matrix for a 10 × 10 pixel B-scan will 

have to range from 1 to 100. A-scan 1 of the 10 × 10 matrix will be covered by the 

numbers 1…10, A-scan 2 by 11…20 and so forth. This is realised by adding a gradient; 

0 to the first A-scan, 10 to the second, etc. 

The result of these operations can be imagined to look like an irregular staircase: Each 

column’s lowest value is higher than the highest value of the preceding column, and no 

point within a column has got the same value. These sequential numbers are then used 

for re-sorting the original matrix. The calculation steps depicted in Figure 6.7 are the 

only ones necessary, and essentially are unaffected by the size of the matrix. The 

processing time is reduced with growing matrix sizes. 

The disadvantage compared to traditional for-loops is that a computer system needs to 

have enough memory to hold an entire set of data. When the data exceeds the available 

memory, a combination is the suggested work-around: Splitting data in batches that fit 

into the memory to be processed in a vectorised way, and performing this vectorisation 

as loop over these batches. 

6.2.5 Benefit 

Although the emphasis of this work is on the shape of an A-scan, other features such as 

frequency content or integral of an A-scan, could be investigated. Further, statistic 

measures of a group of A-scans can be taken. This approach is therefore straightforward 

to be extended to volumetric data. Our system was acquiring B-scans and therefore we 

considered one B-scan as one set of A-scans. If the acquired data were volumetric, a 

mode of pre-grouping of sub-volumes, consisting of e.g. 25 × 25 A-scans, could be 

chosen. 
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Figure 6.7: Scheme of a vectorisation. 

Step 2: Add gradient, then modulus for range from 1 to rows 

Step 1: Extend surface profile to matrix dimensions 

Step 3: Add steep gradient; each point to have different value. 
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6.3 Optimal parameters for classification 

The parameters for noise reduction, thresholding, and further refining such as surface 

smoothing can affect the accuracy of the surface normalisation and need to be defined. 

The optimal pre-processing will depend on the actual processing step, a classification 

algorithm in our case. The optimal parameters for this may be an entirely different from 

other tasks such as segmentation.  

6.3.1 Intensity normalising 

A simple approach is to normalise data between the maximum and minimum intensity 

values. Histogram equalisation on the other hand is a well known, computationally 

inexpensive method to improve contrast by evenly distributing intensity values over the 

full data range. This usually optimises the utilisation of the dynamic range. However it 

can also result in increasing noise values. In medical imaging, contrast enhancing 

usually means a non-linear enhancement of a clinically relevant feature, which is 

different from scaling the dynamic range. However histogram equalisation has been 

reported as pre-processing step for analysing speckle patterns and it might have a 

benefit for subsequent classification [185], and has been extensively investigated [186]. 

The difference in contrast between a log of intensity image and a histogram equalised 

image is shown in Figure 6.8. 

    
  A B 
Figure 6.8: Visualisation of histogram equalisation, which is suggested for improving visual 
contrast. A) Log of intensity normalised sub-volume B) Histogram equalised data. 

6.3.2 Cut off axial depth 

Large amounts of data may make it necessary to reduce raw OCT data prior to reduction 

by PCA. Cropping rows of low SNR is such an approach. 

Figure 6.9 illustrates how an OCT image can be divided into roughly three sections: 

1) the area above the surface, containing pure noise, 2) sub-surface data with sufficient 
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SNR, 3) the area which exceeds penetration depth, with low SNR. Normalising to the 

surface results in two advantages: A) Statistical features are easy to extract: the 

penetration depth correlates with the row number of the image matrix. B) Areas 

containing a low SNR can be cut off. 

 
 

Figure 6.9: Cutting off parts of the image which contain low SNR. The line on the surface corrected 
images marks the border between original, shifted data and padded matrix points. 

6.3.3 Amount of principal components 

Principal components (PCs) do not have equal importance for distinguishing groups. 

Using ANOVA, the significance of a PC in respect to classifying a group can be 

expressed. Loadings of high significance will contribute more to a correct classification. 

Adding loadings of lower significance increases the classification performance slightly, 

and for a large number of data points even a small percentage improvement can be 

substantial. Adding too many loadings however can reach a point where a model is 

“overfed”: Loadings of little significance contribute more noise than relevant 

information, and therefore decrease the performance. 

Area above sample (air, noise only) 

Area containing relevant information

Area of low SNR 
 

 

 

PRESERVE: Area containing relevant information 

DISCARD: Area of low SNR 

DISCARD: Padded area 
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6.3.4 Summary 

Table 6.2: Pre-processing parameters which will be considered in subsequent classification. 
Parameter Description Expectation 

Axial cut-off Delete values of low SNR 
Impact on classification performance 

Computing time  
Memory consumption  
Negligible decrease in classification 
performance 

Intensity 
normalisation 

Intensity normalisation vs. Histogram 
equalisation 

Histogram equalisation increases contrast 
 better performance 

Surface 
recognition 

Benefit of median smoothing vs. raw Improved surface recognition 
 better performance 

Amount of 
principal 
components 

Too little PCs will not allow optimal 
separation, too many PCs feed noise into 
analysis 

There should be a range of optimum 
numbers of PCs to be fed into LDA 

 

Table 6.2 lists the pre-processing parameters for OCT images and their expected impact 

on subsequent classification using principal components-fed linear discriminant 

analysis. These were assessed using the vegetable data set described in Chapter 7. The 

findings, which are detailed in Appendix B, can be summarised in the following way: 

Intensity normalising results in better classification than histogram equalisation. The 

value for binary thresholding for surface recognition can be chosen within a range of 

90-97 % without affecting results. When a surface vector has been obtained using 

binary thresholding, there is a benefit from refining the surface. A sliding median 

window of 3-9 pixels can be generally applied without impairing classification. Cutting 

of rows of low SNR has little impact on results but has the benefit of reducing 

computational costs. 

Hence the following points can be recommended: 1) using a median refined surface 

vector for surface normalisation; 2) normalising logarithmic data to the maximum 

intensity rather than using histogram equalisation; and 3) cutting off rows below the 

penetration depth for reducing computational effort. 4) Establishing the optimum of 

components to be used for a subsequent discrimination algorithm. 
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7 Testing the classification algorithm 

Near real-time classification of Optical Coherence 

Tomography data using Principal Components fed Linear 

Discriminant Analysis 

Florian Bazant-Hegemark1,2 and Nicholas Stone1,2 
1) Cranfield Health, Cranfield University at Silsoe, Bedfordshire MK45 4DT, UK 
2) Biophotonics Research Group, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK 

 

Modified† from a manuscript that was published in 

Journal of Biomedical Optics, 13(3), 034002, (2008) 

 

7.1 Abstract 

An optical coherence tomography (OCT) prediction algorithm has been designed and 

tested on a dataset of sample images (taken from vegetables and porcine tissues) to 

demonstrate proof-of-concept. Pre-processing and classification of data are fully 

automated, at a rate of 60,000 A-scans per minute on a 2.8 GHz Pentium 4 computer 

and can be considered to deliver in near real-time. A dataset consisting of 9 groups of 

different vegetables was classified correctly in 82 % of cases after cross-validation. Sets 

of fewer groups reach higher rates. The algorithm is able to distinguish groups with 

strong visual similarity amongst several groups of varying resemblance. 

Surface recognition and normalising to the surface are essential for this approach. The 

mean divided by the standard deviation is a suitable descriptor for reducing a set of 

surface normalised A-scans. The method allows grouping of separate A-scans and is 

therefore straightforward to apply on 3 D data. 

                                                           
† Modifications are structural (Chapter numbering, British English spelling) and contextual (omitting 

redundant parts or higher detail that would not suit a journal publication). There are no modifications to 

results or interpretation. 
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OCT data can reliably be classified using Principal Components Analysis combined 

with Linear Discriminant Analysis. It remains to be shown whether this algorithm fails 

in the clinical setting, where inter-patient variation can be bigger than the deviations 

which are investigated as a disease marker. 

Keywords: Classification model, Optical Coherence Tomography, Automated 

discrimination, Medical imaging, Pre-processing, Image processing 

7.2 Introduction 

7.2.1 Optical coherence tomography 

Optical coherence tomography (OCT) is a relatively novel imaging modality first 

described by Fujimoto and co-workers [42], which is becoming established as a 

technique for non-invasive, real-time sub-surface imaging at resolutions of 2-10 µm. 

Non-destructive probing of this type is of interest specifically in medical imaging 

[89],[94] and also in other fields such as art conservation [208],[209], quality assurance, 

or homeland security (e.g. finger prints). Compared with other emerging imaging 

modalities, OCT provides high-resolution and imaging speed for detailed structural 

information - in vast datasets. We investigate automated classification which is quicker 

than visually assessing images and likely to be more reproducible. 

PCA & LDA 

Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA) are 

mathematical methods that, on a statistical basis, allow data reduction and clustering 

into groups [210]. There are papers on applying PCA for OCT-related analysis: 

Weissman et al. used PCA for comparing the agreement of their surface recognition 

algorithm with the line drawn by human operators [192]. Qi et al. used PCA for 

pre-processing: They were reducing six statistical measures for texture features to two 

principal components [188]. However, using this approach they reported no benefit over 

using the six-dimensional data. 

Huang and Chen have also applied PCA and LDA for classification, but not on the OCT 

image itself. Rather, they were using a set of 25 morphological parameters to 

characterise ophthalmologic pathologies [202]. These parameters were thickness and 

size measures which could be extracted from the OCT image. In non-ophthalmic OCT 

imaging such defined layers are usually not observed. 
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Zysk and Boppart reported three methods for classifying three relevant groups (adipose, 

cancerous, stroma) in A-scans of breast cancer biopsies [206]: 1) Taking the Fourier 

transform of an A-scan and using its difference from a reference (the mean of a training 

set) for the analysis. 2) Periodicity analysis which looks at the distance between high 

intensity sub-surface peaks to the surface peak, and 3) a combination of both. The 

periodicity analysis seems to benefit from the “bubbly” structural pattern in OCT 

images of adipose breast tissue, which however is not present in every type of tissue. 

One element of this method (taking the FT of an A-scan) we will compare with our 

method. (We did not implement the periodicity technique). This enabled us to test the 

Fourier domain technique on sets containing more than 3 groups. 

7.2.2 Research questions 

In this paper we investigate whether OCT data can be classified in real-time, on the 

basis of A-scans, without any input of a human operator. We will investigate the 

classification performance on a small demonstrator group, and plan to assess the impact 

of surface normalisation. We will further investigate whether representative measures 

can be established for larger data sets which strain computer resources. Finally, we will 

investigate the performance on animal tissue.  

7.3 Methods 

7.3.1 Measurements 

OCT device 

The OCT device used in this study was a time domain bench top as described in 

Chapter 2. The light source is a super luminescent diode (SLD, Superlum) with a central 

wavelength of 1310 nm and provided an axial resolution of ~15 µm in air and a 10 µm 

lateral resolution. The rapid delay line is realised using a double pass mirror and a 

reference mirror mounted on a galvanometer (Cambridge Instruments). The data 

acquisition was performed using Labview. 

Samples 

As a demonstrator of proof-of-concept, fruit and vegetables served as readily available 

samples with varying structure (Figure 7.1). Ten scans were taken of each vegetable; 

three vegetables of one kind form a group. In addition to this, porcine specimens were 
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obtained from a local butcher. The exact treatment of these samples was not recorded as 

the interest at this initial stage was whether different organs would classify at all, and 

whether a loosly defined different treatment of one specific organ (oesophagus) would 

be obseravable through an algorithm. Twenty different samples were prepared from 

each investigated organ, although all specimens originate from one animal. The size and 

shape of the samples allowed them to be placed in Petri dishes for the measurements. 

Where necessary, samples were kept stable with needles. 

 
Figure 7.1: Representative OCT images of vegetables (after de-noising, to be fed into surface 
recognition). A) Celery-longitudinal B) Celery-axial C) Leek-longitudinal D) Leek-axial E) Onion 
F) Potato G) Mushroom stem H) Mushroom top I) Lemon J) Lime. All B-scans in this publication 
have a width of 3 mm. The authors would like to emphasise the somewhat similar appearance of 
C&D, G&H, or I&J. 

7.3.2 Pre-processing 

The image 

The scanning protocol therefore required an area of air above the surface. We aimed to 

cover approximately 1⁄5  - 1⁄3 of the image height as this was convenient for manual 

handling. The surface of the sample was positioned to ensure that the full penetration 

depth could be depicted on the image. Specimens were placed so that the beam angle 

would not cause excessive reflections. Whilst these limitations for the distance of the 
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probe to the sample were chosen in respect to easy handling, no measurement was taken 

from the same site, as that would spoil the validity of the subsequent correlation. 

After thresholding, intensity values of one B-scan were normalised to the maximum 

intensity peak, by scaling to the maximum peak being unity. 

Surface recognition & normalising 

Detecting the surface based on a binary threshold mask of the image, as shown in 

Chapter 6, is an approach we found to be robust for the purpose of our pre-processing. 

After finding no substantial influence on the result for threshold levels between 0.85 and 

0.975, we arbitrarily defined a 0.95 quantile threshold for creating a binary image. The 

first pixel of this mask was taken as the surface. No smoothing or correction of eventual 

outliers (e.g. reflection artefacts) has been performed. Normalising to the surface was 

achieved by shifting each A-scan according to the surface vector. 

Of these images we calculated several representative measures of the depth profile of 

the intensity variation within one image: the mean B-scan, median B-scan, standard 

deviation, or the mean divided by the standard deviation (M/SD) [211]. Furthermore, 

we looked into combinations of these, e.g. M/SD and mean as two representative 

measures for one B-scan. We also used the Fourier transform (FT) of an A-scan in order 

to be able to roughly compare our results with the approach of Zysk and Boppart [206]. 

7.3.3 Data analysis 

Data handling, pre-processing, PCA and LDA were performed using Matlab 

V6.1.0.450, Release 12.1 (The MathWorks, Inc.), extended by the “PLS_Toolbox” 

(Eigenvector Research, Inc.) and our in house tools (“Classification_Toolbox”). 

Emphasis was put on speed and therefore execution times were assessed using the “tic”-

“toc” functions and the “profile” function in MatLab. Bottlenecks, e.g. the routine to 

normalise A-scans to the surface, were vectorised (Appendix B). 

We did not perform mean centring of the data as we found this to have no effect on the 

quality of results (data not shown). Using PCA, the data was reduced to the first 25 

principal components (PCs). Assuming that the PC values follow a normal distribution, 

they were then sorted in order of their statistical significance, characterised by their 

respective F values determined by ANOVA (p<0.001) [211]. (The number of PCs (25) 

was chosen arbitrarily and is not fundamental to the method. The amount of PCs does 
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affect the results (data not shown), but for the purpose of this publication, whereby 

different approaches are studied, a constant of 25 PCs are a fair representation.) 

These 25 PCs were then used in their entirety for LDA, which is inherently able to 

suppress loadings of lower significance for the model. The training model was tested 

using leave-one-out cross-validation. For a small group (30 scans), one measure was left 

out: one A-scan when classifying separate A-scans, or: one representative measure 

when classifying the representative measures (leave-on-scan-out, LOSO). While for the 

LOSO cross-validation, each prediction data set is “unknown” to the algorithm, the 

training model can still include data from the very same sample. A better cross-

validation approach is therefore to test a classification model with a prediction set 

whose samples are “unknown” in their entirety. This is achieved by splitting the data 

into a training group and a prediction group (leave-one-group-out, LOGO): For the 

large sample groups (330 scans) we created a training model from 220 randomly chosen 

scans, and evaluated the prediction performance for the remaining 110 scans which are 

unknown to the test model. These 110 scans were from different samples than the 220 

training scans. This way, cross-validation could be performed on 3 different 

combinations. The mean of the results for the 3 cross-validations for one set of samples 

we accept as classification performance. For comparing pairs of similar vegetables and 

the animal samples, a prediction model was created using a randomly assigned half of 

the B-scans of each group and cross-validated using the other half of the B-scans. Also 

here, test and prediction groups were from different samples, and the mean of the 2 

results was taken as overall performance. 

7.4 Results 

The images appear typical of common OCT image quality. Representatives of fruit and 

vegetable structures are shown in Figure 7.1. Distinguishing such images, when they are 

presented next to each other, is fairly easy. However, when working through a large 

quantity, some of these could start to look similar to an insufficiently trained or 

overworked eye. 

The results section is divided into two groups: Part 1 shows the effects of pre-processing 

and shall demonstrate the rationale for choosing our parameters. Part 2 shows the actual 

classification results. 



Chapter 6 – Designing a classification algorithm 

- 91 - 

7.4.1 Part 1: Pre-processing 

Surface recognition & normalising 

Vectorisation reduced the processing time roughly by a factor of 4 to 5. The visual 

results of the unsupervised surface normalising have effectively been shown in Chapter 

6. Figure 7.2 shows how normalising to the surface affects the mean and the M/SD of a 

B-scan. 

 
Figure 7.2: A) Mean A-scan of original data. B) Mean A-scan of surface normalised image. 
C) M/SD along row of A-scans; (▬) surface normalised, (▪▪▪) original. 

Vegetables – separate A-scans 

In a first approach, we used 10 images of 3 vegetables, resulting in 30 images or 9000 

A-scans. Performing PCA on the surface normalised A-scans (Figure 7.3A) or not 

surface normalised FT curves (Figure 7.3B) shows a tendency to group but also 

considerable overlap. Please note that the plots in Figure 7.3 show only the 2 most 

significant (ANOVA) PCs for classification against each other. The subsequent LDA 

separates on the basis of a pool of several PCs, (25 in the examples of this study). 
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Figure 7.3: PCA of 3 vegetables, 10 images each. The plots show the PCs of 9000 A-scans with the 2 
highest scores (determined by ANOVA) out of 25. A) Surface normalised. B) FT of A-scans (no 
surface normalisation). Legend: ○…celery, Δ…onion, +…mushroom. 

Table 7.1 shows the performance of classification models for this case. For the 

amplitude of the frequency content, surface normalisation does not improve the 

classification. For classifying time domain data (spatial information), surface 

normalisation yields a higher rate. 

Table 7.1: Comparison for classification of 3 A-scan representations: The Fourier Transform, the 
Amplitude of the FT, and time domain data. The dataset consisted of 3 groups of 10 images each 
(9,000 A-scans). Scores are percentages correctly classified by the algorithm, after LOSO cross-
validation. 

Pre-processing FT Amplitude of FT Depth profile 
(A-scan) 

Without surface 
normalisation 65.4 96.1 65.4 

Surface normalisation 92.8 95.8 92.8 
 

Data reduction prior to PCA 

The classification rates in Table 7.1 are not disappointing, but take a long time to 

calculate. Hence we reduced the B-scan to a representative measure, as shown above in 

Figure 7.4. From the mean of these images, the separation is clearer than in Figure 7.3. 
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Figure 7.4: PCA of 3 vegetables, 10 images each. The data points show the 2 highest scoring PCs 
(ANOVA) of the 30 representative measures. A) Surface normalised. B) No surface normalisation. 
Legend: ○…celery, Δ…onion, +…mushroom. 

For this approach, surface normalisation has a stronger impact than before: 

Classification was correct in 93.3 % for the surface normalised data (Figure 7.4A), but 

only 33.3 % for not surface normalised data (Figure 7.4B). 

Data reduction – large dataset 

A large dataset consisting of 330 images, categorised into 9 groups, was used for 

assessing various representative measures. These 99,000 A-scans could not be fed into 

analysis on a Pentium type processor with 1 gigabyte RAM, so it was essential to 

extract a representative measure. Table 7.2 shows the results for data reduction. For 

time domain data, models created using the mean normalised by the standard deviation 

(M/SD) had the best results, as shown in Table 7.2. For models from the FT of an 

A-scan, the standard deviation (SD) has the highest classification score. After LOGO 

cross-validation, the model made from the mean values has a higher score. 

Table 7.2: Training performance (TP) and cross-validation (CV) of a dataset consisting of 9 groups; 
7 groups of 30 images each and 2 groups of 60 images each (330 representative measures). Scores 
are percentages correctly classified by the algorithm, before and after cross-validation. The highest 
scores are bold. 

 A-scan1  FT of A-scan2 
Representative Measure 

 TP3 LOSO4 LOGO5  TP3 LOSO4 LOGO5 
Median  86.7 80.0 81.6  88.8 83.3 82.7 
Mean  88.2 84.2 81.6  90.0 86.4 86.7 
Standard Deviation (SD)  86.4 77.6 72.9  91.2 85.5 85.1 
M/SD  92.1 86.1 82.0  90.0 85.5 81.8 
1) Surface normalised time domain intensity data, 2) Amplitude of FT (not surface normalised) 
A-scan, 3) Training Performance, 4) Leave-one-scan-out cross-validation, 5) Leave-one-group-out 
cross-validation 
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7.4.2 Part 2: Classification 

From the results so far combinations with high scores were chosen for further 

comparison: surface normalisation with M/SD, and the mean and the standard deviation 

of the amplitude of the FT. We will abbreviate those as SN-MSD, AFT-M, and AFT-

SD, respectively. 

Vegetables 

A different set consisting of 330 images, categorised into 7 groups, was classified 

correctly (after LOGO cross-validation) as follows: SN-MSD: 91.8 %; AFT-M: 93.9 %; 

AFT-SD: 79.1 %. For comparison, the not surface normalised approach reached 32.0 % 

in this case. For models consisting of more than 2 groups, a confusion matrix can be 

helpful for investigating how groups contribute to misclassification. It would take too 

much space here to provide a confusion matrix for each investigated model, but 2 

examples shall be given in Figure 7.5: The left graph shows a very high classification 

(where a diagonal of 100 % in each group is the maximum achievable), and the right 

graph displays a higher misclassification rate. 

  
 (A) (B) 

Figure 7.5: Graphical representation of exemplary confusion matrices with A) low, and B) high 
misclassification rates. 

Similar image types 

In the next step we assessed the classification of similar images, i.e. measurements of 

one type of vegetable with different orientation, or similar images (lemon vs. lime). 
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Representative B-scans are shown in Figure 7.1G-J. Classification results for 30 images 

each are shown in Table 7.3. 

Table 7.3: Classification rates after LOGO cross-validation. Training models were created for pairs 
of similar images (2 × 30 images for a pair). 

 Representative measure 
Type of similar images SN-MSD AFT-M AFT-SD 

Celery (2 orientations) 56.7 % 68.3 % 86.7 % 
Leek (2 orientations) 61.7 % 63.3 % 80.0 % 
Mushroom (2 orientations) 96.7 % 90.0 % 90.0 % 
Lemon vs. Lime 83.3 % 95.0 % 95.0 % 
 

Similar images in a large group 

If groups are similar, further added groups do decrease the power of the separation. To 

show this, we grouped two vegetables to yield four groups. Separation is affected when 

these two groups have to be distinguished not only from each other, but also amongst 

other data, as shown in Table 7.4. 

Table 7.4: Classification rates after LOGO cross-validation. Training models were created for sets 
of pairs of similar images (2 × 30 images for a pair). 

 Representative measure 
Type of similar images SN-MSD AFT-M AFT-SD 

2 Mushroom orientations, Lemon vs. Lime 90.8 % 91.7 % 86.7 % 
All 4 pairs (8 groups) from Table 7.3 67.1 % 74.2 % 82.1 % 
 

Preliminary tissue pilot study 

Extending on the vegetable findings, we used porcine samples for a preliminary tissue 

pilot study. We measured 20 sites each of four different tissue types (tongue, 

oesophagus, tracheae, and broncheoli). Representative images are shown in Figure 7.6. 

The results for PC-fed LDA classification are encouraging: After LOGO cross-

validation, the four, albeit clearly distinct tissue types, are classified 90.0 % (SN-MSD), 

82.5 % (AFT-M), and 70.0 % (AFT-SD) correctly. 
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Figure 7.6: Representative OCT images of porcine samples. A) Squamous lining of the oesophagus 
B) tongue C) tracheae D) broncheoli E) oesophageal tissue after application of 5 % acetic acid as 
contrast agent F) 5 day old oesophageal tissue. Each image covers 3 mm in width. 

In order to see whether more subtle changes can be picked up, we looked at samples 

from one tissue type (oesophageal) measuring them in a fresh state, after degradation for 

5 days and after application of 5 % acetic acid, a contrast agent which is used in clinical 

settings. These 3 groups can be separated well between each other in 91.7 % (SN-

M/SD), 93.3 % (AFT-M), and 76.7 % (AFT-SD) of the cases (LOGO cross-validated). 

7.5 Discussion 

OCT provides structural images which are intuitive to look at and this might even be an 

important aside for this technology to become accepted by many users. Evaluation of 

such structural data seems straightforward; however it remains a challenge in detailed 

areas. This is evident for an imaging technology which enables one to look closely at 

areas which previously have been impossible to observe. 

Acquisition speed allows generation of high-resolution volumetric real-time data, this is 

difficult to handle and display meaningfully and will remain complex to interpret in the 

future: Searching through a vast voxel space can hardly be imagined to be an enjoyable 

task for a human operator. 

7.5.1 Pre-processing 

Time domain data and frequency content 

Classification requires pre-processing. Both methods, the amplitude of the Fourier 

transform of an A-scan, and the surface normalised A-scan, give good results. The 
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Fourier transform which we used for creating a model differed in four points from Zysk 

and Boppart [206]: Firstly, our de-noising and normalising, as described above, was 

different. Secondly, we were using the FT of the A-scan for classification, and not the 

difference from a reference. Thirdly, Zysk and Boppart report that they did perform 

surface normalising (“truncating”) prior to FT, whereas we found that only to be 

beneficial when feeding the real and the imaginary part of the FT. However, we 

achieved better results when using the amplitude of the FT, directly of the non surface 

normalised A-scan. Finally, we took a representative measure for a set of A-scans and 

classified the set, rather than classifying single A-scans. 

It then probably depends on the sample structure, e.g. presence of distinctive periodic 

patterns, whether the frequency information or time domain data allows a better 

classification. Time domain data needs to be surface normalised. This requires a robust 

and quick surface recognition and means an additional computational step. 

We are aware that the data for this paper are suitable for binary thresholding as surface 

recognition, and that the converse is not necessarily always the case. Such scenarios 

could be imagined when the surface of interest is covered by a layer of mucus, a sheath, 

a balloon, or similar. Research into more robust and reliable surface detection 

algorithms would therefore be beneficial. 

Representative measure 

Reducing the data to a representative A-scan is necessary; our Pentium type processor 

with 1 gigabyte memory was not able to handle datasets of tens of thousands of 

A-scans. More powerful computers are of course available, but it is conceivable that 

OCT data will stretch these resources to the limit for the near future. We found that the 

M/SD of a surface normalised B-scan or the mean of the frequency content yield good 

results. For instance, at separating 2 similar celery orientations, the SN-MSD approach 

practically fails (56.7 %), whereas the AFT-SD reaches over 80 %. For classifying 

porcine tissue, the SN-MSD approach had the best result. In the case of variations 

within a B-scan, such as in Figure 7.7, standardising using the standard deviation does 

improve results for the subsequent classification. 
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Figure 7.7: A) Surface normalised B-scans: The depth profile is homogeneous across the scan width 
and can be well described by a mean A-scan. B) Here structures result in different A-scans, e.g. 
A-scans at the two white lines will be different. In this situation, a standardised mean seems to 
better represent the B-scan. 

In terms of pre-processing, we also investigated mean centring, and using more than one 

representative measure (data not shown). We have not performed any correction of the 

surface vector in this study, although that is beneficial (data not shown). Further, the 

performance of LDA can be improved by feeding an optimum number of principal 

components (PCs). However, this optimum depends on the number and kind of groups 

in the classification model. The different sample groups in this study do have different 

optimum numbers of PCs. For instance, for classifying 4 tissue types, the classification 

performance, using 25 PCs, was 90.0 % (SN-MSD) and 82.5 % (AFT-M). For these 

groups, the optimum for SN-MSD would be reached by feeding 11 PCs (97.5 % LOGO 

cross-validated), and for AFT-M 7 PCs (91.3 %). For the purpose of this demonstration, 

we decided to keep a fixed amount of PCs. It might well be worth investigating a 

combination of two or more measures, and refining automatically extracted measures. 

However, this is beyond the scope of this paper and is probably only worthwhile when 

refining the technique for a dedicated purpose. Summarising, it is possible to improve 

results by fine-tuning and combining parameters. 

Speed 

One criterion for processing is speed: OCT acquires data in real-time and hence the 

subsequent analysis should not impact on this characteristic. Pre-processing does 

slightly delay results: On a 2.8 GHz Pentium 4, classification of 330 B-scans takes 

approximately 85 seconds, of which 73 seconds are needed for surface normalisation 

and extracting a representative measure. That corresponds to roughly 60,000 A-scans 

per minute and makes us confident that the claim of providing a near real-time modality 

remains justified: It would be quite remarkable for a human operator to classify 330 
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images in 1½ minutes. However we were only using a run length encoded programming 

language for proof of principle; compiled programs run much faster. 

7.5.2 Classification 

Robust cross-validation methods are important for testing LDA. It is a powerful 

approach and for a small enough set of samples some separation into groups can always 

be expected. For instance, in the example of 30 images, the model created by LDA was 

able to classify 100 % correctly even without surface normalisation. After cross-

validation, the surface normalised model was classified in 93.3 %, vs. 33.3 % for the not 

surface normalised model. 

Relevance for medical data 

The fact that the algorithm reaches over 90 % accuracy in certain cases is reassuring 

when looking at obviously different images, but for our data set the displayed approach 

is also able to differentiate images reasonably well which are difficult to tell apart by 

eye. Further, the algorithm is still able to classify similar images amongst a pool of 

other structural data. 

This is important as we plan to apply this algorithm to medical data. There we expect a 

larger variation amongst healthy individuals, and only eventually the small, but 

significant alterations for early, non-symptomatic disease. As an example we want to 

mention epithelial cancers, carcinomas, where the epithelial thickness of the healthy 

population can vary considerably due to various factors. However, the subtle alterations 

of proliferative epithelial cells close to the basal layer are probably the feature which 

can be picked up by OCT scans. It still remains to be assessed whether the algorithm 

would fail in such scenarios. 

Limitations and benefit 

In this study the imaging protocol is strict in the sense that it requires the penetration 

depth to be fully exploited and to leave an area of air above the surface. However, most 

imaging will have to adhere to a protocol. As long as the operator is made aware of the 

requirements we believe this limitation not to be substantial. After all, we have acquired 

thousands of images in this way. 

The advantage we see in the presented algorithm is that the few parameters utilised here 

are robust enough for the analysis to work automated and in near real-time. It does not 
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require assigning areas of interest. It does not rely on specific structures such as 

previously reported methods, but can still be used in combination with these algorithms. 

Hence this algorithm is straightforward to implement for existing OCT data. 

It might be worthwhile to emphasise that, although we were taking representative 

measures of B-scans, this approach will work on volumetric data. For example, taking a 

representative measure of a volume consisting of 20 × 20 A-scans on a system with 

10 µm lateral resolution will allow classification of 25 “tiles” per mm2, which is still 

superb for targeting clinical treatment. 

Further work 

Previous studies have shown that expert histopathologists do not always fully agree on 

classification of tissue specimens [153],[212], and an algorithm with lower than 100 % 

correct classification can still outperform subjective human assessment. In clinical 

work, OCT data would have to be compared to histopathologic results. Even though 

there are significant discrepancies found between expert pathologists on particular 

pathology groups [153],[212], histopathology is defined as the gold standard. Therefore 

we must base our analysis on the assumption that the sample pathology defined by 

histopathology is correct. In this study, we have not investigated the performance of the 

algorithm against a human operator, and hence assumed a 100 % correct classification 

as reference base line. In the future, we intend to compare classification results with 

those achieved by histopathologists on the same OCT images from biological 

specimens. 

The next step is testing this algorithm on medical OCT images: We expect it to 

distinguish structurally different pathologies correctly. In ongoing work we are 

investigating how well it classifies disease groups with quite similar appearance, such as 

mild and moderate dysplasia in early cancer development. 

7.5.3 Acknowledgements 

This work is funded by the Pump Prime Fund of Cranfield University and 

Gloucestershire Hospitals NHS Foundation Trust. 

The work presented in this article would not have been possible without the initial 

support of Prof. Ruikang K Wang, Dr. Shing “Sammy” Cheung, and Dr. Laurie Ritchie. 

 



 

- 101 - 

8 Applying the algorithm to clinical data 
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8.1 Abstract 

The keyword for management of cervical cancer is prevention. The present program 

within the UK, the “National Health Service (NHS) cervical screening programme” 

(NHSCSP), is based on cytology. Although the program has reduced the incidence of 

cervical cancer, the treatment decision is based on diagnostic biopsying and requires 

follow-ups. There is a potential for reducing costs and workload within the NHS, and 

relieving anxiety of patients. In this study, a fibre optics time domain optical coherence 

tomography (OCT) system (1.3 µm centre wavelength, ~15 µm resolution) was 

investigated for its capability to improve this situation. Tissue samples were obtained 

according to the ethics approval by Gloucestershire LREC, Nr. 05/Q2005/123. 1387 

                                                           
† Modifications include: British English spelling; cross-referencing; removing redundancies; and a greater 

level of detail. 
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images from 199 participants have been compared with histopathology results and 

categorised accordingly. Our OCT images do not reach the clarity and resolution of 

histopathology. Further, establishing and recognising features of diagnostic significance 

seems difficult. Automated classification would allow one to take decision-making from 

the subjective appraisal of a physician to an objective assessment. A model developed 

for this purpose can distinguish normal/CIN1 from CIN2/3 with 61.5 % accuracy 

(kappa = 0.52). Confounding factors and options for improving results are analysed. 

Keywords: OCT, epithelial malignancy, cancer prevention, computer aided diagnosis, 

precancer classification 

8.2 Introduction 

The management of cervical cancer in the western world may be regarded as a model 

for cancer prevention management. Screening and early diagnosis have indeed reduced 

the mortality (Chapter 1.4). However, decision making is still widely based on 

diagnosing tissue biopsies. Histopathology of these tissue samples is the gold standard, 

yet it is time consuming and invasive (Chapter 1.4). 

Various emerging modalities that might play a role in improving this problem have been 

assessed, but are not yet introduced into the clinical setting. Amongst these technologies 

are non-destructive optical probes. OCT has been proposed as a method for 

investigating early epithelial cancers in the late 1990s [89],[94]. 

8.2.1 Cervical cancer 

What we should recall from Chapter 1.2 is that the most prevalent form of cervical 

cancer is squamous cervical carcinoma, which is preceded by a long phase of preclinical 

disease. Dysplasia does not necessarily lead to cancer, but with increasing severity the 

likelihood of developing cancer rises. These early changes do not cause symptoms 

which would be noticeable by the patient. A large part in making the decision to 

surgically remove a precancerous lesion is based on the presence of CIN2 or worse; 

CIN1 does not usually justify treatment. However, CIN1 and CIN2 have similar 

markers in the colposcopic examination and therefore clinicians tend to rely on the 

opinion of a histopathologist. 
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8.2.2 Non-invasive probing 

Emerging technologies which have been investigated for improving this situation 

include fluorescence spectroscopy, elastic light scattering, confocal microscopy 

(Chapter 4.3.1), infrared spectroscopy (Chapter 4.3.3), or Raman spectroscopy 

(Chapter4.3.4). In OCT, there are a few studies which support its potential role in 

cervical precancer assessment (Chapter 4.3.2). However, none of the studies have 

resulted in a clinical tool that makes biopsies redundant (Chapter 4.4). 

8.2.3 Investigation in this study 

There is no commercial OCT unit available for cancer assessment – in contrast to 

ophthalmic OCT systems which have been widely introduced. The amount of studies 

applying OCT in precancer assessment, over the past 10 years, illustrates that the 

challenge of data evaluation cannot be addressed by improving image quality alone: In 

order to solve this, classification algorithms could be of benefit. 

This study has established a cervical image collection to allow us to evaluate algorithms 

that are novel to OCT data classification: Principal Components Analysis (PCA) and 

Linear Discriminant Analysis (LDA). Both are statistical tools which have not yet been 

used for classifying A-scans according to their shape features (Chapter 5). There is 

potential for such an approach to distinguish OCT images in short time and with high 

accuracy, although this remains to be confirmed for a clinical database (Chapter 6). 

Here, we will investigate how this algorithm performs when trained to distinguish 

clinically relevant stages of cervical precancer. 

8.3 Materials and methods 

8.3.1 The study protocol 

Human tissue samples were collected following the “favourable opinion”7 of the 

Gloucestershire Local Research Ethics Committee, Study Nr. 05/Q2005/123. Samples 

                                                           
7 The term “approval’ was replaced by the term “favourable opinion’ as this was deemed to be a more 

accurate expression; studies are therefore no longer “approved”. In practice, this should not make a 

difference. 
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were obtained from participants who needed a biopsy for diagnosis or treatment. These 

were acquired routinely for histopathologic examination, and therefore there was no 

need for additional biopsies to be taken for this study. The samples were categorised 

into three groups: hysterectomies, large loop excisions of the transformation zone 

(LLETZ) (both are treatments) and punch biopsies (diagnostic). 

Samples from LLETZ, or “loop”, procedures are also referred to as “biopsies”. To 

clarify the difference, we refer to diagnostic samples, which resemble skin flakes of 

about 1-2 mm, as “punch biopsies”, to treatment samples, which are 1 or a few 

centimetres in size, as “LLETZ”, and we use the term “sample” rather than “biopsy” 

when addressing both groups. Figure 8.1 shows a specimen under the sampling arm. 

 
Figure 8.1: Photograph of an entire cervix sample, amputated from the uterus after a hysterectomy 
and placed in a specimen tray under the probe arm of the OCT system. 

8.3.2 Measurements 

For routine diagnosis, samples were put in formalin immediately after surgical removal, 

and processed by the histopathology department. However, in our study, samples were 

placed in physiological saline at room temperature before imaging was performed. The 

time between surgical removal and the measurement depended on the amount of 

participants per clinic and varied between 30 minutes and 3 hours. The measurements 

were performed as described in Chapter 7.3.1. After imaging, samples were placed in 

formalin and sent to histopathology. Thereby the routine diagnostic processing of the 

sample was not delayed. 
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The imaging sites were tagged using an orientation needle, thereby roughly marking the 

imaging positions. We had to assume that the pathology of the marked site and the 

imaged area are the same. It is noteworthy that due to the heterogeneity of cervical 

tissue and the micrometre thickness of both sections this approximate assumption may 

not hold true and the slice for histopathological assessment may be different from the 

OCT section, as demonstrated by Figure 8.2. From larger samples it was possible to 

obtain images from healthy areas (near the excision margins) and images of progressed 

CIN. 

 
 (A) (B) 

Figure 8.2: Difficulties with matching an OCT tomogram (Top) with the equivalent histopathology 
section (Bottom). These OCT images were created from data taken with OCT instrumentation that 
is capable of volumetric imaging. Of this volume, the best possible match and orientation from a 
series of histological slices was selected. (This comparison is credible thorugh the particular spatial 
arrangement of the three cysts that is not present anywhere else in the sample.) N.B., this 
instrumentation was not available at the time of the study and matches from the study may be 
worse. (A) Top: Reconstruction from volumetric OCT dataset; Bottom: Equivalent site from 
histopathological sample. (B) Attempt of introducing correction factors, for refractive index 
mismatch and tissue shrinkage from fixation process. 

8.3.3 Data evaluation 

Using PC-fed LDA we were able to distinguish different types of biological samples 

and animal tissue with a correct classification rate of up to 93.3 % (Chapter 7.4.2). 

Continuing from these findings, we evaluated the data here with different 

pre-processing approaches. We found that by far the biggest impact on classification is 

due to surface normalisation (Chapter 7.4.1). Further, the optimal amount of fed PCs 

can influence the performance (Chapter 7.5.1), and median filtering of the surface 

vector can be beneficial (Appendix C). We have used cross-validation as an estimator 

for their performance on new, unknown samples (Chapter 7.5.2). In this study we will 
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learn that certain biological specimens are not easy to measure (details below, Chapter 

8.4.2), and that the best imaging conditions are assured for larger (LLETZ and 

hysterectomy) samples. 

These findings on pre-processing we want to apply to this study. We have chosen 2 

pre-processing methods and 2 specimen sources to be compared. The differences are 

shown in Table 8.1. 

Table 8.1: Pre-processing and group composition for the 4 data evaluation arms 
 Group 1 Group 2 Group 3 Group 4 
Name Entire set A Entire set B LLETZ A LLETZ B 
Symbol in graphs     
Specimen 
selection 

Entire selection of samples, 
i.e. 1057 images from 187 patients 

LLETZ and hysterectomy samples, 
i.e. 623 images from 86 patients 

Pre-processing:     
Surface 
recognition 

Bimodal 
thresholding 

Bimodal 
thresholding 

Bimodal 
thresholding 

Bimodal 
thresholding 

Threshold level 0.95 0.90 0.95 0.90 
Surface correction none 15 pixel Median 

window 
none 15 pixel Median 

window 
Rows to be used 1-500 (full depth) 1-250 (half depth) 1-500 (full depth) 1-250 (half depth) 
 

For each of the four models, the data was reduced to 35 PCs, which were sorted 

according to their significance (ANOVA) in respect to the disease staging provided by 

histopathology. Of these, between 10 and 35 PCs were then fed into LDA. 

