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Abstract In this paper the procedures to test global search algorithms applied to
space trajectory design problems are discussed. Furthermore, a number
of performance indexes that can be used to evaluate the effectiveness of
the tested algorithms are presented. The performance indexes are then
compared and the actual significance of each one of them is highlighted.
Three global optimization algorithms are tested on three typical space
trajectory design problems.
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1. Introduction

In the last decade many authors have used global optimization tech-
niques to find optimal solutions to space trajectory design problems.
Many different methods have been proposed and tested on a variety of
cases. From pure Genetic Algorithms (GAs) [7, 5, 8, 1] to Evolutionary
Strategies (ESs) (such as Differential Evolution, DE)[12] to hybrid meth-
ods [14], the general intent is to improve over the pure grid or enumera-
tive search. Sometimes, the actual advantage of using a global method
is difficult to appreciate, in particular when stochastic based techniques
are used. In fact, if, on one hand, a stochastic search provides a non-zero
probability to find an optimal solution even with a small number of func-
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tion evaluations, on the other hand, the repeatability of the result and
therefore the reliability of the method can be questionable. The first ac-
tual assessment of the suitability of global optimization methods to the
solution of space trajectory design problems can be found in two studies
by the University of Reading [6] and by the University of Glasgow [11].
One of the interesting outcomes of both studies was that DE performed
particularly well on most of the problems, compared to other methods.
In both studies, the indexes of performance for stochastic methods were:
the average value of the best solution found for each run over a number
of independent runs, the corresponding variance and the best value from
all the runs. For deterministic methods, the index of performance was
the best value for a given number of function evaluations. In this paper,
we propose a testing methodology for global optimization methods ad-
dressing specifically black-box problems in space trajectory design. In
particular, we focus our attention on stochastic based approaches. The
paper discusses the actual significance of a number of performance in-
dexes and proposes an approach to test a global optimization algorithm.

2. Testing Procedure

In this section we describe a testing procedure that can be used to
investigate the complexity of the problem and to derive the performance
indexes described in the next section. If we call A a generic solution
algorithm and p a generic problem with objective function f , we can
define a general procedure as in Algorithm 1.

Algorithm 1 Convergence Test

1: set the max number of function evaluations for A equal to N
2: apply A to p for n times
3: for all i ∈ [1, ..., n] do φ(N, i) = min f(A(N), p, i)
4: end for

5: compute: φmin(N) = min
i∈[1,...,n]

φ(N, i), φmax(N) = max
i∈[1,...,n]

φ(N, i)

Now if the algorithm A is convergent, when the number of function
evaluations N goes to infinity the two functions φmin and φmax converge
to the same value, the global minimum value denoted as fglobal. If we fix
a tolerance value tolf , we could consider the following random variable
as a possible quality measure of an algorithm

N∗ = min{φmax(N) − fglobal ≤ tolf : ∀ N ≥ N∗}.

The larger (the expected value of) N∗ is, the slower is the convergence
of A. However, such measure can be unpractical since, though finite,
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N∗ could be very large. In practice, what we would like is not to choose
N large enough so that a success is always guaranteed, but rather, for
a fixed N value, we would like to maximize the probability of hitting a
global minimizer. Now, let us define the following quantity:

δf (x) = f(x) − fglobal (1)

(in case the global minimum value fglobal is not known, we can substitute
it with the best known value fbest). We can now define a new procedure,
summarized in Algorithm 2.

Algorithm 2 Convergence to the global optimum

1: set the max number of function evaluations for A equal to N
2: apply A to p for n times
3: set j = 0
4: for all i ∈ [1, ..., n] do

5: φ(N, i) = min f(A(N), p, i)
6: x = arg φ(N, i)
7: compute δf (x)
8: if (δf (x) < tolf ) then j = j + 1
9: end if

10: end for

The output of such procedure is the fraction j/n of the n runs of
A which end up with a success, i.e. an estimate of the probability of
success for A. A key point is properly setting the value of n, because
a value of n too small would correspond to an insufficient number of
samples to have a proper statistics. This choice will be discussed in
Section 2.1. The value of the tolerance parameter tolf , which defines
the concept of success, is problem dependent. Note that, in the case of
multiple minima with equal f also the distance ‖x − xglobal(best)‖ would
be relevant, however in the following we are only interested in the value
of the merit function.

2.1 Performance Indexes

Now that the testing procedure is defined we can define the perfor-
mance indexes. For a stochastic based algorithm different performance
indexes can be defined. In the following we will discuss about the sig-
nificance of some of them keeping in mind the practical use of a global
optimization, or global search, algorithm in space trajectory design.

