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Abstract 

This paper describes a method of using both Picture Frame (PF) and Bias Extension (BE) 

tests together to characterise accurately the trellis shearing resistance of engineering 

fabrics under low in-plane tension conditions. Automated image analysis software has 

been developed to reduce the amount of laborious manual analysis required to interpret 

BE data accurately. Normalisation methods for both PF and BE tests on rate-independent 

compressible fabrics are presented. Normalisation of PF test results is relatively 

straightforward while normalisation of BE test results for direct comparison with PF data 

is more complicated. The normalisation method uses a number of simple assumptions to 

account for the non-uniform shear strain field induced across BE samples during testing. 

Normalised results from BE tests on samples of different aspect ratios are compared and 

provide validation of the theory.  
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1 INTRODUCTION 

The automated draping and subsequent resin infusion of dry reinforcing woven and non-

crimp fabrics offers a viable route to manufacturing three dimensional Continuous Fibre 

Reinforced Composite (CFRC) components. Potential decreases in manufacture costs 

through simulation technology are currently driving the development of both macro [1-7] 

and meso-scale material models [5, 8-11] and associated characterisation experiments for 

dry reinforcing-fabrics. Two such characterisation experiments, specifically designed for 

measurements of large in-plane shear and wrinkling, include the Picture Frame (PF) [8, 

10-19] and Bias Extension (BE) [6, 10, 12, 13, 20-25] test methods. The original concept 

behind these and other similar in-plane shear tests can be traced back to research in 

textile and fabric forming [26-28].  

 

An important criterion of a material characterisation experiment is that measured 

properties should be independent of the test method or sample dimensions. In this paper 

normalisation methods for treating experimental data from both PF and BE test methods 

are described for shear strain rate independent materials, such as dry fabrics, undergoing 

so-called trellis shear. Normalisation of PF data may depend on specimen shape [29-32] 

though becomes relatively straightforward when using square samples that completely fill 

the area of the PF. In this case the measured force is normalised simply by dividing by 
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the side length of the sample specimen. This can be justified using simple energy 

arguments presented both here and elsewhere [33, 34].  

 

Normalisation of BE test data is complicated by the non-uniform strain profile occurring 

in the sample. Here we show how this complication can lead to errors in the measured 

shear force. The amount of error is quantified and a method of correcting the force data 

before applying, for example, the gauge method of determining stiffness properties [7, 

13] is presented. It is also shown that the amount by which results must be corrected 

depends not just on sample dimensions but also the form of the material’s force versus 

shear angle displacement curve. Other advantages of the normalisation method are also 

apparent: BE tests with a minimum initial length / width ratio of just two can be treated, 

i.e. with no gauge section. This is advantageous since tests on specimens with large 

length / width ratios can increase difficulties associated with handling the fabric, 

particularly when dealing with loose fabrics that tend to disintegrate easily [13]. Use of 

smaller length / width ratios can also decrease the amount of material required for testing.   

 

The structure of this paper is as follows. Brief descriptions of the PF and BE tests are 

given in Section 2 and the method of applying each of these tests to dry fabric materials 

is described. Normalisation methods for both the PF and BE tests and an associated 

numerical algorithm are proposed in Section 3 and possible limitations of the methods are 

outlined. To reduce laborious manual image analysis associated with the BE test, image 

analysis software has been developed, and analysis reveals unexpected deformation in the 

central region of the BE samples that can be explained simply using pin-jointed net 
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kinematics. In Section 4 materials used in this investigation are described and 

normalisation procedures are applied to results of PF and BE tests. Conclusions of the 

investigation are given in Section 5. 

 

2 CHARACTERISATION TESTS 

2.1 Picture frame test 

A schematic of the PF test is presented in Figure 1. A tensile force is applied across 

diagonally opposing corners of the PF rig causing the PF to move from an initially square 

configuration into a rhombus. Consequently the sample held within the frame experiences 

trellis shear. Fibre misalignment within the PF rig can lead to large errors in the measured 

results [12, 17-18]. Depending on the type of misalignment, the reinforcement fibres can 

be forced to undergo either tensile or compressive strain. Tensile strain tends to inhibit 

wrinkling of the specimen but can produce large overestimates in the measured force. 

Compressive strains tend to promote buckling of the sample at low shear angles and 

decrease the amount of required fabric shear, producing a decrease in the measured force. 

Throughout this investigation results from PF tests in which samples buckled at low shear 

angles were discarded.  

 

For dry fabrics, fibre alignment within the PF test can be improved using pre-tensioning 

apparatus [16-18]. Such apparatus can be used to investigate effects of in-plane tension 

on the shear behaviour of the material [13, 17-18]. However, measuring this tension 

during testing is extremely difficult. A recent attempt to do so has been made by 
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mounting load cells along the side-bars of a PF rig [18]. The current investigation is 

restricted to low in-plane tension, and as such all PF tests are started with zero pre-

tension. However, it is thought unlikely that this zero-tension state remains throughout 

the course of each PF test due to the severe boundary constraints [18]. Improved 

clamping of dry fabrics was achieved using thin rubber sheet placed between the fabric 

and clamps. 