Ten different models were constructed in order to discriminate normal and the CIN1-3 

groups. Using N, 1, 2, and 3 as group designators, these models were: N↔1, N↔2, 

N↔3, 1↔2, 1↔3, 2↔3, and clinically more significant decisions N1↔23, N↔123, 

N12↔3, and 1↔23. (Clinically worse groups, i.e. those positive for disease, are 

consistently assigned to the right side.) In total, there were 10 models, 26 PCs per 

model, and 4 pre-processing routes, resulting in 1040 models to be assessed. Of these 

1040 models, we calculated the training performance and the cross-validated prediction 

performance. Multiple measurements of the same patient (which we did obtain) in a 
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training and prediction set would reduce the reliability of a cross-validation. Therefore, 

a leave-one-patient-out (LOPO) cross-validation was performed in this situation8. 

A further estimator for the validity of results is the kappa (κ) value. κ statistics provide 

an accepted estimator to establish whether an agreement could have been achieved by 

chance, on a scale of -1 to 1. A κ = 0 means that the same performance would have been 

obtained by chance [213]. 

For a selected model, we will calculate sensitivity and specificity. There is a caveat as 

these two measures would not make sense clinically for every classification model, e.g. 

for distinguishing CIN2 from CIN3. For the N1↔23 model, the clinical relevance 

would be in predicting progressed disease. A “positive” would therefore be CIN2/3. A 

“negative” would be the lesion that does not require treatment or is healthy, i.e. CIN1. 

Table 8.2 shows how sensitivity and specificity are related to the group assignments in 

this study. 

Table 8.2: Basis for sensitivity, specificity, and κ value calculation as used in the literature (left 
table), and as applied from group assignments in this study (right table). 

 Reference   Histopathology grading
 Positive Negative   Higher Lower 

Positive True Pos. False Pos.  Worse stage True Pos. False Pos. 

N
ov

el
 

ap
pr
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ch

 

Negative False Neg. True Neg.  Pr
ed

ic
tio

n 
by

 P
C
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ed

 
L

D
A

 

Milder stage False Neg. True Neg. 
 

8.4 Results 

8.4.1 Recruitment 

Over the course of 56 clinic sessions, 223 women consented to be included in the study. 

Not all of the recruited patients needed a biopsy and therefore the number of study 

                                                           
8 The LOPO CV was still undertaken with the full amount of images. E.g., for a full data set of 187 

patients, 187 LOPO cross-validations were performed. This data set would contain 1057 images. If one 

patient provided 6 images, then the training set in this CV step was built from 1051 images and the 

prediction of the remaining, “unknown”, 6 images was determined. After 187 CVs, each of the 1057 

images has a - either correct or wrong - prediction, and the sum of the correct predictions divided by the 

total 1057 images is the classification performance. 
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participants was lower. Samples were collected from 199 patients; in some patients 

multiple biopsies were taken. 245 tissue specimens were obtained, 149 punch biopsies, 

92 LLETZ, and 4 specimens from hysterectomies. 

The study was designed as a pilot study to recruit 200 patients and at least 5 tissue 

samples of each of 6 groups (ectocervical normal, CIN1, CIN2, CIN3, and endocervical 

normal and cancerous (adenocarcinoma)). Because the cancer progression markers 

within OCT images are not clearly defined throughout the literature, a power anlysis 

was not appropriate at the time and the study was classified as a pilot study. From 

experience within the Women’s Health Directorate, the Histopathology Department, 

and the Biophotonics Research group, it was estimated (“educated guess”) that in order 

to recruit about 5 healthy tissue samples out of a population participating in a follow-up 

to positive screening results, larger numbers would be required. This estimate 

recognised that the number of CIN samples would be larger and it was also suggested to 

include tissue from hysterectomies that was not obtained as part of the screening 

programme. Because of these reasons and because the study did not alter the way 

patients receive care, this procedure was accepted by the ethics committee. 

The breakdown of participants according to histopathology was: 12 normal, 49 CIN1, 

53 CIN2, 63 CIN3, and 12 exclusions (a detailed breakdown with numbers of patients, 

samples, and images per group is given in Table 8.3). The mean age (± standard 

deviation) of participants was 31.8 ± 8.3. We recorded, where possible, their ethnic 

background, parity, and hormonal status, in order to be able to investigate potential 

trends. 

8.4.2 Images 

1387 images were obtained from 245 samples; the breakdown of pathology identified 

was as followed: 20 healthy (“no sign of neoplasia”), 87 CIN1, 65 CIN2, and 73 CIN3. 

Figure 8.3 shows example images obtained of the individual pathologies as listed above. 

The cervical images are showing features which are consistent with cervical histology: 

Glands, blood vessels, cysts, mucus and epithelial layering can be made out. However, 

these features are not correlated with CIN progression, and can therefore not serve as 

markers. Not all of the images were suitable for further identification: Orientation of 

tiny punch biopsies was difficult, as they are prone to twisting and curling. Some 
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samples, although with sufficient penetration depth, did not cover the full lateral extent 

of the scan (Figure 8.4, Figure 8.5). 330 such images were not included in the 

classification set. 

     

     

     

     
 A B C D 
Figure 8.3: OCT images of good quality of the different CIN groups defined by histopathology. 
These images are representative for those images of good quality and full penetration depth. Each 
image has a width of 3 mm and a resolution of ~10 µm. Columns show: A) No sign of dysplasia, 
B) CIN1, C) CIN2, D) CIN3. From such images it is not straight forward to establish or recognise 
features which are relevant to disease progress. 

   
Figure 8.4: Examples for images whose useful areas had to be manually selected, or were entirely 
excluded from the classification due to lack of penetration depth. 
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Figure 8.5: Examples for images which had to be excluded because of the difficulties with surface 
recognition due to orientation, curling, or wart structures. 

Of the entire 1387 images from 245 samples from 199 patients, 1057 images from 212 

samples from 187 patients were used for assessing the performance of training sets and 

cross-validation. Because there were different numbers of patients and measurements 

within each pathological group, we provide a table showing how many images, of how 

many patients, are used for the classification (Table 8.3). 

Table 8.3: Composition of the 4 groups which are used to form the 10 models, and total numbers of 
selected/excluded samples and patients. The dashed box encircles the samples used for the “Entire” 
sets (in the following graphs designated by the symbols , ), and the grey shaded box marks the 
samples used for the “LLETZ” sets (symbols , ). 
 selected into groups 
 “N” “1” “2” “3” 

total 
selected 

 
excluded 

total 
imaged 

Staging CIN1 CIN2 CIN3    No sign of 
dysplasia 

Images of:         
 Punch biopsies 67 171 103 93 434 247 681 
 LLETZ 34 39 187 291 551 74 625 
 Hysterectomies 72 0 0 0 72 9 81 
Total images 173 210 290 384 1057 330 1387 

Participants providing:        
 Punch biopsies 15 43 22 21 101 8 109 
 LLETZ 2 6 31 43 82 4 86 
 Hysterectomies 4 0 0 0 4 0 4 
Total participants 21 49 53 64 187 12 199 
 

8.4.3 Data evaluation 

The results here show training performance, cross-validation, and κ values for 1040 

(26 × 4 × 10) models. The graphs are designed to show only the optimal result for each 

model and may seem quite busy. In order to display the impact of the number of PCs, 



Chapter 7 – Applying the algorithm to clinical data 

- 111 - 

comet tails plots are introduced. A guide on how to interpret the comet tail plots is given 

in Figure 8.6. 

 
Figure 8.6: How to read the dependency of TPs on the number of PCs in the following figures: The 
comet tail plots are derived from whisker plots, stretching from maximum to minimum. A bold line 
marks the interquartile range, and the median value is marked separately. (A) shows little variation 
and hence little influence from the number of PCs. (B) shows a larger variation. (C) Here, the 
majority of PC numbers would yield good results. (D) shows a critical situation where the 
maximum TP can easily be confounded by a sub-ideal number of PCs. 

Figure 8.7 is discussed here as guide for reading and interpreting the result figures: 

Values using the optimum number of PCs range between 58.0 % and 83.3 %, without 

cross-validation. The comet tail plots show the difference between worst and optimal 

PC choice: The longest tail, as it were, makes up for a difference of 10.3 percentage 

points. 

We see that the refined pre-processing (symbols , ) does not have a strong impact, 

in fact it performs worse in most cases. The scores for the LLETZ samples are higher 

than for the entire set. However, within the LLETZ samples there is a smaller 

proportion of healthy/CIN1 pathology. 

Table 8.4 gives a detailed account of how big the sample numbers were, according to 

the data provided in Table 8.3. The strongest performance is achieved where CIN1 has 

to be distinguished from CIN3, and in models where those two pathology groups are 

separate. Again, these models have smaller sample numbers. The weakest separation is 

achieved for CIN2 vs. CIN3, and this affects models where these pathologies are not in 

the same group. 

These models were not yet cross-validated and rise concern insofar as even the best 

result has a 16.7 % error in a task that effectively consists of matching a descriptor to a 

database that already includes this descriptor. 
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Figure 8.7: TPs of different classification models. Group designators: N…no sign of dysplasia, 
1…CIN1, 2…CIN2, 3…CIN3. The percentages are the highest values achieved with the optimal 
number of PCs fed into LDA. These optimal numbers of PCs are shown in the data table below. 
E.g., N↔1 designates a model for separating healthy from CIN1. For this model, 34 PCs gave the 
highest score of 77.5 % to separate data from all specimen types ( ). The same model built from 
LLETZ and hysterectomy samples ( ) achieved 80.7 % with 25 PCs. The comet tails of each data 
point show the range of TP achieved when feeding between 10 and 35 PCs. 

Table 8.4: Number of images and group sizes of the 10 TP models. 
 N↔1 N↔2 N↔3 1↔2 1↔3 2↔3 N1↔23 N↔123 N12↔3 1↔23 

“Entire” set           
 Left side 173 173 173 210 210 290 383 173 673 210 
 Right side 210 290 384 290 384 384 674 884 384 674 
 Total 383 463 557 500 594 674 1057 1057 1057 884 

LLETZ set           
 Left side 106 106 106 39 39 187 145 106 332 39 
 Right side 39 187 291 187 291 291 478 517 291 478 
 Total 145 293 397 226 330 478 623 623 623 517 
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Figure 8.8: κ values for the models shown in Figure 8.7. Shown are the 40 values with highest 
performance in each model, and the range of 1040 models as function of the number of fed PCs, as 
explained in Figure 8.6. The data table shows the optimal number of PCs for these κ values, and 
they are mostly, but not entirely, identical to the TPs. (* Agreement interpretation after [214]). 

In Figure 8.8, the κ values for the TP in Figure 8.7 show low values. Particularly for the 

models 1↔3 and 1↔23, which have high values according to Figure 8.7, we learn that 

much of this would have been obtained by guessing. However, as the κ values range 

from 0 to 1, we can claim that each model still achieves a slightly better performance 

than a mere guess. The model of direct clinical interest, N1↔23, has a TP of 75.3 %, 

and a κ of 0.42, when built from LLETZ samples. 

We also see that the performance decreases with complexity of the models. When a 

group represents one clinical grade, κ is usually > 0.30, groups including more clinical 

grades mostly have κ < 0.30. In these models, some scans were taken from the same 

sample or patient, respectively. 

The following graphs show the results for LOPO CV, with the patient numbers, which 

equal the CV steps, detailed in Table 8.5. The prediction performance seems to be 

consistently lower than the TP, by about 10 % (Figure 8.9). In fact, the average of the 

entire 1040 performances drops from 68.7 % (TP) to 59.6 % (CV), and also the 40 
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optimal PC models fall from 70.1 % (TP) to 62.3 %. This was expected for the CV, as 

the classification for each patient was done on a model that did not know of this patient 

before. Although yielding lower figures, the CV performance is a more credible 

indicator for the diagnostic prediction performance. 

 
Figure 8.9: LOPO CV of different classification models. Interpretation and legend are the same as 
in Figure 8.7. 

Table 8.5: Number of patients, and therefore cross-validations, of the 10 LOPO CV models. The 
amount of images used for cross-validation is shown in Table 8.4. 

 N↔1 N↔2 N↔3 1↔2 1↔3 2↔3 N1↔23 N↔123 N12↔3 1↔23 

“Entire” set           
 Left side 21 21 21 49 49 53 70 21 123 49 
 Right side 49 53 64 53 64 64 117 166 64 117 
 Total 70 74 85 102 113 117 187 187 187 166 

LLETZ set           
 Left side 6 6 6 6 6 31 12 6 43 6 
 Right side 6 31 43 31 43 43 74 80 43 74 
 Total 12 37 49 37 49 74 86 86 86 80 
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Interestingly, κ values are higher for the prediction model (Figure 8.10). The amount of 

PCs does not seem to have an impact on most models in Figure 8.10, as illustrated by 

the short comet tails. However, there are high κ values for models separating CIN1 from 

CIN2, CIN3 or both. This suggests that better models are built in absence of normal 

tissue; which is a constraint that cannot easily be fulfilled in vivo. What is conspicuous 

in Figure 8.10 is that a majority of results seems to be situated near the 0.50 level, and 

that, although the CV of the data has similar results as the TP, the same cannot be said 

for the κ calculations. The CV κ values have higher values than the TP κ values. 

However, every calculation was done with the same program and the results shall 

therefore be accepted as correct. 

 
Figure 8.10: κ values for the models shown in Figure 8.9. Shown are the 40 values with highest 
performance in each model, and the range of 1040 models as function of the number of fed PCs, as 
explained in Figure 8.6. The data table shows the optimal number of PCs for these κ values. 
(* Agreement interpretation after [214]). 
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8.5 Discussion 

8.5.1 Recruitment 

Because this study did not interfere with the management a patient receives normally, 

patients were usually willing to participate. This was especially the case for patients 

with treatment. Although that option was emphasised to the participants prior to their 

consent, not a single one withdrew. Patients who attended a clinic for a diagnostic 

biopsy were in some cases more reluctant. We assume that although the provided 

information sheet clearly emphasised that no extra biopsies would be taken, this point 

might not have always come across. At the time of recruitment, we did not have a 

possibility to prove this to prospective participants. Now we can show that only 89.2 % 

of the recruits (199 of 223) became participants. Nevertheless our study size seems 

comparable with earlier studies in this field [99],[100]. 

It might be worthwhile to remind ourselves of Table 8.3, which showed that although a 

study was designed to recruit 200+ patients, further exclusion criteria mean that models 

consist of as little as 12 participants. This may serve as support that even small 

prospective studies, specifically when trying to cover several pathology groups, may 

require rather large participant numbers. 

Table 8.3 shall be utilised to highlight further points: 

• Although there were 1387 images from 199 participants, the smallest model (N↔1 

for LLETZ & hysterectomy samples) consisted of only 145 (34 + 72 ↔ 39) images 

from 12 (2 + 4 ↔ 6) patients. 

• The proportion of measurements from biopsies that was excluded is larger than the 

images from treatments (247 vs. 74 + 9). 

• The proportion of progressed CIN is larger amongst LLETZ (34 + 39 vs. 187 + 291). 

• Hysterectomies do not have CIN as they were performed for other reasons than 

cancer prevention. 

• The proportion of early CIN is larger amongst punch biopsies. 

• 67 punch biopsies from 15 patients presented no sign of dysplasia. 

• 8 patients did have treatment for CIN although the subsequent examination showed 

that they had either no sign of dysplasia or CIN1. 
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These points support that in the current system diagnostic biopsies do act as a filter to 

provide treatment to only progressed CIN stages. There are, however, potentially 

redundant diagnostic biopsies, and treatments of patients which would have required 

surveillance only. 

8.5.2 Sample quality 

When measuring the samples, we had problems as the penetration depth of our system 

exceeded the size of the punch biopsies, as shown in Figure 8.4 and Figure 8.5. This 

does affect the data evaluation as it is based on the shape of a full A-scan. After all, 

OCT is a technology that may give insight on histological features, and does not render 

itself to cytological assessment. For small samples, manual handling was difficult and 

made proper imaging impossible. The images which are representative for an in vivo 

situation are therefore mainly from LLETZ procedures and hysterectomies. As a 

consequence, we had to exclude some of the images from our automated analysis based 

on the criterion whether an artefact would have occurred in vivo. 

8.5.3 Data evaluation 

The results from the non-clinical data set demonstrated that the automated classification 

can achieve good separation results (Chapter 6). However, this relies on the appropriate 

pre-processing. Pre-processing aims to emphasise features which can then be easily 

extracted and fed into the classification. Such features can be layer thickness, grade of 

layer disruption, or intensity patterns of A-scans. 

These features need to correlate with the progression of precancerous lesions. The 

advantage of PC-fed LDA is that such features need not necessarily be known a priory. 

Establishing such features in precancerous OCT images of the cervix so far remains 

challenging. There are many structures such as glands, cysts, or characteristic wart 

surfaces, which do not correlate with CIN grades. It would be interesting to understand 

which “structural” features the algorithm has used for the classification of groups, even 

if this did not work perfectly. 

This can usually be achieved by looking at the loadings of the strongest PCs, however 

this is a technique used in spectroscopic analysis of wavelength dependent photon 

interaction and does help elucidating an arbitrary A-scan shape. As PC-fed LDA was 
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applied to OCT data in this study, we try to illustrate representative structural features 

through what is presented in Figure 8.11: 

Figure 8.11 starts with plotting the intersections of the 2 strongest9 PCs of 

representative measures. From this plot, groups of points are selected at north, south, 

east, west, and centre regions. They are not perfectly aligned as here we want to 

calculate the mean spectrum of these groups and therefore require areas with several 

points. 

 
Figure 8.11: Upper left: scatter plot of the 2 strongest PCs of the entire data set, consisting of four 
groups (no sign of dysplasia, CIN1, CIN2, CIN3). Each B-scan descriptor is represented by a dot. 
By selecting mean descriptors of a group we can visualise the axes in an intuitive way. The blue 
circles roughly correspond to the PC dimensions (north, south, east, west, and centre). The five 
profiles are mean spectra from within the blue circles and can serve as an indicator that the two 
strongest PCs describe steepness and the presence and appearance of a plateau region. These 
profile features do not seem to relate with CIN stages. 

The strongest feature for separation may be described as the steepness of the signal, or 

penetration depth. The second strongest feature seems to relate to the presence and 

appearance of a plateau within the scan. The plateau might be related to the epithelial 

thickness. However, the overlapping data clouds show that these features do not 

strongly correlate with precancer progression, and occur across all the CIN stages. 

                                                           
9 Strongest correlation with CIN progression, established by ANOVA 
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8.5.4 Results in context of literature 

Table 8.6 offers the possibility of comparing our κ values with those available in the 

literature. There is no full meta-analysis available and performing one would have gone 

beyond the time frame of the project. It is however possible to identify some of the 

relevant work. These publications are slightly different as they do not compare standard 

histopathology with OCT, however they either assess inter-operator agreement between 

expert histopathologists, or between conventional histopathology and a novel diagnostic 

tool. Table 8.7 gives more information on the details of the reference studies. 

Table 8.6: Comparison of highest κ values for “Entire” set and LLETZ set with literature. 
Source N↔1 N↔2 N↔3 1↔2 1↔3 2↔3 N1↔23 N↔123 N12↔3 1↔23 

Entire set ( ) 
LLETZ ( ) 

: 0.50
: 0.57

: 0.51 
: 0.53 

: 0.53
: 0.56

: 0.51
: 0.65

: 0.52
: 0.70

: 0.51
: 0.51

: 0.52
: 0.58

: 0.58 
: 0.62 

: 0.51 
: 0.50 

: 0.56
: 0.73

Source:           
 Cai [215]       0.77-0.87   

 Horn [216]       : 0.49
: 0.63

   

 Kato [217]         0.58  
 McCluggage 
[218] 

       0.30   

 Parker [219]       0.81 0.55   

 Stoler [220]       : 0.68
: 0.69

: 0.47 
: 0.46 

  

Table 8.7: Details to references in Table 8.6. 
First author, 

Year 
Panel 
size Sample number Group name  

(equivalents in source) 
Remarks 

(which values are used here)
Cai 
2007, [215] 4 185 N1↔23: “non-CIN2/3+ vs. CIN2/3+” 

N↔123: “non-CIN+ vs. CIN+” Weighted κ values 

Horn 
2008, [216] 6 247 punch, 

249 cone biopsies 
0.49 for biopsies 
0.63 for treatments 

Compare conventional vs. 
novel staining. Conventional 
κ values used here 

Kato 
1995, [217] 3 883 N12↔3: “CIN3 in histology” Values for histology, CIN3 

McCluggage 
1996, [218] 6 125 6 tier staging Unweighted κ values 

Parker 
2002, [219] 3 119 

N1↔23: “HG vs. <HG” 
N↔123: “normal vs. dysplastic” 

κ value used here is mean of 3 
operator-pair wise comparisons

Stoler 
2001, [220] 7 2237 biopsies, 

535 LLETZ 
N1↔23: “≤LSIL vs. ≥HSIL”, 
N↔123: “≤NEGATIVE vs. ≥ASCUS”  
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8.5.5 Potential for improvements 

In this work we have undertaken a classification of several models derived from clinical 

stages of precancerous disease. For the entire set, our LOPO CV classification result 

reached 61.5 % and a κ of 0.52 for distinguishing healthy/CIN1 from CIN2/3. This was 

however dependent on the number of PCs fed into LDA. Table 8.8 shows how 

sensitivity, specificity, classification and κ value change with the model. E.g., for the 

model that reaches 61.5 % correct classification, the κ value is 0.51. It does have the 

highest specificity (47.3 %), but the sensitivity is low (43.8 %). The highest sensitivity 

of 66.7 % would be obtained by feeding 34 PCs, where the classification performance 

reaches 58.1 %. 

Table 8.8: Maximum performances and dependencies on PCs. 
Amount of PCs 

for highest value Classification Sensitivity Specificity κ value 

17 61.5 % 43.8 % 47.3 % 0.51 
31 59.2 % 66.6 % 44.9 % 0.52 
34 58.1 % 66.7 % 43.8 % 0.52 

 

Why is the performance not higher and what could be investigated to improve these 

results? With a posteriori knowledge, different models could be designed from different 

sample sources and from different clinical stages. Such an approach may have a 

potential to reach higher classification performances, however that is irrelevant for a 

clinical decision making tool. When comparing our findings to the literature, there are 

clearly higher κ values. However, there are studies which have comparable or even 

lower values than provided by our approach. This seems a weak support for altering the 

current management. However, the results are promising enough to try and identify 

possible improvements. 

SNR / Speed 

For a fully automated algorithm, cancer progression markers need to be picked up 

properly and normalised in order to not disturb the analysis. Notably, the ability to 

extract features depends on the original quality of the image. Today, OCT systems 

provide higher resolution and higher acquisition speed. Both might be crucial for 

automated registration of image features and artefacts. 
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Correlation with gold standard 

We also have to question the staging of our OCT images. Per study design, a truly 

accurate staging could only be expected from the tiny punch biopsies. As it turned out, 

these were the least useful samples for the subsequent evaluation due to handling 

problems. Although care was taken in measuring the correct areas of the larger 

specimens, it cannot be fully confirmed that these were 100 % corresponding to the 

slices examined by the histopathologists. A reasonable way to overcome this would be a 

different protocol that involves volumetric OCT, and therefore provides larger areas for 

matching biopsies and OCT scan. Within this PhD project, such a system was not 

available. 

Data evaluation 

PC-fed LDA is able to distinguish different data, and in hindsight the separation of 

non-clinical data (Chapter 6) was a worthwhile undertaking as it can serve as a proof of 

principle. 

Normal epithelial tissue provides a wide range of structural features. The histological 

features of early precancerous changes are minute – after all they are symptomless. 

OCT is much more likely to detect a change in the reflection gradient within the 

epithelium rather than being able to resolve single cells. 

A screening program is per definition aimed at the healthy population. It would 

therefore be possible to assess the intra-patient variation of measurements, rather than 

the inter-patient variation as it was done in this study. OCT would be technically 

advanced enough to image an entire cervix in real-time. Such an approach would avoid 

problems occurring from feeding different stages, age groups, and eliminate patient 

heterogeneity as a source of problem. In this study, we are not able to assure that. 

8.5.6 Communication to clinician 

Classification is a key instrument for providing a clinician with clear answers, rather 

than images. From our findings we believe that inter-patient variation in epithelial 

appearance is rather large and dominant over less pronounced markers for early 

malignancy (Figure 8.11). However, imaging of the entire cervix in vivo should avoid 

these problems: Since OCT would be applied in early stages of precancerous 

development, the majority of the cervix surface is a healthy area which can be used as 
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an intra-patient reference. Classification models would therefore not have to be as 

robust to inter-patient variation. This study was not designed for this evaluation. 

However, in a few cases images from the same patient are available (Figure 8.12). Such 

a model is too small for conclusions to be drawn, but it shows that assessing the intra-

patient variation might be a possible way forward. 

 
Figure 8.12: Two dissimilar, already surface normalised scans from the same patient, allowing 
discrimination. Here, no representative measure has been taken, and each dot represents an actual 
A-scan. Using a representative measure, these graphs would show 2 dots. 
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9 The meaning of it all: Discussion 

This PhD project combined several current issues in medical diagnostics: Epithelial pre-

cancer detection, non-destructive diagnostics, and clinical decision making. 

Prior to discussing the specific findings of each chapter, the work shall be put into 

context: 

9.1 A framework for understanding this thesis 

9.1.1 General approach 

In the general understanding, a doctoral thesis should extend the current knowledge by a 

substantial finding. 

• This could be the correlation of data points after a series of observational 

experiments (Figure 9.1). This correlation can then serve as rule, e.g. in form of an 

equation which is valid within a certain set of conditions. 

  
Figure 9.1: Example for observational finding: A series of experimental data points serves as basis 
to create a rule. 

• Another finding a thesis could provide is a method to interpret existing data points. 

This would help obtaining or understanding future findings. Figure 9.2 shall illustrate 

the example of using a logarithmic representation, a frequently encountered approach 

for yielding a linear dependency of data points. 
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Figure 9.2: Example for methodological finding: Introducing a tool (here the logarithm) with the 
aim to facilitate interpretation. 

9.1.2 Specificities in this thesis 

On the basis of Figure 9.1 and Figure 9.2, the work in this thesis shall be appraised: 

• Prior to any experimentation, two topics were reviewed: the existing literature on 

optical non-destructive imaging of cervical precancer, and on automating evaluation 

of OCT imaging data. This provided a justification for performing this research and 

showed the potential of OCT in precancer assessment and for a novel algorithm. 

• In the experimental part, a collection of OCT images of cervical tissue samples has 

been established (Figure 9.3). This in itself is not entirely novel, as there are a few 

preceding publications [96]-[98]. It is however the first study of this size (200+ 

participants) undertaken in the UK. Results of this kind might help substantialise the 

(still few) findings in the literature. 

  
Figure 9.3: Data collection in this thesis. 
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• An algorithm has been developed to help converting OCT image data into a measure 

that can be easily assessed, following the interpretation of Figure 9.2. It has been 

explored on non-clinical data to provide proof of principle. A novel approach 

introduced in this thesis is to reduce A-scans by PCA and to classify this data using 

LDA (Figure 9.4). 

  
Figure 9.4: The process of converting OCT data by reduction to a hyper-dimensional data point, as 
developed in this thesis. 

• The following difference has to be appreciated: The fictitious examples of Figure 9.1 

and Figure 9.2 were 1 D, experimental data that is correlated with one variable. The 

PC-fed LDA accepts multi-dimensional data: Data points which are described by 

several dimensions form data clouds, which serve for creating hyper-dimensional 

maps. These maps are used to calculate a distance of unknown points, which are 

inversely proportional to the classification likelihood (Figure 9.5). This likelihood 

score is then a 1 D (linear) correlation. 
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Figure 9.5: Establishing a linear correlation from multi-dimensional data (here illustrated by 2 
dimensions). 

It is now worth investigating whether there is a possibility to use OCT in cervical cancer 

management, e.g. by classifying the cancer risk as depicted in Figure 9.6? 

  
Figure 9.6: The aim of this thesis: using OCT to predict the risk of precancer progression. 

• The algorithm, PC-fed LDA, has been applied in an attempt to classify clinical data 

of cervical tissue samples. For this situation, the algorithm achieved a 61.5 % 

correlation and does not fare better than reference values achieved by standard 

histopathology (Figure 9.7). For this model, sensitivity and specificity do not exceed 

66.7 % and 47.3 %. 

• In this study, OCT has been used to image ex vivo samples, where it would be 

positioned to compete with histopathology. If such a score can be achieved in vivo, 

this would provide an advantage. An in vivo tool of this kind would more likely be a 

screening tool to guide biopsies. 
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Figure 9.7: A correlation for the cervical OCT image collection has been performed. This was made 
difficult by overlapping data clouds and subsequent weak separation. 

As answer to what has been achieved during the work of this thesis, the following list 

shall help as guideline: 

• A review on optical high-resolution mapping of the cervix 

• A review of analysis methods for OCT data 

• A generic approach for converting dense tissue OCT data into an objective measure 

• A specific data collection that has been described by the novel method 

9.2 The findings in detail 

9.2.1 Modalities for assessing cervical precancer 

There are many diagnostic tools under investigation for the cervix, and an exhaustive 

list would probably have to include every measurement principle possible. In Chapter 4, 

a very narrow field was reviewed: non-invasive optical high-resolution modalities. OCT 

differs from confocal microscopy, infrared spectroscopy and Raman spectroscopy: The 

newest OCT systems are quick enough to provide wide-field, high-resolution (lateral 

and depth) imaging. The low powers employed mean that samples do not suffer photo-

bleaching. On the other hand, the contrast is rather weak. 

Chapter 4.3.2 on OCT showed that although there are about 10 years worth of research 

into OCT for epithelial (dense tissue) cancers and some publications on OCT of the 

cervix, there is actually no clinical tool available. OCT so far falls short of reliably 

showing the crucial difference between CIN1 and CIN2/3. 
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It was also pointed out that there is not yet a publication on volumetric OCT imaging of 

the cervix. In this case, one will expect much more data, which would have to be 

scanned for faint markers for lesions suspicious of early cancer. This is provided that 

such markers will be clearly identified, agreed on by experts and supported by trials. 

Creating our own collection of OCT images seemed not enough for this purpose. We 

deemed it necessary to be prepared for high throughput classification. Therefore, a 

review on automated analysis of OCT data was performed, which constitutes Chapter 5. 

9.2.2 OCT data evaluation 

With the introduction of OCT, there had been attempts of automating data evaluation. 

This was driven by ophthalmology, with the possibility to segment multiple layers and 

derive features mostly related to layer thickness and integrity. For dense tissue, where 

such layering is more an exception than the general rule, these algorithms cannot unfold 

to their full potential, and subsequently there are only a few publications. 

This was established after reviewing the literature on automation of OCT data (Chapter 

5). This further established that many studies include manual selection as 

inclusion/exclusion criteria. Prior to this work, the classification of OCT data on the 

basis of time domain A-scans has not been thoroughly investigated for this purpose. The 

design of this approach is the content of Chapter 6. 

9.2.3 Principal components-fed linear discriminant analysis 

Some requirements need to be met in order to yield successful results with the 

techniques PCA and LDA: Each pixel of an A-scan vector needs to be correlated with 

the measured imaging depth relative to the surface. 

As a proof of principle, we investigated whether OCT data from different samples can 

be classified. The advantage of the approach would be that a structural clinical feature, 

as stated in the end of Chapter 2.5, need not be identified. Rather, the degree of 

correlation within a model would serve as marker. 

If an algorithm applied to classify clinical images fails, it would not be clear whether 

this is due to algorithm design, or due to image properties. In this thesis, the initial 

approach was therefore to attempt a classification of images with obvious differences 

(Chapter 7.4.1). We confirmed the assumption that for classification of time domain 
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A-scans, the surface needed to be normalised. Once this is achieved in a reliable 

manner, the algorithm is quite powerful and able to distinguish several groups. 

After classifying vegetables, which poses a rather artificial task, we moved closer to the 

aim of classifying tissue by feeding scans of animal (porcine) organ samples. Finally, 

we classified different states of the same organ. In all of the scenarios, the PC-fed LDA 

classified up to 93.3 % correct, an estimate backed up by thorough cross-validation that 

has potential for higher scores (Chapter 7.4.2). 

9.2.4 PC-fed LDA for analysis of epithelial precancer 

All the research and design from the previous chapters should culminate in Chapter 8, 

the application of the algorithm to clinical data. Chapter 8 describes the tissue collection 

and measurement protocols for the different sources for advanced stages and milder or 

even non-cancerous tissue. The immediate impact from source heterogeneity was 

sample handling: diagnostic tissue samples are significantly smaller than interventional 

resections. Too small samples proved difficult for imaging, and did not allow feeding 

such images into analysis. 

The classification performs weak: Using the entire set of useful images to separate 

normal/CIN1 from CIN2/3, the algorithm achieves a cross-validated score of 61.5 % 

and a κ value of 0.52 (Chapter 8.4.3). Although this is better than guessing, it is not 

encouraging for a clinical tool. 

In comparison to other values in the literature, this is not convincing enough to suggest 

an immediate change of diagnostic procedures. 

The model was built with images from ex vivo samples obtained using a fibre optics 

TDOCT system. Future measurements could provide volumetric data with added 

information content, e.g. from functional imaging or contrast agents. It can be expected 

that in vivo images do not suffer from problems with orientation and penetration depth. 

Cervical tissue undergoes many changes which affect epithelial thickness and mucus 

consistency. There is therefore a large variety of tissue composition within a healthy 

population. In theory a large enough sampling number, i.e. patients, should be sufficient 

to cover these variations. In practice, we cannot ascertain that our population has 

covered the entire range of possible variation and it is not possible to estimate the 

required size for such discrimination. It would be large, if anything. 
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9.3 Outlook 

For assessing the value of the findings, we could pose the question whether this will 

have an impact on cervical precancer management in the near future. Not that a direct 

impact would suffice or be a requirement to judge the value of this work, but it could 

certainly serve as an indicator. 

Even if findings are promising, it is not granted that such results indeed make it into the 

clinical setting. Health and safety issues, ease of handling and interpretation, and 

comfort for the patient are important issues. (Appendix A treats the topic of 

“non-invasive” measurements). New protocols need to fit into existing structures and 

have a high chance of success only if they fit well into existing logistics, as achieved 

with the liquid based cytology (LBC). 

It is unlikely that any modality will entirely replace a screening programme such as the 

NHSCSP in the near future. 

• This program is well established. 

• Even slight changes (reducing false negatives by LBC) take years, are still not fully 

implemented although more efficient and cost reducing. 

• However, modalities can serve as adjunct and guidance for biopsying. Such a 

modality is therefore positioned as the second line of defence after an abnormal 

screening result. 

Why then perform research on a novel tool such as OCT for the cervix, and not another 

organ? The answer is that the cervix is a good model for assessing clinical tools. 

• Research can be integrated into existing recruitment schemes and target participants 

without costing them any extra time, physical harm, or worry. 

• The routinely obtained results can serve as reference. A study can be designed to 

incur no extra cost for the reference result. 

• Results are transferable to other sites of the body and countries, where such trials are 

not easy to perform, and where a prevention program has not yet been established. 

Examples are: mouth, larynx, oesophagus, stomach, upper and lower intestines, 

prostate, bladder, lymph nodes, or the uterus. 

 

Can the existing literature be trusted as reference for results? A meta-analysis on 59 

studies on Pap-smear staging reports a range of 11 % to 99 % for sensitivity and from 
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14 % to 97 % for specificity, with a highly negative correlation [221]. Such a meta-

analysis has not been found for histopathological assessment, but already the few 

citations in this thesis show some degree of variation [215]-[220]. 

9.4 Suggestions to continue from this work 

OCT data has long been synonymous with structure. When structure is intuitive to 

assess, it might seem not worth the effort of developing an algorithm. 

However, in large datasets (as encountered in OCT); automation would give a time 

advantage. We assume that structural changes are not clearly correlated with epithelial 

malignancy, and changes due to the menstrual cycle as well as inter-patient variability 

will require a lot of expertise for evaluating the images. 

How could this be addressed? From volumetric images, the intra-patient variability 

might be a more reliable measure for precancer. OCT is a modality quick enough to 

acquire a volume of the entire cervix. Developing a 3 D-tool and performing a new, 

second prospective study was outside the scope of this project. It is however a 

suggestion drawn from this study: To undertake a study on volumetric data from tissue 

samples. 

There are other interesting topics which could not be addressed within this work: 

Contrast agents 

In this study, contrast agents were not investigated. Contrast agents are routinely applied 

in the clinical setting, and whatever their mechanism, might also enhance the precancer 

progression marker in OCT images. Acetic acid has been shown to improve contrast for 

nuclei in confocal microscopy, and the impact of acetic acid has been proven to show up 

as distinguishable by PC-fed LDA of animal tissue in Chapter 7.4.2. This might merit 

an investigation into contrast agents or refractive index matching, and their effect on 

CIN discrimination in OCT images. 

Functional OCT 

In cartilage and scar imaging, the polarisation content is more informative than a purely 

structural imaging. Functional OCT, a field which includes polarisation sensitive OCT, 

might show contrast mechanisms in precancerous tissues that are not available from 

structural OCT. 
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Quantitative refractive index measurements 

The most generalising assumption in OCT is the constant refractive index correction, 

usually a factor of 1.4 for dense tissue. Using approaches such as dual wavelength OCT 

or angular measurements, a volumetric refractive index map of tissue would allow a 

more thorough description. 

Multi-modality 

So far, suggestions have been limited to OCT. Multi-modal systems could combine 

OCT, Raman spectroscopy, or fluorescence imaging into one system. There are 

practical difficulties to overcome, however combined systems have been engineered and 

might show a way forward for a complementing, non-destructive biochemical/structural 

analysis on a micrometre scale. 

Application scope 

In this work, the scope was disease prevention. It is well perceivable that OCT has a 

benefit in tumour margin assessment or in situ treatment monitoring. 

 

Certain approaches within this work were undertaken in due course, and may have not 

been the optimal choice possible. These include fields which might merit a more 

thorough investigation that was outside the scope of this thesis: 

• Research into algorithms for robust and fast surface recognition, and a scoring 

method for the validity of findings. 

• In order to compare findings of future studies, a thorough meta-analysis of the 

literature on κ values for histopathological staging of cervical precancer would be of 

interest. 

• Although the slowest step of the algorithm, the surface normalisation, was vectorised 

(details in Appendix B), it has not been fully optimised. A true real-time algorithm 

that allows overlaying classification likelihoods in the form of false colour maps 

would certainly be a more useful guiding tool. 
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9.5 Summary and final words 

Referring back to Table 3.1, we can now attempt to summarise how our research 

questions are answered (Table 9.1): 

Table 9.1: Summary of the hypotheses investigated in this thesis, findings and conclusions. 
Research question Aim Findings Conclusion 

Can OCT be used as 
staging tool for pre-
cancerous lesions in the 
cervix? 

Define a role of OCT 
for the clinical setting in 
the near future. 

See below. There is potential. 
Possibilities for 
improving performance 
are identified. 

Does OCT perform 
different than other 
high-resolution imaging 
tools? 

Define advantages of 
OCT over other 
technologies. 

Acquisition speed, 
non-destructive 
real-time imaging, and 
high-resolution over a 
wide FOV and depth 
were identified as key 
benefits. 

Worthwhile to 
investigate OCT (speed, 
wide-field high-
resolution). 

Can OCT data 
evaluation in dense 
tissue be automated? 

Define conditions under 
which these algorithms 
work. 

Approaches exist but 
have requirements: 
identified marker, and 
manual exclusion 
criteria. Further, the 
speed is never specified. 

Provided review of 
automated dense tissue 
evaluation. There might 
be a benefit of a quick 
classification tool. 

Is linear discriminant 
analysis a suitable tool 
for OCT data 
classification? 

Investigate whether a 
classification has a 
correct rate (arbitrary) 
of >70 %. 

PC-fed LDA performed 
> 70 %. 

Demonstrated proof of 
principle. PC-fed LDA 
can classify dense tissue 
OCT images. 

Does automated 
analysis of cervical 
OCT images have a 
clinical benefit? 

Investigate whether the 
classification is worse 
than standard clinical 
histopathology scores in 
literature. 

For the cervical image 
collection, the κ values 
are lower than in the 
literature. The model of 
clinical significance can 
reach values listed in 
Table 8.8. 

Cannot suggest OCT to 
replace clinical tool. 

 

OCT is an imaging modality that has quickly found a way into clinical applications for 

its various advantages. An algorithm like the one presented in this work might enhance 

the way OCT data can be interpreted. It might sound apparent that the clinical feature 

needs to stand out. Even if this remains a challenge for epithelial cancers, there is 

potential in other fields (Appendix D). 

 



Bazant-Hegemark – Towards automated classification of clinical OCT data… 

- 134 - 

 



 

- 135 - 

References 

[1] Healthsquare.com. Women's Health – Cervical Cancer. 
http://www.healthsquare.com/fgwh/wh1ch38.htm (accessed October 2007). 

[2] Healthsquare.com. Women's Health – Pap Test. 
http://www.healthsquare.com/fgwh/wh1ch39.htm (accessed October 2007). 

[3] ArabicOBGYN.net. Cervix. http://www.arabicobgyn.net/doc/cervix.htm (accessed October 2007). 

[4] Burd EM. Human Papillomavirus and Cervical Cancer. Clinical Microbiology Reviews. 16(1), 1-17 
(2003). 

[5] Weinberg RA. How Cancer Arises. Scientific American Magazine. 275(3), 62-70 (1996). 

[6] Follen M, Levenback CF, Iyer RB, Grigsby PW, Boss EA, Delpassand ES, Fornage BD, Fishman 
EK. Imaging in Cervical Cancer. Cancer, 98(9 Suppl), 2028-2038 (2003). 