The current practice is mainly focused on the evaluation of best value,
mean and variance values of the best solutions found on n runs [8, 7, 12].
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An algorithm is considered as better performing as the obtained mean
value is closer to the global optimum and a small variance is considered
as a suggestion of robustness. This approach, however, does not consider
three main issues: a) generally the distribution of the best values cannot
be approximated with a gaussian distribution; b) from a practical stand-
point, we are not interested in the mean values, which could be faraway
from the global optimum; c) we want to know the level of confidence in
the repetibility and global optimality of the results.

An alternative index that can be used to assess the effectiveness of a
stochastic algorithm is the success rate, which is related to the j value in
Algorithm 2, being Sp = j/n. Considering the success as the referring in-
dex for a comparative assessment implies two main advantages. First, it
gives an immediate and unique indication of the algorithm effectiveness,
addressing all the issues highlighted above, and, second, the success rate
can be represented with a binomial probability density function (PDF),
independently of the number of function evaluations, the problem and
the type of optimization algorithm. This latter means, moreover, that
we can design the experiment and fix the number of runs, n, on the basis
of the error we can accept on the success value. A usual starting point to
sample size determination for a binomial distribution is to assume both
the normal approximation for the sample proportion p of successes, i.e.
p ∼ N{θ, θ(1− θ)/n}, and the requirement that Pr[|p− θ| ≤ d|θ] should
be at least 1 − α [2]. This leads to expression in (2) and to the conser-
vative rule in (3), obtained if θ = 0.5

n ≥ θ(1 − θ)χ2
(1),α/d2 (2)

n ≥ 0.25χ2
(1),α/d2 (3)

For our tests we considered n = 200, which should “guarantee” an error
≤ 0.05 (d = 0.05) with a 95% confidence (α = 0.05).

3. Problem Description

Three different test-cases, with different difficulty levels, are consid-
ered. In all of these cases the objective will be to minimize the variation
of the velocity of the spacecraft due to a propelled maneuver, ∆v. Min-
imizing the ∆v means minimizing the propellant mass required to per-
form the maneuver, since propellant mass increases exponentially with
∆v.

A simple, but already significant, application is to find the best launch
date and time of flight to transfer a spacecraft from Earth to the aster-
oid Apophis. The transfer is computed as the solution of a Lambert’s
problem [3], therefore the design variables are the departure date from
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the first celestial body, t0 and the flight time T1 from the first to the
second body. The launch date from the Earth has been taken in the
interval [3653, 10958] (number of elapsed days since January 1st 2000,
MJD2000), while the time of flight has been taken in the interval [50,
900] days. The best known solution is fbest=4.3745658 km/s.

The second test-case consists of a transfer from Earth to Mars with
the use of the relative movement and gravity of Venus to alter the path
and speed of the spacecraft in order to save fuel. The mission is im-
plemented as two Lambert arcs, Earth-Venus and Venus-Mars, plus a
gravity assist maneuver at Venus. The problem has dimension 6, t0 [d,
MJD2000] [3650, 3650+365.25*15], T1 [d] [50, 400], γ1 [rad] [−π, π],
rp,1 [1, 5], α2 [0.01, 0.9], T2 [d] [50, 700], where γ1, rp,1 and α2 are
related to the gravity assist maneuver and are the angle of hyperbola
plane, the radius of the pericentre of the hyperbola adimensionalised
with the radius of the planet, and the fraction of time of flight before
the deep space manoeuvre, respectively. The best known solution is
fbest=2.9811 km/s. The third test is a multi gravity assist trajectory
from the Earth to Saturn following the sequence Earth-Venus-Venus-
Earth-Jupiter-Saturn (EVVEJS). Gravity assist maneuvers have been
modeled through a linked-conic approximation with powered maneuvers,
i.e., the mismatch in the outgoing velocity is compensated through a ∆v
maneuver at the GA planet. No deep-space maneuvers are possible and
each planet-to-planet transfer is computed as the solution of a Lambert’s
problem. The objective function is given in [9] and also in this case the
dimensionality of the problem is 6, t0 [d, MJD2000] [-1000, 0], T1 [d] [30,
400], T2 [d] [100, 470], T3 [d] [30, 400], T4 [d] [400, 2000], T5 [d] [1000,
6000]. The best known solution is fbest=4.9307 km/s. Due to format
requirements, it is not possible to exhaustively describe the problems,
but they are freely available on request as black-box executables.

4. Used Algorithms

We tested three global search algorithms belonging to the class of
stochastic algorithms. More precisely, one belongs to the class of ESs,
one to the class of GAs and one to the class of agent-based algorithms.

