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ABSTRACT 
 

The nonlinear control design problem for large angle reorientation manoeuvre of 

spacecraft has a proper structure for the direct application of backstepping design as 

its dynamics and kinematics are naturally in a cascade form. In this paper, the 

robustness of the backstepping control against the uncertainties in the moment of 

inertia matrix is investigated and a sufficient condition for the robust stability is 

derived. Numerical simulations show the validity of the condition. 

 

 

 

1. INTRODUCTION 

 

BACKSTEPPING is a systematic Lyapunov-based 

control design method for nonlinear systems, 

especially those in a cascade form [ 1]. The basic 

idea is to use a part of the system states as virtual 

controls to control the other states. The name 

backstepping refers to the recursive nature of the 

control design procedure where a control law as well 

as a control Lyapunov function is recursively 

constructed to guarantee the stability. Generating a 

family of globally asymptotically stabilizing control 

laws is the main advantage of this method and it can 

be exploited for addressing robustness issues and 

solving adaptive problems. 

 

Large angle reorientation manoeuvre problem of 

spacecraft, whose dynamics and kinematics are 

naturally in a cascade form, is a good candidate for 

this technique [ 2, 3]. However, the control actuators 

used for spacecraft attitude manoeuvre problems, 

e.g. reaction wheels, control moment gyros or 

thrusters, have an upper bound on the magnitude of 

torque they can exert onto the system and the simple 

or conventional backstepping control method may 

result in excessive control input beyond that 

saturation bound of the actuators. 
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A family of augmented Lyapunov functions 

proposed in [ 4] introduces a constant gain that is 

helpful to lower the required control torque bound. 

For this approach, the analytical bound for the 

control torque was derived in [ 5]. Lowering of the 

control torque bound may cause settling time 

performance degradation and [ 5] has also employed 

the nonlinear function based tracking function in [ 3] 

to reduce the settling time. The same conventional 

backstepping control law as considered by [ 5] is 

being analysed in the present paper for robustness 

against the uncertainties of the spacecraft moments 

of inertia. 

 

The paper is organized as follows: Firstly, the 

kinematics and dynamics of rigid spacecraft attitude 

motion are summarised. Secondly, the analytical 

estimates of the moment of inertia matrix bounds in 

terms of eigenvalues and the sufficient condition of 

robust stability are presented. Finally, numerical 

simulation shows the validity of the robustness 

condition and the summary is presented. 

 

 

2. RIGID SPACECRAFT ATTITUDE MOTION 

 

Spacecraft is assumed to be a rigid body with 

actuators that provide torques about three mutually 

perpendicular axes that define a body-fixed frame 

with origin at the centre of mass of spacecraft. The 

equations of rotational motion of spacecraft are 

given by [ 6] 

 

 
13 4 13 4 13

1 1
( ),    

2 2

T
q q= − × = −q q qɺ ɺω ω ωω ω ωω ω ωω ω ω  (1) 

 [ ]+ × =J J Tɺω ω ωω ω ωω ω ωω ω ω  (2) 

 

where 
3

13
∈ ℜq  and 

4
q ∈ ℜ  satisfy 

2

13 13 4
1

T
q+ =q q , 

13 4
[ ,  ]

T T
q=q q  denotes the unit quaternion that 

represents the orientation of spacecraft with respect 

to an inertial frame, 
1 2 3

[ , , ]
T

ω ω ω=ωωωω  denotes the 

angular velocity of the spacecraft with respect to the 

inertial frame expressed in the body frame, 
T

=J J  

denotes the body frame referenced positive definite 

inertia matrix of spacecraft, 
3

1 2 3
[ , , ]

T
T T T= ∈ ℜT  

denotes the control torque with components in the 

body frame. We define the three subscripts i, j and k 

as { }( , , ) (1, 2, 3),  (2, 3,1),  (3,1, 2)i j k ∈  and Eq. (1) 

can be written as 

 

 1

42
( )

i i k j j k
q q q qω ω ω= − +ɺ  (3) 

 

and choosing 
1 2 3

( , , )diag J J J=J  Eq. (2) becomes 

 

 
i i j k i

p uω ω ω= +ɺ  (4) 

 

where ( ) /
i j k i

p J J J= −  and /
i i i

u T J= . 

 

 

3. ROBUSTNESS ANALYSIS 

 

In this section, the backstepping controller design 

procedure is summarised and the sufficient condition 

for the robustness with respect to the moment inertia 

uncertainties is derived. 

 

The candidate Lyapunov function for the kinematics 

subsystem stabilization is 

 

 
2 21

13 42
(1 )V q= + −  q  (5) 
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The pseudo control law for the kinematics 

subsystem stabilization 
s

ωωωω  is written as 

 

 
4 13

sgn( ) ( )
s

s q= − qω φω φω φω φ  (6) 

 

where s is a positive constant and 

[ ]
13 1 2 3

( ) ( ) ( ) ( )
T

q q qφ φ φ= =qφ φφ φφ φφ φ  with the 

nonlinear tracking function ( )
i

qφ  as given in [ 3] 

 

 
1

( ) tan ( )
i i

q qφ α β
−

=  (7) 