[7] Department of Health. Cervical Screening – The Facts. NHS Cancer Screening Programmes. 
Bulletin: 272855/Cervical Screening, (2006). 

[8] Shafi MI, Welton K. Colposcopy and cervical intraepithelial neoplasia. Obstetrics, Gynaecology & 
Reproductive Medicine, 17(6), 173-180 (2007). 

[9] Gaiotto MA, Focchi J, Ribalta JL, Stávale JN, Baracat EC, Lima GR, Guerreiro da Silva ID. 
Comparative study of MMP-2 (matrix metalloproteinase 2) immune expression in normal uterine 
cervix, intraepithelial neoplasias, and squamous cells cervical carcinoma. Am J Obstet Gynecol. 
190(5), 1278-1282 (2004). 

[10] Sahai E. Mechanisms of cancer cell invasion. Current Opinions in Genetics and Development. 15(1), 
87-96 (2005). 

[11] BSCCP – The British Society for Colposcopy and Cervical Pathology. Guidelines. 
http://www.bsccp.org.uk/index.asp?PageID=20 (accessed October 2007). 

[12] ASCCP – American Society for Colposcopy and Cervical Pathology. Practice Recommendations – 
Practice Management Materials. http://www.asccp.org/edu/practice/cervix.shtml#colposcopy 

[13] Addis IB, Hatch KD, Berek JS. Intraepithelial Disease of the Cervix, Vigina, and Vulva. Chapter 17 
in: Berek JS, Novak E. Berek & Novak's gynecology, Edition 14. Lippincott Williams & Wilkins, 
ISBN: 0-781-76805-5, pp.561ff (2006). 

[14] Feng W, Xiao J, Zhang Z, Rosen DG, Brown RE, Liu J, Duan X. Senescence and apoptosis in 
carcinogenesis of cervical squamous carcinoma. Modern Pathology. 20, 961-966 (2007). 

[15] Behtash N, Mehrdad N. Cervical cancer: screening and prevention. Asian Pac J Cancer Prev. 7(4), 
683-686 (2006). 

[16] Lindeque BG. Management of cervical premalignant lesions. Best Pract Res Clin Obstet Gynaecol. 
19(4), 545-561 (2005). 

[17] Kyrgiou M, Koliopoulos G, Martin-Hirsch P, Kehoe S, Flannely G, Mitrou S, Arbyn M, Prendiville 
W, Paraskevaidis E. Management of minor cytological abnormalities: a systematic review and meta-
analysis of the literature. Cancer Treat Rev. 33(6), 514-520 (2007). 

[18] Cancer Research UK. Cancer Stats – Cervical Cancer – Cervical Screening Programme Results 
http://info.cancerresearchuk.org/cancerstats/types/cervix/screening/cervicalscreeningresults/?a=5441 
(accessed October 2007) 

[19] Elit LM. Pitfalls in the diagnosis of cervical intraepithelial neoplasia. J Low Genit Tract Dis. 8(3), 
181-187 (2004). 

[20] Carreon JD, Sherman ME, Guillén D, Solomon D, Herrero R, Jerónimo J, Wacholder S, Rodríguez 
AC, Morales J, Hutchinson M, Burk RD, Schiffman M. CIN2 is a much less reproducible and less 
valid diagnosis than CIN3: results from a histological review of population-based cervical samples. 
Int J Gynecol Pathol. 26(4), 441-446 (2007). 



Bazant-Hegemark – Towards automated classification of clinical OCT data… 

- 136 - 

[21] Hammes LS, Naud P, Passos EP, Matos J, Brouwers K, Rivoire W, Syrjänen KJ. Value of the 
International Federation for Cervical Pathology and Colposcopy (IFCPC) Terminology in predicting 
cervical disease. J Low Genit Tract Dis. 11(3), 158-165 (2007). 

[22] Owens CL, Moats DR, Burroughs FH, Gustafson KS. “Low-grade squamous intraepithelial lesion, 
cannot exclude high-grade squamous intraepithelial lesion” is a distinct cytologic category: 
histologic outcomes and HPV prevalence. Am J Clin Pathol. 128(3), 398-403 (2007). 

[23] Iatrakis G, Kourounis G, Georgopoulos N, Karachotzitis J. Treatment delay and pathology results in 
women with low-grade squamous intraepithelial lesions: A preliminary study. Eur J Gynaecol 
Oncol. 25(3), 376-378 (2004). 

[24] Diakomanolis E, Haidopoulos D, Chatzipapas I, Rodolakis A, Stefanidis K, Markaki S. Negative 
cone biopsies: A reappraisal. J Reprod Med. 48(8), 617-621 (2003). Erratum in: J Reprod Med. 
48(10), 833 (2003). 

[25] The Information Centre, Part of the Government Statistical Service. Cervical screening statistics 
2006/7. ISBN: 978-1-84636-166-1. Bulletin: 2007/14/HSCIC (2007). 

[26] Martin-Hirsch P, Rash B, Martin A, Standaert B. Management of women with abnormal cervical 
cytology: treatment patterns and associated costs in England and Wales. BJOG. 114(4), 408-415 
(2007). 

[27] Basen-Engquist K, Shinn EH, Warneke C, de Moor C, Le T, Richards-Kortum R, Follen M. Patient 
distress and satisfaction with optical spectroscopy in cervical dysplasia detection. Am J Obstet 
Gynecol. 189, 1136-1142 (2003). 

[28] Orbell S, Hagger M, Brown V, Tidy J. Appraisal theory and emotional sequelae of first visit to 
colposcopy following an abnormal cervical screening result. Br J Health Psychol. 9(4), 533-555 
(2004). 

[29] Balasubramani L, Orbell S, Hagger M, Brown V, Tidy J. Do women with high-grade cervical 
intraepithelial neoplasia prefer a see and treat option in colposcopy? BJOG. 114(1), 39-45 (2007). 

[30] Livasy CA, Maygarden SJ, Rajaratnam CT, Novotny DB. Predictors of recurrent dysplasia after a 
cervical loop electrocautery excision procedure for CIN-3: a study of margin, endocervical gland, 
and quadrant involvement. Mod Pathol. 12(3), 233-238 (1999). 

[31] Rojat-Habib MC, Cravello L, Bretelle F, Roger V, Liprandi A, de Burtel I, d'Ercole C, Pellissier JF, 
Blanc B. Value of endocervical margin examination of conization specimens. Prospective study 
conducted on 150 patients [Article in French]. Gynecol Obstet Fertil. 28(7-8), 518-525 (2000). 

[32] Tyler LN, Andrews N, Parrish RS, Hazlett LJ, Korourian S. Significance of margin and extent of 
dysplasia in loop electrosurgery excision procedure biopsies performed for high-grade squamous 
intraepithelial lesion in predicting persistent disease. Arch Pathol Lab Med. 131(4), 622-624 (2007). 

[33] Cardoza-Favarato G, Fadare O. High-grade squamous intraepithelial lesion (CIN 2 and 3) excised 
with negative margins by loop electrosurgical excision procedure: the significance of CIN 1 at the 
margins of excision. Hum Pathol. 38(5), 781-786 (2007). 

[34] Maluf PJ, Adad SJ, Murta EF. Outcome after conization for cervical intraepithelial neoplasia grade 
III: relation with surgical margins, extension to the crypts and mitoses. Tumori. 90(5), 473-477 
(2004). 

[35] Johnson N, Khalili M, Hirschowitz L, Ralli F, Porter R. Predicting residual disease after excision of 
cervical dysplasia. BJOG. 110(10), 952-955 (2003). 

[36] Fadare O, Rodriguez R. Squamous dysplasia of the uterine cervix: tissue sampling-related diagnostic 
considerations in 600 consecutive biopsies. Int J Gynecol Pathol. 26(4), 469-474 (2007). 

[37] Kyrgiou M, Tsoumpou I, Vrekoussis T, Martin-Hirsch P, Arbyn M, Prendiville W, Mitrou S, 
Koliopoulos G, Dalkalitsis N, Stamatopoulos P, Paraskevaidis E. The up-to-date evidence on 
colposcopy practice and treatment of cervical intraepithelial neoplasia: the Cochrane colposcopy & 
cervical cytopathology collaborative group (C5 group) approach. Cancer Treat Rev. 32(7), 516-523 
(2006). 



References 

- 137 - 

[38] Tabor A, Berget A. Cold-knife and laser conization for cervical intraepithelial neoplasia. Obstet 
Gynecol. 76(4) 633-635 (1990). 

[39] Bodner K, Bodner-Adler B, Wierrani F, Kubin A, Szölts-Szölts J, Spängler B, Grünberger W. Cold-
knife conization versus photodynamic therapy with topical 5-aminolevulinic acid (5-ALA) in 
cervical intraepithelial neoplasia (CIN) II with associated human papillomavirus infection: a 
comparison of preliminary results. Anticancer Res. 23(2C), 1785-1788 (2003). 

[40] Yamaguchi S, Tsuda H, Takemori M, Nakata S, Nishimura S, Kawamura N, Hanioka K, Inoue T, 
Nishimura R. Photodynamic therapy for cervical intraepithelial neoplasia. Oncology. 69(2), 110-116, 
(2005). 

[41] Andikyan V, Kronschnabl M, Hillemanns M, Wang X, Stepp H, Hillemanns P. Fluorescence 
diagnosis with 5-ALA thermogel of cervical intraepithelial neoplasia [Article in German]. Gynakol 
Geburtshilfliche Rundsch. 44(1), 31-37 (2004). 

[42] Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, 
Puliafito CA, Fujimoto JG. Optical coherence tomography. Science 254, 1178-1181 (1991). 

[43] Liu B, Brezinski ME, Theoretical and practical considerations on detection performance of time 
domain, Fourier domain, and swept source optical coherence tomography. Journal of Biomedical 
Optics. 12(4), 044007 (2007). 

[44] Fujimoto JG, Drexler W, Morgner U, Kärntner F, Ippen E, Optical Coherence Tomography. Optics 
& Photonics News, 2000:24-31 (2000). 

[45] Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical Coherence Tomography: An Emerging 
Technology for Biomedical Imaging and Optical Biopsy. Neoplasia. 2(1-2), 9-25 (2000). 

[46] Welzel J. Optical coherence tomography in dermatology: a review. Skin Research and Technology. 
7, 1-9 (2001). 

[47] Andersen PE, Introduction – Optical coherence tomography. 
http://risoe-staged.risoe.dk/About_risoe/research_departments/OPL/LSO/OCT/~/media/risoe_dk/ 
research/oct/documents/oct_introduction_andersen.ashx (accessed December 2005). 

[48] Yang Y, Bagnaninchi PO, Whiteman SC, van Pittius DG, El Haj AJ, Spiteri MA, Wang RK. A 
naturally occurring contrast agent for OCT imaging of smokers’ lung. J. Phys. D, Appl. Phys. 38, 
2590-2596 (2005). 

[49] Wang RK, Elder JB. Propylene Glycol As a Contrasting Agent for Optical Coherence Tomography 
to Image Gastrointestinal Tissues. Lasers in Surgery and Medicine. 30, 201-208 (2002). 

[50] He Y, Wang RK. Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents 
and studied with optical coherence tomography. J. Biomed. Opt. 9(1), 200-206 (2004). 

[51] Agrawal A, Utzinger U, Brookner C, Pitris C, Follen Mitchell M, Richards-Kortum R. Fluorescence 
Spectroscopy of the Cervix. Influence of Acetic Acid, Cervical Mucus, and Vaginal Medications. 
Lasers in Surgery and Medicine. 25, 237-249 (1999). 

[52] Collier T, Shen P, de Pradier B, Sung K-B, Richards-Kortum R. Near Real Time Confocal 
Microscopy of Amelanotic Tissue: Dynamics of Aceto-Whitening Enable Nuclear Segementation. 
Optics Express. 6(2), 40-48 (2000). 

[53] Lee TM, Oldenburg AL, Sitafalwalla S, Marks DL, Luo W, Toublan FJ-J, Suslick KS, Boppart SA. 
Engineered microsphere contrast agents for optical coherence tomography. Optics Letters. 28(17), 
1546-1548 (2003). 

[54] Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, Au L, Zhang H, Kimmey MB, Li X, Xia Y. 
Gold Nanocages- Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents. Nano 
Letters. 5(3), 473-477 (2005). 

[55] Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R. Real-Time Vital 
Optical Imaging of Precancer Using Anti-Epidermal Growth Factor Receptor Antibodies Conjugated 
to Gold Nanoparticles. Cancer Research. 63, 1999-2004 (2003). 



Bazant-Hegemark – Towards automated classification of clinical OCT data… 

- 138 - 

[56] Xu C, Ye J, Marks DL, Boppart SA. Near-infrared dyes as contrast-enhancing agents for 
spectroscopic optical coherence tomography. Opt. Lett. 29, 1647-1649 (2004). 

[57] Oldenburg AL, Toublan FJJ, Suslick KS, Wei A, Boppart SA. Magnetomotive contrast for in vivo 
optical coherence tomography. Optics Express. 13(17), 6597-6614 (2005). 

[58] U.S. National Library of Medicine and the National Institutes of Health. PubMed Service. 
http://www.ncbi.nlm.nih.gov/sites/entrez (accessed between November 2004 and October 2007) 

[59] Thompson Reuters. ISI Web of Knowledge. 
http://isiwebofknowledge.com/ (accessed between November 2006 and October 2007) 

[60] Drezek RA, Richards-Kortum R, Brewer MA, Feld MS, Pitris C, Ferenczy A, Faupel ML, Follen M. 
Optical imaging of the cervix. Cancer, 98(9 Suppl), 2015-2027 (2003). 

[61] Sokolov K, Follen M, Richards-Kortum R. Optical spectroscopy for detection of neoplasia. Current 
Opinion in Chemical Biology. 6, 651-658 (2002). 

[62] Sokolov K, Aaron J, Hsu B, Nida D, Gillenwater A, Follen M, MacAulay C, Adler-Storthz K, 
Korgel B, Descour M, Pasqualini R, Arap W, Lam W, Richards-Kortum R. Optical Systems for In 
Vivo Molecular Imaging of Cancer. Technology in Cancer Research & Treatment. 2(6), 491-504 
(2003). 

[63] Baak JP, Kruse AJ, Robboy SJ, Janssen EA, van Diermen B, Skaland I. Dynamic behavioural 
interpretation of cervical intraepithelial neoplasia with molecular biomarkers. J Clin Pathol. 59(10), 
1017-1028 (2006). 

[64] Mathur SP, Mathur RS, Creasman WT, Underwood PB, Kohler M. Early non-invasive diagnosis of 
cervical cancer: beyond Pap smears and human papilloma virus (HPV) testing. Cancer Biomark. 
1(2-3), 183-191 (2005). 

[65] Brink AA, Snijders PJ, Meijer CJ. HPV detection methods. Dis Markers. 23(4), 273-281 (2007). 

[66] Syrjänen KJ. Immunohistochemistry in assessment of molecular pathogenesis of cervical 
carcinogenesis. Eur J Gynaecol Oncol. 26(1), 5-19 (2005). 

[67] Shack R, Baker R, Buchroeder R, Hillman D, Shoemaker R, Bartels PH. Ultrafast laser scanner 
microscope. J Histochem Cytochem. 27(1), 153-159 (1979). 

[68] Takamatsu T, Fujita S. Microscopic tomography by laser scanning microscopy and its three-
dimensional reconstruction. J Microsc. 149(3), 167-174 (1988). 

[69] Carlsson K. Three-dimensional specimen reconstruction by confocal microscopy and digital image 
processing. Bull Assoc Anat (Nancy). 75(229), 105-108 (1991). 

[70] Boon ME, Kok LP, Sutedja G, Dutrieux RP. Confocal sectioning of thick, otherwise undiagnosable 
cell groupings in cervical smears. Acta Cytol. 37(1), 40-48 (1993). 

[71] Kahn E, Lizard G, Frouin F, Roignot P, Chardonnet Y, Di Paola R. Factor analysis of confocal 
image sequences of human papillomavirus DNA revealed with fast red in cervical tissue sections 
stained with TOTO-iodide. Anal Quant Cytol Histol. 22(2), 168-174 (2000). 

[72] Crist, K. A. Kim, K. Goldblatt, P. J. Boone, C. W. Kelloff, G. J. You, M. DNA Quantification in 
Cervical Intraepithelial Neoplasia Thick Tissue Sections by Confocal Laser Scanning Microscopy. 
Journal Of Cellular Biochemistry. 25(Suppl.), 49-56 (1996). 

[73] Pavlova I, Sokolov K, Drezek R, Malpica A, Follen M, Richards-Kortum R. Microanatomical and 
Biochemical Origins of Normal and Precancerous Cervical Autofluorescence Using Laser-scanning 
Fluorescence Confocal Microscopy. Photochemistry and Photobiology. 77(5), 550-555, (2003). 

[74] Drezek RA, Collier T, Brookner CK, Malpica A, Lotan R, Richards-Kortum R, Follen M. Laser 
scanning confocal microscopy of cervical tissue before and after application of acetic acid. Am J 
Obstet Gynecol. 182(5), 1135-1139 (2000). 

[75] Zuluaga AF, Drezek R, Collier T, Lotan R, Follen M, Richards-Kortum R. Contrast agents for 
confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in 
suspension. Journal of Biomedical Optics. 7(3), 398-403 (2002). 



References 

- 139 - 

[76] Carlson KD, Pavlova I, Collier T, Descour M, Follen M, Richards-Kortum R. Confocal microscopy: 
Imaging cervical precancerous lesions. Gynecol. Oncol. 99(3), 84-88 (2005). 

[77] Collier T, Follen M, Malpica A, Richards-Kortum R. Sources of scattering in cervical tissue - 
determination of the scattering coefficient by confocal microscopy. Applied Optics. 44(10), 
2072-2081 (2005). 

[78] Collier T, Guillaud M, Follen M, Malpica A, Richards-Kortum R. Real Time Reflectance Confocal 
Microscopy: Comparison of Two Dimensional Images and Three Dimensional Image Stacks for 
Detection of Cervical Precancer. Journal of Biomedical Optics. 12(2), 024021 (2007). 

[79] Sung K-B, Liang C, Descour M, Collier T, Follen M, Richards-Kortum R. Fiber-Optic Confocal 
Reflectance Microscope With Miniature Objective for In Vivo Imaging of Human Tissues. IEEE 
Transactions On Biomedical Engineering. 49(10) 1168-1172 (2002). 

[80] Jean F, Bourg-Heckly G, Viellerobe B, Fibered confocal spectroscopy and multicolor imaging 
system for in vivo fluorescence analysis. Opt. Express. 15, 4008-4017 (2007). 

[81] Zhuo S, Chen J, Luo T, Jiang X, Xie S, Chen R. Two-layered multiphoton microscopic imaging of 
cervical tissue. Lasers Med Sci. [Epub ahead of print], doi 10.1007/s10103-008-0570-2, (2008). 

[82] Skala MC, Squirrell JM, Vrotsos KM, Eickhoff JC, Gendron-Fitzpatrick A, Eliceiri KW, 
Ramanujam N. Multiphoton Microscopy of Endogenous Fluorescence Differentiates Normal, 
Precancerous, and Cancerous Squamous Epithelial Tissues. Cancer Res. 65(4), 1180-1186, (2005). 

[83] Carlson K, Chidley M, Sung KB, Descour M, Gillenwater A, Follen M, Richards-Kortum R. In vivo 
fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective 
lens. Appl Opt. 44(10), 1792-1797 (2005). 

[84] Luck B, Carlson K, Collier T, Sung K-B. Confocal microscopy [detecting and diagnosing cancers]. 
IEEE Potentials. 23(1), 14-17, (2004). 

[85] Choi HJ, Choi IH, Kim TY, Cho NH, Choi HK. Three-dimensional visualization and quantitative 
analysis of cervical cell nuclei with confocal laser scanning microscopy. Anal Quant Cytol Histol. 
27(3), 174-180 (2005). 

[86] Luck B, Bovic A, Richards-Kortum R. Segmenting cervical epithelial nuclei from confocal images 
Gaussian Markov random fields. In: Image Processing 2003, ICIP 2003, Vol. 2, 14-17 (2003). 

[87] Rahman M, Abd-El-Barr M, Mack V, Tkaczyk T, Sokolov K, Richards-Kortum R, Descour M. 
Optical imaging of cervical pre-cancers with structured illumination: An integrated approach. 
Gynecologic Oncology. 99(3, Suppl.), 112-115 (2005). 

[88] Collier T, Lacy A, Richards-Kortum R, Malpica A, Follen M. Near real-time confocal microscopy of 
amelanotic tissue: detection of dysplasia in ex vivo cervical tissue. Acad Radiol. 9(5), 504-512 
(2002). 

[89] Tomlins PH, Wang RK. Theory, developments and applications of optical coherence tomography. J. 
Phys. D, Appl. Phys. 38, 2519-2535 (2005). 

[90] Yang C. Molecular Contrast Optical Coherence Tomography: A Review. Photochem Photobiol. 
81(2), 215-237 (2005). 

[91] Podoleanu AG. Optical coherence tomography. British Journal of Radiology. 78, 976-988 (2005). 

[92] Jenkins MW, Adler DC, Gargesha M, Huber R, Rothenberg F, Belding J, Watanabe M, Wilson DL, 
Fujimoto JG, Rollins AM. Ultrahigh-speed optical coherence tomography imaging and visualization 
of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser. Opt. Express. 15, 
6251-6267 (2007). 

[93] Sergeev AM, Gelikonov V, Gelikonov G, Feldchtein F, Kuranov R, Gladkova N, Shakhova N, 
Snopova L, Shakhov A, Kuznetzova I, Denisenko A, Pochinko V, Chumakov Y, Streltzova O. In 
vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Opt. Express. 1(13), 
432-440 (1997). 



Bazant-Hegemark – Towards automated classification of clinical OCT data… 

- 140 - 

[94] Feldchtein FI, Gelikonov GV, Gelikonov VM, Kuranov RV, Sergeev AM, Gladkova ND, Shakhov 
AV, Shakhova NM, Snopova LB, Terent’eva AB, Zagainova EV, Chumakov Y, Kuznetzova IA. 
Endoscopic applications of optical coherence tomography. Optics Express. 3(6), 257-270 (1998). 

[95] Pitris C, Goodman A, Boppart SA, Libus JJ, Fujimoto JG, Brezinski ME. High-resolution imaging 
of gynecologic neoplasms using optical coherence tomography. Obstet Gynecol. 93(1), 135-139 
(1999). 

[96] Escobar PF, Belinson JL, White A, Shakhova NM, Feldchtein FI, Kareta MV, Gladkova ND. 
Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive 
cancer of uterine cervix and vulva. Int J Gynecol Cancer. 14(3), 470-474 (2004). 

[97] Sapozhnikova VV, Shakhova NM, Kamensky VA, Petrova SA, Snopova LB, Kuranov RV. 
Capabilities of fluorescence spectroscopy using 5-ALA and optical coherence tomography for 
diagnosis of neoplastic processes in the uterine cervix and vulva. Laser Physics. 15(12), 1664-1673 
(2005). 

[98] Escobar PF, Rojas-Espaillat L, Belinson JL. Optical diagnosis of cervical dysplasia. Int J Gynaecol 
Obstet. 89(1), 63-64 (2005). 

[99] Zuluaga AF, Follen M, Boiko I, Malpica A, Richards-Kortum R. Optical coherence tomography: a 
pilot study of a new imaging technique for noninvasive examination of cervical tissue. Am J Obstet 
Gynecol. 193(1), 83-88 (2005). 

[100] Escobar PF, Rojas-Espaillat L, Tisci S, Enerson C, Brainard J, Smith J, Tresser NJ, Feldchtein FI, 
Rojas LB, Belinson JL. Optical coherence tomography as a diagnostic aid to visual inspection and 
colposcopy for preinvasive and invasive cancer of the uterine cervix. Int J Gynecol Cancer. 16(5), 
1815-1822 (2006). 

[101] Hsiung PL, Pantanowitz L, Aguirre AD, Chen Y, Phatak D, Ko TH, Bourquin S, Schnitt SJ, Raza S, 
Connolly JL, Mashimo H, Fujimoto JG. Ultrahigh-resolution and 3-dimensional optical coherence 
tomography ex vivo imaging of the large and small intestines. Gastrointest Endosc. 62(4), 561-574 
(2005). 

[102] Turchin IV, Sergeeva EA, Dolin LS, Kamensky VA, Shakhova NM, Richards-Kortum R. Novel 
algorithm of processing optical coherence tomography images for differentiation of biological tissue 
pathologies. J Biomed Opt. 10(6), 064024 (2005). 

[103] Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE, Suter MJ, Chan RC, Evans 
JA, Jang I, Nishioka NS, de Boer JF, Bouma BE. Comprehensive volumetric optical microscopy in 
vivo. Nature Medicine. 12, 1429-1433 (2006). 

[104] Barton JK, Guzman F, Tumlinson A. Dual modality instrument for simultaneous optical coherence 
tomography imaging and fluorescence spectroscopy. J. Biomed. Opt. 9(3), 618-623 (2004). 

[105] Wong PTT, Wong RK, Caputo TA, Godwin TA, Rigas B. Infrared spectroscopy of exfoliated human 
cervical cells: evidence of extensive structural changes during carcinogenesis. Proc. Natl. Acad. Sci. 
USA. 88(24), 10988-10992 (1991). 

[106] Walsh M, German M, Singh M, Pollock H, Hammiche A, Kyrgiou M, Stringfellow H, Paraskevaidis 
E, Martin-Hirsch P, Martin F. IR microspectroscopy: potential applications in cervical cancer 
screening. Cancer Letters, 246(1-2), 1-11 (2007). 

[107] Cohenford MA, Godwin TA, Cahn F, Bhandare P, Caputo TA, Rigas B. Infrared spectroscopy of 
normal and abnormal cervical smears: evaluation by principal component analysis. Gynecol Oncol. 
66(1), 59-65 (1997). 

[108] Fung Kee Fung M, Senterman M, Eid P, Faught W, Mikhael NZ, Wong PT. Comparison of Fourier-
transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou 
screening. Gynecol Oncol. 66(1), 10-15 (1997). 

[109] Chiriboga L, Xie P, Yee H, Vigorita V, Zarou D, Zakim D, Diem M. Infrared spectroscopy of 
human tissue. I. Differentiation and maturation of epithelial cells in human cervix. Biospectroscopy. 
4, 47-53 (1998). 



References 

- 141 - 

[110] Wood BR, Quinn MA, Tait B, Ashdown M, Hislop T, Romeo M, McNaughton D. FTIR 
microspectroscopic study of cell types and potential confounding variables in screening for cervical 
malignancies. Biospectroscopy. 4(2), 75-91 (1998). 

[111] Neviliappan S, Fang Kan L, Tiang Lee Walter T, Arulkumaran S, Wong PT. Infrared spectral 
features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line 
(SiSo). Gynecol Oncol. 85(1), 170-174 (2002). 

[112] Cohenford MA, Rigas B. Cytologically normal cells from neoplastic cervical samples display 
extensive structural abnormalities on IR spectroscopy: implications for tumor biology. Proc Natl 
Acad Sci USA. 95(26), 15327-15332 (1998). 

[113] Chang JI, Huang YB, Wu PC, Chen CC, Huang SC, Tsai YH. Characterization of human cervical 
precancerous tissue through the fourier transform infrared microscopy with mapping method. 
Gynecol Oncol. 91(3), 577-583 (2003). 

[114] Podshyvalov A, Sahu RK, Mark S, Kantarovich K, Guterman H, Goldstein J, Jagannathan R, Argov 
S, Mordechai S. Distinction of cervical cancer biopsies by use of infrared microspectroscopy and 
probabilistic neural networks. Appl Opt. 44(18), 3725-3734 (2005). 

[115] Mordechai S, Sahu RK, Hammody Z, Mark S, Kantarovich K, Guterman H, Podshyvalov A, 
Goldstein J, Argov S. Possible common biomarkers from FTIR microspectroscopy of cervical cancer 
and melanoma. J Microsc. 215(1), 86-91 (2004). 

[116] Lowry SR. The analysis of exfoliated cervical cells by infrared microscopy. Cell Mol Biol. 44(1), 
169-177 (1998). 

[117] Romeo M, Burden F, Quinn M, Wood B, McNaughton D. Infrared microspectroscopy and artificial 
neural networks in the diagnosis of cervical cancer. Cell Mol Biol. 44(1), 179-187 (1998). 

[118] Romeo MJ, Quinn MA, Burden FR, McNaughton D. Influence of benign cellular changes in 
diagnosis of cervical cancer using IR microspectroscopy. Biopolymers. 67(4-5), 362-366 (2002). 

[119] Wong PTT, Senterman MK, Jackli P, Wong RK, Salib S, Campbell CE, Feigel R, Faught W, Fung 
MFK. Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated 
cervical cells. Biopolymers. 67(6), 376-386 (2002). 

[120] Chiriboga L, Yee H, Diem M, Wood B. Comment on: Neviliappan S. et al. Infrared spectral features 
of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo). 
Gynecol Oncol. 85(1), 170-174 (2002). Gynecol Oncol. 91(1), 275-276 (2003). [Author reply 
Gynecol Oncol. 91(1), 276-277 (2003)]. 

[121] Chiriboga L, Xie P, Yee H, Zarou D, Zakim D, Diem M. Infrared spectroscopy of human tissue. IV. 
Detection of human cervical tissue via infrared microscopy. Cell. Mol. Biol. Lett. 44, 219-229 
(1998). 

[122] Romeo MJ, Wood BR, Quinn MA, McNaughton D. Removal of blood components from cervical 
smears: implications for cancer diagnosis using FTIR spectroscopy. Biopolymers. 72(1), 69-76 
(2003). 

[123] Morris BJ, Lee C, Nightingale BN, Molodysky E, Morris LJ, Appio R, Sternhell S, Cardona M, 
Mackerras D, Irwig LM. Fourier transform infrared spectroscopy of dysplastic, papillomavirus-
positive cervicovaginal lavage specimens. Gynecol Oncol. 56(2), 245-249 (1995). 

[124] Walsh MJ, Singh MN, Pollock HM, Cooper LJ, German MJ, Stringfellow HF, Fullwood NJ, 
Paraskevaidis E, Martin-Hirsch PL, Martin FL. ATR microspectroscopy with multivariate analysis 
segregates grades of exfoliative cervical cytology. Biochem Biophys Res Commun. 352(1), 213-219 
(2007). 

[125] Wood BR, Chiriboga L, Yee H, Quinn MA, McNaughton D, Diem M. Fourier transform infrared 
(FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium. 
Gynecol Oncol. 93(1), 59-68 (2004). 

[126] Steller W, Einenkel J, Horn LC, Braumann UD, Binder H, Salzer R, Krafft C. Delimitation of 
squamous cell cervical carcinoma using infrared microspectroscopic imaging. Anal Bioanal Chem. 
384(1), 145-154 (2006). 



Bazant-Hegemark – Towards automated classification of clinical OCT data… 

- 142 - 

[127] Mark S, Sahu RK, Kantarovich K, Podshyvalov A, Guterman H, Goldstein J, Jagannathan R, Argov 
S, Mordechai S. Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for 
assignment of premalignancy grading in cervical neoplasia. J Biomed Opt. 9(3), 558-567 (2004). 

[128] Wood BR, Bambery KR, Evans CJ, Quinn MA, McNaughton D. A three-dimensional multivariate 
image processing technique for the analysis of FTIR spectroscopic images of multiple tissue 
sections. BMC Medical Imaging. 6(12), (2006). 

[129] Stone N, Kendall C, Shepherd N, Crow P, Barr H. Near-Infrared Raman Spectroscopy for the 
Classification of Epithelial Pre-Cancers and Cancers. Journal of Raman Spectroscopy. 33(7), 
564-573 (2002). 

[130] Utzinger U, Richards-Kortum RR. Fiber optic probes for biomedical optical spectroscopy. J Biomed 
Opt. 8(1), 121-147 (2003). 

[131] Mahadevan-Jansen A, Follen-Mitchell M, Ramanujam N, Utzinger U, Richards-Kortum R. 
Development of a Fiber Optic Probe to Measure NIR Raman Spectra of Cervical Tissue In Vivo. 
Photochemistry and Photobiology. 68(3), 427-431 (1998). 

[132] Yazdi Y, Ramanujam N, Lotan R, Follen-Mitchell M, Hittelman W, Richards-Kortum R. Resonance 
Raman spectroscopy at 257nm excitation of normal and malignant cultured breast and cervical cells. 
Appl. Spectrosc. 53, 82-85 (1999). 

[133] Lieber CA, Mahadevan-Jansen A. Automated method for subtraction of fluorescence from biological 
Raman spectra. Appl Spectrosc. 57(11), 1363-1367 (2003). 

[134] Hutchings J, Kendall CA, Stone N. Rapid Raman microscopic biochemical imaging for potential 
histological screening. In: Proc. SPIE; 6853A-33 (2008). 

[135] Hart-Prieto MC, Matousek P, Towrie M, Parker AW, Wright M, Ritchie AW, Stone N. The use of 
picosecond Kerrgated Raman spectroscopy to suppress signals from both surface and deep layers in 
bladder and prostate tissue. Journal of Biomedical Optics, 10, 044006 (2005). 

[136] Krishna CM, Prathima NB, Malini R, Vadhiraja BM, Bhatt RA, Fernandes DJ, Kushtagi P, 
Vidyasagar MS, Kartha VB. Raman spectroscopy studies for diagnosis of cancers in human uterine 
cervix. Vibrational Spectroscopy. 41(1), 136-141 (2006). 

[137] Stone N, Kendall C, Smith J, Crow P, Barr H. Raman spectroscopy for identification of epithelial 
cancers. Faraday Discussions: Applications of Spectroscopy to Biomedical Problems. 126, 141-157 
(2004). 

[138] Liu CH, Das BB, Sha Glassman WL, Tang GC, Yoo KM, Zhu HR, Akins DL, Lubicz SS, Cleary J, 
Prudente R, et al. Raman, fluorescence, and time-resolved light scattering as optical diagnostic 
techniques to separate diseased and normal biomedical media. J Photochem Photobiol B. 16(2), 
187-209 (1992). 

[139] Mahadevan-Jansen A, Follen-Mitchell M, Ramanujam N, Malpica A, Thomsen S, Utzinger U, 
Richards-Kortum R. Near-Infrared Raman Spectroscopy for In Vitro Detection of Cervical 
Precancers. Photochem Photobiol. 68(1), 123-132 (1998). 

[140] Mourant JR, Short KW, Carpenter S, Kunapareddy N, Coburn L, Powers TM, Freyer JP. 
Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared 
spectroscopy. J Biomed Opt. 10(3), 031106 (2005). 

[141] Utzinger U, Heintzelman DL, Mahadevan-Jansen A, Malpica A, Follen M, Richards-Kortum R. 
Near-Infrared Raman Spectroscopy for in Vivo Detection of Cervical Precancers. Applied 
Spectroscopy, 55(8), 955-959 (2001). 

[142] Lyng FM, Faoláin EÓ, Conroy J, Meade AD, Knief P, Duffy B, Hunter MB, Byrne JM, Kelehan P, 
Byrne HJ. Vibrational spectroscopy for cervical cancer pathology. From biochemical analysis to 
diagnostic tool. Experimental and Molecular Pathology, 82, 121-129 (2007). 

[143] Robichaux-Viehoever A, Kanter E, Shappell H, Billheimer D, Jones III H, Mahadevan-Jansen A. 
Characterization of Raman Spectra Measured in Vivo for the Detection of Cervical Dysplasia. 
Applied Spectroscopy, 61(9), 986-993 (2007). 



References 

- 143 - 

[144] Jess PRT, Smith DDW, Mazilu M, Dholakia K, Riches AC, Herrington CS. Early detection of 
cervical neoplasia by Raman spectroscopy. Int. J. Cancer. 121, 2723-2728 (2007). 

[145] Krafft C, Sergo V. Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. 
Spectroscopy. 20, 195-218 (2006). 

[146] Krishna CM, Sockalingum GD, Vadhiraja BM, Maheedhar K, Rao AC, Rao L, Venteo L, Pluot M, 
Fernandes DJ, Vidyasagar MS, Kartha VB, Manfait M. Vibrational spectroscopy studies of 
formalin-fixed cervix tissues. Biopolymers. 85(3), 214-221 (2007). 

[147] Faoláin EÓ, Hunter MB, Byrne JM, Kelehan P, Lambkin HA, Byrne HJ, Lyng FM. Raman 
spectroscopic evaluation of efficacy of current paraffin wax section dewaxing agents. J Histochem 
Cytochem. 53(1), 121-129 (2005). 

[148] Huang Z, McWilliams A, Lam S, English J, McLean DI, Lui H, Zeng H. Effect of formalin fixation 
on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues. Int J 
Oncol. 23(3), 649-655 (2003). 

[149] Motz JT, Gandhi SJ, Scepanovic OR, Haka AS, Kramer JR, Dasari RR, Feld MS. Real-time Raman 
system for in vivo disease diagnosis. J Biomed Opt. 10(3), 031113 (2005). 

[150] Wu TT, Qu JY. Optical imaging for medical diagnosis based on active stereo vision and motion 
tracking. Opt. Express. 15, 10421-10426 (2007). 

[151] Majumder SK, Kanter E, Robichaux-Viehoever A, Jones III H, Mahadevan-Jansen A. Near-infrared 
Raman spectroscopy for in-vivo diagnosis of cervical dysplasia: a probability-based multi-class 
diagnostic algorithm. In: Proc. SPIE 6430, 64300Q (2007). 

[152] Baker R, Matousek P, Ronayne KL, Parker AW, Rogers K, Stone N. Depth profiling of 
calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy. Analyst. 132(1), 
48-53 (2007). 

[153] Kendall C, Stone N, Shepherd N, Geboes K, Warren B, Bennett R, Barr H. Raman spectroscopy, a 
potential tool for the objective identification and classification of neoplasia in Barrett's oesophagus. 
J. Pathol. 200, 602-609 (2003). 

[154] Orfanoudaki IM, Themelis GC, Sifakis SK, Fragouli DH, Panayiotides JG, Vazgiouraki EM, 
Koumantakis EE. A clinical study of optical biopsy of the uterine cervix using a multispectral 
imaging system. Gynecol Oncol. 96(1), 119-131 (2005). 

[155] Alvarez RD, Wright TC. Effective cervical neoplasia detection with a novel optical detection 
system: A randomized trial. Gynecologic Oncology, 104(2), 281-289 (2007). 

[156] Lurie S, Eliaz M, Boaz M, Levy T, Golan A, Sadan O. Distribution of cervical intraepithelial 
neoplasia across the cervix is random. Am J Obstet Gynecol. 196(2), 125 (2007). 

[157] Franco EL, Duarte-Franco E, Ferenczy A. Prospects for controlling cervical cancer at the turn of the 
century. Salud pública de méxico, 45(3 Suppl), 367-375 (2003). 

[158] Monsonego J. HPV infections and cervical cancer prevention. Priorities and new directions. In: 
Highlights of EUROGIN 2004 International Expert Meeting, Nice, France, October 21-23, 2004. 
Gynecologic Oncology (2004). 

[159] Vergote I, van der Zee AGJ, Kesic V, Sert B, Robova H, Rob L, Reed N, Luesley DM, Leblanc E, 
Hagen B, Gitsch G, Du Bois A, Di Vagno G, Colombo N, Beller U, Ayhan A, Jacobs I. ESGO 
statement on cervical cancer vaccination. Int J Gynecol Cancer. 17, 1183-1185 (2007). 

[160] Ellis DI, Goodacre R. Metabolic fingerprinting in disease diagnosis: biomedical applications of 
infrared and Raman spectroscopy. Analyst 131, 875-885 (2006). 

[161] Stelzer EHK. Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental 
limits to resolution in fluorescence light microscopy. Journal of Microscopy. 189(1), 15-24 (1998). 

[162] Patil CA, Bosschaart N, Keller MD, van Leeuwen TG, Mahadevan-Jansen A, (2007) Combined 
Raman spectroscopy and optical coherence tomography device for tissue characterization. Optics 
Letters 33(10):1135-1137 



Bazant-Hegemark – Towards automated classification of clinical OCT data… 

- 144 - 

[163] Kanter E, Walker R, Marion S, Hoyer P, Barton JK, (2005) Optical coherence tomography imaging 
and fluorescence spectroscopy of a novel rat model of ovarian cancer. Progress in biomedical optics 
and imaging 6(30):58610P.1-58610P.8 

[164] Xi C, Marks DL, Parikh DS, Raskin L, Boppart SA. Structural and functional imaging of 3D 
microfluidic mixers using optical coherence tomography. Proc Natl Acad Sci. 101(20), 7516-7521 
(2004). 

[165] Bonesi M, Churmakov DY, Ritchie LJ, Meglinski IV. Turbulence monitoring with Doppler Optical 
Coherence Tomography. Laser Physics Letters. 4(4), 304-307 (2006). 

[166] Park B, Pierce M, Cense M, de Boer J. Real-time multi-functional optical coherence tomography. 
Opt. Express. 11, 782-793 (2003). 

[167] Su J, Tomov IV, Jiang Y, Chen Z. High-resolution frequency-domain second-harmonic optical 
coherence tomography. Appl. Opt. 46, 1770-1775 (2007). 

[168] Lazebnik M, Marks DL, Potgieter K, Gillette R, Boppart SA. Functional optical coherence 
tomography for detecting neural activity through scattering changes. Opt. Lett. 28, 1218-1220 
(2003). 

[169] Maheswari RU, Takaoka H, Kadono H, Homma R, Tanifuji M. Novel functional imaging technique 
from brain surface with optical coherence tomography enabling visualization of depth resolved 
functional structure in vivo. J Neurosci Methods. 124(1), 83-92 (2003). 

