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ABSTRACT 
 

The potential function method has been used extensively in nonlinear control for the 

development of feedback laws which result in global asymptotic stability for a 

certain prescribed operating point of the closed-loop system. It is a variation of the 

Lyapunov direct method in the sense that here the Lyapunov function, also called 

potential function, is constructed in such a way that the undesired points of the 

system state space are avoided. The method has been considered for the space 

applications where the systems involved are usually composed of the cascaded 

subsystems of kinematics and dynamics and the kinematic states are mapped onto an 

appropriate potential function which is augmented for the overall system by the use 

of the method of integrator backstepping. The conventional backstepping controls, 

however, may result in an excessive control effort that may be beyond the saturation 

bound of the actuators. The present paper, while remaining within the framework of 

conventional backstepping control design, proposes analytical formulation for the 

control torque bound being a function of the tracking error and the control gains. The 

said formulation can be used to tune to the control gains to bound the control torque 

to a  prescribed saturation bound of the control actuators.  

 

 

1. INTRODUCTION 

 

BACKSTEPPING is a popular nonlinear control 

design technique [1]. The basic idea is to use a part 

of the system states as virtual controls to control the 

other states. Generating a family of globally 

asymptotically stabilizing control laws is the main 

advantage of it which can be exploited for 

addressing robustness issues and solving adaptive 

problems. The name backstepping refers to the 
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recursive nature of the control design procedure 

where a control law as well as a control Lyapunov 

function (CLF) is recursively constructed to 

guarantee stability. Backstepping is among the 

various control methodologies which have been 

considered for the spacecraft attitude maneuver 

problem [2,3]. The cascaded structure of the 

spacecraft kinematics and dynamics makes the 

method of integrator backstepping a preferred 

approach for the said problem. However, the control 

actuators used for the attitude maneuver problem, 

e.g. reaction wheels, control moment gyros or 

thrusters, have an upper bound on the torque they 

can exert onto the system and the simple or 

conventional backstepping control method may 

result in excessive control input beyond that 

saturation bound of the actuators. Ref. 4, while 

remaining within the framework of conventional 

backstepping control design, has formulated the 

analytical bound for the control torque and has 

exploited the family of augmented Lyapunov 

functions proposed by [5] to introduce a constant 

gain which can be helpful for lowering the said 

bound. The present paper extends the work of [4] for 

autonomous attitude manoeuvres in the presence of 

constraints on the admissible attitudes [6,7]. 

 

The paper is organized as follows. Next section 

describes the model for the rigid spacecraft. Then, 

there comes the section giving the details of the 

analytical estimates of the bounds for the control 

torque components and the final section summarizes 

the work of the paper. 

 

 

 

 

2. RIGID SPACECRAFT MODEL 

 

The spacecraft is assumed to be a rigid body with 

actuators that provide torques about three mutually 

perpendicular axes that define a body-fixed frame 

with origin at the center of mass of the spacecraft. 

The equations of rotational motion of the spacecraft 

are given by [8] 
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v
q q q q q= =q q  denotes the unit 

quaternion that represents the orientation of the 

spacecraft with respect to an inertial frame, 

1 2 3
[ , , ]Tω ω ω=ωωωω  denotes the angular velocity of the 

spacecraft with respect to the inertial frame 

expressed in the body frame, T=J J  denotes the 

body frame referenced positive definite inertia 

matrix of the spacecraft, 3

1 2 3
[ , , ]TT T T= ∈ ℜT  

denotes the control torque with components in the 

body frame. We define the three subscripts i, j and k 

as { }( , , ) (1, 2, 3),  (2, 3,1),  (3,1, 2)i j k ∈  and Eq. (1) 

can be written as 
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( , , )diag J J J=J  Eq. (2) becomes 
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where ( ) /
i j k i

p J J J= −  and /
i i i

u T J= . 

 

 

3. ANALYTICAL CONTROL TORQUE BOUND 

 

This section first describes the design of the 

backstepping controller then there comes the 

analytical estimate of the control torque bound. The 

candidate Lyapunov function for the kinematics 

subsystem stabilization is 

 

 
a r

V V V= +  (5) 

 

where 
a

V  is the attractive part taken as 
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and the repulsive part is represented by 
r

V  chosen as 
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where A and B are the positive constants shaping  

the repulsive potential topology and 

4 1 2 3 4
[ ,  ] [ , , , ]T T T

v
b b b b b= =b b  denotes the unit 

quaternion that represents the orientation of the 

spacecraft with respect to the inadmissible attitude 

, 4 , 1, 2, 3, 4,
[ ,  ] [ , , , ]T T T

v a a a a a aa q q q q q= =q q  which is 

fixed relative to the inertial frame. The separation of 

spacecraft attitude from the inadmissible one is 

given by the angle 1 1 22 sin [( ) ]T

v
θ −∆ = b b . The 

pseudo control input for the kinematics subsystem 

stabilization s

i
ω  is written as 
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where s is a positive constant, sgn(.) denotes the sign 

function defined for this study as [3] 