 

where α  and β  are positive constants. The 

function sgn(.) denotes the sign function defined  by 

[3] 
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The Lyapunov function in Eq. (5) is augmented for 

the overall system as follows [ 4]: 
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where 
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( )Ω ⋅  is the class κ
∞

 function, i.e. it is zero at zero, 

strictly increasing and becomes unbounded as the 

argument is unbounded [ 4]. The time derivative of 

Eq. (9) becomes 
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where 

[ ]
1 2 3

( ) ( ) ( ) ( )
T

Ω ω Ω ω Ω ω′ ′ ′ ′ ′= =Ω Ω ωΩ Ω ωΩ Ω ωΩ Ω ω ,

[ ]
1 2 3

( ) ( ) ( ) ( )
T

s s s s s
Ω ω Ω ω Ω ω′ ′ ′ ′ ′= =Ω Ω ωΩ Ω ωΩ Ω ωΩ Ω ω , 

and ( )xΩ ′  defines the derivative of ( )xΩ  with 

respect to x. Moreover, for a vector [ ]
1 2 3
, ,

T

a a a=a , 

diag( )a  denotes the diagonal matrix 

1 2 3
diag( , , )a a a . In order to make the time derivation 

of the Lyapunov function be negative definite, the 

control law is chosen as follows: 

 

(
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Substituting the above backstepping controller in Eq. 

(10) we get 

 

 1

13 132
( ) ( (

T T

s s
U s g= − − − −q q ) )ɺ φ ω ω ω ωφ ω ω ω ωφ ω ω ω ωφ ω ω ω ω  (12) 

 

where g is a positive constant. Hence, the control 

law of Eq. (11) is globally asymptotically stable. Let 
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a
J  denote the actual spacecraft inertia matrix which 

is different from J , the one assumed for the design 

of the control law of Eq. (11). Substituting the 

control input of Eq. (11) in conjunction with the 

actual inertia matrix 
a

J , Eq. (10) becomes 

( )

1

13 132

1 1

1

( ) ( ( )
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T T
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T
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= − − − − −

′− − − −
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q q )

) ) J J

J J

ɺ φ ω ω ω ωφ ω ω ω ωφ ω ω ω ωφ ω ω ω ω

ω ω ω ω Ω Ω (Ω ) ωω ω ω ω Ω Ω (Ω ) ωω ω ω ω Ω Ω (Ω ) ωω ω ω ω Ω Ω (Ω ) ω

ω ωω ωω ωω ω

(13) 

 

Considering the simple case of ( )
i i

ω ηωΩ =  with 
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1 1
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− −
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2 3 1
δ δ

− −
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[ 7], 
J
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1

1 /
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λ
−

≤J , 
1 1
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2 2
δ γ≤J  the above equation can be written as 
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As a result, the negative definiteness of Uɺ is 

guaranteed if the following inequality is satisfied: 

 

 ( )
22

1 2 1 2J J
g η γ λ γ λ γ γ≥ + +e ωωωω  (15) 

 

and the whole system is robustly stable with respect 

to the moment of inertia uncertainties. 

 

4. NUMERICAL SIMULATION 

 

The usefulness of the condition given by Eq. (15) is 

demonstrated through the numerical simulation of a 

benchmark rest-to-rest slew manoeuvre [ 2, 3, 5]. The 

simulation scenario is as follows:  

 

2

1 2 3

0

diag( , , ) diag(10,15, 20)       (kg m )

( ) [0.4646  0.1928  0.8047  0.3153]

( ) [0  0  0  1]

T

T

f

J J J

t

t

= =

=

=

J

q

q

 

where 
0

t  and 
f

t  are the starting and the final times, 

respectively. The values for the control gain g and 

α  and β  for the nonlinear tracking function ( )
i

qφ  

are chosen the same as given in [ 3], i.e., 10, 0.75 and 

8.0, respectively. Also, the same true moment of 

inertia matrix in [ 3], 
a

J , is adopted as follows: 

 
2

diag(8,16.5, 24)       (kg m )
a

=J  

For the given J  and 
a

J , the parameters for the 

bound, Eq. (15), are 20
J

λ = , 10
J

λ = , 
1

4γ =  and 

2
0.025γ = . Finally, selecting the control gains η  

and s equal to 6 and 10, respectively, the sufficient 

condition for the robust stability given by Eq. (15) 

becomes 
2

10≥e ωωωω . 

Fig. (1)–(5) show the simulation results for the 

specified manoeuvre. The whole scenario is the 

same as considered in [ 5] except the control gains η  

and s have been retuned in order to ensure the 

robustness against the uncertainties in the moments 

of inertia. The peak control torque from Fig. 3 is 

similar to the one reported in the simulation results 

of [ 5] but the performance in terms of the settling 

time has been sacrificed because of the effort of 

meeting the robustness condition, Eq. (15). A 

considerate retuning of all of control gains may 

rectify this issue of the sluggish motion response. 
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Fig. 1. Angular velocity ωωωω  history 
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Fig. 2. Unit attitude quaternion q  history. 
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Fig. 3. Control torque ΤΤΤΤ  history. 
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Fig. 4. Tracking error e  history. 
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Fig. 5. Inertia robustness condition 

 

 

5. CONCLUSION 

 

The conventional backstepping controller for the 

spacecraft large angle reorientation manoeuvre 

problem has been analysed in the context of 

robustness against the uncertain variations in the 

moments of inertia and a sufficient condition has 

been derived that ensures the robust stability to the 

prescribed bounded uncertainties. 
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