[170] Morgner U, Drexler W, Kärtner FX, Li XD, Pitris C, Ippen EP, Fujimoto JG. Spectroscopic optical 
coherence tomography. Opt. Lett. 25, 111-113 (2000). 

[171] Faber DJ, Mik EG, Aalders MC, van Leeuwen TG. Toward assessment of blood oxygen saturation 
by spectroscopic optical coherence tomography. Opt Lett. 30(9), 1015-1017 (2005). 

[172] Knüttel A, Boehlau-Godau M. Spatially confined and temporally resolved refractive index and 
scattering evaluation in human skin performed with optical coherence tomography. J. Biomed. Opt. 
5(1), 83-92 (2000). 

[173] Kholodnykh AI, Petrova IY, Larin KV, Motamedi M, Esenaliev RO. Precision of Measurement of 
Tissue Optical Properties with Optical Coherence Tomography. Appl. Opt. 42, 3027-3037 (2003). 

[174] Esenaliev RO, Larin KV, Larina IV, Motamedi M. Noninvasive monitoring of glucose concentration 
with optical coherence tomography. Opt. Lett. 26, 992-994 (2001). 

[175] van der Meer FJ, Faber DJ, Sassoon DMB, Aalders MC, Pasterkamp G, van Leeuwen TG. Localized 
measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative 
optical coherence tomography. IEEE Transactions on Medical Imaging, 24(10), 1369-1376 (2005). 

[176] Levitz D, Thrane L, Frosz MH, Andersen PE, Andersen CB, Valanciunaite J, Swartling J, 
Andersson-Engels S, Hansen PR. Determination of optical scattering properties of highly-scattering 
media in optical coherence tomography images. Optics Express. 12(2) 249-259, (2004). 

[177] Jeon SW, Shure MA, Baker KB, Huang D, Rollins AM, Chahlavi A, Rezaia AR. A feasibility study 
of optical coherence tomography for guiding deep brain probes. J Neurosci Methods 154(1-2), 
96-101 (2006). 

[178] Ramrath L, Hofmann UG, Huettmann G, Moser A, Schweikard A (2007) Towards Automated 
OCT-Based Identification of White Brain Matter. Pp. 414-418 In: Bildverarbeitung für die Medizin - 
Algorithmen – Systeme – Anwendungen. Pub.: Springer Berlin Heidelberg, 
ISBN 978-3-540-71091-2. 

[179] Kuranov RV, Sapozhnikova VV, Prough DS, Cicenaite I, Esenaliev RO. In vivo study of glucose-
induced changes in skin properties assessed with optical coherence tomography. Phys. Med. Biol. 51 
3885-3900 (2006). 

[180] Kaiser JF. On a simple algorithm to calculate the ‘energy’ of a signal. Proc. IEEE Int. Conf. 
Acoustics, Speech, Signal Processing (ICASSP ’90). 1: 381-384 (1990). 



References 

- 145 - 

[181] Gossage KW, Tkaczyk TS, Rodriguez JJ, Barton JK. Texture analysis of optical coherence 
tomography images: feasibility for tissue classification. J. Biomed. Opt. 8(3), 570-575 (2003). 

[182] Hillman TR, Adie SG, Seemann V, Armstrong JJ, Jacques SL, Sampson DD. Correlation of static 
speckle with sample properties in optical coherence tomography. Opt. Lett. 31, 190-192 (2006). 

[183] Brodatz. Textures. Dover Publications Inc., ISBN: 0-486-40699-7, (2000). 

[184] Randen T. Brodatz Textures. http://www.ux.uis.no/~tranden/brodatz.html (accessed August 2007). 

[185] Gossage KW, Smith CM, Kanter EM, Hariri LP, Stone AL, Rodriguez JJ, Williams SK, Barton JK. 
Texture analysis of speckle in optical coherence tomography images of tissue phantoms. Phys. Med. 
Biol. 51, 1563-1575 (2006). 

[186] Yu K, Ji L, Wang L, Xue P. How to optimize OCT image. Optics Express. 9(1), 24-35 (2001). 

[187] MacNeill BD, Jang I-K, Bouma BE, Iftimia N, Takano M, Yabushita H, Shishkov M, Kauffman CR, 
Houser SL, Aretz HT, DeJoseph D, Halpern EF, Tearney GJ. Focal and Multi-Focal Plaque 
Macrophage Distributions in Patients With Acute and Stable Presentations of Coronary Artery 
Disease. Journal of the American College of Cardiology. 44(5), 972-979 (2004). 

[188] Qi X, Sivak Jr. MV, Isenberg G, Willis JE, Rollins AM. Computer-aided diagnosis of dysplasia in 
Barrett’s esophagus using endoscopic optical coherence tomography. Journal of Biomedical Optics. 
11(4) 044010 (2006). 

[189] Chen Y, Aguirre AD, Hsiung P-L, Huang S-W, Mashimo H, Schmitt JM, Fujimoto JG. Effects of 
axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal 
tissues. Optics Express 16(4), 2469-2485, (2008). 

[190] Lingley-Papadopoulos CA, Loew MH, Manyak MJ, Zara JM. Computer recognition of cancer in the 
urinary bladder using optical coherence tomography and texture analysis. J Biomed Opt. 13(2), 
024003 (2008). 

[191] Rogowska J, Bryant CM, Brezinski ME. Cartilage thickness measurements from optical coherence 
tomography. J. Opt. Soc. Am. A. 20, 357-367 (2003). 

[192] Weissman J, Hancewicz T, Kaplan P. Optical coherence tomography of skin for measurement of 
epidermal thickness by shapelet-based image analysis. Opt. Express. 12, 5760-5769 (2004). 

[193] Gambichler T, Moussa G, Regeniter P, Kasseck C, Hofmann MR, Bechara FG, Sand M, Altmeyer P, 
Hoffmann K. Validation of optical coherence tomography in vivo using cryostat histology. Phys. 
Med. Biol. 52, 75-85 (2007). 

[194] Korde VR, Bonnema GT, Xu W, Krishnamurthy C, Ranger-Moore J, Saboda K, Slayton LD, 
Salasche SJ, Warneke JA, Alberts DS, Barton JK. Using Optical Coherence Tomography to Evaluate 
Skin Sun Damage and Precancer. Lasers Surg Med. 39(9), 687–695 (2007). 

[195] Lee Y-K, Rhodes WT. Nonlinear image processing by a rotating kernel transformation. Optics 
Letters. 15(23), 1383-1385 (1990). 

[196] Rogowska J, Brezinski ME. Image processing techniques for noise removal, enhancement and 
segmentation of cartilage OCT images. Phys. Med. Biol. 47, 641-655 (2002). 

[197] Fernández DC, Salinas HM, Puliafito CA. Automated detection of retinal layer structures on optical 
coherence tomography images. Opt. Express. 13, 10200-10216 (2005). 

[198] Hori Y, Yasuno Y, Sakai S, Matsumoto M, Sugawara T, Madjarova V, Yamanari M, Makita S, 
Yasui T, Araki T, Itoh M, Yatagai T. Automatic characterization and segmentation of human skin 
using three-dimensional optical coherence tomography. Opt. Express. 14, 1862-1877 (2006). 

[199] Danielsson PE. Euclidean distance mapping. Computer Graphics and Image Processing. 14(3), 
227-248 (1980). 

[200] Bonnema G, Cardinal K, Williams S, Barton J. An automatic algorithm for detecting stent 
endothelialization from volumetric optical coherence tomography datasets. Phys Med Biol. 53(12), 
3083-3098 (2008). 



Bazant-Hegemark – Towards automated classification of clinical OCT data… 

- 146 - 

[201] Cheng Y, Larin KV. Artificial fingerprint recognition by using optical coherence tomography with 
autocorrelation analysis. Appl. Opt. 45, 9238-9245 (2006). 

[202] Huang ML, Chen HY. Development and comparison of automated classifiers for glaucoma 
diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci. 46(11) 4121-4129, 
(2005). 

[203] Jørgenson TM, Tycho A, Mogensen M, Bjerring P, Jemec GBE. Machine-learning classification of 
non-melanoma skin cancers from image features obtained by optical coherence tomography. Skin 
Research and Technology 14(3), 364-369 (2008). 

[204] Iftimia NV, Bouma BE, Pitman MB, Goldberg B, Bressner J, Tearney GJ. A portable, low coherence 
interferometry based instrument for fine needle aspiration biopsy guidance. Rev. Sci. Instrum. 76, 
064301 (2005). 

[205] Goldberg BD, Iftimia NV, Bressner JE, Pitman MB, Halpern E, Bouma BE, Tearney GJ. Automated 
algorithm for differentiation of human breast tissue using low coherence interferometry for fine 
needle aspiration biopsy guidance. J Biomed Opt. 13(1), 014014 (2008). 

[206] Zysk AM, Boppart SA. Computational methods for analysis of human breast tumor tissue in optical 
coherence tomography images. J. Biomed. Opt. 11(5), 054015 (2006). 

[207] Ismail SM, Colclough AB, Dinnen JS, Eakins D, Evans DMD, Gradwell E, O’Sullivan JP, 
Summerell JM, Newcombe RG. Observer variation in histopathological diagnosis and grading of 
cervical intraepithelial neoplasia. BMJ. 298, 707-710 (1989). 

[208] Targowski P, Rouba B, Wojtkowski M, Kowalczyk A. The application of optical coherence 
tomography to non-destructive examination of museum objects. Studies in Conservation. 49, 
107-114 (2004). 

[209] Liang H, Cid M, Cucu R, Dobre G, Podoleanu A, Pedro J, Saunders D. En-face optical coherence 
tomography – a novel application of non-invasive imaging to art conservation. Opt. Express. 13, 
6133-6144 (2005). 

[210] Wold S, Esbensen K, Geladi P. Principal Component Analysis. Chemometrics and Intelligent 
Laboratory Systems. 2, 37-52 (1987). 

[211] Brereton RG. Experimental Design. And: Pattern Recognition. Chapters 1 & 4 in: Chemometrics – 
Data Analysis for the Laboratory and Chemical Plant. John Wiley & Sons Ltd, ISBN: 
0-471-84977-6, pp.15-53 and pp.191-224 (2003). 

[212] Shepherd NA. Barrett’s esophagus: its pathology and neoplastic complications. Esophagus. 1(1), 
17-29 (2003). 

[213] Fisher L, van Belle G. Categorical Data: Contingency Tables. Chapter 7 in: Biostatistics – A 
methodology for the health sciences. John Wiley & Sons Ltd, ISBN: 0-471-16609-X, pp.256 (1993). 

[214] Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 33, 
159-174 (1977). 

[215] Cai B, Ronnett BM, Stoler M, Ferenczy A, Kurman RJ, Sadow D, Alvarez F, Pearson J, Sings HL, 
Barr E, Liaw K-L. Longitudinal Evaluation of Interobserver and Intraobserver Agreement of 
Cervical Intraepithelial Neoplasia Diagnosis Among an Experienced Panel of Gynecologic 
Pathologists. American Journal of Surgical Pathology. 31(12), 1854-1860 (2007). 

[216] Horn LC, Reichert A, Oster A, Arndal SF, Trunk MJ, Ridder R, Rassmussen OF, Bjelkenkrantz K, 
Christiansen P, Eck M, Lorey T, Skovlund VR, Ruediger T, Schneider V, Schmidt D. 
Immunostaining for p16INK4a Used as a Conjunctive Tool Improves Interobserver Agreement of 
the Histologic Diagnosis of Cervical Intraepithelial Neoplasia. American Journal of Surgical 
Pathology. 32(4), 502-512 (2008). 

[217] Kato I, Santamaria M, De Ruizc PA, Aristizabal N, Bosche FX, De Sanjosé S, Muñoz N. Inter-
observer variation in cytological and histological diagnoses of cervical neoplasia and its 
epidemiologic implication. Journal of Clinical Epidemiology. 48(9), 1167-1174 (1995). 



References 

- 147 - 

[218] McCluggage WG, Bharucha H, Caughley LM, Date A, Hamilton PW, Thornton CM, Walsh MY. 
Interobserver variation in the reporting of cervical colposcopic biopsy specimens: comparison of 
grading systems. Journal of Clinical Pathology. 49, 833-835 (1996). 

[219] Parker MF, Zahn CM, Vogel KM, Olsen CH, Miyazawa K, O’Connor DM. Discrepancy in the 
Interpretation of Cervical Histology by Gynecologic Pathologists. Obstetrics & Gynecology. 100, 
277-280 (2002). 

[220] Stoler MH, Schiffman M. Interobserver Reproducibility of Cervical Cytologic and Histologic 
Interpretations - Realistic Estimates From the ASCUS-LSIL Triage Study (ALTS) Group. Journal of 
the American Medical Association. 285, 1500-1505 (2001). 

[221] Walter SD, Irwig L, Glasziou PP. Meta-Analysis of Diagnostic Tests With Imperfect Reference 
Standards. Journal of Clinical Epidemiology. 52(10), 943-951 (1999). 



Bazant-Hegemark – Towards automated classification of clinical OCT data… 

- 148 - 

 



 

- 149 - 

Appendix A - Defining “non-invasive” and “non-destructive” 

Within literature, there is a tendeny to portray OCT as non-invasive. This is a justifiable 

claim for ophthalmic OCT, where the power of the incident laser is below safety 

requirements, and the probe is positioned at a certain distane from the organ. However, 

when intending to apply OCT for endoscopic applications, this claim can be argued. It 

seems necessary to define “non-invasive”. 

A more accurate description of OCT may have to consider discomfort (patient) and 

logistics (care provider): 

Discomfort 

The common assumption and rationale for research is that patients would prefer an 

optical approach to tissue sampling. For colposcopy, studies have shown that this is the 

case for the majority of participants. This inherently means that there is also a 

proportion of patients who, given the choice, would opt for a swift biopsy over a 

scanning procedure. The degree of discomfort a procedure is causing is therefore 

relevant. 

Logistics 

Implementing a novel adjunct technology is hugely facilitated if it fits into an existing 

scheme. This includes the time frame of a procedure. For instance, the target of 15-20 

minutes for a colposcopy session – that includes counselling, examination, and 

administrative work – is difficult to meet already today. 

Appendix A.1 - Non-invasive 

In terms of the working principle, OCT is non-invasive and non-destructive. The energy 

which is absorbed by tissue per unit time is low and complying with the safety standards 

of the American National Standards Institute. After all, OCT interrogates tissue by 

probing for elastically scattered photons, with no intent of transferring energy into 

tissue. 

Appendix A.2 - Minimally invasive 

Minimally invasive is a term coined for surgical procedures which cause minimal 

trauma (in contrast to open surgery). Instrumentation for such scenarios exits. OCT 
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fitted into endoscopic devices still requires access to the organ of interest, either via 

natural orifices or “keyhole” surgery. Those probes are in contact with the tissue 

surface. This requires a choice of harmless and non-irritating materials. 

Appendix A.3 - Invasive 

OCT is investigated for replacing biopsies, which are invasive and destructive sampling. 

A fair approach will have to consider when OCT imaging relies on a lengthy 

examination or contrast agents, or has the potential to irritate. Contrast agents may 

significantly enhance image quality, to an extent that their application could become a 

key step of a scanning protocol. It can be necessary to move organs or body 

components: For cardiovascular OCT, where blood strongly attenuates the OCT beam, 

flushing with saline opens a time window of a few seconds for scanning. 

Appendix A.4 - Non-destructive, uncomfortable 

For endoscopic imaging, it is fair to say that OCT is non-destructive. This allows 

repeated scans of a whole surface, which seems beneficial for diagnosis. A diagnostic 

biopsy might not be the main cause of pain (the removed tissue is usually a small skin 

flake). The respective inconvenience is caused by getting access to the organ site, i.e. 

the experience of a colposcopic session in its entirety. This, however, may well become 

a longer procedure if it involves data acquisition by an optical device such as OCT. 

Appendix A.5 - Invasiveness in examinations of the cervix 

For topical assessment of the human cervix, OCT would be implemented into a 

colposcopic setting. This procedure already includes application of saline solution and 

chemicals (acetic acid, iodine) as standard contrast agents, which creates an opportunity 

to implement such contrast mechanisms for optical measurements as well. However, it 

might be worthwhile to remind oneself of the potential disadvantages: An OCT 

examination may require more time and has the potential to cause skin irritation. 
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Appendix B - Optimal parameters for PC-fed LDA of dense 

tissue OCT data 

Comparison: Pre-processing parameters for OCT 

Classification 

Appendix B.1 - Pre-processing 

Appendix B.1.1 - Surface recognition & surface normalising 

Several quantiles as cut-off values for the threshold for the binary mask were examined. 

It was necessary for the algorithm to work on the basis that histogram equalisation did 

not change results for the thresholding.  

Results were calculated for a variety of threshold values (0.85, 0.90, 0.925, 0.95, and 

0.975) in order to establish their robustness. 

Appendix B.1.2 - Creating surface misalignment 

We corrected for single misaligned pixels with a sliding median window of several 

pixel size (3-17). However, the data was suitable for surface recognition by binary 

thresholding and delivered good results without smoothing. Hence one could not expect 

a major impact by refining. Therefore, surface misalignment was introduced in a 

proportion of the surface vector; e.g. 5 % of a 300 A-scan sub-volume meant corrupting 

15 A-scan positions.  

    
 A B C D 
Figure B.1: A) Image with recognised surface (quantile 0.95 for binary mask). B) Applied surface. 
C) Refined surface (sliding median of 7 pixels). D) 10 % corrupted surface vector. 

Figure B.1 shows how the vector corruption creates visual impact. Figure B.1A shows 

the realistic situation of automated surface recognition – some pixels are not at the 

surface. When normalising to this surface vector, one receives a result as shown in 
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Figure B.1B. The amount of misalignment in this situation depends on original image 

quality and on the parameters for the threshold. Figure B.1C shows how a sliding 

median filter gets rid of outliers from the surface vector. In Figure B.1D artificial 10 % 

misalignment have been added to the original surface. 

While Figure B.1B shows a realistic situation, Figure B.1D is an artificial – hence 

reproducible – misalignment, which is used in this study. 

Table B.1: Visual impact of histogram equalisation and median smoothing of the recognised 
surface. The circles shall help spotting some of the differences. The surface recognition was done by 
using a 0.95 quantile binary threshold filter. 

Intensity Normalised to maximum Histogram equalisation 
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All deviations were generated with a seeded random number generator. In random 

number theory, “seeding” is the term for setting initial parameters for a random number 

generator in order to achieve reproducibility of the set of random numbers. (Such 

numbers are also called semi-random numbers). This ensured two requirements: 
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1) Random misalignment values were assigned for random positions of the surface 

vector; however 2) because of the seeding value, the same random values can be used 

for comparing different pre-processing techniques on effectively the same image sets. 

In order not to introduce a statistically relevant feature by misaligning the same amount 

of A-scans per sub-volume, also the amount of A-scans and the extent of misalignment 

were subject to randomisation: the parameters were therefore not the amount of 

deviation, but the maximum range of deviation, or maximum number of misaligned 

A-scans. Table B.1 shall help to compare these approaches by giving a visual 

impression. 

Appendix B.1.3 - Axial cut-off 

Assuming in imaging depth of 1 mm, rows were cut off at different steps between 30 % 

and 70 %, resulting in the following image dimensions: 300 × 150, 300 × 200, 

300 × 250, 300 × 300, 300 × 350, in addition to the original dimensions of 300 × 500 

pixels. 

Appendix B.2 - Results 

Appendix B.2.1 - Intensity normalisation vs. histogram equalisation 

Images which had undergone histogram equalisation for intensity normalising did not 

perform as well as intensity normalised scans. 

Mean classification rates and effect of median correction
for intensity normalised vs. histogram equalised data
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Figure B.2: Comparison of mean classification rates for various threshold levels without artificial 
misalignments. Upper values (-) from intensity normalised data. Lower values (×) histogram 
equalised. Intensity normalised data has better classification values. 

Figure B.2 shows that for histogram equalised data, a sliding median window of 3-9 

pixels can be of benefit. It has to be mentioned that for histogram equalised images, 
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median correction did not always have a benefit and in selected cases could result in a 

decreased classification performance.  

Appendix B.2.2 - Effect of threshold value 

No artificial surface misalignment 

Classification rate for different threshold values and 
after median correction
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Figure B.3: Classification rates for the test image set for using different threshold levels for creating 
the binary image which is used for surface recognition. Please note that the dotted lines are for 
visualisation only and shall not indicate any trend. 

Median correction of artificial surface misalignment 

Classification rate for misaligned surface normalisation vectors
after median correction
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Figure B.4: Classification rates for the test image set for various amounts of misalignment and 
subsequent correction. Please note that the dotted lines are for visualisation only and shall not 
indicate any trend or interpolation. 
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Figure B.3, Figure B.4 and Figure B.5 show that stronger misalignment rates result in 

worse classification, when being uncorrected for. Using a sliding median filter, even of 

only 3 values, for correction of outliers does improve results.  

Classification rate for misaligned surface normalisation vectors
after median correction
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Figure B.5: Effect of median correction on classification rate, mean and standard deviation over 
different threshold levels. The difference between little (▲) and strong (■) misalignment could 
show that 1) Larger median windows are required when strong misalignment is expected; 
2) Median windows larger than 11 do not further increase the results; 3) These effects are 
consistent for different threshold levels. 

Axial cut-off 

The results show the effect of cutting off rows of low SNR on the time required for 

classification (Figure B.8) and on the quality of classification (Figure B.6, Figure B.7). 

Classification rate for different cut-off values 
without median correction
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Figure B.6: Classification rate for different cut-off values. There is little variation for cutting off 
100-60 % (red circle). 
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Mean classification rate for different cut-off values 
without median correction
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Mean classification rate for different cut-off values 
after 3-pixel sliding window median correction for misaligned pixels
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Figure B.7: Classification rates for different cut-off values. 
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Figure B.8: Average classification time for different cut-off values. Times were measured using 
Matlab’s tic-toc functions. The small standard deviations (10 measurements) show high confidence. 

Appendix B.2.3 - Amount of principal components 

After sorting PCs in order of their significance, their impact can be displayed by 

plotting the classification performance as a function of the amount of PCs fed into the 

analysis. The results were ambiguous: Figure B.9 shows examples of both cases, where 

the amount of PCs either does not seem to have a strong impact, or a clear performance 

drop after a maximum amount of PCs. 
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Figure B.9: Left: example of little impact of the amount of PCs. Right: example of significant 
impact of the amount of PCs and a performance drop with more than 27 PCs. 
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Appendix B.3 - Discussion and suggestions 

Appendix B.3.1 - Threshold for binary mask 

Different threshold values give only slightly different results. The lowest threshold 

value from the investigated range, 0.85, did give less optimal results (still a 

classification performance of 84 % without median correction), than the other values 

(ranging from 0.90-0.975). There is no trend which could be used for a 

recommendation. Within reason, it does not matter which threshold value is chosen for 

binary thresholding. 

Appendix B.3.2 - Median correction of surface misalignment 

Sliding windows larger than 9 pixels tend to have no benefit. In only one single case, 

the median of 11 or 13 was an improvement. When little or no noise is expected, a 

sliding window of 3 or 5 does significantly improve, whereas for stronger 

misalignments a median of at least 5 is needed, as displayed by Figure B.5. However it 

seems not necessary to assume a real situation where more than 10 % of A-scans are 

misaligned; in such cases an operator would probably retake the scan. As a general rule 

for unknown data, we recommend a median of 5 values. 

Crucially, using a median filter does not worsen results for situations with no 

misalignment originally. 

Appendix B.3.3 - Axial cut-off 

The rationale behind cutting off rows was the benefit of a reduced computing time. 

Figure B.8 shows how computing time decreases for reduced datasets. 

For original data (Figure B.7), there is little influence after truncating A-scans, and 

hence this would be beneficial as it reduces computational effort. However, for median 

smoothed data, truncating A-scans slightly decreases classification performance. This is 

unexpected but can be explained if the surface roughness and texture of a sample type 

(which define the reflection behaviour) plays a role for classification. Hence correcting 

for these misalignments would reduce a classification criterion, which could explain this 

result. 
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Appendix B.3.4 - Amount of PCs 

The amount of PCs has an impact on the discrimination performance: PCs are defined 

by their orthogonality. That means that the variance described by one PC is not covered 

by another PC. Some PCs will describe low variation and variation of low significance. 

It is important to keep these two apart: PCs of lower unsupervised variance may still 

have a strong correlation with the feature that is significant for discrimination. One PC 

will always contain the remaining variation content, and therefore be – in essence- 

condensed noise. It is comprehensive that this component will have little impact on 

discrimination. From the results found here, trends depend however on the respective 

model and it is therefore difficult to summarise this in a general conclusion. If 

computationally possible, the optimal amount of PCs should be determined separately 

for each model. 

Appendix B.3.5 - Outliers 

For some combinations, e.g. using an 11-pixel sliding window for median correction on 

a surface vector form a 0.975 binary threshold, we achieved the highest classification 

values of nearly 90 %. At this point, we are aware of this performance but are not able 

to use this as a basis for a recommendation, as this is not part of a trend within the 

results we have obtained. 
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Appendix C - Ethics files 

Appendix C.1 - Study protocol 
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Appendix C.2 - Addendum to standard clinic invitation letter 
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Appendix C.3 - Study participant information letter 
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Appendix C.4 - Consent form 
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Appendix D - PC-fed LDA for OCT in dermatology 

Optical coherence tomography: a potential tool for 

unsupervised prediction of treatment response for 

Port-Wine Stains 

Florian Bazant-Hegemark1,2, Igor Meglinski1,3, Nanda Kandamany3, Barry Monk3, and 
Nicholas Stone1,2 
1) Cranfield Health, Cranfield University at Silsoe, Bedfordshire MK45 4DT, UK 
2) Biophotonics Research Group, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK 
3) Laser Treatment Centre, Bedford Hospital NHS Trust, Kempston Road, Bedford MK42 9DJ, UK 

 

Modified† from a manuscript that was published in 

Photodiagnosis and Photodynamic Therapy, 5(3), 191-197, (2008) 

 

Appendix D.1 - Abstract 

Background: Treatment of Port-Wine Stains suffers from the absence of a reliable 

real-time tool for monitoring a clinical endpoint. Clinical response varies substantially 

according to blood vessel geometry. Even though optical coherence tomography (OCT) 

has been identified as a modality to suit this need, it has not been introduced as a 

standard clinical monitoring tool. It seems that – although OCT is capable of acquiring 

data in real-time – gigabyte data transfer, processing and communication to a clinician 

impede the implementation as a clinical tool. 

Objectives: We investigate whether an automated algorithm can address this problem. 

Methods: Based on our understanding of pulsed dye laser treatment, we present the 

implementation of an unsupervised, real-time classification algorithm which uses 

principal components data reduction and linear discriminant analysis. We evaluate the 

algorithm using 96 synthesised test images and 7 clinical images. 

                                                           
† Modifications include: British English spelling; cross-referencing; removing redundancies; and a greater 

level of detail. 
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Results: The synthesised images are classified correctly in 99.8 %. The clinical images 

are classified correctly in 64.3 %. 

Conclusions: Principal components-fed linear discriminant analysis is a valuable 

method to classify clinical images. Larger sampling numbers are required for a better 

training model. These results justify undertaking a study involving more patients and 

show that disease can be described as a function of available treatment options. 

Keywords: Discriminant Analysis, Optical Coherence Tomography, Port-Wine Stain 

Appendix D.2 - Introduction 

Appendix D.2.1 - Port-Wine Stains 

Capillary haemangiomas (Port-Wine Stains, PWS) are congenital malformations of 

dermal capillaries. In the UK, PWS are prevalent in 3 of 1,000 inhabitants [222]. 

Lesions, particularly in facial areas, may have an impact on self esteem of patients. The 

development of the pulsed dye laser marked a significant advance in treatment; its 

mechanism is believed to involve coagulation of dermal capillaries via the absorption of 

laser energy by oxyhaemoglobin. However, blood vessels have varying diameter, wall 

thickness, flow rates, depth, and carry blood with different oxygenation states. For a 

successful response to treatment, a lesion needs to be within the range of the laser. The 

most common PDL lasers operate at yellow (577 or 585 nm) wavelengths [223] which 

penetrate not more than 1 mm into skin [224]. Blood vessels must be destroyed entirely 

to prevent regeneration and revascularisation. The capillaries need to carry enough 

oxyhaemoglobin to absorb energy, vessel thickness <50 µm do not provide sufficient 

blood volume for a good response [223]. With standard PDL lasers, good response is 

expected for blood vessels in a depth up to 1 mm and a diameter of 55-150 µm, 

depending on body site and skin type [225]. Thickness of overlying skin layers and 

pigmentation can reduce the flux delivered to the capillary. Response to treatment can 

be improved by altering pulse length, wavelength, energy, vessel dilation (thermal or 

drug induced), or by cooling surrounding tissue to allow longer 

pulses [223],[226],[227]. These treatment options carry however an increased risk of 

complications. 
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An important practical problem is the lack of objectivity in evaluating clinical response, 

and the difficulty of predicting which patients will benefit from treatment or further 

treatment. On average, skin lightens 12 % per treatment [225]. Complete lightning can 

be achieved in less than 25 % of the lesions, and 70 % of PWS lighten at least 

50 % [228]. Purpura, crusting and bleeding are common side effects which can last 

between 2 and 14 days. After about 6 weeks, a reliable assessment of treatment outcome 

is possible. Protocols usually require 6 to 10 sessions in 6 to 12 weeks intervals. For a 

vast majority, “excellent” results in terms of patient satisfaction can be achieved; 

however this is only established after repeated sessions with no progress in outcome. In 

up to 20 %, no improvement or darkening of the affected lesion is observed [228]-[230]. 

For these patients, unsuccessful PDL sessions present therefore a rather ineffective way 

of determining responsiveness to treatment. 

Appendix D.2.2 - Optical coherence tomography 

Optical coherence tomography (OCT) is a non-destructive imaging modality. It uses 

laser light of low coherence to localise reflection events (similar to echoes in 

ultrasound) within a specimen. For typical infrared sources in dense human tissue, the 

characteristic penetration depth is around a millimetre and the resolution is around 

10 µm [42]. Conventional OCT probes for variations of the refractive index and renders 

structural information. It is therefore widely investigated for replacing or guiding 

destructive tissue sampling (biopsies) [89]. Today, fast systems can acquire about a 

million A-scans per second, in gigabytes of data, which would correspond to about a 

cm2 per second at a lateral resolution of 10 µm. For PWS, OCT seems to be able to 

image the geometry of blood vessels in the relevant depths and magnitudes. Penetration 

depth, usually a limit in dense tissue, is not so much a problem for this application: A 

PWS that cannot be displayed with OCT will be unsuitable for PDL of shorter 

wavelength. 

 

Skin lesions are usually easy to access for existing OCT probes. Studies towards 

characterising blood vessel formation and flow using OCT have been performed on 

small animals [231],[232] and in ophthalmic imaging [233], and in vivo human 

skin [234], and even for monitoring treatment response in vivo [235]. However, despite 
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the initial success and potential which has been identified by these studies, it seems that 

OCT is not yet available as a clinical modality for standard treatment assessment. There 

is research into using Doppler OCT for monitoring the cessation of blood flow, but to 

our knowledge that is not widely applied in clinics. We believe that computing accurate 

velocity models is time intensive: For instance, the angle between the beam and the 

vessel is integral to the Doppler vector calculations; a velocity vector orientated 90 

degrees to the probing beam will show no Doppler signal [165]. Hence the volumetric 

vessel orientation needs to be established, adding to the overall processing time. 

 

We believe the reason for this to be that data handling and communication, which are 

common problems identified with OCT: Here, the usually subtle difference between 

“real-time” and “near real-time” becomes crucial. Although imaging is straightforward, 

the high scanning speed can only be exploited fully if data can be retrieved at similar 

speed (Chapter 5). True real-time imaging is therefore difficult to achieve for larger 

areas. Human operators are not likely to be able to keep up with this data transfer 

volume. Further, one disadvantage of PDL treatment for PWS is the required 

experience, and raw OCT images might call for a similar amount of training, artefact 

knowledge, and data visualisation skills. Vessel mapping and displaying require time 

and computational effort, let alone programming skills. For a clinical setting however, it 

is not the astonishing and colourful 3D rendering that is important, but a quick and 

reliable support for the choice of treatment. 

 

Such can be given by unsupervised classification algorithms, which consequently are an 

active and emerging research field for OCT data (Chapter 5). Specifically for 

keratinised layers of skin, or cartilage, procedures to automatically retrieve layer 

thickness have been investigated [191]-[193]. All these algorithms have certain 

requirements to image quality and clinical markers, and are usually iterative – which 

means slow. A quick method is principal components fed Linear Discriminant Analysis 

(PC-fed LDA). It has been displayed to perform well for classifying test images and 

porcine tissue (Chapter 6), but requires surface normalised A-scans of the classification 

groups to be different. As OCT images of PWS seem to show vessel diameter and depth 
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with clear contrast, such images seem a promising candidate for automated 

classification. 

Appendix D.2.3 - Research questions 

In this communication we investigate how well classification algorithms developed for 

OCT data can be applied to clinical images of PWS, in order to provide a quick and 

objective aide for diagnosing and guiding treatment. 

Appendix D.3 - Methods 

Due to the low number of clinical images available to us, we designed a set of 

synthesised images which was used to test the algorithm with a cross-validation 

approach using combinatory rules. The clinical images, which were not enough for 

training an algorithm properly, were tested using leave-one-out cross-validation. 

Appendix D.3.1 - Synthesised images 

The test images are designed to represent PWS of 3 depths – as approximate treatment 

categories, e.g. “Treatment option 1”, “Treatment option 2”, or “Untreatable”, as shown 

in Figure D.1. These 256 bit grey-level images measure 80 × 512 pixel and have 

logarithmic intensity gradients representing different signal-to-noise gradients in dense 

tissue. For each gradient type, there are 8 possibilities of PWS: 3 variations of depth and 

combinations as shown in Figure D.1. Assuming that 512 pixels are equivalent to 1 mm 

penetration depth, a disk of 64 pixels would represent a diameter of 125 µm. In analogy 

to the standard processing, the intensity values were normalised to fit to unity values 

(i.e., ranging from 0 to 1). 

The 3 depth options are presented by positioning the centre of this disk at pixel 164 

(320 µm), 210 (410 µm), 256 (500 µm), and 384 (750 µm). Artificial speckle noise was 

added to the images using the Matlab “imnoise” function. The diameter of the vessels 

was randomly varied for ± 10 pixel (~20 µm), and the depth position was randomly 

varied for ± 20 pixel (~40 µm). For reproducibility, the function for producing random 

numbers was seeded before creating a set of images using “rand('state',0)”. 
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Figure D.1: Synthesised test images for assessing the fundamental possibility of classifying PWS as 
a function of treatment parameters. Different skin types are represented as different grey scale 
gradients (8 of 12 gradients are shown). The images here are shown as fed into analysis, with 
random depth and size variations, and with artificially created speckle noise. The classification 
model is tested on its ability to classify into “Treatment option 1”, “Treatment option 2”, or 
“Untreatable” (1, 2, or X). The expected outcome is listed in Table D.1. Right graph: Mean A-scans 
of these 96 synthesised images. 

Eight variations of depth, representing vessels, and 12 background gradients, 

representing tissue type - i.e. 96 images in total - were used for analysis. Table D.1 

shows the design of classification groups for treatment suggestion and expected 

response. Every model was trained from 6 tissue gradients and cross-validated with the 

remaining 6 gradients. The mean of the result from 924 permutations (6 from 12), as 

shown in Figure D.2, was taken as classification result. At this stage, we were satisfied 

with a result to be either correct or not, and did not calculate specificities or 

sensitivities. 

 
Figure D.2: Assigning data to test set or prediction set for cross-validation: Representation of 924 
permutations for a selection of 6 out of 12, shown in four rows of 231 columns. Each column has 12 
pixels (6 grey and 6 black). None of the 924 columns equal each other. 
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Table D.1: Desired classification performance in designed model. Vessel combinations are shown in 
Figure D.1. 

 Vessel combination 
Classification design A B C D E F G H 
Vessel depth(s) (µm) 320 500 750  320, 

500 
 320, 
750 

 500, 
750 

410 - 

Treatment option(s) 1 2 none 1&2 1 2 1&2 none 
Treatment response full full none full partial partial full none 

 

Appendix D.3.2 - Measurements 

OCT device 

The OCT device used in this study was a time domain bench top system which was 

similar in design to the system described previously (Chapter 2). The light source is a 

super luminescent diode (SLD, Superlum) with a central wavelength of 1310 nm and 

provided an axial resolution of ~15 µm in air and a 10 µm lateral resolution. The rapid 

delay line is realised using a double pass mirror and a reference mirror mounted on a 

galvanometer (Cambridge Instruments). The data acquisition was performed using 

Labview. The actual acquisition of 333 A-scans per millimetre meant an oversampling 

of the beam resolution. 

Tissue samples 

Images were obtained in agreement with the guidelines by the local research ethics 

committee of the Bedford Hospitals NHS Trust. 7 patients were enrolled in this 

preliminary study. The measured sites were chosen due to their cosmetic relevance: 

Forehead, upper and lower cheek, and forearm. The measurements were performed on 

site by clinicians of the Bedford Hospitals NHS foundation trust. The protocol did not 

involve any contrast agents or other preparation. At this stage, the samples were 

confirmed visually by the experience of the clinician. No biopsies were taken for exact 

matching of the OCT images. 

Appendix D.3.3 - Pre-processing 

Synthesised images did not require pre-processing, as their surface equalled the top 

image row. All measured images however, needed to be pre-processed so that the depth 

pixel of each A-scan would represent the same distance. 
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The clinical images in this study measure 512 × 1000 pixels for a width of 3 mm 

(Figure D.3). Every image depicts the full technical penetration depth of the sample, and 

there are no excessive reflections. The log of the intensity data (time domain signal) was 

stored as a matrix. Values were handled in double precision format. The upper part of 

the image which depicts air was regarded as background noise level. The mean of this 

plus 7 × the standard deviation of this background signal was used as the intensity 

threshold. After thresholding, intensity values of one B-scan were normalised to the 

maximum intensity peak. A binary thresholding was used to determine the sample 

surface, as shown in Figure D.4A and Figure D.4B. Some artefacts can cause the 

surface recognition to fail, e.g. minor reflections and hair which is present as small spots 

above the surface (cf. Figure D.3 & Figure D.4). These were reduced by a sliding 

median filter. Although the settings for this processing were determined manually, the 

actual processing was performed fully automated. For the sake of this full automation, 

we accepted slight misrecognition of the surface as shown in Figure D.4B. After surface 

normalising data of low signal-to-noise ratio was removed by cropping data below 300 

pixels (Figure D.4D). 

 
Figure D.3: Example OCT images of PWS, of the lower cheek (left image) and mid cheek (right 
image). 

 
 A B C D 
Figure D.4: Pre-processing for clinical images. (A) Original scan. (B) The recognised surface as 
overlay over the image (The image is darker for visualisation purposes only). (C) Screenshot of the 
program for manually selecting vessel A-scans. (D) Surface normalised and cropped image. 
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From the 7 available images, areas (A-scans) containing blood vessels were identified 

and marked manually using in house written Matlab code as shown in Figure D.4C. 

Although this is observer biased and based on the assumption that blood vessels show 

up as darker areas, we believe this to be an acceptable approach for a proof of principle. 

Of the 7000 A-scans, 2864 were selected as vessel-free, the remaining were classified as 

containing vessels. No A-scan was excluded from analysis. A representative measure 

was taken of all A-scans of one sample, thereby providing 14 measures (7 each for 

vessel and non-vessel images). We want to emphasise that this manual A-scan selection 

was purely for training purposes, and that no manual step is required for the 

classification algorithm. 

Appendix D.3.4 - Data analysis 

Data handling was performed as described previously (Chapter 6), in short: Data 

handling, pre-processing, and PC-fed LDA were performed using Matlab V6.1.0.450, 

Release 12.1 (The MathWorks, Inc.), extended by the “PLS_Toolbox” (Eigenvector 

Research, Inc.) and our in house tools (“Classification_Toolbox”). 

Using principal components analysis, the data was reduced to the first 10 principal 

components (PCs) [210],[211]. This amount of PCs is an arbitrary number and likely to 

include PCs of low significance to this discrimination. The strongest loadings of these 

components were determined by characterising the respective F values using ANOVA. 

An example for the loadings is shown in Figure D.5 and Figure D.6. The PCs were used 

for linear discriminant analysis, which is inherently able to suppress loadings of lower 

significance for the model. The cross-validation for the model from synthesised images 

was performed as explained above using 924 permutations. The clinical images, which 

provided only 14 measures, were too few for training a strong classification model, and 

were tested using leave-one-out cross-validation. 
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Figure D.5: The 2 strongest loadings for LDA model of the synthesised images. Note that extrema 
correlate with vessels depths Figure D.1. 

 
Figure D.6: The 2 strongest loadings for LDA model of tissue data. 

Appendix D.4 - Results 

The synthesised images were classified correctly in 99.8 %. This is the mean of 924 

cross-validations (from all permutations which are possible when taking random 6 out 

of 12 tissue gradients) for training a classification model. 

The training model based on the manual selection of vessel/no vessel, although for a 

small sample size of clinical images, had a performance of 100 %. The leave-one-

sample-out cross-validation was successful in 9 out of 14 images, and therefore had a 

performance of 64.3 %. 
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Appendix D.5 - Discussion 

Appendix D.5.1 - Procedure and limitations 

There are three limitations which can be immediately identified from these specimens: 

Because of this low sample number, the results of this classification can only be 

regarded as preliminary. However, within clinical OCT, where larger trials require 

approval by ethics boards and are timely, it is common to demonstrate the general 

applicability of an algorithm on only a few samples [198],[204],[206],[235]. 