We considered 6 different settings for the DE, resulting from combin-
ing 3 sets of populations, [5 d, 10 d, 20 d], where d is the dimensionality of
the problem, 2 strategies, 6 (DE, best, 1, bin) and 7 (DE, rand, 1, bin)
[13], and single values of step-size and crossover probability, F = 0.75
and CR = 0.8 respectively, on the basis of common use. DEs with strat-
egy 6 are indicated, in Table 1, as Algorithms 1, 2 and 3, while those
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with strategy 7 are 4, 5 and 6, depending on the population size (from
the smallest to the biggest).

For the Particle Swarm Optimization (PSO) algorithm ([4]), 9 differ-
ent settings were considered, resulting from the combination of 3 sets
of population, again [5 d, 10 d, 20 d], 3 values for the maximum velocity
bound, Vmax ∈ [0.5, 0.7, 0.9] (corresponding in Table 1 to Algorithms
7-9, 10-12 and 13-15, respectively), and single values for weights, C1 = 1
and C2 = 2. Regarding the GA ([10]) application, only the influence
of the population size was considered ([100, 200, 400] for the bi-impulse
test case and [200, 400, 600] for the other two cases, corresponding to
Algorithms 16-18 in Table 1), with single values for crossover and mu-
tation probability, Cr = 1 and Mp = 1/d. All algorithms operated on
normalized ([0,1]) search spaces.

Table 1. Numbering of tested algorithms

Alg. Id. Alg. Id. Alg. Id.

DE(5 d, 6) 1 PSO(5 d, 0.5) 7 PSO(5 d, 0.9) 13
DE(10 d, 6) 2 PSO(10 d, 0.5) 8 PSO(10 d, 0.9) 14
DE(20 d, 6) 3 PSO(20 d, 0.5) 9 PSO(20 d, 0.9) 15
DE(5 d, 7) 4 PSO(5 d, 0.7) 10 GA(100) 16
DE(10 d, 7) 5 PSO(10 d, 0.7) 11 GA(200) 17
DE(20 d, 7) 6 PSO(20 d, 0.7) 12 GA(400) 18

5. Comparison Among Performance Indexes

The results of the tests are summarized in Table 2 and 3, where success
probability (Table 2) and best value, mean and variance of best results
(Table 3) are given for each of 18 (set) solvers. For both EA and EVM
cases, success probability allows a fair classification and gives a clear
indication of the best performing algorithms. Algorithms 5 and 6 per-
form undoubtedly much better than the others and GAs (Algorithms
16-18) appear to be the worst performing ones. Algorithm 4 wins a
bronze medal, but if we can be confident on its third position for the
EVM problem, we cannot have the same level of confidence regarding
the third position for EA, because of the proximity of other algorithms.
Actually, due to the binomial nature of the success and the adopted
sample size, it is not possible to fairly discriminate between algorithms
for which the success distance is smaller than the expected error (0.05 in
our computations). Therefore, Algorithm 4 has to be considered at the
same level of Algorithms 11, 13 and other PSO settings. For the same
reasons, we can say that, among the PSO settings, Algorithms 11 and
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13 perform better than Algorithm 8 but the remaining PSO algorithms
work at the same level.

Table 2. Success for the 18 algorithms on the three test-cases. To compute the
success, following tolf values were used: 0.001 for EA, 3−fbest for EVM and 5−fbest

for EVVEJS

1 2 3 4 5 6 7 8 9
EA 0.140 0.300 0.355 0.450 0.770 0.855 0.355 0.345 0.410
EVM 0.050 0.050 0.050 0.150 0.250 0.370 0.040 0.035 0.080
EVVEJS 0.020 0.005 0.015 0.000 0.000 0.000 0.000 0.005 0.000

10 11 12 13 14 15 16 17 18
EA 0.395 0.425 0.410 0.435 0.385 0.420 0.160 0.240 0.105
EVM 0.045 0.060 0.055 0.035 0.070 0.075 0.005 0.010 0.035
EVVEJS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005

An analogous vagueness is associated to the results of a number of
algorithms when applied to the EVM case and to almost all of them when
applied to the EVVEJS case. For the EVVEJS transfer, in particular,
the probability of success, though not always 0, is at best, including the
error margin, not greater than 0.07.

Table 3. Indexes: Best value, Mean Best, Variance Best.