 

 

1,      0
sgn( )

1,        0

or

1,      0
sgn( )

1,        0

x
x

x

x
x

x

− <
=

≥

− ≤
=

>

�
�
�

�
�
�

 (9) 

 

The Lyapunov function of Eq. (5) is augmented for 

the overall system as [5] 
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where ( )Ω ⋅  is a function of class κ∞  i.e. it is zero at 

zero, strictly increasing and becomes unbounded 

when its argument does so [5]. The time derivative 

of the above equation becomes 
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where ( )x′Ω  defines the derivative of ( )xΩ  with 

respect to x. Taking 
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we obtain the backstepping controller 
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where g is a positive constant. In an effort of 

achieving the boundedness of ui one may expect 

taking ( ) 1
i

ω′Ω >  to be useful so we consider the 

simple case of ( )
i i

ω ηωΩ =  with 1η >  and the 

above control law is written as 
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Defining s

i i i
e ω ω= −  the above equation can be 

written as 
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Because 1
i

q ≤  and 1
i

b ≤  so the absolute value of 

the control inputs 
i

u  is bounded by 
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where rV  is the bound for the repulsive potential Vr 

and it depends on the minimum permissible 

separation angle θ∆ . Rearranging the terms, the 

above inequality becomes 
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where the constants 
1

k , 
2

k  and 
3

k  are 
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Using Eqs. (11) and (12) we can write 
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Using ( )
i i

ω ηωΩ =  we get 
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The above two equations show that if 

( ) ( )2
i i r i

e q BV b g> +  or, being more 

conservative, ( ) ( )1 2
i r

e BV g> +  then 

( ) ( )s

i i
ω ωΩ − Ω  or 

i
e  will be decreasing until it 

reaches a value of ( ) ( )1 2
r

BV g+  after which it 

will remain bounded by ( ) ( )1 2
r

BV g+  and, 

hence, Eq. (17) can be used to calculate the bounds 

of the controls 
i

u . Moreover, the minimum bounds 

identifiable by Eq. (17) are 
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4. CONCLUSION 

 

The problem of spacecraft constrained attitude 

manoeuvres under control input saturation has been 

addressed by expressing the bounds for the control 

torque components analytically as a function of the 

tracking error and the typical conventional 

backstepping control gains. The said expressions can 

be used to tune the control gains for lowering the 

control torque bound to be within the control 

actuators saturation limit. 

 

 

REFERENCES 

 

1. Khalil, H. K., Nonlinear Systems, 3rd ed., 

Prentice Hall, Upper Saddle River, NJ., 2002, Chap. 

14. 

2. Krstic, M., and Tsiotras, P., “Inverse Optimal 

Stabilization of a Rigid Spacecraft,” IEEE 

Transactions on Automatic Control, Vol. 44, No. 5, 

1999, pp. 1042–1050. 

3. Kim, K.-S., and Kim, Y., “Robust Backstepping 

Control for Slew Maneuver Using Nonlinear 

Tracking Function,” IEEE Transactions on Control 

Systems Technology, Vol. 11, No. 6, 2003, pp. 822–

829. 

4. Ali, I., Radice, G. M., and Kim, J., “Analytical 

Control Torque Bound for Backstepping Control of 

Spacecraft Attitude Maneuver,” Preparing to submit 

to Journal of Guidance, Control and Dynamics. 

5. Mazenc, F., and Iggidr, A., “Backstepping with 

Bounded Feedbacks,” Systems and Control Letters, 

Vol. 51, 2004, pp. 235–245. 

6. McInnes, C. R., “Large Angle Slew Maneuvers 

with Autonomous Sun Vector Avoidance,” Journal 

of Guidance, Control, and Dynamics, Vol. 17, No. 4, 

1994, pp. 875–877. 



 6 

7. Casasco, M., and Radice, G., “Optimal Results 

for Autonomous Attitude Control Using the 

Potential Function Method,” Advances in the 

Astronautical Sciences, Vol. 119, 2005, pp. 1369–

1389. 

8. Shuster, M. D., “A Survey of Attitude 

Representations,” Journal of the Astronautical 

Sciences, Vol. 41, No. 4, 1993, pp. 439–517. 

 



 7 

 


	citation_temp.pdf
	http://eprints.gla.ac.uk/5112/