Secondly, we assume blood vessels to show up with clear contrast. Believing images 

from some research groups, this might not always be the case [235]. In such cases, the 

velocity profiles obtained by Doppler OCT allow a clearer contrast, and therefore also 

deeper penetration depths. For the presented algorithm, we expect no fundamental 

difference in distinguishing the clinical marker, be it an absorption maximum or a 

velocity profile, as long as such a marker can be clearly correlated with the vessel 

position. 

Further, and more crucially, we were not provided with data on treatment outcome. 

With the present data, we are able to classify normal tissue from blood vessels, 

measured from PWS lesions which were visibly identified by eye. Exact correlation 

with histopathology is a major challenge [193]. Our intention is to provide a prognosis 

on treatment response. Using designed images which we calculated to show clinically 

relevant geometries, we attempted to display whether such a classification would be 

possible in principle. Problems in a real clinical situation which we were not able to 

address in this paper are the impact of skin tone, composition of layers covering the 

PWS, or dynamic effects like vessel dilation. However, using a large enough population 

for training a classification model, we believe that results can aid both clinician and 

patient in the treatment of PWS. 

We also have to admit that our assumptions for vessel geometry and depth might not 

exactly describe the real situation. We believe that for this initial study these 

assumptions are justified, as laid down in the introduction, and are convinced that - if 

necessary - the model can be tweaked to more realistic parameters. 

Our results were obtained in “near” real-time. The cross-validation time for 924 

permutations on a 2.8 GHz Pentium 4, 1 gigabyte RAM PC was 93 seconds (measured 
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using the Matlab “tic” – “toc” functions), each process of creating a test model and 

classifying took therefore less than 0.1 seconds. In a clinical situation, the amount of 

data should be expected to be significantly larger than in our model, however when 

being used in a clinical setting, the development time for building a classification model 

and the cross-validation do not contribute to the processing time. As our set of 

synthesised images consisted of 7680 (80 × 96) A-scans, we estimate that a square 

centimetre imaged with 10 µm resolution, i.e. 10^6 A-scans, will be classified in less 

than 13 seconds. 

The model trained by clinical images reaches 64 % correct classification. In a clinical 

setting, we expect that intra- and inter-patient variation will inevitably result in a certain 

degree of misclassification. The data was collected from a small population and from 

different sites of the body; this certainly had an impact on the training and testing 

performance. A model based on a larger pool of data can be expected to perform better. 

This algorithm is based on taking a representative measure, e.g. the mean, of several 

A-scans. At a lateral resolution of 10 µm, a mean of 10000 A-scans would represent an 

area of 1 mm2. This is well below the spot diameter of treatment lasers, which cover a 

few square millimetres. While we cannot rule out an occasional misclassification, we 

would expect it to stand out of the surrounding classification. The general impression 

would be a reliable support for the treatment decision. 

Appendix D.5.2 - Summary and conclusions 

For a further study design, lesions should be imaged with OCT repeatedly during the 

intervals between treatment sessions, in order to observe the response after PDL. There 

are problems which can be imagined because of the dynamics of the healing process, 

e.g. the impact of crust on image quality. We envisage a protocol which provides a 

means to co-register scanned sites in order to allow a reliable timeline, and the design of 

a training model based on the actual treatment outcome of study participants. 

A classification algorithm for OCT opens the vast potential not only for characterising a 

site by imaging, but also to determine whether a site is suitable for enhanced treatment 

options. Optical clearing agents increase penetration depth [236]. Although the clearing 

effect depends on the wavelength, effective clearing agents can be expected to impact 

on treatment parameters like focusing or flow dynamics [237]. 
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OCT would be able to observe, in real-time, when an optimal condition from a 

treatment preparation has been achieved. We have displayed an algorithm robust 

enough to cope with slight variations in depth location and vessel diameter. Notably, 

this algorithm works fully automated and is fast on a current standard computer. As 

such it could play a role in categorising blood vessel depth according to treatment 

options, further assessment of this approach – for real-time monitoring of treatment 

response and prognosis of PWS – is necessary in the scientific and clinical 

communities. 
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Management of cervical precancer is archetypal for other cancer prevention programmes 
but has to consider diagnostic and logistic challenges.  Numerous optical tools are emerg-
ing for non-destructive near real-time early diagnosis of precancerous lesions of the cer-
vix.  Non-destructive, real-time imaging modalities have reached pre-commercial status, 
but high resolution mapping tools are not yet introduced in clinical settings.  The NCBI 
PubMed web page was searched using the keywords ‘CIN diagnosis’ and the combina-
tions of ‘cervix {confocal, optical coherence tomography, ftir, infrared, Raman, vibrational, 
spectroscopy}’.  Suitable titles were identified and their relevant references followed.  
Challenges in precancer management are discussed.  The following tools capable of 
non-destructive high resolution mapping in a clinical environment were selected: confocal 
microscopy, optical coherence tomography, IR spectroscopy, and Raman spectroscopy.  
Findings on the clinical performance of these techniques are put into context in order to 
assist the reader in judging the likely performance of these methods as diagnostic tools.  
Rationale for carrying out research under the prospect of the HPV vaccine is given.

Key words:  Confocal microscopy; Optical coherence tomography; Infrared spectroscopy; 
Raman spectroscopy; Epithelial precancer; Cervical cancer.

Introduction

Management of cervical cancer is archetypal: In those countries that have estab-
lished programs for screening, early detection, and preventive treatment, cancer 
rates have dropped (1).  In the UK, the Cervical Screening Programme of the 
National Health Service (NHSCSP), which was introduced in 1998, is estimated 
to save 4,500 lives a year (2).  This is possible because squamous cervical carci-
noma, the most prevalent form of cervical cancer, is preceded by a long phase of 
pre-clinical alterations, which are commonly referred to as cervical intraepithe-
lial neoplasia (CIN), and graded into mild (CIN1), moderate (CIN2), or severe 
(CIN3) (3).  The following paragraphs shall provide the common ground of the 
present understanding of early changes that can serve as surrogate markers for 
CIN.  Further, diagnostic and logistic challenges of current management are dis-
cussed in order to support the motivation for improving this situation.
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Early Changes

What are the characteristics of the different steps in precan-
cer development?  Cellular makeup and appearance provide 
markers for increased proliferation, but specifically early 
cancer is similar to normal proliferation.  The location of 
proliferating cells within the histological structure is there-
fore relevant information.

Histological Level:  Epithelial cells originate from stem cells 
that are lying amongst the basal layer of cells on a supporting 
molecular network of collagen, which also forms the bound-
ary to the underlying connective tissue (basal lamina).  The 
sophisticated regulatory system in the healthy body achieves 
a smooth gradient of cell maturity from the stem cell level to-
wards the outside throughout the several hundred micrometer 
thick epithelium.  The development from a freshly divided 
unit to a mature cell can roughly be correlated with the dis-
tance from the basal layer.  CIN is correlated with subcellular 
alterations, which result in divergence from this scheme.

Cytological Level:  Mature cells have a reduced nucleus-to-
cytoplasm ratio and are flat (“squamous”), thereby forming a 
protective layer.  This goes in hand with biochemical changes: 
glycogen accumulation due to a cease in energy demand, and 
depletion of metabolites with a relation to cellular activity, 
e.g., RNA or phosphorylated molecules.  Deviations in cell 
shape and sub cellular architecture (dyskaryosis) and meta-
bolic activity in surface layers may indicate problems with 
the proliferation at the basal level.  However, such changes 
are not exclusive to precancer, benign conditions (e.g., in-
flammatory processes) can show similar deviations.

The Lower Boundary:  Growth of cells below the basal 
lamina is believed to be facilitated if this layer has been de-
composed by proteins such as the matrix metalloproteases 
(MMP).  Viewed under the microscope, this can be noticed 
when the usually sharp border between epithelium and under-
lying tissue is interrupted.  Expression levels of MMPs allow 
correlation with CIN staging (4), and the ability to transgress 
through tissue boundaries is a feature for determining sever-
ity.  Cancer prevention aims at catching cells before 
they gain motility (5).

Diagnostic Challenge

Progression of CIN1 to more severe stages is not 
definite: Rather, CIN stages serve as a marker for a 
likelihood of progressing to cancer, and a decreased 
likelihood of reverting back to normal without in-
tervention.  Certain strains of the human papilloma 
virus (HPV) have been shown to be involved and to 
be a necessity for cancer progression (6).  Large evi-
dence supports that the cancer risk is a consequence 

of the body’s inability to develop immunity against HPV, 
thereby failing to rid itself of the virus.  This has led to the 
development of HPV vaccines.

The key issue in CIN management today remains: Justifying 
preventive treatment, without missing a lesion and without 
over treating healthy patients, in as few diagnostic proce-
dures as possible.  Diagnosis in modern screening programs 
is initiated by cytological examination of exfoliated cells (su-
perficial), colposcopy (superficial), and histopathologic as-
sessment of biopsies (sub-surface) (7), as indicated in Table 
I.  Findings of moderate or severe dyskaryosis on a smear or 
consecutive events of mild abnormalities prompt a referral to 
colposcopy (8).  Current findings support that women should 
be invited for colposcopy even after only one mild event (9).

Of the adequate tests in 2002/3 in the UK, the follow up re-
sults for around 96.6% were negative or borderline for dis-
ease.  Further surveillance was justified in 2.1% of cases 
with mild dyskaryosis and in 1.1% of cases with moderate 
or severe dyskaryosis the protocol recommended preventive 
treatment (10).  While normal and progressed CIN stages are 
distinguishable, false positives and false negatives are higher 
for distinguishing CIN1 from CIN2, and are also higher for 
differential diagnosis of other benign conditions (11-14).  
Women with mild dyskaryosis who are immediately seen in 
colposcopy have a higher rate of CIN confirmed by histopa-
thology compared to women who are invited 2 years later, 
suggesting that regression can happen without intervention 
(9, 15).  However, larger intervals increase the risk of miss-
ing a developing high grade lesion; therefore present man-
agement has to subject every mild lesion to further diagnostic 
procedures.  Immediate colposcopy referral has a better rate 
of women attending the follow-up (11).  As a consequence, 
today’s clinical practice has to accept repeated tests, anxiety 
of patients, and potential over treatment of a lesion (16).

Logistic Challenge

In the UK, of 4.4 million women who are invited for screen-
ing, only about 3.6 million actually attend screening (10).  
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About 10% of these tests are inadequate for evaluation, 
resulting in over 4 million tests performed per year, at an 
average cost of £38 (2) per test, or £157 million a year (2) 
for an estimated 4,500 lives saved due to cervical cancer as 
primary cause of mortality.

It takes time to communicate these results to the screening 
participants, thereby causing anxiety and treatment delay: 
48% of the women are informed within 4 weeks and 74% 
within 6 weeks.  These figures of 2006/7 are “the highest 
level recorded” (17) and mean that any woman waiting up 
to one month for her result still has to consider herself to 
be above the average.  The treatment delay is tackled in the 
UK, by managing moderate and severe cases with higher 
priority.  This short listing is however based on the subjec-
tive impression of the clinician at the time of the sampling, 
and inherently means a delay for women who do not seem 
to require urgent treatment.  If a biopsy is then required 
for definitive diagnosis, this result reaches 25% of women 
within 2 weeks and 38% of the women within 4 weeks.  This 
correlates with a recent study (18) on 600 women in Eng-
land and Wales, which states that the median time to initi-
ate treatment is 50 days.  These figures show a potential for 
new diagnostic tools to improve the issues of time, cost, and 
anxiety, which are linked to precancer screening.

Motivation

Therefore, there are attempts to provide a clinical tool that 
is able to provide information about the tissue in near-real 
time, where necessary repeated over a longer surveillance 
time, and in a non-destructive fashion.  The motivation is 
replacing biopsies in order to monitor suspicious lesions and 
schedule preventive treatment (11).  More realistic is the aim 
of guiding and reducing biopsies, improving the prognostic 
value of the findings, and better targeting treatment.  The 
paragraphs above may serve to show that this would allow a 
reduction of healthcare cost and patient distress, as partici-
pants can be expected to prefer a “see-and-treat” protocol to 
a “diagnose-and-defer” approach (19-22).

A further consideration for researching new diagnostic 
tools is that treatment today is limited to methods that 
leave the tissue suitable for margin assessment, as this is 
relevant for prognosis and follow-up: Margin involvement 
is correlated with higher recurrence rates (23-27), specifi-
cally at the endocervical margin (28).  This margin assess-
ment by histopathology is based on few sections (sampling 
a sample) and bears the possibility of misclassifying (29).  
Destructive treatment may have less pregnancy-related 
morbidity than excision treatment (30).  If tissue can be 
characterized by a non-destructive tool, this provides de-
structive treatment options such as laser ablation, cryo sur-
gery, or photodynamic therapy (31-34).

Method: Search Strategy and Selection Criteria

This review aims to cover optical tools for staging of cervical 
precancer, capable of high resolution imaging or mapping.  
Following an initial research, the NCBI PubMed data base 
(35) was queried for ‘CIN diagnosis’ and the results back to 
the year 1990 were sieved for titles that seemed relevant for 
non-destructive grading.  Following this initial sifting, the 
database was queried for ‘cervix confocal’, ‘cervix optical 
coherence tomography’, ‘cervix ftir’, ‘cervix infrared’, ‘cer-
vix Raman’, ‘cervix vibrational’, and ‘cervix spectroscopy’.  
These high spatial resolution mapping technologies were 
selected because they are being developed and/or subject 
to active research for their benefit in staging cervical pre-
cancer.  This choice shall not be understood as exclusive in 
the sense that other technologies are not equally legitimate, 
but should be seen as a self-imposed limitation on what this 
manuscript aims to discuss.  Most recent studies were ac-
cepted as such when no forward references were produced 
from the ISI Web of Knowledge web page (36).  This report 
covers the key publications concerning high resolution cer-
vical precancer mapping since 1975.

The emphasis was on high spatial resolution imaging at the 
micrometer scale, in contrast to wide-field imaging where 
some systems at pre-commercial stage are subject to ad-
vanced trials.  The data on the performance of such systems 
is increasing rapidly and it seems appropriate to await a 
separate review of their performance in due course.  For this 
reason, fluorescence spectroscopy as part of imaging tech-
nologies was excluded although fluorescence plays a role 
in generating contrast in some of the technologies which 
are discussed here.  In this context we would like to refer 
to earlier reviews on optical diagnosis of the cervix (1, 37-
39), and on other reviews on molecular markers (40, 41) and 
methods of detecting HPV (42, 43).

Results: Emerging Technologies for High 
Resolution Mapping of the Cervix

Confocal Microscopy

A confocal microscope is generally described as a microscope 
that collects light that is coming from the focal plane only.  
Mapping within a plane is achieved using galvanometer mo-
tors (44), altering the focal plane provides different slices for 
3D stacks.  Today, lasers allow resolutions of around 1 μm; 
thereby, providing images as shown in Figure 1.

CM visualizes en face planes of microscopic structures: 
Studies on smear samples showed that subcellular structures, 
such as mitotic figures and chromatin patterns, can be re-
solved and hence contribute to diagnosis (45, 46).  The light 
for detection is created by either reflection or fluorescence, 
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which opens the possibilities of this technology for func-
tional imaging and double selectivity of target volume (47).  
Fluorescence CM allows mapping fluorophoric metabolites 
(NADH, FAD) within subcellular structures and distinguish-
es between cytoplasmic and peripheral fluorescence (48).  
Fluorescence has been shown to distinguish basal cells from 
parabasal, intermediate, and superficial cells (49).

As the CM allows description of cellular DNA appearance, 
risk factors for cancer progression such as morphological 
changes, nuclear-to-cytoplasm ratio, or irregularity of cell 
spacing, can be assessed (48, 50).  Simple chemicals can serve 
as contrast agents, e.g., acetic acid, which is a standard agent 
for colposcopy, improves the contrast for cell nuclei seconds 
after application (50, 51).  However, contrast agents can cause 
tissue swelling and thus complicate focussing (52).

The field of view for CM images is in the magnitude of a few 
100 μm, mapping of larger areas would require sophisticated 
stitching, or mosaicing, software (53).  Although tissue sur-
faces are not completely smooth it is possible to image cells 
near the surface and near the basement membrane, the ratio 
between the two can indicate the CIN stage (54).  The pen-
etration depth (‘working distance’) of modern probes is up 
to 250 μm, depending on the amount of scatterers in the tis-
sue above.  This can be significant in CIN2/3 biopsies where 
the basal layer cannot always be visualised (55).  However, 
as growth at the basement membrane would be difficult to 
distinguish from normal, 50 μm may be a sufficient depth for 
detecting progressed dysplastic features (56).

CM has been used for ex vivo sections in order to assess DNA 
aneuploidy as risk marker and also as measure for treatment 
outcome.  Tissue sections for CM need to be considerably 
thicker (15-200 μm) than slices for routine histopathologic 
examination (~10 μm) (48, 50, 55).  Typical systems are ca-

pable of imaging a 515 × 660 μm area with 2 μm lateral 
resolution at 15 frames per second (57), or a 600 μm field of 
view with 1.3 μm lateral resolution at 12 frames per second 
(58), or at 6.5 frames/second (56).

Although the technical realization of an in vivo system has 
been demonstrated (58-60), there are also recent ex vivo stud-
ies on cervical tissue (56).  For volumetric imaging stepper 
motors have to ensure accurate positioning.  Studies that 
abstain from tissue embedding have to cope with handling 
problems, when trying to image the full epithelial thickness: 
In a recent study only 9 out of 52 biopsies could be evaluated 
successfully, 43 were too fragile or had insufficient contrast 
(56).  However, handling of cervical biopsies can be tricky 
in general: The small size and fragile nature of biopsies can 
result in about 50% of samples not being available for CM 
imaging (55).  Whether volumetric imaging is advantageous, 
has to be assessed: There are significant differences of nucle-
ar volume, surface area, and spherical shape factor between 
normal and abnormal cells; these are more pronounced on 
volumetric images (61).  Another study found that for classi-
fication, standardizing to epithelial thickness for sub-surface 
2D slices gives better classification than from volumetric 
images, such a protocol seems, therefore, better for in vivo 
imaging (56).  Volumetric data can, however, aide automated 
segmentation: When auto-detection fails (62), adjacent planes 
can be used for correction (56).  The potential of volumetric 
CM seems to be best realized where sample stability is not 
an issue.  Recently, the possibility of adapting conventional 
wide field microscopes to reach both a contrast and a section 
thickness comparable to CM has been displayed on a cervical 
cancer cell line (63), at lower cost than CM.

The majority of studies on the benefit of CM for cervical 
precancer assessment concerns establishing clinical features 
or system development.  To the best of the authors’ knowl-

Figure 1:  CM en face images of biopsy samples, with their nuclear contrast enhanced by acetic acid: Normal tissue at 50 μm below the surface (b), an inter-
mediate layer (c), and close to the basement membrane (d), and of CIN3 tissue at the equivalent distances (f-h).  (a) and (e) show an overlay of an automated 
segmentation algorithm.  Reprinted with kind permission (56).
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edge, there is only one published study subjecting findings 
from CM to standard histopathologic assessment.  It includ-
ed 19 participants and allowed detecting the distinction of 
high grade dysplasia from normal tissue with 91% specific-
ity and 100% sensitivity based on the nucleus-to-cytoplasm 
ratio (64).  Studies for the relevant classification of CIN1 
vs. CIN2/3 are anticipated.

Optical Coherence Tomography

Optical coherence tomography (OCT) is based on low coher-
ence interferometry.  It is often described as optical ultra-
sound for its working principle: The position of a backscat-
tering event is determined to within a few micrometers of 
accuracy, along an axial scan line (“A-scan”).  A crucial pa-
per that employed a scanning setup to create 2-dimensional 
sections from adjacent A-scans was published in 1991 (65).  
OCT typically uses near infrared light sources in the range of 
800-1500 nm (66, 67), at powers that are harmless for skin.  
The contrast for structural features is determined by changes 
in the refractive index.  Contrast agents for OCT are an active 
research topic (68) but have not impacted on studies of the 
cervix.  In contrast to the other modalities, conventional OCT 
does not acquire en face images [although such scanning reg-
imens exist, (69)].  The depth (axial) resolution is decoupled 
from the lateral resolution and both are a crucial specifica-
tion.  Typical resolutions are in the magnitude of 5-15 μm 
laterally and axially in air; resolutions around and beyond 1 
μm are referred to as ‘ultra-high’.  The penetration depth in 
dense tissue is around 1 mm.  Strong absorbers in human tis-
sue, e.g., melanin (visible range) and water (infrared range) 
limit the choice of wavelength.  Light sources for OCT have 
to fulfil stringent criteria in respect to partial coherence, in 
order to allow interferometric detection.  The quality of a 
beam’s ‘pulse’ directly determines the axial resolution.  Ideal 
sources are not available for every wavelength and large ef-
forts of OCT research concern laser sources.  However, the 
advantage of the interferometric detection setup is that it is 
practically not confounded by ambient light.

Research systems today can measure 106 to 107 A-scans per 
second, which allows several volumes per second and so-
called 4D OCT (70).  Cervical studies with such systems are, 
however, still awaiting their publication.  Issues with OCT 
are the low contrast and the amount of data generated, which 
stretch modern data storage systems and may create a need 
for computer-assisted data evaluation (71).

The non-invasive, real-time OCT was a diagnostic revolution 
for ophthalmology.  First images displaying endoscopic OCT 
assessment of cervical malignancy have been made in 1997 
and 1998 (72, 73).  The resolution of OCT is smaller than 
large epithelial cells.  In practice, sub-cellular structures or 
even single cells are almost impossible to resolve because of 

speckle noise and weak contrast.  However, there is a promise 
of being able to rapidly image cervical pathologies through 
features that indicate some form of structural alteration at 
cellular level.  A first ex vivo study on tissue of the female 
genital tract included 32 cervical specimens (74).  This study 
concluded that an intact basement membrane can be depicted 
as a feature of healthy epithelium, and included 21 healthy 
and 11 CIN3 or carcinoma specimens.  Escobar et al. (75, 76) 
performed an in vivo study on 50 patients, and included the 
diagnostically more relevant samples, from CIN1, CIN2/3, 
and inflamed sites.  It allowed concluding that the thickness 
of squamous epithelium is varying for healthy samples, and 
confirmed healthy epithelium as a marker for an intact base-
ment membrane.  This membrane itself is too thin for depic-
tion on OCT images.  Instead, the visible marker is a distinct 
boundary between squamous epithelium and underlying 
stroma.  Sensitivity and specificity of the OCT measurement, 
when blinded to other results, was 56% and 59%, respectively 
(77).  The only improvement seems to be in specificity when 
OCT is used as adjunct to visual inspection using acetic acid 
(VIA), where it improves the low specificity of VIA alone 
from 34% to 61% for VIA + OCT.  Sensitivity then is 76% 
for VIA alone, and 53% for VIA + OCT.  Zuluaga et al. (78) 
reported a correlation in the backscattering intensity of nor-
mal and abnormal tissue, but do not give detail on sensitivity 
or specificity of this marker.  Findings of a study with data 
from 212 patients resulted in the suggestion to use OCT for 
confirming positive colposcopic examinations prior to treat-
ment, in low resource settings (77).  Most studies used 2D 
images, such as shown in Figure 2, whereas state-of-the-art 
OCT is volumetric.  Imaging of the gastrointestinal tract has 
shown that 3 dimensional OCT gives a much better repre-
sentation of the microscopic organisation of tissue structures 
(79).  Lee et al. have undertaken a study on 18 subjects and 
imaged not only structural OCT volumes, but the polarization 
state.  It seems that the degree of circular polarization decays 
faster in progressed CIN, and quantifying this decay allowed 
discrimination of low grade and high grade lesions with up 
to 94.7% sensitivity and 71.2% specificity (80).  However, 
further structural markers that can be definitely correlated 
with CIN progression would be desirable.  In ophthalmology, 
OCT development could be targeted to successfully resolve 
the retinal layers.  In contrast, dividing the cervical epitheli-
um into basal, parabasal, intermediate, and superficial layers 
is a stratification based on relative cellular appearance; it is 
not based on a boundary of the organism as such.  In absence 
of clear structural markers, individual A-scans can serve as 
a measure for optical properties.  Algorithms to extract such 
features have been investigated (81, 82).  These algorithms 
require robust markers and need to be evaluated for larger 
sample sizes of clinically relevant groups (83).

In vivo probe design for volumetric data faces the challenge 
of guiding the laser beam accurately in 2-dimensions.  For 
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cardiovascular settings and imaging of the gastro-intestinal 
tract, helical scanning protocols exist to acquire tubular vol-
umes from within (84).  This could provide useful for imag-
ing of the endocervical canal.  Such instrumentation has the 
focal point at a distance relative to the helix axis, and has to 
assume a tissue surface with this cylindrical shape.  Where 
this is not the case, e.g., at folds, data will, therefore, be of 
reduced quality or missing.  This might be relevant when 
glandular carcinoma develops exactly in such folds.

Another approach, in addition to polarization sensitive OCT, 
to overcome the limited contrast for biochemical processes 
may be to combine OCT with fluorescence, and devices for 
such measurements have been built (85).  The diameter of 
the endoscopic device is 2 mm.  Technical challenges arise 
because OCT requires a focused beam, whereas fluorescence 
is designed to provide diffuse wide field illumination.  In vivo 
measurements on a mouse colon take 45 seconds for a 6 mm 
stretch.  The two modalities are not completely overlapping, a 
1300 nm OCT beam allows a ~15 μm resolution and penetra-
tion depth of about 1 mm, and the 325 nm excitation source 
for fluorescence penetrates approximately 200 μm into tis-
sue.  Housing both modalities in one system allows a reliable 
co-registration of measurements.  This addresses a major is-
sue for modalities at this level of resolution.  Measurements 
for cervical tissue have not been published, but fluorescence-
guided OCT has been attempted on other organs.

IR Spectroscopy

Mid-infrared spectroscopy (IR) measures wavelength-depen-
dent absorption properties by probing vibrating energy levels 
of functional groups and intermolecular interactions.  This 
is possible in molecules with an IR active dipole.  Fourier 
transform infrared (FTIR) spectroscopy is the standard IR 
method today but still often referred to as ‘FT’IR to empha-

sise the method of spectral data collection using FT interfer-
ometry rather than dispersion gratings.  For medical applica-
tions, near- or mid-infrared light (between 0.8 μm and 2 μm) 
sources give the best contrast.  In contrast to analysis of pure 
substances, spectra from biological tissue represent a mixture 
of all different molecules in the interrogated micro-volume.

The typical mode of operation is absorption spectroscopy, 
and in order to obtain representative signal-to-noise ratios, 
transmission measurements have to be taken from thin tissue 
sections or thin cell layers.  Initial publications are therefore 
on exfoliated cells (86).  A review with an emphasis on differ-
ent IR methodologies for cervical cancer screening has been 
published recently (87).  Wong et al. measured spectra from 
156 samples, categorising into normal, dysplastic, and malig-
nant (86).  They found that cancerous progression in mature 
epithelial cells, but also normal proliferation, go in hand with 
glycogen reduction, increased hydrogen bonding from phos-
phodiester groups, and a loss of hydrogen bonding in alcohol-
ic groups of amino acids.  Such features are intuitive as they 
represent energy demand and mitotic activity, and have been 
reconfirmed by subsequent studies on cytological smears (88-
90), cancer cell lines (91, 92), and tissue (93-96).

While peak ratios of glycogen/phosphate (decrease) and 
RNA/DNA (increase) seem to correlate well with prolifera-
tion of cervical epithelial cells, detecting a malignant candi-
date is more difficult.  An experienced spectroscopist might 
be able to interpret the shape of a spectrum or peak ratios, but 
this is not ideal for the diagnosis of precancer.  Chemomet-
rics can help giving a better estimation for classification (87, 
88, 95, 97, 98).  The investigation of IR for precancer assess-
ment coincides with the evolution of personal computers that 
facilitate such analysis.  Chemometrics provide objective 
and reproducible discrimination methods that are based on 
complex calculations, practically remove the need for staff 

Figure 2:  OCT cross section of cervical epithelium and stroma, obtained ex vivo in real time, using a 7.5 mm resolution frequency domain system operating 
at 1300 nm (Michelson Diagnostics EX1301 OCT Microscope, Michelson Diagnostics Ltd.).  The left side shows glandular epithelium of the endocervical 
canal, and a Nabothian cyst is visible.  Towards the right the squamous layer of the ectocervix is evident.  The bar measures 3 mm.
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training, and allow a statistical estimation in border areas.  
An appropriately trained classification model may be able 
to separate inflammation, endocervical cells, and bacterial 
infection (88, 99).  As with conventional cytology, debris, 
red blood cells, polymorph cells, endothelial cells, and other 
components can confound the analysis (91, 100).

Some of these findings deserve a closer look for their diag-
nostic value in addition to precancer staging.  The type of 
cells and their maturity state is of great importance, and the 
spectral signatures of immature, benign cell types can ob-
scure abnormal cells (99, 101, 102).  Sampling plays an im-
portant role and issues concern areas such as the origin of a 
sample (101), the homogeneity within the sampling volume 
(97), cell handling (88), or cleaning protocols (103).  Spectral 
signatures of cells change after two hours of being suspended 
in saline solution at room temperature (100).  Cells would 
therefore have to be stored at a defined low temperature, 
which for a large scale program would pose a logistical chal-
lenge.  Essentially, a protocol needs to ensure that it is valid 
to assume that: a proliferative signature within the sampling 
volume can be considered as a diagnostic factor for CIN.  
Still, in a study on 301 cytological samples, IR classified bet-
ter than cytology (98.6% sensitivity and 98.8% specificity vs.  
86.6% and 90.5%) (88).  The main potential for improvement 
derived from a study on 2000 cells of 22 women seems to be 
that cytologically or morphologically normal epithelial cells 
from abnormal smears have an abnormal biochemical sig-
nature (93).  In search for sampling types, lavage specimens 
have been investigated (104).  The issues with sample col-
lection and the performance were not convincing enough to 
replace smears; yet this sampling method was suggested as 
an alternative where smears are not possible.

Although IR is still being investigated for assisting cytology 
(105), it is not restricted to smear evaluation.  In combina-
tion with a stage, tissue mapping is possible.  IR systems 
can be designed for imaging in the sense that separate pix-
els are measured at the same time, rather than scanned se-
quentially.  In order to be able to assume a homogeneous 
sampling volume, this is done on a few micrometer thin tis-
sue sections.  Typical systems take about 20 minutes for 

500 × 500 μm area (IR microscopy or microspectroscopy).  
Preparation of thin tissue sections, which presents a main 
cause for delay in today’s routine, requires an effort quite 
comparable to conventional histopathology: obtaining the 
biopsy, embedding or freezing, slicing, transferring to slide, 
fixing and staining (90, 94).  Spectral differences in tissue 
are less pronounced than in exfoliated cells, but still allow 
good classification (102).  On the other hand, mapping over-
rides some of the difficulties of correctly locating a cell in its 
histological environment.  It allows characterization of the 
different cell and tissue types in cervical epithelium, such 
as cervical stroma, epithelium, inflammation, blood vessels, 
mucus, and abnormalities thereof (90, 94, 105, 107).  The 
key advantage of IR spectroscopy is the objective evalua-
tion to assist the histopathologist.  The false positive rates 
can be as low as 9.04% for CIN1 and 0.01% for both CIN2 
and CIN3 (108), or 0.04% (100) and can predict cancer in 
biopsies with 95% accuracy (95).

Wood et al. have taken this approach into the third dimen-
sion.  By stacking maps from several consecutive tissue 
sections they created a 3-dimensional stack (Figure 3).  The 
whole process from taking the measurement to multi-slice 
analysis and volume rendering was reported to last less than 
1 hour for a four-section model covering 1,400 × 1,400 × 
16 μm (109).  Automation for cytological or histopathologic 
examination faces veritable challenges and requires a stan-
dardized sampling protocol.  However, as a research tool it 
already has provided valuable evidence for understanding 
the biochemistry of precancer; and it can be imagined as an 
adjunct for ex vivo staging.

Raman Spectroscopy

Raman spectroscopy (RS) is the term for probing for inelas-
tic scattered light, the Raman-scattering.  RS differs from IR: 
IR spectroscopy probes for absorption caused by changes 
in dipole moment.  RS characterises molecules according 
to their change in polarisability, and aims to measure devia-
tions from elastic scatter.  Despite of these differences and 
although Raman spectra exhibit more complexity, evaluation 
and presentation of Raman data are similar to IR spectros-
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Figure 3:  Left side:  Mean IR spectra of different 
tissue types.  These can serve as a reference for un-
known spectra (multivariate models are more com-
plex).  Right side:  Volumetric presentation of consec-
utive IR-maps.  The shade of each voxel represents 
the classification likelihood for a type of cervical tis-
sue.  The volume measures 1,400 × 1,400 × 16 μm.  
Modified and reprinted with kind permission (109).
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copy (Figure 3).  RS and IR together are commonly referred 
to as vibrational spectroscopy (110).

Raman signals from tissue are weak and occur, for applied 
wavelengths and powers, statistically only one time for 1010 
incident photons.  Other effects easily cover a Raman signal, 
e.g., fluorescence is about a million stronger (111).  A sig-
nificant disturbance is fluorescence from biological tissues 
and from fiber optics (e.g., silica), and filter designs for con-
tribution of optics are a crucial component of in vivo Raman 
systems (112).  The near infrared range around 780 nm is 
typically used for fiber optics probes; but also ex vivo studies 
using UV light (254 nm) exist (113).  Fluorescence, which 
occurs at the same wavelength range as the Raman signal, 
cannot be filtered out using normal filter design, and may re-
quire baseline subtraction (114).  Cross talk is also the reason 
why 2-dimensional Raman data are mapped, rather than im-
aged.  Lack of photons makes RS a much slower technology 
than IR, and novel approaches that remove delays in stage 
movement and CCD readout have a huge impact on scanning 
speed (115).  Systems employing time resolved technology to 
‘time-gate’ out the fluorescence signal require sophisticated 
hardware that can occupy a large room (116).  Although near 
IR light would penetrate deeper into tissue, it is estimated 
that a good Raman signal-to-noise ratio from cervical tissue 
is only obtained from epithelial layers (117).

Raman active molecules and chemical groups allow char-
acterizing the presence, quantity, and composition of tissue 
(118).  Suggestions for using this technology to distinguish 
abnormal and normal tissue of the gynaecologic tract were 
mentioned in 1992 (119).  Results from a system using a 
254 nm light source on cell suspensions, allow distinction of 
normal from malignant cells due to peak ratios from differ-
ent nucleic acid contents (113).  Recent studies use near IR 
lasers.  Ex vivo tissue samples (36 biopsies of 18 patients) 
could be classified as precancerous or normal with 82% sen-
sitivity and 92% specificity (120).

Results can be obtained from IR-inactive molecules and can 
be quite complementary to IR spectroscopy.  However, the 
methods for statistical analysis of spectra are similar (121).  
Utzinger et al. used peak ratios of cervical tissue spectra to 
distinguish normal from dysplastic areas (122).  Diagnosti-
cally significant molecules were demonstrated to be DNA, 
phospholipids, and collagen (122).  Analysis of characteris-
tic peaks and fingerprint regions agrees with the biochemi-
cal picture provided by IR spectroscopy (86): basal cells 
show characteristic bands of nucleic acids, epithelial cells 
show high levels of glycogen in normal cells.  Decreased 
levels of glycogen and increased levels of DNA and amino 
acids in epithelial layers are a feature of cancerous cells 
(117, 121, 122).  A study on three cell lines (keratinocytes 
representing normal, HPV16 – infected keratinocytes, and 

a cervical cancer cell line), was able to distinguish pairs of 
these lines with 70-100% sensitivity and 70-90% specific-
ity, i.e., also those cells regarded as normal but expressing a 
viral protein from normal ones (125).  The larger variation 
occurred for live cells; the model designed for fixed cells 
had a sensitivity of 93-100%.

In contrast to IR spectroscopy, in vivo probe systems that can 
probe for the biochemical changes exist and have been used 
for RS (126).  In vivo results differ from ex vivo measure-
ments, but are still able to discriminate healthy or squamous 
dysplastic tissue (123).  Databases from ex vivo tissue spectra 
can, however, not easily be used for designing in vivo dis-
crimination models.  Although spectra from formalin fixed 
discriminate well (127), they are not comparable with fresh 
tissue: In fact, RS is so sensitive to embedding resins that 
it proved useful for characterizing the efficacy of dewaxing 
agents (128).  Hence, Raman pilot studies should be per-
formed in an environment the actual system is intended for: 
fresh tissue for in vivo applications (129), or on fixed cells 
for cytological measurements (125).  Keeping this consid-
eration in mind, RS can be used for both in vivo and ex vivo 
measurements of biochemical constituents.  RS requires re-
duced ambient light to minimize spectral contributions.  Tak-
ing measurements in a dark room or using a covering cloth 
can address this issue (122).  Recent in vivo probes require 
few seconds for measuring a (point-) spectrum and can be 
considered real-time (111, 124, 130).  In vivo mapping seems 
unlikely due to these time requirements, and exactly locating 
the measurement on the cervix is necessary.  Even although 
motion artifacts could potentially be addressed by image reg-
istration methods (131), the length of the procedure would 
still have to be kept on an acceptable level for patients.

The available tissue studies restrict themselves to classifica-
tion between normal and high-grade or cancerous samples: 
Krishna et al. (117) investigated 150 biopsies, distinguishing 
normal vs. malignant tissue nearly 100% correct.  Lyng et 
al. (123) subjected histological samples from 40 patients to 
classification.  Raman signals from CIN samples lie between 
normal and cancerous tissue, and can be distinguished with 
nearly 100% sensitivity and specificity.  CIN was not further 
staged and the clinically relevant distinction between CIN1 
and CIN2/3 was not addressed in this paper.  The latest in 
vivo study on data from 66 patients showed that RS has 89% 
sensitivity and 81% specificity to distinguish high-grade 
dysplasia from benign tissue, higher than the colposcopy for 
these cases (87% and 72%, respectively) (124).  Here the 
classification performance against low-grade dysplasia was 
attempted; because of the small sample size (6 spectra) in 
that group the model cannot be considered strong.  The intro-
duction of new statistical algorithms for classifying spectral 
variations of disease groups might help improving the clas-
sification performance and is an active research field (132).
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RS has further attractions: The technical feasibility of depth 
probing Raman signals has been displayed repeatedly (116, 
133).  The possibility of probing biochemical processes 
opens another field: While the other modalities give a di-
agnostic snapshot at the time of the measurement, RS could 
potentially provide a prognosis (134).

Discussion

Emerging technologies are leading to the possibility of a 
real-time, minimally invasive assessment of early cervical 
disease.  Table II summarizes how the discussed technolo-
gies provide information on structure which correlates with 
histology and cytology, or on molecular composition that can 
be explained with knowledge of biochemical processes.

The differences in cervical epithelial cells that are surrogates 
for determining the malignant potential of a lesion are sound: 
size and shape of cells will alter the way light is reflected and 
scattered, different concentrations of cell components will 
result in different amounts of absorbance and transmission, 
and different amounts of fluorescent biochemical constitu-
ents would show semi-quantitative emission patterns.

Let us remind the reader that colposcopy itself is an assess-
ment of the visual appearance of different types of epithe-
lium, in order to obtain a combination of optical diagnos-
tic markers: A typical examination refers to interaction of 
white light as seen under a microscope, and makes use of 
contrast agents for proteins (acetic acid) and glycogen (io-
dine).  The visual impression contributes to the prognosis 
of CIN progression.  However, the correct interpretation is 

based on the expert opinion of the clinician.  In addition, ac-
eto-whitening and iodine staining are not 100% correlated 
with the cancer risk.

Yet although markers for an increased proliferative behavior 
are intuitive, it remains difficult to directly conclude an in-
creased risk of cancer progression from them.  Better under-
standing even a rather defined entity as cervical cancer is chal-
lenging, and even more would be developing an appropriate 
a priori model for cervical cancer.  For a complex system like 
human tissue, data evaluation requires multivariate statistics, 
and data reduction techniques.  Inevitably, a reference in the 
form of databases has to be established in large clinical trials.

Combining reflectance spectroscopy and fluorescence imag-
ing has shown that non-destructive testing of epithelium is 
possible and such systems are close to commercialization.  
Based on available trial data, these systems seem to increase 
the sensitivity for CIN2/3 on the expense of a reduced speci-
ficity for CIN1.  However, their advantage lies in the objective 
judgement, which does not require the immediate expertise 
of a trained colposcopist.  In this context, when regarding a 
spectral pattern as suitable for discrimination, it is not the raw 
spectra, but the classification model based on them, which is 
used for discrimination.  Therefore, the choice of statistical 
classification might well influence the performance.

Although systems utilising reflectance spectroscopy and 
fluorescence are near commercialization, they are not 100% 
definite in diagnosis (135, 136).  They are consequently po-
sitioned as adjunct for colposcopy, in order to guide biop-
sies.  For better classifying disease and underlying mecha-
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nisms, it might however be beneficial to directly measure 
biochemical constituents and their relative concentration, or 
subcellular and sub-surface structure.  High resolution mo-
dalities, which are being actively developed, might be able 
to address these issues.  For high resolution in vivo measure-
ments, it is important to realize how large the required area 
would be: Studies show that the radial location of a lesion 
on the cervix is random (137), and evaluation of the 2002 
screening protocol of the International Federation for Cervi-
cal Pathology and Colposcopy showed that classifying the 
extent of a lesion (minor or major) and the localization of 
a lesion in respect to the TZ – which is changing for each 
patient – are important for correct classification at the stage 
of colposcopy (13).  Therefore, tools aiming to replace col-
poscopy need to image the entire cervix surface.