EA (N=5000) EVM (N=100000) EVVEJS (N=400000)

1 4.3746 4.6962 0.0736 2.9811 3.6032 0.3240 4.9307 12.5129 15.0723
2 4.3746 4.5734 0.0312 2.9811 3.5118 0.0880 4.9307 11.3672 15.7534
3 4.3746 4.5198 0.0166 2.9811 3.4335 0.0823 4.9307 9.9694 15.9349
4 4.3746 4.5126 0.0236 2.9811 3.2936 0.0307 5.3034 8.1468 9.7486
5 4.3746 4.4197 0.0074 2.9811 3.2336 0.0277 5.3034 6.3851 5.0131
6 4.3746 4.3919 0.0026 2.9813 3.1699 0.0285 5.3034 5.5596 1.3999
7 4.3746 4.5120 0.0124 2.9811 3.8194 0.6794 5.0275 12.6827 16.4910
8 4.3746 4.5103 0.0119 2.9811 3.7812 0.6252 4.9558 11.9736 18.7031
9 4.3746 4.4990 0.0125 2.9811 3.6537 0.5233 5.3034 11.1931 17.9212
10 4.3746 4.5098 0.0142 2.9811 4.0427 1.0135 5.0125 11.7365 17.7327
11 4.3746 4.4919 0.0120 2.9811 3.9285 0.8346 5.0553 10.7274 17.2695
12 4.3746 4.5037 0.0136 2.9811 3.7329 0.5971 5.0177 10.4668 18.4276
13 4.3746 4.4959 0.0133 2.9811 4.2185 1.0569 5.2450 11.8344 21.7106
14 4.3746 4.5503 0.3720 2.9811 3.9747 0.8676 5.0223 10.5636 18.4262
15 4.3746 4.4983 0.0131 2.9811 3.8127 0.7466 5.0310 10.5256 15.1327
16 4.3746 4.5743 0.0260 2.9885 3.7821 0.2413 5.1595 10.6525 15.1862
17 4.3746 4.4959 0.0146 2.9926 3.5435 0.1400 5.0242 8.3140 9.9140
18 4.3746 4.4507 0.0084 2.9827 3.4452 0.0983 4.9821 6.9770 6.6833
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For cases when the success probability cannot give practically useful
information to classify the algorithms, the user could be tempted to use
mean and variance values, but this practice is strongly heedless. Since,
as anticipated in Section 2.1 and confirmed by tests (see Figure 1), the
PDF of the best values is not a gaussian and, moreover, changes during
the process, mean and variance values are not enough to understand the
algorithm behaviour and we cannot say anything about their exactness.
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Figure 1. Variation of the PDF for best solutions with N for the Algorithm 6 applied
to EA test-case; discrete, incorrect gaussian approximation (dashed) and kernel based
approximation (continuous) are shown.

Even if we suppose mean and variance are correct (in some way), look-
ing at these two values can bring to incorrect conclusions. For instance,
if we consider the values for the Algorithms 14 and 17 applied to EVM,
we could conclude that Algorithm 17 performs better than Algorithm
14, because of a smaller mean value and a smaller variance (regarded
as an index of robustness). But if we are interested in global optimal
solutions, Algorithm 14 is noticeably better: it is able to find the global
solution, even if it is less robust and gets stuck many times in a far basin
(see Figure 2).

In order to solve an uncertainty condition, for instance when the suc-
cess probability appears uniformly null, relaxing the tolf value could be
useful. Focusing on the EVVEJS case, there is no way to correctly dis-
criminate among the algorithms on the basis of data in Table 2, but if
the success threshold is raised from 5 to 5.3, then a superior performance
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of GAs is revealed. Most likely, this behaviour is due to a combination of
large population size, mutation operator and non-deterministic selection,
which reduce the local convergence, and allows for a better exploration
of the search space.
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Figure 2. Examples of two PDFs, which could bring to incorrect conclusions; for
both cases, discrete, incorrect gaussian approximation (dashed) and kernel based
approximation (continuous) are shown.

As previously stated, for all the tests, 200 runs were performed in
order to maintain the error on the success probability within a predefined
margin. The extreme importance of the sample size appears evident
when we look at Figure 3, where the variation of the success probability
is shown as function of n. For n ≤ 50, the success is extremely oscillating
and the confidence on the obtained value should be considered poor.
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(a) Alg. 13 on EA case
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(b) Alg. 6 on EVM case

Figure 3. The influence of sample size. The success probability is shown as function
of the sample size for two different algorithm/test-case combinations.

6. Conclusions

The work focuses on the testing procedures for the application of
global optimization algorithms to space trajectory design and tries to set
the basis for a standard and consistent procedure. The current testing
practice and the currently used performance indexes are criticized and a
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preliminary testing/analysis procedure is proposed and the probability
of success is indicated as the most useful index, when performance of
different algorithms are to be compared. Moreover, the binomial nature
of this index allows to link the number of performed runs to the expected
error on the success itself, while it is not possible to have the same statis-
tical consistency when mean and variance values are utilized, because of
the unknown nature of the PDF for the best values. In general, it should
be stressed that if the comparative tests have to be reliable, the number
of runs cannot be lower than a threshold depending on the nature of the
considered indexes.

In the future, the testing procedure will be improved by considering
also the heuristics costs and the link between the performance of some
heuristics and the main structures of the test-cases.
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