Justification for Continuing Research on Cervical Cancer 
Prevention in the Prospect of HPV Vaccination

With the availability of FDA-approved vaccines, which are 
aimed against the Human Papilloma Virus (HPV), there is 
now a prospect of having a new means of tackling this dis-
ease: A vaccination against cancer.  These vaccines can be ex-
pected to reduce cervical cancer linked to HPV strains 16/18.  
These are the two most common genotypes of HPV in pre-
cancerous lesions and account for an estimated 70-75% of all 
cases (6, 138).  However, the aetiology of cervical cancer can-
not be reduced to infection by these two strains.  The vaccine 
is prophylactic, which requires an individual not to have been 
exposed to these HPV strains prior to vaccination (139).

It remains to be observed whether the currently available 
HPV vaccines will eradicate cervical cancer.  The “ESGO 
statement” of the European Society of Gynaecological 
Oncology statement reiterates that carefully conducted re-
search and long time monitoring will remain necessary be-
fore HPV vaccination schemes may lead to a change in pres-
ent cervical cancer prevention programmes (140).  Neither 
HPV nor CIN are the actual disease that causes worry.  It is 
the higher risk of progression to cancer that is of concern.  
Disease management, including screening, superficial as-
sessment, and subsurface examinations as part of precancer 
prevention will remain necessary.
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Abstract The native contrast of optical coherence tomography
(OCT) data in dense tissues can pose a challenge for
clinical decision making. Automated data evaluation is one
way of enhancing the clinical utility of measurements.
Methods for extracting information from structural OCT
data are appraised here. A-scan analysis allows character-
ization of layer thickness and scattering parameters, whereas
image analysis renders itself to segmentation, texture and
speckle analysis. All fully automated approaches combine
pre-processing, feature registration, data reduction, and
classification. Pre-processing requires de-noising, feature
recognition, normalization and refining. In the current
literature, image exclusion criteria, initial parameters, or
manual input are common requirements. The interest of the
presented methods lies in the prospect of objective, quick,
and/or post-acquisition processing. There is a potential to
improve clinical decision making based on automated
processing of OCT data.

Keywords Biomedical image processing .

Biomedical optical imaging . Image analysis .

Image classification .Medical diagnosis

Introduction

Optical coherence tomography (OCT) is an imaging
modality based on low coherence interferometry and is
frequently compared to ultrasonography. Typical light
sources operate in the near infrared range and allow

location of a reflection event with an accuracy of a few
micrometers on an axial scan (A-scan). Several A-scans can
be combined to a two-dimensional (2-D) image (B-scan) or
volumetric sets [1]. Penetration depth and resolution of
OCT fit between confocal microscopy and high frequency
ultrasound. Specifically in the medical field, this non–
destructive imaging is attractive [2]. Through rapid high
resolution imaging, detailed structural information becomes
available—in vast datasets.

Structural information is often intuitive to view, as
shown in Fig. 1. Strictly speaking, however, an OCT image
might not be relevant in itself. For clinical diagnosis, a new
repertoire of image interpretation skills and artifact knowl-
edge is necessary, which constitutes a learning threshold for
the intended operator. There are, therefore, efforts being
made to provide more than a structural image alone.

Challenges with optical coherence tomography

Contrast

In dense tissue, characteristic limitations of OCT are the
penetration depth in the magnitude of 1 mm and the mode
of contrast, created by the variations of the refractive index.
This native contrast can be weak, especially when com-
pared with that of other non-destructive high-resolution
methods. For example, fluorescence imaging or Raman
spectroscopy are able to pick up single molecules or
alterations of protein structures [3, 4]. OCT has advantages
over these techniques: it is able to maintain the high
resolution over a large area; it is able to provide depth-
resolved high resolution in vivo; and the requirements of
OCT instrumentation subsequently mean that OCT does not
rely on imaging conditions such as reduced ambient light.

Since it would be attractive to have the combination of a
strong marker and wide-field, high-resolution, depth-
resolved, rapid data acquisition, there are efforts being
made to engineer multimodal systems [5, 6]. Equally
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importantly, attention is being brought to improving clinical
contrast in OCT data: contrast agents have the potential to
provide a clear signal for clinical decision making and have
become quite a large research field [7, 8]. In addition to the
structural characteristics, OCT data can provide functional
information. Functional OCT imaging includes Doppler
OCT, polarization-sensitive OCT, second-harmonic OCT,
or spectroscopic OCT. These carry the potential for
providing physiological information about flow properties
[9, 10], birefringence [11, 12], neural activity [13, 14], or
water content and oxygenation states [15, 16].

Automated data evaluation

A further approach to enhance clinical utility is to analyze
OCT data by computational methods. This area has the
potential to provide unsupervised, reproducible and objective
measures and to provide both quick and/or post-acquisition
classification. When engaging ourselves in this field, we
found that research groups tend to use different approaches,
and the emphasis is often on image acquisition rather than
data analysis. As OCT is a novel technique, there is still a
tendency for the OCT image to be treated as a result rather
than as a step towards a clinician decision following detailed
analysis. Subsequently, in some papers, the authors even
describe their analyses in the results section. We wanted to
investigate whether there is a common pattern or ideal
algorithm that could be suggested for further research.

Rationale and limitations

The topic of automating OCT data evaluation has to be seen
in context with other contrast-enhancing approaches.
Algorithms can fail, and a clear marker, be it from contrast
enhancing or functional data, will facilitate processing. In

this manuscript, we want to concentrate on automated
algorithms for retrieving information from conventional
‘intensity’ data. We therefore refer the reader to the above-
mentioned literature for more detail on functional OCT and
contrast enhancing. Even when limiting ourselves to
structural data of dense tissues, we certainly cannot claim
to provide an exhaustive summary of every attempt so far.
However, with this manuscript, we would like to provide a
starting point from where further analysis attempts can be
systematically explored and combined with other image-
enhancing methods for OCT.

Selection

Table 1 gives an overview of the approaches discussed in
this manuscript. In general, automation requires recognition
of relevant features. The identification of such a feature has
to be mastered by an automation algorithm, which requires
calculation time and has the potential to introduce errors.
The grouping in Table 1 is somewhat arbitrary; e.g., most
of the texture-based approaches are subsequently classified.
However, Table 1 shows, for instance, that A-scan analysis
renders itself to the measurement of layer thickness or for
the derivation of optical tissue parameters, while B-scans
permit speckle and texture analysis.

Bulk optical properties

Quantitative measurements from OCT data are a first step
for establishing parameters and features for automation.

Quantitative measures

Examples of quantitative measurements from OCT data are
work on the scattering properties and refractive index of

Fig. 1 Left B-scan of an esophageal biopsy specimen, of approxi-
mately 2 mm×2 mm size, obtained ex vivo by a 7.5 μm resolution (in
air) frequency domain system operating at 1,300 nm (Michelson
Diagnostics EX1301 OCT microscope, Michelson Diagnostics Ltd.).
The faint tissue layers make it difficult for one to decide whether clear
layers are amiss due to weak contrast or because of the clinical

presentation of the disease. Right En face sub-surface section, viewed
from the top, of a volumetric data set composed of 500 such B-scans.
The improved representation, as opposed to 2-D images, is evident.
The raw data require several gigabytes of memory. The clinical
requirement for this technique would be to contribute to diagnosis and
determine whether the patient should receive cancer treatment
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skin [17] and tissue [18], monitoring of blood glucose
levels [19], differentiation of atherosclerotic arteries [20]
and brain tissues [21, 22], or the determination of optical
parameters of cervical tissue [23].

Blood glucose

The monitoring of blood glucose levels is a challenging topic.
Esenaliev et al. report an inverse association between the
slope of an averaged A-scan and the blood glucose concen-
tration [19]. As the sample properties are being related to
OCT data, it is possible to determine and classify them
automatically. In the original paper, the way of determining
the slope has not been described in detail. In a more recent
publication a strict imaging protocol ensures tight contact of
a sapphire glass window as part of the probe tip with the
tissue surface. This allows one to set the maximum peak of
an A-scan as the approximate surface point, which is a
prerequisite for the slope determination [24].

Atherosclerotic lesions

Levitz et al. presented an algorithm for determining the
scattering coefficient, μS, and the anisotropy factor, geff, from
regions of interest [25]. For the measurement, the average A-
scan of a region of interest (ROI) area was calculated and
further smoothed by a median filter. In order to allow
averaging, the biological specimens in this study were placed
under a glass surface. The ROI had to be selected manually
for this algorithm. This algorithm was tested for differenti-
ation between normal and atherosclerotic arteries. There
were 151 ROIs from 14 images that could be classified into
four clinically relevant disease states. An algorithm presented
by van der Meer et al. in a proof of principle study on 20
lesions in 13 samples showed that the light attenuation
coefficient μt differs for lipid-rich regions, media, calcifica-
tions, and thrombi in ROIs [20]. There is no mention of how
the ROIs were selected, and presumably this was done
manually. An interesting aspect is that the approach allows
localized determination of μt and visualization as overlay
over the B-scan, thereby providing differentiation that would
not be obvious from the intensity image.

Brain tissue

Jeon et al. used the maximum reflectance intensity and
attenuation rate of the mean of five A-scans to determine the
different properties of different brain tissue types of rat brain.
Distinguishing white and gray matter might contribute to
guiding deep brain stimulation probes in treatment scenarios
[21]. The study was performed on 19 manually selected
ROIs of three images in total. However, four tissue types
(hippocampus, primary somatosensory cortex barrel field,

external and internal capsule region, and optic tract area)
were shown to have different optical properties. A different
approach was suggested by Ramrath et al.: by a three step
procedure, areas within an A-scan that contain white matter
are identified [22]. The essential step to recognizing a white
brain matter peak amongst speckle noise is to transform the
A-scan using a nonlinear-energy operator and a shift-and-
multiply operator. Both are discrete counterparts of more
complex operators and provide candidates for spikes, i.e.,
unlikely intensity peaks, amongst noisy data [26]. The
identified spikes are validated by matching the attenuation
coefficient μt within a window after this spike to a reference
value for white brain matter. The reference coefficient needs
to be provided, e.g., determined manually, but there is no
requirement for a pre-defined surface or an ROI. Both
approaches were demonstrated on images from small animal
tissue. The difference in size from that of a human organ
might pose a challenge.

The above-mentioned publications have to be seen as
examples for a wealth of research communications treating
the determination of optical properties using OCT. The
crucial point of automation seems to be how to determine
the ROIs, or to have prior knowledge about a pronounced
feature. Databases of such properties may well serve as
references for automated tissue characterization.

Epithelial neoplasia

Turchin et al. assessed the scattering behavior of phantoms
and cervical tissue with progressing malignancy using
various parameters that included total scattering coefficient,
variance of a small-angle scattering phase function, and the
probability of backscattering [23].

They noted that for the classification of epithelial
images, layer disruption is not well associated with
progression of pre-cancerous lesions. Continuous layers
can be seen in healthy and dysplastic tissue alike, and they
can be absent in leukoplakia, metaplasia, and neoplasia.
They proposed an algorithm which reconstructs scattering
properties of the sample. Three parameters, the total
scattering coefficient, μS, the variance of a small-angle
scattering phase function, γ2, and the probability of
backscattering, pb, together describe the signal as a function
of depth. For a single-layer model, these parameters allow
classification in the absence of layers. The calculation for
many layers then becomes complex, but, for two-layer
samples, the computational effort appears to be manage-
able. A restriction is that there is an assumption that layers
are parallel to the surface. In an approximation, epithelial
tissue can be regarded as two parallel layers. Turchin et al.
created single-layer and two-layer models. Proof of principle
was displayed on tissue phantoms consisting of polystyrene
beads (0.14 μm, 1 μm, and 4.75 μm) suspended in water or
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glycerol. In addition to the tissue phantoms, the paper
mentions that medical data from two clinical centers were
used to evaluate the algorithm. However, only the results for
19 images from one patient are shown.

Their paper did not specify how images were selected
for either the single-layer or two-layer model, or how well
the algorithm works for multiple patients or on samples
where the precancerous lesions were unknown prior to
collection of the OCT image. Such a proof of principle is,
however, an important step in the realization of a clinical
classification tool.

Texture and speckle analysis

The information from OCT images does not exclusively
consist of evident structure. Speckle noise carries character-
istics which can be exploited for classification and even
semi-quantitative analysis [27, 28]. This allows determina-
tion of properties of homogeneous bulk solutions of particles
smaller than the resolution in the absence of intuitive
structural information. Table 2 gives an overview of methods
which classify OCT data on the basis of B-scan texture.

Speckle patterns

In early work, Hillman et al. attempted to establish a
correlation between speckle and the concentration of
scatterers (polystyrene microspheres) within the probe
volume [28]. The reference for the axial depth of a signal
was the bottom of the sample–glass slide interface.

Work by Gossage et al. was based on the fact that
collagen does not show structural features on conventional

OCT because of speckle [27]. Speckle noise, however, does
carry information from sub-resolution features. The two
representative measures for an image were (1) the spatial
gray-level dependency matrix (SGLDM) and (2) a deriva-
tive of the complex 2-D Fourier transform of a selected
image region. The SGLDM, in short, is a measure of the
likelihood of a pixel of a defined gray-level to be in the
vicinity of another pixel of a defined gray-level. This then
can be expressed by various parameters, e.g., energy,
entropy, correlation, local homogeneity, or inertia.

‘Brodatz’ images are photographs of textures, and they
are commonly used in texture analysis [29]. Nine Brodatz
test images of specified texture and ten images each from
four types of animal tissues (skin, fat, normal lung,
abnormal lung) were randomly split into training and
classification sets. A Bayesian classification model selected
the three best out of 24 total parameters. They were then
classified according to their Mahalanobis distances. Mean
classification rates ranged from 37.6% to 94.8% for a three-
group tissue model, from 64.0% to 98.5% for two-group
tissue-models, and from 97% to 100% for the test images.
In a more recent study, Gossage et al. showed the ability to
classify phantoms consisting of particles of sub-resolution
size with the same method [30].

Macrophage density

Macrophages play a role in inflammation and tissue degrada-
tion and are investigated for their role as contributors to
atherosclerotic plaque rupture. Macrophage density could be
an indicator for vulnerable plaques. Macrophages have a size
of 20–50 μm and produce a distinct scattering signal in OCT
images. MacNeill et al. automatically measured the macro-

Table 2 Overview of approaches for classification on the basis of texture (ANOVA analysis of variance)

Parameter Gossage et al. [27] MacNeill et al. [31] Qi et al. [32] Lingley-Papadopoulos
et al. [34]

Objective Classify 4 animal
tissue types, tissue phantoms
and texture images

Macrophage density
as measure for plaque
vulnerability

Classify pre-malignant
esophageal lesions

Classify pre-cancer
of the bladder

Valid images 40 160 of 225 106 of 405 182
Pre-processing • Logarithm • Median filter • Manual cap removal • Bimodal histogram

to determine noise
background

• Normalization • Bimodal segmentation • Binary threshold • Binary threshold
• Histogram equalization • Center-symmetric

autocorrelation
Feature(s) Spatial gray-level dependency

matrix, 2-D Fourier
transform

Normalized standard
deviation

Textural features (intensity
differences of center pixel
from its 8 neighbor pixels)

74 texture features
reduced to 18
independent
features

Classification Mahalanobis distance Statistical, ANOVA “Computer aided diagnosis” Discriminant function
and decision tree
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phage density from OCT images [31]. The study consisted of
225 images from 49 patients. Sixty-five of the images were
of insufficient quality for analysis and, hence, were manually
excluded, leaving 160 images for analysis. The automated
segmentation was performed by separation of a bimodal
histogram. The normalized standard deviation of the signal
intensity was calculated from this segmented area and found
to correlate with macrophage density, thereby serving as a
potential predictor for unstable plaques. Whilst the automat-
ed algorithm works on selected images, an operator would
still have to select suitable images. As the authors themselves
state, this could be a source of bias.

Epithelial lesions and pre-cancers

Qi et al. used center-symmetric autocorrelation on endo-
scopic OCT images to recognize automatically the clinically
relevant features of Barrett’s esophagus, which is a pre-
cancerous condition of rising importance in the Western
world [32]. Their data consisted of 405 images from 13
patients; however, only 106 of these images were used for the
study. The presented algorithm required manual removal of
the probe cap from the image. The image was then globally
thresholded with a binary mask to remove noise areas. This
pre-processed image served as the substrate for the extraction
of six statistical textural descriptors for the distribution of
pixels, and pixels of similar value on an image. These six
parameters, as well as two principal components of them,
were analyzed for their correlation with disease status using a
“computer aided diagnosis” which was not further specified.
The best results were obtained from the local intensity
variation (of one pixel and the surrounding eight pixels) and
the between-pair intensity variation. The scores from the
principal components analysis (PCA) gave poorer results than
did the original six parameters.

A study by Chen et al. used 100 images, of normal tissue
and of Barrett’s esophagus, imaged with both standard
resolution and ultra-high resolution (UHR) OCT, using the
discriminatory power of textural features between these
disease groups, in order to establish whether there is a
statistical measure to quantify the difference between normal

and UHR OCT images [33]. The textural features were
calculated from ROIs whose selection was not further
specified. Features were reduced to two principal compo-
nents, which were used for the determination of two linear
discriminants. The scores showed that UHR images provide
a better basis to discriminate normal from dysplastic
esophageal epithelium. These data were not cross-validated
and, therefore, provide a distance measure, not a prediction
on the performance in clinical staging.

Lingley-Papadopoulos et al. used texture features to
assess a progressing lack in structure which may be
indicative of bladder cancer [34]. In their study, 18
independent texture features, identified from a pool of 74
features, were used to discriminate 182 images of pre-
cancerous stages of the bladder, and achieved a sensitivity
of 92% and a specificity of 62%. These studies have in
common that the textural features are classified using a
discriminatory function. More attention to classification is
given later in this manuscript.

Segmentation

The vast majority of the literature cited so far relies on
manual selection of an ROI or some knowledge about a
reference point from which to calculate optical tissue
coefficients. Work towards automated segmentation and
thickness measurements has been undertaken for cartilage
thickness [35], epithelial thickness [36, 37], and sub-surface
layer assessment [38], thereby providing a clinically
relevant measure rather than a set of images. Table 3 shows
a comparison of their approaches.

Layer thickness

Gambichler et al. reported two ways for determining epithelial
thickness [37]: (1) the averaging of several A-scans and
taking the first peak–valley distance as thickness measure.
This requires a second peak to be present, and the authors
reported that 40% of their A-scans had to be excluded from
analysis for this reason. This approach is automated but has

Table 3 Comparison of approaches in the automated recognition of dense tissue layers

Pre-processing Gambichler et al. [37] Rogowska et al. [35] Weissman et al. [36] Korde et al. [38]

Feature enhancement Averaging Rotating kernel transformation Factor analysis de-noising
Tilt/slant image

Median filter

Feature recognition Peak–valley distance,
or area

Sobel edge detection Shapelet convolution
(several shapes)

Sobel edge detection,
skeletonization

Correction – Edge linking cost function Least median of squares Linear interpolation, rule
for multiple candidates,
exclusion of top 10
(artifact-rich) pixels
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poor correlation with histopathology; hence, it was deemed
to be unacceptable for clinical application by the authors; (2)
the manual encircling of the epithelium and the determina-
tion of the average thickness geometrically by division of the
area by its length. This approach is not automated, but,
provided that the epithelium can be marked by a thresh-
olding approach similar to the macrophage approach, it
would carry the potential for automation.

The work of Rogowska et al. can be regarded as pioneering
in dense tissue segmentation from OCT images [35]. They
have introduced and explored the rotating kernel transfor-
mation (RKT) filter for speckle treatment [39]. The RKT
filter emphasizes straight lines within the intensity image and
facilitates characterization of the surface and lower boundary
of a cartilage layer [40]. It is, however, computationally
expensive; edge linking methods can correct for errors. The
edge linking used in this approach is semi-automated as it
requires start and end nodes to be set manually.

The approach of Weissman et al. aims to recognize the
dermis–epidermis junction by convolution with various
shapelets (functions based on a Gaussian curve) [36]. Since
the contrast of epidermal OCT data was not suitable for this
surface recognition, transformed tilt and slant image
representations were used instead. Several length scales of
the Gaussian shape ensured good convolution results for
varying shapes. This pool of convolution results then
allows exclusion of outliers, and the optimal candidate for
the position of the junction is determined by a least median
of squares function. Since several shapes can be adapted for
convolution, this approach is not restricted to tissue
interfaces and two-dimensional scans.

While both approaches are fully automated, it seems
interesting that they were not applied in the more recent
works of Gambichler, or compared with each other. This
indicates that, although the methods seem to work well in
the way they are presented by the authors, they are not
straightforward to implement.

Korde et al. have worked towards differentiating skin
lesions from actinic keratosis, a precursor of squamous cell
carcinoma [38]. Their algorithm utilizes parameters obtained
from edge detection and employs a surface recognition
algorithm. The slope of the mean A-scan is taken as
representative of the ‘average skin attenuation.’ The very
surface pixels are excluded from this fit, as they generally
contain strong reflection features. A second structural feature
was obtained by using vertical Sobel edge detection, which
emphasizes horizontal lines. Short edge lines were likely to
stem from noise and were therefore excluded. The number of
remaining pixels was defined as ‘horizontal edge detection’;
this could be characterized as a ratio of cohesive layer
boundaries per image area. Whereas the ‘average skin
attenuation’ did not show a significant correlation with skin
lesions, the ‘horizontal edge detection’ had a sensitivity and

specificity of 73% and 65%, respectively, for recognizing
actinic keratosis.

Ophthalmic layers

In ophthalmology, the many interfaces between air, corneal
structure, vitreous humor, and retinal layers provide strong
OCT contrast. The eye is an ideal organ for OCT imaging,
owing to its optical properties and layered structures which
are thin enough to allow full penetration and are yet wide
enough for full resolving. Being able to observe such layers
has revolutionized ophthalmology. By providing a means of
automating layer recognition and providing a means of
objective classification it is possible to enhance the clinical
benefit of these features in the process of clinical decision
making. Clinically important features are corneal thickness,
retinal damage, and damage to the fovea or optic nerve,
and, hence, efforts have been made to characterize data
automatically.

The success of OCT in ophthalmology might be best
illustrated by the progress in automated analysis, which has
no equivalent in dense tissue measurements: As an example,
we would like to cite the work of Fernández et al., who have
demonstrated that seven layers of the retina can be readily
characterized from ophthalmic images and that the retinal
layers can be registered from the anterior and posterior sides
[41]. Data processing follows an extensive protocol. A
threshold cut-off value is used for noise reduction,
followed by complex diffusion filter for speckle suppres-
sion. From this image the structure–coherence matrix of
the image is obtained. The internal limiting membrane is
determined by the first inner peak, and the retinal pigment
epithelium is determined by the maximum outer peak.
Further peaks are correlated with the remaining layers.
Outliers are corrected by linear interpolation. This algo-
rithm worked reliably for data from 72 healthy subjects. It
can fail in abnormalities where initial assumptions on
layer composition are not met. However, it allows the
automated generation of 2-D thickness maps of separate
retinal layers and, therefore, also longitudinal and obser-
vational studies. The authors point out that this study has
to be seen as an example for segmentation algorithms for
retinal layers, and the analysis and comparison of them
would probably merit a separate review.

Segmentation of dense tissue

Hori et al. automated the registration of the infundibula in
skin, which are being investigated for their role in the
development of acne [42]. They performed the surface
recognition by assuming the maximum peak as the surface.
This was corrected by a median filter and a so-called Olympic
exclusion (which excludes a set amount of minimum and
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maximum values regardless of their being outliers or not). The
epidermal junction is defined as the first intensity minimum
between the first two maxima of an A-scan.

Both values, surface and epidermal junction, were
smoothed with a polynomial function to provide a thickness
map of the epidermis. Whilst in comparison with the more
sophisticated shapelet approach this seems to yield rough
results, Hori et al. claim that the difference between their
uncorrected points and the fitted curve was within the
magnitude of their system resolution [42]. Such a finding
opens the question of whether a (computationally expen-
sive) correction would by necessary in the first place.

After establishment of the epidermal thickness, a band
(volume) below the epidermis was defined. This band
was then treated as an en face image; a ‘shadowgram’ of
this image was characterized by thresholding. From the
resulting binary image, infundibula were then character-
ized as circular structures and extracted with the
Danielsson distance mapping algorithm [43]. Distance
maps, or distance transforms, are representations of
Euclidean distances in a different parametric ordinate
system. This facilitates the finding of set geometries, in
this case circles on a 2-D image.

The algorithm is able to deliver epidermal thickness
parameters of the imaged volume as well as distribution of
infundibula. The surface of such a volume covered 4 mm×
4 mm; however, no information about the speed of the fully
automated algorithm was given. Simplifying the determi-
nation of the epidermal thickness in contrast to the shapelet
analysis by Weissman et al. [36] seems to work well on the
volumetric data.

Bonnema et al. used a protocol to determine stent
endothelialization on blood vessel mimics [44]. The clinical
interest is to monitor the coverage by endothelial cells under
different growth conditions. An algorithm thus has to
distinguish between a superficial stent, an overgrown (sub-
surface) stent, and tissue without a stent mesh. A strut cross-
section provides a round shape with a diameter of a few pixels
on a B-scan. Characteristic reflection and shadow artifacts
from the strut can be exploited, although the protocol remains
an extensive set of rules. Briefly, a combination of thresh-
olding and median filtering allows one to determine sharp
(strut) peaks and surface peaks amongst artifacts from debris
and reflection. This fully automated approach shows a way of
providing clinically relevant information without the need for
assessing separate B-scans.

Classification

We have already mentioned quantitative measures which
seem fit for automated classification. An autocorrelation
score can be suitable for expressing the likelihood that an

expected shape will correlate with an OCT image. When a
relation is complex, statistical tools can become essential
for automated classification. There are many reduction
and clustering algorithms, such as least median of
squares, PCA, genetic algorithms, or linear discriminant
analysis (LDA).

It is common practice to express the likelihood that a
data point will belong to a group as a Mahalanobis distance.
This is a score representing the distance between groups,
taking into account the distribution of data points of one
group. These techniques can be combined, or applied in a
decision tree. For example, the structural features obtained
by Lingley-Papadopoulos et al. were differentiated in a
decision tree, where, in each step, a two-group classifica-
tion model was designed [34].

Autocorrelation scores of an A-scan with itself have
been shown to characterize spoof fingerprints [45]. Finger-
print dummies are created from materials like wax or
silicone rubber with a plasticine mold. These materials are
homogeneous and, therefore, they have rapidly decreasing
correlation scores. For fingerprints, de-correlation happens
as well, less strongly, and this difference is clear enough to
distinguish artificial material from human tissue. There is
no mention of how exactly the area of an A-scan is selected
for autocorrelation, and, hence, we assume that this was
done manually. However, the surface peaks of both spoof
fingerprint and tissue can be expected to be pronounced and
distinguishable, which should make it possible to automate
layer recognition.

Weissman et al. used PCA to compare the agreement of
their surface recognition algorithm with the line drawn by
human operators [36]. Chen et al. used a combination of
PCA and LDA to compare the performance of two
systems with different axial resolution [33]. These studies,
rather than assessing clinical parameters such as sensitivity
and specificity, used classification as an objective perfor-
mance measure. Qi et al. used PCA for reducing six
statistical measures for texture features to two principal
components, PC1 and PC2 [32]. As mentioned before, this
approach did not provide a benefit over the use of the six-
dimensional data.

Glaucoma

Again, we refer to ophthalmology for what is possible
when feature parameters are readily available. In order to
differentiate normal eyes from glaucomatous eyes, Huang
and Chen applied several classification methods [46]:
LDA, Mahalanobis distance (MD), artificial neural net-
works (ANN), and combined PCA/LDA, PCA/MD, and
PCA/ANN. The parameters for classification were
extracted from a set of 25 morphological parameters
(retinal thickness and size). The study involved scans
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from 89 participants. Inclusion requirements for analysis
were that 100% of the A-scans had to be of good quality
and above a specified signal-to-noise ratio (SNR), and one
of the features (cup/disc ratio) had to be big enough for
automated detection.

This is noteworthy with respect to dense tissue
assessment: Even though this classification approach
was developed for images which usually allow the
extraction of a wealth of morphological parameters,
some images did not meet these criteria. In dense tissue
OCT imaging, outside the ophthalmologic field, it is
even less likely to encounter specimens which show a
layered structure to this extent. As shown above, the
characteristics of dense tissue layers pose a much
greater challenge for reliable demarcation. This might
be one reason why, in dense tissue imaging, textural
features are candidates for classification.

Skin cancer

Jørgenson et al. used 14 image features which were fed into
a support vector machine model to classify actinic keratosis
from basal cell carcinomas [47]. Although the approach
managed to classify 60 of 78 images correctly, there was no
exact specification on how features were detected; e.g.,
‘layer thickness’ is “measured by ruler on the screen”, or a
degree of ‘graininess’ is categorized. The evaluators
therefore needed training on feature recognition. However,
the characteristics seemed to have a degree of correlation
with disease. It may be assumed that at least some
characteristics can be described by methods mentioned
above. This would have the potential for an objective and
fully automated classification.

Breast tissue

Breast tissue contains human adipocytes that measure
between 50 μm and 150 μm. These seem to lend
themselves to frequency based analysis: Iftimia et al.
described a system intended to guide fine needle aspirations
for breast biopsies via A-scans (‘reflectivity profiles’) [48].
Three groups of tissues, (adipose, fibroglandular, and
cancerous) have different profiles, and the A-scans there-
fore have different slopes and standard deviations. In this
feasibility study three tissue specimens were measured. A
study by Goldberg et al. was performed on 158 of 260
scans from 58 patients [49]. In this study, the determination
of the slope was automated. Noise was reduced by cutting
off below the average noise level, determined by the signal
from the first 200 μm. The surface was then defined as
100 μm below the first zero crossing of the 1st order
derivative, in order to avoid contributions from specular
reflection. Slope, standard deviation and spatial frequency

content served as parameters to be separated by a
multivariate Gaussian classification model. The perfor-
mance for a validation set consisting of 86 samples was
91.9%.

Zysk and Boppart reported three methods to classify A-
scans of breast cancer biopsies into three relevant groups
(adipose, cancerous, stroma): (1) taking the Fourier
domain component of an A-scan and comparing it with
the mean of a training set; (2) using periodicity analysis,
which looks at the distance between high-intensity sub-
surface peaks and the surface peak, and (3) a combination
of both [50]. The periodicity analysis seems to benefit
from the above-mentioned bubbly structural pattern in
OCT images of adipose breast tissue, resulting in A-scans
with several distinct spikes. Cancerous tissue has a less
characteristic structure, and the A-scans are merely a
loosely correlated decrease in intensity with increasing
penetration depth. The authors calculated the frequency
component for each A-scan and attempted to distinguish
three types of tissues. This classification model was
trained with data from three patients; data from a fourth
patient were used for prediction. There were 4,015 A-
scans available in total (1,666 adipose, 1,408 cancerous,
and 941 stroma).

Adjacent results were clustered to determine the pres-
ence of A-scans which had been classified as cancerous
within a B-scan. An interesting approach mentioned in this
paper is the classification of sliding windows on an A-scan,
thereby allowing classification of different sub-surface
areas.

Predict treatment response

The publications mentioned so far have used a variety of
characteristics or markers for classification. For the
correct classification, some knowledge about a feature as
a disease marker is necessary. Our group has demonstrat-
ed an approach that can discriminate between groups of
surface normalized A-scans by LDA after reduction by
PCA [51]. Most studies glance over the processing speed,
and this is the only paper to mention a rate (60,000 A-
scans per minute). If not sufficient as a stand-alone
classification, such an algorithm seems suitable to run in
addition to other classification routines. The approach
has been applied to medical tissue samples; however, for
medical images the algorithm requires manual exclusion
of unsuitable scans, and classification seems to be
heavily influenced by the variation within a healthy
population [52]. Such a classification method may,
however, have the potential to predict the response to
laser treatment of port-wine stains, as suggested by a
pilot study on seven images (7,000 A-scans), in near
real-time [53].
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Discussion

Common patterns and suggestions

There is a common pattern of five steps involved in
extracting information from OCT data: obtaining the
measurements, pre-processing, feature registration, data
reduction, and classification of data.

Pre-processing is the essential part of automation in
feature description and effectively increases robustness for
further analysis: a common pattern is de-noising, feature
recognition, normalization and refining. There are, princi-
pally, two approaches for evaluating OCT data: evaluating
features of the A-scan, and applying image analysis tools to
B-scans. Knowledge about the specimen surface is a
common requirement. This can be achieved by the
measurement protocol, e.g., by pressing a surface with a
glass slide, or computationally. A frequently encountered
method seems to be the crude cut-off threshold that is
determined by the noise level above the specimen.

The ideal choice of pre-processing and analysis method
depends on the sample type, the scan mode, and the actual
research question asked. However, it is possible for one to
draw a variety of conclusions from the automation
algorithms considered in this review. All fully automated
approaches rely on a combination of several steps. A-scan
based analysis usually profits from the averaging of several
A-scans in order to increase the SNR. Outlier A-scans can
be corrected for by the use of a sliding median window or
Olympic exclusion (removing a set of extreme values).
Some publications disregard the first ten pixels or ∼100 μm
of a surface due to reflection artifacts [38,49]. This seems
appropriate when the sub-surface data, rather than the exact
surface location, are relevant. Textural features seem to
show a potential for distinguishing abnormalities that are
related to a vaguely progressing lack of structure, where
sifting B-scans would become a straining task. Cross-
correlation techniques need to employ several shapes to
cover biological variation [36,45]. Several publications
exclude unsuitable data manually. For proof of concept this
is acceptable, but this carries the potential of introducing
bias and should be based on an objective parameter, e.g.,
overall intensity or dynamic range of an image. Statistical
methods therefore have a large potential for helping
automated classification of OCT data.

Outlook

Automation is a way of helping an operator with image
interpretation. Unfortunately, algorithms cannot be
expected to achieve 100% accuracy. This should not be
regarded as a major disadvantage: Even if data evaluation is
only able to provide clear results from data with sufficient

diagnostically relevant contrast, resources can be channeled
to concentrate on the more difficult cases. Furthermore,
automation has the potential to provide an objective
measure. A classification performance lower than 100%
can still outperform human judgment, where, for some
conditions, agreement can be considerably lower. Studies
assessing the consensus of expert histopathologists, which
represent the gold standard in tissue grading, have found
kappa values (which illustrate the chance-corrected agree-
ment) as low as 0.36 between eight experts for cervical
biopsies [54], or 0.49 between three experts when classi-
fying esophageal specimens [55].

Acquisition speed and resolution, which presented early
challenges in OCT development, have experienced remark-
able improvements. Limitations caused by data transfer
rate, storage, and computing power are ceasing to be an
issue: volumetric movies (4-D OCT) can become standard.
This is a double-edged sword: with the possibility of
obtaining vast data sets in near real-time, it becomes
inherently impracticable for a human operator to evaluate
these numbers of data, and it is virtually impossible to do so
at the rate of data acquisition. OCT allows real-time data
acquisition, and it would be a pity not to exploit the speed
benefit of computational approaches to provide real-time
diagnoses. In private conversations, we gained the impres-
sion that at least some OCT experts seem to have the
opinion that the lack of real-time diagnosis is not a
restriction. We would like to emphasize that—even if this
opinion is not commonplace—we strongly feel that
information should be available as quickly as possible.
For instance, topical diffusion of contrast agents takes time,
thereby ruining the advantage of having a real-time imaging
modality. There are pitfalls for automation; some studies
have found that assessment by a trained operator fairs better
than the unsupervised approach [37, 38]. Algorithms do,
however, have the potential to run in parallel with the
scanning procedure and to provide an objective support for
clinical decision making in real-time. This might even make
the displaying of the OCT image redundant, much in the
way spectroscopic techniques may show maps rather than
raw spectral data. One field of interest today is therefore
data evaluation in near real-time (Fig. 2).

After all, this manuscript would not have been possible
without all the efforts towards automated classification of
OCT data, which may be the next chapter in the success
story of OCT.

Fig. 2 Scheme of landmark developments for OCT. TD time domain
OCT, FD frequency domain OCT, 3D volumetric OCT. The present
challenge is automated data evaluation in near real-time

Lasers Med Sci



Acknowledgments This work was funded by the Pump Prime Fund
of Cranfield University, the Gloucestershire Hospitals NHS Founda-
tion Trust, and receives funding from the Technology Strategy Board
[Grant/Project title OMICRON]. The authors would like to thank
Professor Hugh Barr and Ms. Joanne Hutchings for kindly providing
the esophageal sample for Fig. 1 (ethics approval by Gloucestershire
Local Research Ethics Committee), and Dr. Catherine Kendall and Mr.
Martin Isabelle for proofreading this manuscript. Dr. Nicholas Stone
holds a Career Scientist Fellowship, which is funded by the UK
National Institute of Health Research.

References

1. Huang D, Swanson EA, Lin CP, Schuman JS, StinsonWG, ChangW
et al (1991) Optical coherence tomography. Science 254:1178–1181
doi:10.1126/science.1957169

2. Tomlins PH, Wang RK (2005) Theory, developments and
applications of optical coherence tomography. J Phys D Appl
Phys 38:2519–2535 doi:10.1088/0022-3727/38/15/002

3. Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease
diagnosis: biomedical applications of infrared and Raman spec-
troscopy. Analyst (Lond) 131:875–885 doi:10.1039/b602376m

4. Stelzer EHK (1998) Contrast, resolution, pixelation, dynamic
range and signal-to-noise ratio: fundamental limits to resolution in
fluorescence light microscopy. J Microsc 189:15–24 doi:10.1046/
j.1365-2818.1998.00290.x

5. Patil CA, Bosschaart N, Keller MD, van Leeuwen TG, Mahadevan-
Jansen A (2007) Combined Raman spectroscopy and optical
coherence tomography device for tissue characterization. Opt Lett
33:1135–1137 doi:10.1364/OL.33.001135

6. Kanter E, Walker R, Marion S, Hoyer P, Barton JK (2005) Optical
coherence tomography imaging and fluorescence spectroscopy of
a novel rat model of ovarian cancer. Prog Biomed Opt Imaging
6:58610P.1-58610P.8

7. Yang C (2005) Molecular contrast optical coherence tomography:
a review. Photochem Photobiol 81:215–237 doi:10.1562/2004-08-
06-IR-266.1

8. Xu C, Ye J, Marks DL, Boppart SA (2004) Near-infrared dyes as
contrast-enhancing agents for spectroscopic optical coherence
tomography. Opt Lett 29:1647–1649 doi:10.1364/OL.29.001647

9. Xi C, Marks DL, Parikh DS, Raskin L, Boppart SA (2004)
Structural and functional imaging of 3D microfluidic mixers using
optical coherence tomography. Proc Natl Acad Sci U S A
101:7516–7521 doi:10.1073/pnas.0402433101

10. Bonesi M, Churmakov DY, Ritchie LJ, Meglinski IV (2006)
Turbulence monitoring with Doppler optical coherence tomogra-
phy. Laser Phys Lett 4:304–307 doi:10.1002/lapl.200610098

11. Park B, Pierce M, Cense B, de Boer J (2003) Real-time multi-
functional optical coherence tomography. Opt Express 11:782–793

12. Su J, Tomov IV, Jiang Y, Chen Z (2007) High-resolution
frequency-domain second-harmonic optical coherence tomogra-
phy. Appl Opt 46:1770–1775 doi:10.1364/AO.46.001770

13. Lazebnik M, Marks DL, Potgieter K, Gillette R, Boppart SA
(2003) Functional optical coherence tomography for detecting
neural activity through scattering changes. Opt Lett 28:1218–1220
doi:10.1364/OL.28.001218

14. Maheswari RU, Takaoka H, Kadono H, Homma R, Tanifuji M
(2003) Novel functional imaging technique from brain surface
with optical coherence tomography enabling visualization of
depth resolved functional structure in vivo. J Neurosci Methods
124:83–92 doi:10.1016/S0165-0270(02)00370-9

15. Morgner U, Drexler W, Kärtner FX, Li XD, Pitris C, Ippen EP et
al (2000) Spectroscopic optical coherence tomography. Opt Lett
25:111–113 doi:10.1364/OL.25.000111

16. Faber DJ, Mik EG, Aalders MC, van Leeuwen TG (2005) Toward
assessment of blood oxygen saturation by spectroscopic optical
coherence tomography. Opt Lett 30:1015–1017 doi:10.1364/
OL.30.001015

17. Knüttel A, Boehlau-Godau M (2000) Spatially confined and
temporally resolved refractive index and scattering evaluation in
human skin performed with optical coherence tomography. J
Biomed Opt 5:83–92 doi:10.1117/1.429972

18. Kholodnykh AI, Petrova IY, Larin KV, Motamedi M, Esenaliev RO
(2003) Precision of measurement of tissue optical properties with
optical coherence tomography. Appl Opt 42:3027–3037
doi:10.1364/AO.42.003027

19. Esenaliev RO, Larin KV, Larina IV, Motamedi M (2001)
Noninvasive monitoring of glucose concentration with optical
coherence tomography. Opt Lett 26:992–994 doi:10.1364/
OL.26.000992

20. van der Meer FJ, Faber DJ, Sassoon DMB, Aalders MC,
Pasterkamp G, van Leeuwen TG (2005) Localized measure-
ment of optical attenuation coefficients of atherosclerotic
plaque constituents by quantitative optical coherence tomogra-
phy. IEEE Trans Med Imaging 24:1369–1376 doi:10.1109/
TMI.2005.854297

21. Jeon SW, Shure MA, Baker KB, Huang D, Rollins AM, Chahlavi A
et al (2006) A feasibility study of optical coherence tomography for
guiding deep brain probes. J Neurosci Methods 154:96–101
doi:10.1016/j.jneumeth.2005.12.008

22. Ramrath L, Hofmann UG, Huettmann G, Moser A, Schweikard A
(2007) Towards automated OCT-based identification of white
brain matter. In: Bildverarbeitung für die Medizin–Algorithmen–
Systeme–Anwendungen. Springer, Berlin Heidelberg, pp 414–
418. ISBN 978-3-540-71091-2

23. Turchin IV, Sergeeva EA, Dolin LS, Kamensky VA, Shakhova NM,
Richards-Kortum R (2005) Novel algorithm of processing optical
coherence tomography images for differentiation of biological tissue
pathologies. J Biomed Opt 10:064024 doi:10.1117/1.2137670

24. Kuranov RV, Sapozhnikova VV, Prough DS, Cicenaite I,
Esenaliev RO (2006) In vivo study of glucose-induced changes
in skin properties assessed with optical coherence tomography.
Phys Med Biol 51:3885–3900 doi:10.1088/0031-9155/51/16/001

25. Levitz D, Thrane L, Frosz MH, Andersen PE, Andersen CB,
Valanciunaite J et al (2004) Determination of optical scattering
properties of highly-scattering media in optical coherence tomog-
raphy images. Opt Express 12:249–259 doi:10.1364/
OPEX.12.000249

26. Kaiser JF (1990) On a simple algorithm to calculate the ‘energy’
of a signal. Proc IEEE Int Conf Acoust Speech Signal Process
(ICASSP’90) 1:381–384

27. Gossage KW, Tkaczyk TS, Rodriguez JJ, Barton JK (2003)
Texture analysis of optical coherence tomography images:
feasibility for tissue classification. J Biomed Opt 8:570–575
doi:10.1117/1.1577575

28. Hillman TR, Adie SG, Seemann V, Armstrong JJ, Jacques SL,
Sampson DD (2006) Correlation of static speckle with sample
properties in optical coherence tomography. Opt Lett 31:190–192
doi:10.1364/OL.31.000190

29. Brodatz P Textures. (Dover Publications Inc., ISBN: 0–486–
40699–7, 2000)

30. Gossage KW, Smith CM, Kanter EM, Hariri LP, Stone AL,
Rodriguez JJ et al (2006) Texture analysis of speckle in optical
coherence tomography images of tissue phantoms. Phys Med Biol
51:1563–1575 doi:10.1088/0031-9155/51/6/014

31. MacNeill BD, Jang I-K, Bouma BE, Iftimia N, Takano M,
Yabushita H et al (2004) Focal and multi-focal plaque macrophage
distributions in patients with acute and stable presentations of
coronary artery disease. J Am Coll Cardiol 44:972–979
doi:10.1016/j.jacc.2004.05.066

Lasers Med Sci

http://dx.doi.org/10.1126/science.1957169
http://dx.doi.org/10.1088/0022-3727/38/15/002
http://dx.doi.org/10.1039/b602376m
http://dx.doi.org/10.1046/j.1365-2818.1998.00290.x
http://dx.doi.org/10.1046/j.1365-2818.1998.00290.x
http://dx.doi.org/10.1364/OL.33.001135
http://dx.doi.org/10.1562/2004-08-06-IR-266.1
http://dx.doi.org/10.1562/2004-08-06-IR-266.1
http://dx.doi.org/10.1364/OL.29.001647
http://dx.doi.org/10.1073/pnas.0402433101
http://dx.doi.org/10.1002/lapl.200610098
http://dx.doi.org/10.1364/AO.46.001770
http://dx.doi.org/10.1364/OL.28.001218
http://dx.doi.org/10.1016/S0165-0270(02)00370-9
http://dx.doi.org/10.1364/OL.25.000111
http://dx.doi.org/10.1364/OL.30.001015
http://dx.doi.org/10.1364/OL.30.001015
http://dx.doi.org/10.1117/1.429972
http://dx.doi.org/10.1364/AO.42.003027
http://dx.doi.org/10.1364/OL.26.000992
http://dx.doi.org/10.1364/OL.26.000992
http://dx.doi.org/10.1109/TMI.2005.854297
http://dx.doi.org/10.1109/TMI.2005.854297
http://dx.doi.org/10.1016/j.jneumeth.2005.12.008
http://dx.doi.org/10.1117/1.2137670
http://dx.doi.org/10.1088/0031-9155/51/16/001
http://dx.doi.org/10.1364/OPEX.12.000249
http://dx.doi.org/10.1364/OPEX.12.000249
http://dx.doi.org/10.1117/1.1577575
http://dx.doi.org/10.1364/OL.31.000190
http://dx.doi.org/10.1088/0031-9155/51/6/014
http://dx.doi.org/10.1016/j.jacc.2004.05.066


32. Qi X, Sivak MV Jr, Isenberg G, Willis JE, Rollins AM (2006)
Computer-aided diagnosis of dysplasia in Barrett’s esophagus
using endoscopic optical coherence tomography. J Biomed Opt
11:044010 doi:10.1117/1.2337314

33. Chen Y, Aguirre AD, Hsiung P-L, Huang S-W, Mashimo H,
Schmitt JM et al (2008) Effects of axial resolution improvement on
optical coherence tomography (OCT) imaging of gastrointestinal
tissues. Opt Express 16:2469–2485 doi:10.1364/OE.16.002469

34. Lingley-Papadopoulos CA, Loew MH, Manyak MJ, Zara JM
(2008) Computer recognition of cancer in the urinary bladder
using optical coherence tomography and texture analysis. J
Biomed Opt 13:024003 doi:10.1117/1.2904987

35. Rogowska J, Bryant CM, Brezinski ME (2003) Cartilage
thickness measurements from optical coherence tomography. J
Opt Soc Am A 20:357–367 doi:10.1364/JOSAA.20.000357

36. Weissman J, Hancewicz T, Kaplan P (2004) Optical coherence
tomography of skin for measurement of epidermal thickness by
shapelet-based image analysis. Opt Express 12:5760–5769
doi:10.1364/OPEX.12.005760

37. Gambichler T, Moussa G, Regeniter P, Kasseck C, Hofmann MR,
Bechara FG et al (2007) Validation of optical coherence
tomography in vivo using cryostat histology. Phys Med Biol
52:85

38. Korde VR, Bonnema GT, XuW, Krishnamurthy C, Ranger-Moore J,
Saboda K et al (2007) Using optical coherence tomography to
evaluate skin sun damage and precancer. Lasers Surg Med 39:687–
695 doi:10.1002/lsm.20573

39. Lee Y-K, Rhodes WT (1990) Nonlinear image processing by a
rotating kernel transformation. Opt Lett 15:1383–1385

40. Rogowska J, Brezinski ME (2002) Image processing techniques
for noise removal, enhancement and segmentation of cartilage
OCT images. Phys Med Biol 47:641–655 doi:10.1088/0031-9155/
47/4/307

41. Fernández DC, Salinas HM, Puliafito CA (2005) Automated
detection of retinal layer structures on optical coherence tomog-
raphy images. Opt Express 13:10200–10216 doi:10.1364/
OPEX.13.010200

42. Hori Y, Yasuno Y, Sakai S, Matsumoto M, Sugawara T,
Madjarova V et al (2006) Automatic characterization and
segmentation of human skin using three-dimensional optical
coherence tomography. Opt Express 14:1862–1877 doi:10.1364/
OE.14.001862

43. Danielsson PE (1980) Euclidean distance mapping. Comput
Graph Image Process 14:227–248 doi:10.1016/0146-664X(80)
90054-4

44. Bonnema G, Cardinal K, Williams S, Barton J (2008) An
automatic algorithm for detecting stent endothelialization from

volumetric optical coherence tomography datasets. Phys Med Biol
53:3083–3098 doi:10.1088/0031-9155/53/12/001

45. Cheng Y, Larin KV (2006) Artificial fingerprint recognition by
using optical coherence tomography with autocorrelation analysis.
Appl Opt 45:9238–9245 doi:10.1364/AO.45.009238

46. Huang ML, Chen HY (2005) Development and comparison of
automated classifiers for glaucoma diagnosis using Stratus optical
coherence tomography. Invest Ophthalmol Vis Sci 46:4121–4129
doi:10.1167/iovs.05-0069

47. Jørgenson TM, Tycho A, Mogensen M, Bjerring P, Jemec GBE
(2008) Machine-learning classification of non-melanoma skin
cancers from image features obtained by optical coherence
tomography. Skin Res Technol 14:364–369 doi:10.1111/j.1600-
0846.2008.00304.x

48. Iftimia NV, Bouma BE, Pitman MB, Goldberg B, Bressner J,
Tearney GJ (2005) A portable, low coherence interferometry
based instrument for fine needle aspiration biopsy guidance. Rev
Sci Instrum 76:064301 doi:10.1063/1.1921509

49. Goldberg BD, Iftimia NV, Bressner JE, Pitman MB, Halpern E,
Bouma BE et al (2008) Automated algorithm for differentiation of
human breast tissue using low coherence interferometry for fine
needle aspiration biopsy guidance. J Biomed Opt 13:014014
doi:10.1117/1.2837433

50. Zysk AM, Boppart SA (2006) Computational methods for analysis
of human breast tumor tissue in optical coherence tomography
images. J Biomed Opt 11:054015 doi:10.1117/1.2358964

51. Bazant-Hegemark F, Stone N (2008) Near real-time classification
of optical coherence tomography data using principal components
fed linear discriminant analysis. J Biomed Opt 13:034002
doi:10.1117/1.2931079

52. Bazant-Hegemark F, Stone N, Read MD, McCarthy K, Wang RK
(2007) Optical coherence tomography (OCT) imaging and
computer aided diagnosis of human cervical tissue specimens.
Proc SPIE 6627:66270F doi:10.1117/12.728366

53. Bazant-Hegemark F, Meglinski I, Kandamany N, Monk B, Stone N,
(2008) Optical coherence tomography: a potential tool for
unsupervised prediction of treatment response for port-wine
stains. Photodiagn Photodyn Ther (in press) doi:10.1016/j.
pdpdt.2008.09.001

54. Ismail SM, Colclough AB, Dinnen JS, Eakins D, Evans DMD,
Gradwell E et al (1989) Observer variation in histopathological
diagnosis and grading of cervical intraepithelial neoplasia. BMJ
298:707–710

55. Kendall C, Stone N, Shepherd N, Geboes K, Warren B, Bennett R
et al (2003) Raman spectroscopy, a potential tool for the objective
identification and classification of neoplasia in Barrett’s oesoph-
agus. J Pathol 200:602–609 doi:10.1002/path.1376

Lasers Med Sci

http://dx.doi.org/10.1117/1.2337314
http://dx.doi.org/10.1364/OE.16.002469
http://dx.doi.org/10.1117/1.2904987
http://dx.doi.org/10.1364/JOSAA.20.000357
http://dx.doi.org/10.1364/OPEX.12.005760
http://dx.doi.org/10.1002/lsm.20573
http://dx.doi.org/10.1088/0031-9155/47/4/307
http://dx.doi.org/10.1088/0031-9155/47/4/307
http://dx.doi.org/10.1364/OPEX.13.010200
http://dx.doi.org/10.1364/OPEX.13.010200
http://dx.doi.org/10.1364/OE.14.001862
http://dx.doi.org/10.1364/OE.14.001862
http://dx.doi.org/10.1016/0146-664X(80)90054-4
http://dx.doi.org/10.1016/0146-664X(80)90054-4
http://dx.doi.org/10.1088/0031-9155/53/12/001
http://dx.doi.org/10.1364/AO.45.009238
http://dx.doi.org/10.1167/iovs.05-0069
http://dx.doi.org/10.1111/j.1600-0846.2008.00304.x
http://dx.doi.org/10.1111/j.1600-0846.2008.00304.x
http://dx.doi.org/10.1063/1.1921509
http://dx.doi.org/10.1117/1.2837433
http://dx.doi.org/10.1117/1.2358964
http://dx.doi.org/10.1117/1.2931079
http://dx.doi.org/10.1117/12.728366
http://dx.doi.org/10.1016/j.pdpdt.2008.09.001
http://dx.doi.org/10.1016/j.pdpdt.2008.09.001
http://dx.doi.org/10.1002/path.1376


N
t
l

F
N
C
C
B
U

G
B
G
G
U
E

1
1
O
i
b
t
d
m
c
fi
d
d
g
a

1

P
a
b
a
m
s
o
r

Journal of Biomedical Optics 13�3�, 034002 �May/June 2008�

J

ear real-time classification of optical coherence
omography data using principal components fed
inear discriminant analysis

lorian Bazant-Hegemark
icholas Stone
ranfield University at Silsoe
ranfield Health
edfordshire MK45 4DT
nited Kingdom

and
loucestershire Royal Hospital
iophotonics Research Group
reat Western Road
loucester GL1 3NN
nited Kingdom
-mail: n.stone@medical-research-centre.com

Abstract. An optical coherence tomography �OCT� prediction algo-
rithm is designed and tested on a data set of sample images �taken
from vegetables and porcine tissues� to demonstrate proof of concept.
Preprocessing and classification of data are fully automated, at a rate
of 60,000 A-scans/min on a standard computer and can be consid-
ered to deliver in near real-time. A data set consisting of nine groups
was classified correctly in 82% of cases after cross-validation. Sets of
fewer groups reach higher rates. The algorithm is able to distinguish
groups with strong visual similarity among several groups of varying
resemblance. Surface recognition and normalizing to the surface are
essential for this approach. The mean divided by the standard devia-
tion is a suitable descriptor for reducing a set of surface normalized
A-scans. The method enables grouping of separate A-scans and is
therefore straightforward to apply on 3-D data. OCT data can reliably
be classified using principal component analysis combined with lin-
ear discriminant analysis. It remains to be shown whether this algo-
rithm fails in the clinical setting, where interpatient variation can be
greater than the deviations that are investigated as a disease marker.
© 2008 Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2931079�
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Introduction
.1 Optical Coherence Tomography
ptical coherence tomography �OCT� is a relatively novel

maging modality first described by Huang et al.,1 which is
ecoming established as a technique for noninvasive, real-
ime subsurface imaging at resolutions of 2 to 10 �m. Non-
estructive probing of this type is of interest specifically in
edical imaging2,3 and also in other fields such as art

onservation,4,5 quality assurance, or homeland security �e.g.,
nger prints�. Compared with other emerging imaging mo-
alities, OCT provides high resolution and imaging speed for
etailed structural information—in vast data sets. We investi-
ate automated classification, which is quicker than visually
ssessing images and likely to be more reproducible.

.1.1 Principal component analysis and linear
discriminant analysis

rincipal component analysis �PCA� and linear discriminant
nalysis �LDA� are mathematical methods that, on a statistical
asis, enable data reduction and clustering into groups.6 There
re papers on applying PCA for OCT related analysis. Weiss-
an et al.7 used PCA for comparing the agreement of their

urface recognition algorithm with the line drawn by human
perators. Qi et al.8 used PCA for preprocessing. They were
educing six statistical measures for texture features to two
ournal of Biomedical Optics 034002-
principal components. However, using this approach they re-
ported no benefit over using the 6-D data.

Huang and Chen9 also applied PCA and LDA for classifi-
cation, but not on the OCT image itself. Rather, they were
using a set of 25 morphological parameters to characterize
ophthalmologic pathologies. These parameters were thickness
and size measures that could be extracted from the OCT im-
age. In nonophthalmic OCT imaging, such defined layers are
usually not observed.

Zysk and Boppart10 reported three methods for classifying
three relevant groups �adipose, cancerous, stroma� in A-scans
of breast cancer biopsies. The first was taking the Fourier
transform �FT� of an A-scan and using its difference from a
reference �the mean of a training set� for the analysis. The
second was periodicity analysis, which looks at the distance
between high-intensity subsurface peaks to the surface peak.
The third was a combination of both. The periodicity analysis
seems to benefit from the “bubbly” structural pattern in OCT
images of adipose breast tissue, which, however, is not
present in every type of tissue. Part of this method, taking the
FT of an A-scan, we compare with our method. �We did not
implement the periodicity technique.� This enabled us to test
the Fourier domain technique on sets containing more than
three groups.

1083-3668/2008/13�3�/034002/8/$25.00 © 2008 SPIE
May/June 2008 � Vol. 13�3�1
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.1.2 Surface recognition
or OCT there is no established method for unsupervised sur-
ace recognition. This is, however, not straightforward as the
oint with the highest intensity within one A-scan is not nec-
ssarily correlated with the sample surface. This is also true
or taking the first derivative of the intensity; the largest
hange in intensity is not necessarily at the surface. Were this
he case, surface recognition could be done quickly and el-
gantly using a weighing of the magnitude and the derivative
f the signal intensity over the single A-scan. Specifically for
iological samples, this is prone to errors �cf. Fig. 1�.

There is a small amount of literature about surface recog-
ition in OCT and research groups seem to have methods that
eem fit for the purpose of their publication, but are not al-
ays useful to implement for a different specimen type. We

ound a variety of reports, e.g., shapelet-based boundary
ecognition;7 rotating kernel transformation, which empha-
izes straight lines within an image;11 erosion/dilation tech-
iques on a binary threshold image;8 or polynomial fitting
hrough median-blurred intensity peaks.12

We chose binary thresholding because it is accurate and
ast. A visualization of the full process is shown in Fig. 2.

.2 Research Questions
n this paper, we investigate whether OCT data can be classi-
ed in real time on the basis of A-scans without any input
rom a human operator. We investigate the classification per-
ormance on a small demonstrator group, and plan to assess
he impact of surface normalization. We further investigate
hether representative measures can be established for larger
ata sets, which strain computer resources. Finally, we inves-
igate the performance on animal tissue.

ig. 1 �a� Denoised B-scan of a biological sample �porcine esophag
overlay over dimmed intensity image�, �c� white dots mark maximu
ecognised from a binary threshold mask. �b� and �c� show that the ma

ig. 2 �a� Original noisy OCT image �false color log of intensity envel
lthough somewhat straight, is not exactly parallel to the scanning d
ecognized from �b�; and �d� image after wrapping.
ournal of Biomedical Optics 034002-
2 Methods
2.1 Measurements

2.1.1 OCT device
The OCT device used in this study was a time-domain bench-
top system, which was similar in design to the system de-
scribed by Yang et al.13 The light source is a superluminescent
diode �SLD, Superlum� with a central wavelength of
1310 nm that provided an axial resolution of �15 �m in air
and a 10-�m lateral resolution. The rapid delay line is real-
ized using a double-pass mirror and a reference mirror
mounted on a galvanometer �Cambridge Instruments�. The
data acquisition was performed using LabVIEW.

2.1.2 Samples
As a demonstrator of proof of concept, fruit and vegetables
served as readily available samples with varying structure
�Fig. 3�. Ten scans were taken of each vegetable; three veg-
etables of one kind form a group. In addition to this, fresh
porcine specimens were obtained from a local butcher.
Twenty different samples were prepared from each investi-
gated organ, although all specimens originate from one ani-
mal. The size and shape of the samples enabled them to be
placed in petri dishes for the measurements. Where necessary,
samples were kept stable with needles.

2.2 Preprocessing

2.2.1 Image
All images used in this study measure 300�500 pixels, cov-
ering a 3-mm width and an approximately 5-mm depth. The
log of the intensity data �time domain signal� was stored as a
matrix. Values were handled in double precision format. For
the automated noise reduction, a ribbon of “air,” intensity in-

� white dots mark the point of highest intensity within one A-scan
of change in intensity within one A-scan, and �d� surface pixels as
intensity and derivative do not necessarily correlate with the surface.

ta�, representative for many ex vivo scans, where the sample surface,
n; and �b� binary image using a 0.90 quantile threshold; �c� surface
us�, �b
m rate
ximum
ope da
irectio
May/June 2008 � Vol. 13�3�2
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ormation above the surface, was regarded as background
oise level.14 The mean of this plus 7� the standard deviation
f this background signal was used as the intensity threshold.
his relatively high threshold does crudely cut off low-level
ignals from deeper areas. We found it, however, to be more
mportant for our subsequent surface recognition to have a
oise-free image, with the surface not being obscured by arte-
acts or layers.

The scanning protocol therefore required an area of air
bove the surface. We aimed to cover approximately 1/5 to
/3 of the image height, as this was convenient for manual
andling. The surface of the sample was positioned to ensure
hat the full penetration depth could be depicted on the image.
pecimens were placed so that the beam angle would not
ause excessive reflections. While these limitations for the
istance of the probe to the sample were chosen with respect
o easy handling, no measurement was taken from the same
ite, as that would spoil the validity of the subsequent corre-
ation.

After thresholding, the intensity values of one B-scan were
ormalized to the maximum intensity peak, by scaling to the
aximum peak being unity.

.2.2 Surface recognition and normalizing
etecting the surface based on a binary threshold mask of the

mage, as shown in Fig. 2, is an approach we found to be
obust for the purpose of our preprocessing. After finding no
ubstantial influence on the result for threshold levels between
.85 and 0.975, we arbitrarily defined a 0.95 quantile thresh-
ld for creating a binary image. The first pixel of this mask
as taken as the surface. No smoothing or correction of even-

ual outliers �e.g., reflection artefacts� was performed. Nor-
alizing to the surface was achieved by shifting each A-scan

ccording to the surface vector.
Of these images, we calculated several representative mea-

ures of the depth profile of the intensity variation within one

ig. 3 Representative OCT images of vegetables �after denoising, to b
eek, longitudinal; �d� leek, axial; �e� onion; �f� potato; �g� mushroom s
width of 3 mm. Note the somewhat similar appearance of �c� and �
ournal of Biomedical Optics 034002-
image: the mean B-scan, median B-scan, standard deviation,
or the mean divided by the standard deviation15 �M/SD�. Fur-
thermore, we looked into combinations of these, e.g., M/SD
and mean as two representative measures for one B-scan. We
also used the FT of an A-scan to be able to roughly compare
our results with the approach of Zysk and Boppart.10

2.3 Data Analysis
Data handling, preprocessing, PCA, and LDA were performed
using MATLAB V6.1.0.450, Release 12.1 �The MathWorks,
Inc.�, extended by the “PLS_Toolbox” �Eigenvector Research,
Inc.� and our in-house tools �“Classification_Toolbox”�. Em-
phasis was put on speed, and therefore execution times were
assessed using the tic-toc functions and the “profile” function
in MATLAB. Bottlenecks, e.g., the routine to normalize
A-scans to the surface, were vectorized.

We did not perform mean centering of the data as we
found this to have no effect on the quality of results �data not
shown�. Using PCA, the data was reduced to the first 25 prin-
cipal components �PCs�, which were then sorted in order of
their statistical significance, characterized by their respective
F values determined by an analysis of variance15 �ANOVA�
�p�0.001�. �The number of PCs �25� was chosen arbitrarily
and is not fundamental to the method. The number of PCs
does affect the results �data not shown�, but for the purpose of
this paper, whereby different approaches are studied, a con-
stant of 25 PCs is a fair representation.�

These 25 PCs were then used in their entirety for LDA,
which is inherently able to suppress loadings of lower signifi-
cance for the model. The training model was tested using
leave-one-out cross-validation. For a small group �30 scans�,
one measure was left out: one A-scan when classifying sepa-
rate A-scans, or one representative measure when classifying
the representative measures �leave-on-scan-out, LOSO�.
While for the LOSO cross-validation, each prediction data set
is “unknown” to the algorithm, the training model can still

nto surface recognition�: �a� celery, longitudinal; �b� Celery, axial; �c�
� mushroom top; �i� lemon; and �j� lime. All B-scans in this paper have
and �h�, and �i� and �j�.
e fed i
tem; �h
d�, �g�
May/June 2008 � Vol. 13�3�3
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nclude data from the very same sample. A better cross-
alidation approach is therefore to test a classification model
ith a prediction set whose samples are “unknown” in their

ntirety. This is achieved by splitting the data into a training
roup and a prediction group �leave-one-group-out, LOGO�.
or the large sample groups �330 scans� we created a training
odel from 220 randomly chosen scans, and evaluated the

rediction performance for the remaining 110 scans, which
re unknown to the test model. These 110 scans were from
ifferent samples than the 220 training scans. In this way,
ross-validation could be performed on three different combi-
ations. The mean of the results for the three cross-validations
or one set of samples we accept as classification perfor-
ance. For comparing pairs of similar vegetables and the ani-
al samples, a prediction model was created using a ran-

omly assigned half of the B-scans of each group and cross-
alidated using the other half of the B-scans. Also here, test
nd prediction groups were from different samples, and the
ean of the two results was taken as overall performance.

Results
he images appear typical of common OCT image quality.
epresentatives of fruit and vegetable structures are shown in
ig. 3. Distinguishing such images, when they are presented
ext to each other, is fairly easy. However, when working

ig. 4 �a� Mean A-scan of original data, �b� mean A-scan of surface
ormalized image, and �c� M/SD along row of A-scans: �—� surface
ormalized and �- - -� original.

ig. 5 PCA of three vegetables, 10 images each. The plots show the P
f 25: �a� surface normalized and �b� FT of A-scans �no surface norm
ournal of Biomedical Optics 034002-
through a large quantity, some of these could start to look
similar to an insufficiently trained or overworked eye.

The results section is divided into two groups. Part 1
shows the effects of preprocessing and demonstrates the ratio-
nale for choosing our parameters. Part 2 shows the actual
classification results.

3.1 Part 1: Preprocessing

3.1.1 Surface recognition and normalizing
Vectorization reduced the processing time roughly by a factor
of 4 to 5. The visual results of the unsupervised surface nor-
malizing were effectively shown in Fig. 2�d�. Figure 4 shows
how normalizing to the surface affects the mean and the
M/SD of a B-scan.

3.1.2 Vegetables—separate A-scans
In a first approach, we used 10 images of three vegetables,
resulting in 30 images or 9000 A-scans. Performing PCA on
the surface normalized A-scans �Fig. 5�A�� or nonsurface nor-
malized FT curves �Fig. 5�B�� show a tendency to group, but
also considerable overlap. Note that the plots in Fig. 5 show
only the two most significant �ANOVA� PCs for classification
against each other. The subsequent LDA separates on the ba-
sis of a pool of several PCs �25 in the examples of this paper�.

Table 1 shows the performance of classification models for
this case. For the amplitude of the frequency content, surface
normalization does not improve the classification. For classi-
fying time domain data �spatial information�, surface normal-
ization yields a higher rate.

3.1.3 Data reduction prior to PCA
The classification rates in Table 1 are not disappointing, but
take a long time to calculate. Hence we reduced the B-scan to
a representative measure, as shown in Fig. 6. From the mean
of these images, the separation is clearer than in Fig. 5. For
this approach, surface normalization has a stronger impact

000 A-scans with the two highest scores �determined by ANOVA� out
n�. Legend: �=celery; �=onion; +=mushroom.
Cs of 9
alizatio
May/June 2008 � Vol. 13�3�4
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han before: classification was correct in 93.3% for the
urface-normalized data �Fig. 6�A��, but only 33.3% for not-
urface-normalized data �Fig. 6�B��.

.1.4 Data reduction—large dataset
large data set consisting of 330 images, categorized into

ine groups, was used to assess various representative mea-
ures. These 99,000 A-scans could not be fed into analysis on
Pentium type processor with 1 Gbyte of RAM, so it was

ssential to extract a representative measure. Table 2 shows
he results for data reduction. For time domain data, models
reated using the mean normalized by the standard deviation
M/SD� had the best results, as shown in Table 2. For models
rom the FT of an A-scan, the standard deviation �SD� has the
ighest classification score. After LOGO cross-validation, the
odel constructed from the mean values has a higher score.

.2 Part 2: Classification
rom the results so far, combinations with high scores were
hosen for further comparison: surface normalization with
/SD, and the mean and the SD of the amplitude of the FT.
e abbreviate these as SN-MSD, AFT-M, and AFT-SD, re-

pectively.

able 1 Comparison for classification of three A-scan representa-
ions: the FT, the amplitude of the FT, and time domain data.

reprocessing FT Amplitude of FT
Depth profile

�A-scan�

ithout surface
ormalization

65.4 96.1 65.4

urface
ormalization

92.8 95.8 92.8

he data set consisted of three groups of 10 images each �9000 A-scans�.
cores are percentages correctly classified by the algorithm, after LOSO cross-
alidation.

ig. 6 PCA of three vegetables, 10 images each. The data points show
urface normalized and �b� no surface normalisation. �=celery; �=o
ournal of Biomedical Optics 034002-
3.2.1 Vegetables
A different set consisting of 330 images, categorized into
seven groups, was classified correctly �after LOGO cross-
validation� as follows: SN-MSD, 91.8%; AFT-M, 93.9%; and
AFT-SD, 79.1%. For comparison, the non-surface-normalized
approach reached 32.0% in this case.

3.2.2 Similar image types
In the next step, we assessed the classification of similar im-
ages, i.e., measurements of one type of vegetable with differ-
ent orientation, or similar images �lemon versus lime�. Repre-
sentative B-scans are shown in Figs. 3�G�–3�J�. Classification
results for 30 images each are shown in Table 3.

o highest scoring PCs �ANOVA� of the 30 representative measures: �a�
=mushroom.

Table 2 Training performance �TP� and cross-validation �CV� of a
data set consisting of nine groups; seven groups of 30 images each
and two groups of 60 images each �330 representative measures�.

A-Scana FT of A-Scanb

Representative
Measure TPc LOSOd LOGOe TPc LOSOd LOGOe

Median 86.7 80.0 81.6 88.8 83.3 82.7

Mean 88.2 84.2 81.6 90.0 86.4 86.7

SD 86.4 77.6 72.9 91.2 85.5 85.1

M/SD 92.1 86.1 82.0 90.0 85.5 81.8

Scores are percentages correctly classified by the algorithm, before and after
cross-validation. The highest scores are bold.
aSurface-normalized time domain intensity data,
bamplitude of FT �nonsurface-normalized� A-scan,
ctraining performance,
dleave-one-scan-out cross-validation,
eleave-one-group-out cross-validation.
the tw
nion; +
May/June 2008 � Vol. 13�3�5
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.2.3 Similar images in a large group
f groups are similar, further added groups do decrease the
ower of the separation. To show this, we grouped two veg-
tables to yield four groups. Separation is affected when these
wo groups must be distinguished not only from each other,
ut also among other data, as shown in Table 4.

.2.4 Preliminary tissue pilot study
xtending on the vegetable findings, we used porcine samples

or a preliminary tissue pilot study. We measured 20 sites each
f four different tissue types �tongue, esophagus, tracheae,
nd bronchioles�. Representative images are shown in Fig. 7.
he results for PC-fed LDA classification are encouraging.
fter LOGO cross-validation, the four, albeit clearly distinct

issue types, are classified 90.0% �SN-MSD�, 82.5% �AFT-
�, and 70.0% �AFT-SD� correctly.
To see whether more subtle changes can be picked up, we

ooked at samples from one tissue type �esophageal� measur-
ng them in a fresh state, after degradation for 5 days, and
fter application of 5% acetic acid, a contrast agent that is
sed in clinical settings. These three groups can be separated
ell between each other in 91.7% �SN-M/SD�, 93.3% �AFT-
�, and 76.7% �AFT-SD� of the cases �LOGO cross-

alidated�.

Discussion
CT provides structural images that are intuitive to look at

nd this might even be an important aside for this technology
o become accepted by many users. Evaluation of such struc-
ural data seems straightforward; however, it remains a chal-
enge in detailed areas. This is evident for an imaging tech-
ology that enables one to look closely at areas that
reviously have been impossible to observe.

ig. 7 Representative OCT images of porcine samples: �a� squamous
mage covers 3 mm in width.

able 3 Classification rates after LOGO cross-validation; training
odels were created for pairs of similar images �2�30 images for a
air�.

Representative Measure �%�

ype of Similar Images SN-MSD AFT-M AFT-SD

elery �two orientations� 56.7 68.3 86.7

eek �two orientations� 61.7 63.3 80.0

ushroom �two orientations� 96.7 90.0 90.0

emon versus Lime 83.3 95.0 95.0
ournal of Biomedical Optics 034002-
Acquisition speed enables generation of high-resolution
volumetric real-time data; this is difficult to handle and dis-
play meaningfully and will remain complex to interpret in the
future. Searching through a vast voxel space can hardly be
imagined to be an enjoyable task for a human operator.

4.1 Preprocessing

4.1.1 Time domain data and frequency content
Classification requires preprocessing. Both methods, the am-
plitude of the FT of an A-scan and the surface normalized
A-scan, give good results. The FT we used to create a model
differed in four points from that of Zysk and Boppart.10 First,
our denoising and normalizing, as already described, was dif-
ferent. Second, we were using the FT of the A-scan for clas-
sification, and not the difference from a reference. Third, Zysk
and Boppart report that they did perform surface normalizing
�“truncating”� prior to FT, whereas we found that to be ben-
eficial only when feeding the real and the imaginary part of
the FT. However, we achieved better results when using the
amplitude of the FT directly of the non-surface-normalized
A-scan. Finally, we took a representative measure for a set of
A-scans and classified the set, rather than classifying single
A-scans.

It then probably depends on the sample structure, e.g., the
presence of distinctive periodic patterns, whether the fre-
quency information or time domain data enable a better clas-
sification. Time domain data must be surface normalized. This
requires a robust and quick surface recognition and means an
additional computational step.

We are aware that the data for this paper are suitable for
binary thresholding as surface recognition, and that the con-
verse is not necessarily always the case. Such scenarios could
be imagined where the surface of interest is covered by a

Table 4 Classification rates after LOGO cross-validation; training
models were created for sets of pairs of similar images �2�30 images
for a pair�.

Representative Measure �%�

Type of Similar Images SN-MSD AFT-M AFT-SD

Two mushroom orientations,
lemon versus lime

90.8 91.7 86.7

All four pairs �eight groups�
from Table 3

67.1 74.2 82.1

of the esophagus, �b� tongue, �c� tracheae, and �d� bronchioles. Each
lining
May/June 2008 � Vol. 13�3�6
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ayer of mucus, a sheath, a balloon, or something similar.
esearch into more robust and reliable surface detection algo-

ithms would therefore be beneficial.

.1.2 Representative measure
educing the data to a representative A-scan is necessary; our
entium type processor with 1 Gbyte of memory was not able

o handle data sets of tens of thousands of A-scans. More
owerful computers are of course available, but it is conceiv-
ble that OCT data will stretch these resources to the limit for
he near future. We found that the M/SD of a surface-
ormalized B-scan or the mean of the frequency content yield
ood results. For instance, at separating two similar celery
rientations, the SN-MSD approach practically fails �56.7%�,
hereas the AFT-SD reaches over 80%. For classifying por-

ine tissue, the SN-MSD approach had the best result. In the
ase of variations within a B-scan, such as in Fig. 8, standard-
zing using the SD does improve results for the subsequent
lassification.

In terms of preprocessing, we also investigated mean cen-
ering, and using more than one representative measure �data
ot shown�. We did not perform any correction of the surface
ector in this study, although that is beneficial �data not
hown�. Further, the performance of LDA can be improved by
eeding an optimum number of PCs. However, this optimum
epends on the number and kind of groups in the classifica-
ion model. The different sample groups in this study do have
ifferent optimum numbers of PCs. For instance, for classify-
ng four tissue types, the classification performance, using 25
Cs, was 90.0% �SN-MSD� and 82.5% �AFT-M�. For these
roups, the optimum for SN-MSD would be reached by feed-
ng 11 PCs �97.5% LOGO cross-validated�, and for AFT-M 7
Cs �91.3%�. For the purpose of this demonstration, we de-
ided to keep a fixed number of PCs. It might well be worth
nvestigating a combination of two or more measures, and
utomatically refining extracted measures. However, this is
eyond the scope of this paper and is probably only worth-
hile when refining the technique for a dedicated purpose.
ummarizing, it is possible to improve results by fine-tuning
nd combining parameters.

.1.3 Speed
ne criterion for processing is speed. OCT acquires data in

eal time and hence the subsequent analysis should not impact
n this characteristic. Preprocessing does slightly delay re-

ig. 8 �a� Surface-normalized B-scans, where the depth profile is ho-
ogeneous across the scan width and can be well described by a
ean A-scan, and �b� structures that result in different A-scans, e.g.,
-scans at the two white lines will be different. In this situation, a

tandardized mean seems to better represent the B-scan.
ournal of Biomedical Optics 034002-
sults: on a 2.80-GHz Pentium 4, classification of 330 B-scans
takes approximately 85 s, of which 73 s are required for sur-
face normalization and extracting a representative measure.
That corresponds to roughly 60,000 A-scans/min and makes
us confident that the claim of providing a near real-time mo-
dality remains justified. It would be quite remarkable for a
human operator to classify 330 images in 1 1

2 min. However,
we were only using a run-length-encoded programming lan-
guage for proof of principle; compiled programs run much
faster.

4.2 Classification
Robust cross-validation methods are important for testing
LDA. It is a powerful approach, and for a small enough set of
samples some separation into groups can always be expected.
For instance, in the example of 30 images, the model created
by LDA was able to classify 100% correctly even without
surface normalization. After cross-validation, the surface-
normalized model was classified in 93.3 versus 33.3% for the
not-surface-normalized model.

4.2.1 Relevance for medical data
The fact that the algorithm reaches over 90% accuracy in
certain cases is reassuring when looking at obviously different
images, but for our data set the displayed approach is also
able to differentiate images reasonably well that are difficult
to tell apart by the eye. Further, the algorithm is still able to
classify similar images among a pool of other structural data.

This is important as we plan to apply this algorithm to
medical data. There, we expect a larger variation among
healthy individuals, and only eventually the small, but signifi-
cant alterations for early, nonsymptomatic disease. As an ex-
ample, we note epithelial cancers, carcinomas, where the epi-
thelial thickness of the healthy population can vary
considerably due to various factors. However, the subtle alter-
ations of proliferative epithelial cells close to the basal layer
are probably the feature that can be picked up by OCT scans.
It still remains to be assessed whether the algorithm would
fail in such scenarios.

4.2.2 Limitations and benefit
In this study the imaging protocol is strict in the sense that it
requires the penetration depth to be fully exploited and to
leave an area of air above the surface. However, most imaging
must adhere to a protocol. As long as the operator is made
aware of the requirements, we believe this limitation not to be
substantial. After all, we have acquired thousands of images
in this way.

The advantage we see in the presented algorithm is that the
few parameters utilized here are robust enough for the analy-
sis to be automated and in near real-time. It does not require
assigning areas of interest. It does not rely on specific struc-
tures such as previously reported methods, but can still be
used in combination with these algorithms. Hence, this algo-
rithm is straightforward to implement for existing OCT data.

Note that, although we were taking representative mea-
sures of B-scans, this approach will work on volumetric data.
For example, taking a representative measure of a volume
May/June 2008 � Vol. 13�3�7
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onsisting of 20�20 A-scans on a system with 10-�m lateral
esolution will enable classification of 25 “tiles” /mm2, which
s still superb for targeting clinical treatment.

.2.3 Further work
revious studies16,17 have shown that expert histopathologists
o not always fully agree on classification of tissue speci-
ens, and an algorithm with lower than 100% correct classi-
cation can still outperform subjective human assessment. In
linical work, OCT data would have to be compared to histo-
athologic results. Even though there are significant discrep-
ncies found between expert pathologists on particular pathol-
gy groups,16,17 histopathology is defined as the gold
tandard. Therefore, we must base our analysis on the as-
umption that the sample pathology defined by histopathology
s correct. In this study, we did not investigate the perfor-

ance of the algorithm against a human operator, and hence
ssumed a 100% correct classification as a reference baseline.
n the future, we intend to compare classification results with
hose achieved by histopathologists on the same OCT images
rom biological specimens.

The next step is testing this algorithm on medical OCT
mages. We expect it to distinguish structurally different pa-
hologies correctly. In ongoing work, we are investigating
ow well it classifies disease groups with quite similar appear-
nce, such as mild and moderate dysplasia in early cancer
evelopment.
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ABSTRACT 

The keyword for management of cervical cancer is prevention. The present program within the UK, the ‘National Health 
Service (NHS) cervical screening programme’ (NHSCSP), is based on cytology. Although the program has reduced the 
incidence of cervical cancer, this program requires patient follow ups and relies on diagnostic biopsying. There is 
potential for reducing costs and workload within the NHS, and relieving anxiety of patients. In this study, Optical 
Coherence Tomography (OCT) was investigated for its capability to improve this situation. Our time domain bench top 
system used a superluminescent diode (Superlum), centre wave length ~1.3 µm, resolution (air) ~15 µm. Tissue samples 
were obtained according to the ethics approval by Gloucestershire LREC, Nr. 05/Q2005/123. 1387 images of 199 
participants have been compared with histopathology results and categorized accordingly. Our OCT images do not reach 
the clarity and resolution of histopathology. Further, establishing and recognizing features of diagnostic significance 
seems difficult. Automated classification would allow one to take decision-making to move from the subjective appraisal 
of a physician to an objective assessment. Hence we investigated a classification algorithm for its ability in recognizing 
pre-cancerous stages from OCT images. The initial results show promise. 

Keywords: OCT, epithelial malignancy, cancer prevention, computer aided diagnosis, pre-cancer classification 

1. INTRODUCTION 
Cancer management in the 21st century has shifted from providing treatment or palliative care towards prevention. 
Epithelial malignancies contribute to the vast majority of cancers. Justification for preventive surgery is often difficult to 
obtain. 

The management of cervical cancer in the western world can be regarded as a model for cancer management. It has been 
in place for several decades, and has generated knowledge about precancerous lesions. Screening and early diagnosis 
have reduced the mortality from this cancer. However, decision making is still widely based on diagnosing tissue 
biopsies. Histopathology of these tissue samples is the gold standard, yet it is time consuming and invasive. 

Various emerging modalities have been assessed for their feasibility or benefit in alleviating this problem. Amongst 
these are many optical techniques utilized for their non-destructive probing of tissue morphology or biochemistry. 
Optical Coherence Tomography (OCT) has been proposed as a method for investigating early epithelial cancers in the 
late 1990s (1, 2). 

1.1 Cervical cancer 

The most prevalent form of cervical cancer is squamous cell carcinoma and it is preceded by a long phase of preclinical 
disease. This involves dysplasia which does not necessarily lead to cancer, but with increasing severity the likelihood of 
developing cancer rises. These early changes do not cause symptoms which would be noticeable by the patient. The pre-
cancerous development, cervical intra-epithelial neoplasia (CIN), is classified into 3 groups: CIN1 (mild), CIN2 
(moderate), and CIN3 (severe). Essentially the decision for surgical removal of a pre-cancerous lesion is based on a 
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CIN2 or worse staging; CIN1 does not usually justify treatment. However, CIN1 and CIN2 are similar and therefore are 
the most difficult for the clinician to distinguish. 

Cervical cancer differs from the majority of cancers in two main ways: Firstly, its etiology is defined and linked to the 
patient’s vulnerability to pathological strains of the human papilloma virus. Secondly, because of the defined pre-
cancerous stages, development and implementation of cancer prevention programs has been possible. 

1.2 Non-invasive probing 

Still, there is much research on cervical cancer: Screening programs are not perfect and can be improved in terms of 
specificity and sensitivity. Successful screening programs require complex infrastructure, and a simpler approach would 
hold the potential for being used in low resource settings. Further, because of the decades of experience with the cervical 
screening, the performance of such programs can serve as a reference for comparison with new methods – this is not the 
case for other organs. So even if a new technology is not sufficient to replace present cervical cancer management, it 
might still of use in a different body site where no such management is in place. 

Emerging technologies which have been investigated for improving management of cervical cancer include Fluorescence 
Spectroscopy, Light Scattering, Confocal Microscopy, Infrared Spectroscopy, Raman Spectroscopy, and other, non 
optical probes (3). In OCT, there are a few studies not only suggesting its application for cervical pre-cancer assessment, 
but also demonstrating its feasibility. OCT can be beneficial as an adjunct in cervical pre-cancer assessment (4-7). 

1.3 Investigation in this study 

This study has established a cervical image database to enable a novel image analysis technique to be evaluated. This 
technique uses Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA). Both are statistical tools 
which have not been applied widely for evaluation of OCT data yet. In previous work we were able to display the ability 
of this approach on a set of non-clinical images. We believe this approach to be suitable for medical imaging data. 
Specifically in OCT imaging, data evaluation is not always straight forward. Therefore algorithms which are able to 
improve our understanding of biological OCT images are of interest, such as e.g. presented in research by Turchin et al. 
(8). 

There is still no commercial OCT system established for cancer assessment – in contrast to ophthalmic OCT systems 
which have been widely introduced. The amount of studies applying OCT in pre-cancer assessment, over the past 10 
years, illustrates that the challenge of data evaluation cannot be addressed by improving image quality by technical 
advances alone: In order to solve this, classification algorithms could be of benefit. 

2. MATERIALS & METHODS 
2.1 The study protocol 

Human tissue samples were collected following the ‘Favourable opinion’ (approval) of the Gloucestershire Local 
Research Ethics Committee, Study Nr. 05/Q2005/123. Samples were obtained from participants who needed a biopsy for 
diagnosis or treatment. These were acquired routinely for histopathological examination, and therefore there was no need 
for additional biopsies to be taken for this study. The samples were categorized into three groups: hysterectomies, large 
loop excisions of the transformation zone (LLETZ) (both are treatments) and punch biopsies (diagnostic). 

Samples from LLETZ, or “loop”, procedures are also referred to as ‘biopsies’. To clarify the difference, we refer to 
diagnostic samples as “punch biopsies”, to treatment samples as “LLETZ”, and we use the term “sample” rather than 
“biopsy” when addressing both groups. 

2.2 The OCT system 

The OCT device used was a bench top time-domain system similar in design to the system described by Yang et al. (9). 
The light source used is a super luminescent diode (SLD, Superlum) with a central wavelength of 1310 nm and has an 
axial resolution of ~15 µm in air and 10 µm lateral resolution. The rapid delay line uses a double pass mirror and a 
reference mirror mounted on a galvanometer (Cambridge Instruments). The components were connected using fiber 
rather than bulk optics to display feasibility for in vivo application. Data acquisition was performed using in-house 
written Labview programs. 
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2.3 Measurements 

For routine diagnosis, samples were put in formalin-containing pots immediately after surgical removal, and processed 
by the histopathology department. However, in our study, samples were placed in physiological saline before imaging 
was performed. After imaging, samples were placed in formalin and sent to histopathology, as not to cause a delay for 
the diagnostic processing of the sample. 

Sample orientation was difficult for small punch biopsies, whereas larger samples (LLETZ and from hysterectomies) 
were easier to handle: Samples, which did not provide useful images (because of orientation difficulties, twisting or 
curling) were not included in the automated classification. The imaging sites were tagged using an orientation needle 
thereby roughly marking the imaging positions. From larger samples it was possible to obtain images from healthy areas 
(near the excision margins) and images of progressed CIN. 

2.4 Data evaluation 

For the purpose of this data evaluation, we were using the shape of an A-scan and descriptors for groups of A-scans after 
normalizing them to the surface shape. These relatively complex descriptors were then reduced by PCA. The strongest 
components were then fed into LDA for building classification models. 

On basis of this approach we have previously performed a study (submitted for publication). We were able to distinguish 
different types of animal tissue (oesophagus, tongue, trachaea, and broncheoli from a pig) with a classification rate up to 
100 %. Figure 1 shows four representative images of such tissue types which can be classified correctly in a fully 
automated fashion, while Figure 2 shows this classification as a bar chart plot. A detailed description of this 
classification will be introduced in a future publication. 

 

     
 A B C D 

Figure 1: Four representative OCT images of different animal tissue types. Each image has a width of 3 mm and a resolution 
of 10 µm. Sites are: A) oesophagus, B) tongue, C) tracheae, D) broncheoli. 

 

 
Figure 2: The plot shows how the separation of 80 images as shown in Figure 1 allowed 100 % correct classification. 
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Figure 1 and Figure 2 show that automated classification shows promise and hence we used this approach for classifying 
OCT imaging data from cervical pre-cancerous samples. 

Data handling, pre-processing, PCA and LDA were performed using Matlab V6.1.0.450, Release 12.1, extended by the 
‘PLS_Toolbox’ [Eigenvector] and our in house tools (the ‘Classification_Toolbox’). 

3. RESULTS 
3.1 Recruitment 

Over the course of 56 clinic sessions, 223 women consented to be included in the study. Not all of the patients recruited 
needed a biopsy and therefore the number of study participants was lower. Samples were collected from 199 patients; in 
some patients multiple biopsies were taken. 245 tissue specimens were obtained, 149 punch biopsies, 92 LLETZ, and 
4 specimens from hysterectomies. 

The mean age (± standard deviation) of participants was 31.8 ± 8.3. Clinically relevant information including their ethnic 
background, parity, and hormonal status was collected in order to be able to investigate potential trends. This information 
may be used in future subgroup analysis of the data. 

3.2 Images 

1387 images were obtained from 245 samples; the breakdown of pathology identified was as followed: 20 healthy (‘no 
sign of neoplasia’), 87 CIN1, 65 CIN2, and 73 CIN3. Figure 3 demonstrates images obtained of the individual 
pathologies as listed above. The images measure 500 × 300 pixels for 3 mm width and approximately 5 mm depth. 
Orientation of tiny biopsies was difficult and this was found to affect image quality. 

 

     
 A B C D 

Figure 3: Representative OCT images of cervical specimens. Each image has a width of 3 mm and a resolution of 10 µm. 
The staging according to expert histopathology is: A) healthy (‘no sign of neoplasia’), B) CIN1, C) CIN2, D) CIN3. 
From these images it is not always straight forward to establish or recognize features which are relevant of disease 
progress. 

 

3.3 Data evaluation 

The preliminary result of the data analysis for a training set of 2 groups (Healthy/CIN1 vs. CIN2/CIN3) is illustrated in 
Table 1. 64 good quality images were used to construct the training set, 29 of healthy/CIN1, and 35 of CIN2/CIN3. The 
training performance of this model was 82.8 % accurate. 
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Table 1: Result of the training performance (82.8 %) of a set of 64 images (29 healthy/CIN1 vs. 35 CIN2/CIN3). 

Training performance of preliminary model (64 images) 

  Prediction 

  Healthy/CIN1 CIN2/CIN3 

Healthy/CIN1 24 5 
True group 

CIN2/CIN3 6 29 

 

The largest data set to date includes 623 images (226 Healthy/CIN1 vs. 397 CIN2/CIN3), using the same pre-processing 
parameters as the 2-group-model used above. The training performance of this model (illustrated in Table 2) was 61.0 %. 

 

Table 2: Result of the training performance (61.0 %) of a set of 623 images (226 healthy/CIN1 vs. 397 CIN2/CIN3). 

Training performance of preliminary model (623 images) 

  Prediction 

  Healthy/CIN1 CIN2/CIN3 

Healthy/CIN1 130 96 
True group 

CIN2/CIN3 147 250 

 

4. DISCUSSION 
4.1 Recruitment 

Because this study did not interfere with the management a patient receives normally, we made the assumption that 
patients would usually be willing to participate. This was generally the case for patients with treatment. Patients who 
attended a clinic for a diagnostic biopsy were in some cases more reluctant. We assume that although the provided 
information sheet clearly emphasized that no extra biopsies would be taken, this point might not have always come 
across. Nevertheless our study size seems comparable with earlier studies in this field (6, 7). 

4.2 Sample quality 

When measuring the samples, we had problems as the penetration depth of our system exceeded the size of the punch 
biopsies, as shown in Figure 4. This does affect the data evaluation as it is based on the shape of a full A-scan. For small 
samples, manual handling was difficult and made proper imaging impossible. The images which are representative for an 
in vivo situation are therefore mainly from LLETZ procedures and hysterectomies. As a consequence, we had to exclude 
some of the images from our automated analysis based on the criterion whether an artifact would have occurred in vivo. 
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Figure 4: Representative OCT image of a punch biopsy (Image width 3 mm, resolution ~10 µm). Although layers can be 

seen, it is not useful for proper assessment of the technique. The line below the sample is from the support hold. This is 
a situation which would not occur in vivo. 

From the study design, non-cancerous samples would have been obtained from hysterectomies (which were performed 
for other indication than cervical cancer). We have actually obtained a further 16 non-cancerous samples from diagnostic 
punch biopsies: this shows the potential of a non-invasive technology: With today’s means, these punch biopsies were 
justified and necessary for ruling out the presence of cancer. In the future, these are exactly the cases which we would 
like to make redundant. 

4.3 Data evaluation 

The results from the non-clinical demonstrator set and the results from the included cervical images show that the 
algorithm can classify tissue automatically. However, this relies on the appropriate pre-processing. Pre-processing aims 
to emphasize features which can then be easily extracted and fed into the classification. Such features can be layer 
thickness, grade of layer disruption, or intensity patterns of A-scans, just to name a few.  

Ideally, but not necessarily, these features correlate clearly with the progression of pre-cancerous lesions. Establishing 
such features in pre-cancerous OCT images of the cervix so far remains challenging. There are many structures such as 
glands, cysts, or characteristic wart surfaces, which do not correlate with CIN grades. For a fully automated algorithm, 
such features need to be picked up properly and normalized in order to not disturb the analysis. Notably, the ability to 
extract features depends on the original quality of the image. Today, OCT systems provide higher resolution and higher 
acquisition speed. Both might be crucial for automated registration of image features and artifacts. 

At the moment we are working on establishing such features which can serve as a set of rules for classifying medical 
data. We found that certain features, such as thickness of the epithelial, can vary considerably between patients. We have 
data about age, ethnic background, and hormonal status of the participants but have not yet been able to establish a 
correlation between such features or whether stratifying the data is necessary for the algorithm to give better results. 

Specifically for epithelial layer thickness, and also for other features, the inter-patient variation can be larger than the 
intra-patient variation. For such cases an ideal study would have to be designed to observe individuals for a longer time. 

4.4 Communication to clinician 

For the clinician it is of interest to get clear answers. Even if new imaging modalities deliver astonishing pictures, the 
usability is flawed if the interpreter has to deal with a new repertoire of image features and artifacts. OCT is a real-time 
imaging modality and it is likely that the amounts of data will be too complex to be visually evaluated by a clinician. It 
will be of benefit if computer algorithms are able to classify data. 

From our findings we believe that for automated evaluation, imaging of the whole cervix in vivo will be ideal. OCT 
would be applied in early stages of pre-cancerous development, when a patient still has a major healthy area which can 
be used as intra-patient reference. Classification models would therefore not have to be as robust to inter-patient 
variation. 

Of course a 100 % reliable and robust classification will be desirable. If this aim cannot be achieved, OCT still can be 
used to rule out clear cases, thereby reducing the amount of cases which need the attention of a specialist. 
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Summary
Background: Treatment of Port-Wine Stains (PWS) suffers from the absence of a reliable
real-time tool for monitoring a clinical endpoint. Response to treatment varies substantially
according to blood vessel geometry. Even though optical coherence tomography (OCT) has
been identified as a modality with potential to suit this need, it has not been introduced as a
standard clinical monitoring tool. One reason could be that — although OCT acquires data in
real-time — gigabyte data transfer, processing and communication to a clinician may impede
the implementation as a clinical tool.
Objectives: We investigate whether an automated algorithm can address this problem.
Methods: Based on our understanding of pulsed dye laser treatment, we present the implemen-
tation of an unsupervised, real-time classification algorithm which uses principal components
data reduction and linear discriminant analysis. We evaluate the algorithm using 96 synthesized
test images and 7 clinical images.
Results: The synthesized images are classified correctly in 99.8%. The clinical images are clas-
sified correctly in 71.4%.
Conclusions: Principal components-fed linear discriminant analysis (PC-fed LDA) may be a valu-

able method to classify clinical images. Larger sampling numbers are required for a better
training model. These results justify undertaking a study involving more patients and show that
disease can be described as a function of available treatment options.
© 2008 Elsevier B.V. All rights re

∗ Corresponding author at: Biophotonics Research Group, Glouces-
ershire Royal Hospital, Great Western Road, Gloucester GL1 3NN,
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ntroduction
ort-Wine Stains

apillary haemangiomas (Port-Wine Stains, PWS) are con-
enital malformations of dermal capillaries. In the UK, PWS
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re prevalent in 3 of 1000 inhabitants [1]. Particularly in
acial areas, lesions may have an impact on self-esteem of
atients. The development of the pulsed dye laser marked a
ignificant advance in treatment; its mechanism is believed
o involve coagulation of dermal capillaries via the absorp-
ion of laser energy by oxyhaemoglobin. However, blood
essels have varying diameter, wall thickness, flow rates,
epth, and carry blood with different oxygenation states.
or a successful response to treatment, a lesion needs to
e within the penetration depth of the laser wavelength.
he most common PDL lasers operate at 577 and 585 nm [2]
nd do not penetrate more than 1 mm into skin [3]. Blood
essels must be destroyed entirely to prevent regeneration
nd revascularization. Capillaries need to hold enough oxy-
aemoglobin to absorb energy; a vessel thickness <50 �m
oes not provide sufficient blood volume for a good response
2]. With standard PDL lasers, good response is expected for
lood vessels in a depth of up to 1 mm and with a diam-
ter of 55—150 �m, depending on body site and skin type
4]. Thick skin layers and strong pigmentation reduce the
ux that reaches the capillary. Response to treatment can
e improved by altering pulse length, wavelength, energy,
essel dilation (thermal or drug-induced), or by cooling
urrounding tissue to allow longer pulses [2,5,6]. These
reatment options carry however an increased risk of com-
lications.

Important practical problems are the lack of objectiv-
ty in evaluating clinical response, and the difficulty of
redicting which patients will benefit from treatment. On
verage, skin lightens 12% per treatment [4]. Complete
ightning can be achieved in less than 25% of the lesions,
nd 70% of PWS lighten at least 50% [7]. Purpura, crust-
ng and bleeding are common side effects which can last
etween 2 and 14 days. After about 6 weeks, a more reli-
ble, but yet again visual, assessment of treatment outcome
s possible. Protocols usually require 6—10 sessions in 6—12
eeks intervals. For a vast majority, ‘‘excellent’’ results

n terms of patient satisfaction can be achieved; how-
ver this is only established after repeated sessions with
o progress in outcome. In up to 20%, no improvement
r darkening of the affected lesion is observed [7—9]. For
hese patients, unsuccessful PDL sessions present there-
ore a rather ineffective way of determining treatment
esponse.

ptical coherence tomography

ptical coherence tomography (OCT) is a non-destructive
maging modality. It uses low coherent laser light to localize
ackscattering events within a specimen (similar to ultra-
onography). For systems employing typical infrared sources
or human dense tissue assessment, the characteristic pen-
tration depth is around a millimetre and the resolution is
round 10 �m [10]. Conventional OCT probes for variations
f the refractive index and renders structural information.
t is therefore widely investigated for replacing or guiding

estructive tissue sampling (biopsies) [11]. Today, fast sys-
ems can acquire about a million A-scans per second, in
igabytes of data, which would correspond to about a cm2

er second. Penetration depth, usually a limit in dense tis-
ue, is not so much a problem for this application: a PWS that

d
t
b
f
o
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annot be displayed with OCT will be unsuitable for PDL of
horter wavelength.

Studies towards characterizing blood vessel formation
nd flow using OCT have been performed on small animals
12,13] and in ophthalmic imaging [14], and in vivo human
kin [15], and for monitoring treatment response in vivo [16].
owever, despite the initial success and potential which has
een identified by these studies, it seems that OCT is not
et available as a clinical modality for standard treatment
ssessment. Most studies investigate blood flow by exploit-
ng the Doppler effect. We believe that computing accurate
elocity models is time intensive: for instance, the angle
etween the beam and the vessel is integral to these calcu-
ations; a velocity vector orientated 90◦ to the probing beam
ill show no Doppler signal [17].

In such a scenario, the usually subtle difference between
real-time’ and ‘near real-time’ may become crucial.
lthough imaging is straightforward, the high scanning speed
an only be fully utilised if information can be retrieved at
imilar speed [18]. Investigating clinical OCT images may
equire training, artefact knowledge, and data visualiza-
ion skills. Vessel mapping and displaying require time and
omputational effort, let alone programming skills. Even
lthough volumetric rendering can look astonishing, the
ctual clinical value lies in providing a reliable support for
he choice of treatment.

Such can be given by unsupervised classification algo-
ithms, which consequently are an active and emerging
esearch field for OCT data [18]. Specifically for keratinized
ayers of skin, or cartilage, procedures to automatically
etrieve layer thickness have been investigated [19—21]. All
hese algorithms are generally slow because they have cer-
ain requirements to image quality and clinical markers, and
requently employ iterative steps. A quick method is prin-
ipal components-fed linear discriminant analysis (PC-fed
DA). It has been displayed to perform well for classify-
ng test images and porcine tissue [22], but has not been
pplied to OCT data of PWS. This might be challenging due
o the variation within a healthy population, but should
e investigated because OCT images of PWS seem to show
lood vessel diameter and depth with clear contrast. Such
mages are promising candidates for automated classifica-
ion.

esearch questions

n this communication we investigate how well PC-fed LDA,
classification algorithm developed for OCT data, can be

pplied to clinical images of PWS, in order to provide a quick
nd objective support for diagnosing and guiding treatment.

ethods

ue to the low number of clinical images available to us, we

esigned a set of synthesized images which was used to test
he algorithm with a cross-validation approach using com-
inatory rules. The clinical images, which were not enough
or training an algorithm properly, were tested using leave-
ne-out cross-validation.



OCT for PWS-PDL prognosis 193

Figure 1 Synthesized test images for assessing the fundamental possibility of classifying PWS as a function of treatment param-
eters. Different skin types are represented as different grey scale gradients (8 of 12 gradients are shown). The images here are

ions,
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shown as fed into analysis, with random depth and size variat
model is tested on its ability to classify into ‘Treatment option 1
outcome is listed in Table 1. Right graph: mean A-scans of these

Synthesized images

The test images are designed to represent OCT images of
PWS with three depth locations. The location was planned
as a function of the available treatment option: ‘Treatment
option 1’, ‘Treatment option 2’, or ‘Untreatable’, as shown
in Fig. 1. These 256 bit-grey level images were created in
the Matlab software package (The Mathworks Inc.) and mea-
sure 80 × 512 pixel and have logarithmic intensity gradients
representing different signal-to-noise-gradients in dense tis-
sue. For each gradient type, there are eight possibilities of
PWS: three variations of depth and combinations as shown
in Fig. 1. Assuming that 512 pixels are equivalent to 1 mm
penetration depth, a disk of 64 pixels would represent a
diameter of 125 �m. In analogy to the standard processing,
the intensity values were normalized to fit to unity values
(i.e., ranging from 0 to 1).

The three depth options are presented by positioning
the centre of this disk at pixel 164 (320 �m), 256 (500 �m),
and 384 (750 �m). These artificial images served as starting
point, and the following steps had the purpose to approx-
imate a more realistic situation: a fourth vessel depth
at 210 (410 �m), which the algorithm should classify as

lesion that requires treatment with both PDL wavelengths,
was introduced. Artificial speckle noise was added to the
images using the Matlab function ‘‘imnoise’’. The diame-
ter of the vessels had a randomly introduced variation of
within ±10 pixel (∼20 �m), and the depth position varied

o
a
r
m
d

Table 1 Desired classification performance in designed model

Classification design Vessel combination

A B C D

Vessel depth(s) (�m) 320 500 750 320,
Treatment option(s) 1 2 None 1 and
Treatment response Full Full None Full

Vessel combinations are shown in Fig. 1A.
and with artificially created speckle noise. The classification
reatment option 2’, or ‘Untreatable’ (1, 2, or X). The expected
synthesized images.

ithin ±20 pixel (∼40 �m). For reproducibility, the function
or producing random numbers was seeded before creating

set of images using the Matlab function ‘‘rand (‘state’,
)’’.

Eight variations of depth, representing vessels, and 12
ackground gradients, representing tissue type — i.e., 96
mages in total — were used for analysis. Table 1 shows the
esign of classification groups for treatment suggestion and
xpected response. Every model was trained from six tissue
radients and cross-validated with the remaining six gradi-
nts. The mean of the resulting 924 permutations (6 from
2), as shown in Fig. 2, was taken as classification result.
t this stage, we were satisfied with a result to be either
orrect or not, and did not calculate specificities or sensi-
ivities.

easurements

CT device
he OCT device used in this study was a time domain
ench top system which was similar in design to the system
escribed previously [23]. The light source is a super lumi-
escent diode (SLD, Superlum) with a central wavelength

f 1310 nm and provided an axial resolution of ∼15 �m in
ir and a 10 �m lateral resolution. The rapid delay line is
ealized using a double pass mirror and a reference mirror
ounted on a galvanometer (Cambridge Instruments). The
ata acquisition was performed using Labview. The actual

E F G H

500 320, 750 500, 750 410 —
2 1 2 1 and 2 None

Partial Partial Full —
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igure 2 Assigning data to test set or prediction set for cros
out of 12, shown in 4 rows of 231 columns. Each column has

ther.

cquisition of 333 A-scans per millimetre meant an over-
ampling of the beam resolution.

issue samples
mages were obtained in agreement with the guidelines by
he local research ethics committee of the Bedford Hospitals
HS Trust. Seven patients were enrolled in this preliminary
tudy. The measured sites were chosen due to their cos-
etic relevance: forehead, upper-, mid- and lower-cheek,

nd forearm. The measurements were performed on site by
linicians of the Bedford Hospitals NHS foundation trust. The
rotocol did not involve any contrast agents or other prepa-
ation. At this stage, the samples were confirmed visually by
he experience of the clinician. No biopsies were taken for
xact matching of the OCT images.

re-processing

he top row of an OCT image does usually not coin-
ide with the tissue surface. Because PC-fed LDA classifies
epth-related features, the surface of a specimen needs
o be known. Synthesized images did not require this pre-
rocessing, as their surface equalled the top image row. All
easured images however needed to be pre-processed so

hat the depth pixel of each A-scan would represent the
ame distance.

The clinical images in this study measure 512 × 1000 pix-
ls and cover a width of 3 mm (Fig. 3). Every image depicts
he full technical penetration depth of the sample, and
here are no excessive reflections. The log of the intensity
ata (time domain signal) was stored as a matrix. Values

ere handled in double precision format. The upper part
f the image which depicts air was regarded as background
oise level. The mean of this plus 7× the standard devi-
tion of this background signal was used as the intensity
hreshold. After thresholding, intensity values of one B-scan

[
L
1
(
fi

igure 3 Example OCT images of PWS of two different patients, o
idation: representation of 924 permutations for a selection of
xels (6 grey and 6 black). None of the 924 columns equal each

ere normalized to the maximum intensity peak. A binary
hresholding was used to determine the sample surface, as
hown in Figs. 4A and B. Some artefacts can cause the sur-
ace recognition to fail, e.g. minor reflections and hair which
s present as small spots above the surface (cf. Figs. 3 and 4).
hese were reduced by a sliding median filter. Although
he settings for this processing were determined manually,
he actual processing was performed fully automated. For
he sake of this full automation, we accepted slight mis-
ecognition of the surface as shown in Fig. 4B. After surface
ormalising, data of low signal-to-noise ratio was removed
y cropping data below 300 pixels (Fig. 4D).

From the seven available images, areas (A-scans) con-
aining blood vessels were identified and marked manually
sing in house written Matlab code as shown in Fig. 4C.
lthough this is observer biased and based on the assumption
hat blood vessels show up as darker areas, we chose this
pproach for a proof of principle. Of the 7000 A-scans, 2864
ere selected as vessel-free, the remaining were classified
s containing vessels. No A-scan was excluded from analy-
is. A representative descriptor (the mean of the selected,
urface normalised A-scans) was taken of all A-scans of one
ample, thereby providing 14 descriptors (7 each for ves-
el and non-vessel images). We want to emphasise that this
anual A-scan selection was purely for training purposes,

nd that no manual step is required for the classification
lgorithm.

ata analysis

he algorithm was implemented as described previously

22], in short: data handling, pre-processing, and PC-fed
DA were performed using Matlab V6.1.0.450, Release
2.1 (The MathWorks Inc.), extended by the ‘PLS Toolbox’
Eigenvector Research Inc.) and our in house tools (‘Classi-
cation Toolbox’).

f the lower-cheek (left image) and mid-cheek (right image).
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Figure 4 Pre-processing for clinical images. (A) Original scan. (B) The recognized surface as overlay over the image (the image is
darker for visualization purposes only). (C) Screenshot of the program for manually selecting vessel A-scans. (D) Surface-normalised
and cropped image.
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Figure 5 The two strongest loadings for LDA-model of the sy
(Fig. 1).

Using principal components analysis, the data was
reduced to the first 10 principal components (PCs) [24,25].
This amount of PCs is an arbitrary number and likely to
include PCs of low significance to this discrimination. The
strongest loadings of these components were determined
by characterising the respective F values using ANOVA. An
example for the loadings is shown in Figs. 5 and 6. The PCs
were used for linear discriminant analysis, which is inher-
ently able to suppress loadings of lower significance for
the model. The cross-validation for the model from synthe-
sized images was performed as explained above using 924
permutations. The clinical images, which provided only 14
descriptors, were too few for training a strong classification
model, and was tested using leave-one-out cross-validation.
Results

The synthesized images were classified correctly in 99.8%.
This is the mean of 924 cross-validations (from all permu-

P

T
i

Figure 6 The two strongest loading
sized images. Note that extrema correlate with vessels depths

ations which are possible when taking random 6 out of 12
issue gradients) for training a classification model.

The training model based on the manual selection of ves-
el/no vessel, although for a small sample size of clinical
mages, had a performance of 100%. The leave-one-sample-
ut cross-validation was successful in 10 out of 14 images,
nd therefore had a performance of 71.4%. Although sen-
itivity and specificity seem not appropriate for this very
imited study, we can define a success rate for vessel data
6 out of 7) and vessel-free data (4 out of 7). The authors
ant to emphasise that the last two figures can only give a
ery rough idea of the performance.

iscussion
rocedure and limitations

here are three limitations which can be immediately
dentified from these specimens: because of this low

s for LDA-model of tissue data.
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ample number, the results of this classification can only be
egarded as preliminary. However, within clinical OCT, where
arger trials require approval by ethics boards and are timely,
t is common to demonstrate the general applicability of an
lgorithm on only a few samples [16,26—28].

Secondly, we assume blood vessels to show up with clear
ontrast. Inspecting images from some research groups, this
ight not always be the case [16]. In such cases, the velocity
rofiles obtained by Doppler OCT allow a clearer contrast,
nd therefore also deeper penetration depths. For the pre-
ented algorithm, we expect no fundamental difference in
istinguishing the clinical marker, be it an absorption max-
mum or a velocity profile, as long as such a marker can be
learly correlated with the vessel position.

Further, and more crucially, we were not provided with
ata on treatment outcome. With the present data, we are
ble to classify normal tissue from blood vessels, measured
rom PWS lesions which were visibly identified by eye. Exact
orrelation with histopathology is a major challenge [21].
roblems in a real clinical situation which we were not able
o address in this paper are the impact of skin tone, com-
osition of layers covering the PWS, or dynamic effects like
essel dilation. These issues can be addressed by using a
arge enough population for training a classification model.

The presented assumptions for vessel geometry and
epth might not exactly describe the real situation. We
elieve that for this initial study these assumptions are
ustified, as the model can be tweaked to more realistic
arameters. After all, our intention is to provide a prognosis
n treatment response.

Our results were obtained in ‘near’ real-time. The cross-
alidation time for 924 permutations on a 2.8 GHz Pentium
, 1 GByte RAM PC was 93 s (measured using the Matlab func-
ions ‘‘tic’’ & ‘‘toc’’), each process of creating a test model
nd classifying took therefore less than 0.1 s. Real, clini-
al data sets can be expected to be much larger. However,
he time for developing and cross-validating a classifica-
ion model will then not contribute to the processing time.
oughly extrapolating from the 7680 (80 × 96) A-scans used
ere, we estimate that a square centimetre imaged with
0 �m resolution, i.e., 106 A-scans, will be classified in less
han 13 s.

The model trained by clinical images reaches 71% cor-
ect classification. Intra- and inter-patient variation will
nevitably result in a certain degree of misclassification. The
ata was collected from a small population and from differ-
nt sites of the body; and a model based on a larger pool of
ata can be expected to perform better. While we cannot
ule out an occasional misclassification, we would expect it
o stand out of the surrounding classification. The general
mpression would be a reliable support for the treatment
ecision.

ummary and conclusions

or a further study design, lesions should be imaged with
CT repeatedly during the intervals between treatment

essions, in order to observe the response after PDL. We
nvisage a protocol which provides a means to co-register
canned sites in order to allow a reliable timeline, and the
esign of a training model based on the actual treatment
utcome of study participants.

[
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A classification algorithm for OCT opens the vast poten-
ial not only for characterizing a site by imaging, but also to
etermine whether a site is suitable for enhanced treatment
ptions. E.g., optical clearing agents increase penetration
epth [29]. Although the clearing effect depends on the
avelength, agents may positively affect treatment param-
ters like focusing or flow dynamics [30]. OCT would be able
o observe, in real-time, when an optimal condition from
treatment preparation has been achieved. This informa-

ion could also play a role when planning further treatment
ptions for PWS management, such as photodynamic therapy
31—33].

We have displayed an algorithm robust enough to cope
ith slight variations in depth location and vessel diameter.
his algorithm works fully automated and is fast on a stan-
ard computer. As such it could play a role in categorizing
lood vessel depth according to treatment options.
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KEYWORDS Summary Photodynamic therapy is a very important technique for the eradication

Photodynamic therapy;
Photofrin;
Aminolaevulinic acid;
Barrett’s oesophagus

of widespread oesophageal mucosal disease which has the potential to degenerate
to cancer. Patients unsuitable or unwilling to undergo radical therapy can be cured
using photodynamic therapy. We predominantly treat patients with high-grade dys-
plasia in Barrett’s oesophagus. Lesions that are visible macroscopically are removed
using endoscopic mucosal resection. The remaining area is then treated in 5 cm
segments at 3 monthly intervals with separate photosensitisation using endoscopic
photodynamic therapy.
© 2006 Published by Elsevier B.V.

Introduction and patient selection

We predominantly use photodynamic therapy for
the treatment of patients with high-grade dyspla-
sia, and early mucosal cancer of the oesophagus.
There is also a group of patients with localised
recurrence after radical therapy, or microscopic
marginal involvement after radical resection in
which photodynamic therapy can be very useful
in eradication of potential disease that may recur
locally. In addition patients, who are unwilling to
accept the uncertainty of a surveillance programme
for dysplastic disease, or are unfit or unwilling to
have radical therapy, are offered photodynamic
therapy for early cancer. The diagnostic dilemmas

∗ Corresponding author. Tel.: +44 8454 226679;
fax: +44 8454 226813.

E-mail address: hugh.barr@glos.nhs.uk (H. Barr).

associated with identification and diagnosis of dys-
plasia are very important. The level of uncertainty
means that photodynamic ablation is a very attrac-
tive option for patients.

Counselling the patient. The diagnostic
dilemmas

Cancer in both the squamous oesophagus and
the columnar-lined oesophagus develops through
a multi-step process progressing through low- to
high-grade dysplasia, which currently remains the
best marker of cancer risk. As many as 40% (range
0—73%) of patients with high-grade dysplasia may
already have a coexistent cancer, and between 5
and 60% of patients will develop cancer during
surveillance over 1—7 years.

There are profound problems associated with
the staging and assessment of dysplasia and cancer

1572-1000/$ — see front matter © 2006 Published by Elsevier B.V.

doi:10.1016/j.pdpdt.2006.03.008
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[1]. The division into the four groups of negative
for dysplasia; combined indefinite for dysplasia
and low-grade dysplasia; high-grade dysplasia; and
carcinoma has revealed that there are poor levels
of agreement among histopathologists (intra-
observer kappa values of 0.64, inter-observer
kappa values of 0.43) [2]. The vital separation
is that of high-grade dysplasia from intramucosal
carcinoma. This classification is also difficult with
inter-observer agreement between all pathologists
and specific gastrointestinal pathologists for high-
grade dysplasia and intramucosal carcinoma having
a kappa value of 0.42 and 0.56, respectively [3].
Since the problem in the oesophagus is limited to
a depth of 0.6 mm; photodynamic therapy of the
oesophagus eradicates the disease, preventing pro-
gression and removing the tissue and the diagnostic
dilemma.

Clinical assessment

Full clinical assessment of the patient and evalua-
tion of the extent of the diseased area is essential
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Figure 1 Mucosal nodule in a segment of Barrett’s
oesophagus. This was removed using endoscopic mucosal
resection. The whole area of Barrett’s is then ablated
using photodynamic therapy.

tifocal areas of high-grade dysplasia are partic-
ularly suitable for treatment with photodynamic
therapy.

Method of photosensitisation

Photofrin and tetra(m-hydroxyphenyl)
chlorin (mTHPC)

The patient receives light irradiation 48 h after the
administration of 2 mg/kg of Photofrin (porfimer
sodium), by slow intravenous injection. The agent
is reconstituted from powder immediately prior to
injection. It is very important to avoid extravasa-
tions so a wide bore intravenous cannula is inserted.
The clinical protocol for mTHPC proposes a drug
dose of 0.15 mg/kg administered intravenously 4
days before irradiation. Photofrin photodynamic
therapy is used if there have been areas of macro-
scopic abnormality or concern about disease being
deeper than the mucosa. It is now our usual prac-
tice to use Photofrin photodynamic therapy for all
patients following the results of the randomised
clinical trial [4].

A

T
o

rior to photodynamic therapy. We use standard
adial endsonography (7.5 MHz), performed to
onfirm the superficial nature of the disease and
xclude deep muscular invasion and lymph node
nvolvement. High-frequency endosonography
20 MHz) is particularly useful to identify more
uperficial invasion into the submucosa, since
his may be associated with lymph node metas-
asis. The patient may need to consider more
adical options if curative treatment is to be
onsidered.

It is our routine procedure in patients with
igh-grade dysplasia or early carcinoma to perform
xtensive biopsy of all macroscopic lesions. Specif-
cally in patients with columnar-lined Barrett’s
esophagus we perform quadrantic biopsy at 1 cm
ntervals of the entire columnar-lined segment
o attempt to determine whether the lesions
re focal or multifocal, and map the extent and
istribution of the disease. Magnification chro-
oendoscopy with dye spraying (indigo carmine

olution 0.4—0.8%) helps to identify areas of
ysplasia.

If there is a macroscopic nodule or irregularity
Fig. 1), we remove it for histology using endo-
copic mucosal resection. We are also investigating
ptical coherence tomography for the assessment
f dysplasia (Fig. 2). The patient is offered photo-
ynamic therapy after staging. There is no abso-
ute contra-indication in elderly or frail patients
ith co-morbid disease. The management of mul-
minolaevulinic acid (ALA)

he patient receives 60 mg/kg ALA dissolved in
range juice [5]. We have seen some patients feel
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Figure 2 Optical coherence tomography of area of dysplastic Barrett’s oesophagus. The bar represents 1 mm mea-
surement. Areas of interest are shown on the right with white lines showing optical transitions which may indicate
histological changes.

quite nauseous and have become mildly hypoten-
sive. The ALA is administered between 4 and 6 h
before transfer to endoscopy for endoscopic light
delivery. Patients with no macroscopic abnormality
with smooth appearing Barrett’s oesophagus with
no suggestion of deeper disease are treated with
ALA.

Method of treatment

Precautions are taken to avoid excessive light
exposure in transportation of the patient to the
endoscopy suite, and exposure to bright operating
lights. Treatment is performed with topical anaes-
thesia with Xylocaine pharyngeal spray and intra-
venous sedation of between 1 and 10 mg of midazo-
lam. In our practice we have found that analgesia
is occasionally administered (Pethidine 50—100 mg
intravenously). Patients photosensitised using ALA
often require a prolonged endoscopic light admin-
istration. It is very noticeable that there is consid-
erable local discomfort and irritation during light
irradiation. The patients usually have no recollec-

chlorin mTHPC (2 min) photosensitisation than for
ALA, and there appears no problem of discomfort.
It is very important to pay close attention to light
dosimetry and use an appropriate light-centring
device. The calculation of light dosimetry and
delivery is performed by medical physics [6]. The
aim is to deliver an even light dose to a defined
circumferential area of the organ. To treat long
areas repeated sequential areas are irradiated
in 5 cm lengths in subsequent sessions. We use a
windowed balloon (Wilson Cook Inc). The balloon
is passed over a guide wire. Inhomogeneous and
inconsistent illumination is a problem and occurs
due to oesophageal motility, respiratory move-
ments, and patient restlessness. To avoid this we
pass a small video endoscope down beside the
device to ensure positional stability throughout
treatment.

The laser fibre with 7 cm diffusing tip is inserted
and the correct wavelength of light chosen PpIX
(generated from ALA)-630 nm, Photofrin-630 nm,
and mTHPC-652 nm. We do adjust the position of
the irradiating device during the procedure so the
laser treatment is interrupted on occasion. The
power density used for Photofrin is between 25
a 2

e
t
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o
p
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g

tion of this but are sometimes very difficult to
keep well sedated. The discomfort is manifest with
considerable agitation and restlessness during the
procedure. Throughout treatment, oxygen is deliv-
ered via a nasal sponge at a rate of 4—5 l a minute.
Repeat sedation may be necessary as the light treat-
ment can last 20—30 min.

The treatment times are considerably shorter for
Photofrin (10—15 min) and tetra (m-hydroxyphenyl)
nd 30 mW/cm (100—400 mW/cm) to provide an
nergy density of 25 J/cm2 from the diffuser to
he mucosa [6]. Treatment can be performed on
n outpatient basis and patients with Barrett’s
esophagus must all receive profound acid sup-
ression with proton pump inhibitor therapy. Direct
unlight and other intense lights must be avoided
or a period of 4—6 weeks, and an advice sheet is
iven.
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Post-operative care and follow-up

During the clinical trial [4], we performed a second
endoscopy 2 days after the initial treatment session
to irradiate any areas that had been missed at the
first treatment. It is now not our practice to do this,
we repeat a diagnostic endoscopy 4—6 weeks after
the initial treatment.

The patient is counselled that they will often
feel no effect until days 3—7 after photodynamic
therapy when retrosternal pain and discomfort is
often apparent. This is treated with antacids. The
patients are asked to report any persistent difficulty
in swallowing since stricture formation may occur.
All patients have continuous endoscopic surveil-
lance initially at 3 months and then yearly when
two consecutive endoscopies with multiple biop-
sies have shown no dysplasia. If further treatment
is required it is performed at 3 monthly intervals.
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