 

The force required to pull the crosshead of the testing machine is recorded and the trellis 

shear force per unit length is subsequently calculated using,  

Φ
=

cos2 1

1

L
F

N s
         (1) 

where Φ is the frame angle (see Figure 1)  is the measured axial PF force and  is the 

distance between the centres of the bearings of the PF rig (in this investigation L

1F 1L

1 = 145 

mm). Test data are often analysed to produce graphs of shear force against shear angle, 

where the shear angle is defined as: 

Φ−= 22/πθ           (2) 

Throughout the current investigation axial force is plotted rather than the shear force. 

This is to facilitate comparison with BE results, which are not necessarily the result of 

trellis shearing, as discussed in Section 2. Consideration of the PF geometry shows that 

the shear angle in the material can be related directly to the displacement of the 

crosshead, d1, by Equation (3) 

⎥
⎦

⎤
⎢
⎣

⎡
+−=

1

1

22
1arccos2

2 L
dπθ        (3) 
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where  is the displacement of the crosshead mounting (see Figure 1). This shear angle 

is defined from the PF geometry. In practice the shear angle measured in the material 

during testing may deviate by several degrees from this ideal shear angle depending on 

the shape of the specimen [9, 14, 17]. However, for most purposes the calculated ideal 

angle is a sufficiently accurate approximation. 

1d

 

Figure 1 

 

The PF test procedure is simple to perform. Since the deformation of the material is 

essentially homogeneous throughout the deforming sample (edge effects being ignored – 

i.e. in-plane bending of yarns at the clamps), the kinematics of the material deformation 

are readily calculated, facilitating quantitative analysis of the results. A major benefit of 

the test is that the shear angle and current angular shear rate of the fabric can be assumed 

to relate directly to the crosshead displacement and displacement rate of the rig. 

However, one of the main concerns with the test is the boundary condition imposed on 

the sample. Loose pinning of the sample edges in the side clamps may fail to induce the 

required kinematics, whereas tight clamping of the sample edges can cause spurious 

results if the sample is even slightly misaligned [12, 17-18]. 

 

2.2 Uniaxial Bias-Extension test 

The bias-extension test involves clamping a piece of biaxial material such that the warp 

and weft tows are orientated initially at +/- 45o to the direction of the applied tensile 

force. Note that the clamping areas of the test specimen are cut wider than the test area in 
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order to reduce slippage of yarns from underneath the clamps, as noted in [22, 23]. The 

sample dimensions can be characterised by the sample’s length / width ratio, oo wL=λ , 

where the total length of the material sample, Lo, must be at least twice the width, wo. The 

reason for this is associated with ‘end effects’ due to the clamping constraint imposed at 

the two ends of the fabric. This can be seen when analysing the idealised deformation of 

a material sample in a BE test.  

 

Figure 2 

 

Figure 2 shows an idealised BE test sample with 2=λ , in which the material is divided 

into three regions. If the tows within the sample are considered inextensible and no intra-

ply slip occurs within the sample (see Figure 3) then one can show that the shear angle in 

Region A is always twice that in Region B, while Region C remains un-deformed. The 

deformation in Region A can be considered equivalent to the deformation produced by 

the pure shear of a PF test. The length of the material sample must be at least twice its 

width in order for the three different deformation regions to exist. Increasing the 

length/width ratio, λ , to higher values serves to increase the length of Region A. 

 

Like the PF test, BE tests are simple to perform and provide reasonably repeatable 

results. The test provides an excellent method of estimating a material’s locking angle; 

the angle at which the material’s deformation kinematics begin to deviate from trellis 

shear to a combination of trellis shear and intra-ply slip [35, 36]. Unlike the PF test, as 

long as the material sample is tightly clamped, the boundary conditions are much less 
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relevant to the test result. However, the test does suffer from certain drawbacks. First, the 

shear angle in the material must be measured by time-consuming visual analysis, which 

can be complicated further if the sample is to be heated during testing. Second, the 

deformation field within the material is not homogenous, complicating analysis of the 

results. Finally, the test induces a combination of both pure shear and intra-ply slip, see 

for example, Figure 3 from Harrison et al. [35]. Figure 3 is computer-generated using 

idealised slip kinematics derived previously [35] and represents the sample undergoing 

both trellis shear as well as intra-ply slip, i.e. the sample pulls itself apart at higher shear 

angles with tows sliding past one another rather than being pinned at the crossovers. In 

terms of analysis this presents extra difficulty, though conversely, this deformation may 

be used to advantage as a means to investigate intra-ply slip as a potential deformation 

mechanism of woven fabrics, e.g. see ref [36]. 

 

Figure 3 

 

2.2.1 Image Analysis 

One of the main drawbacks of the BE test compared with the PF test is the manual effort 

involved in analysing recorded images of the test sample during deformation. The aim of 

the visual analysis is to determine shear angle throughout the test. To decrease the time 

and effort expended in this process, and also to improve accuracy, image analysis 

software has been developed by the authors. 
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During testing a digital video camera is used to record the deformation of the BE sample. 

The digital video images are stored as files on a computer. Lines are drawn on the sample 

along the tow directions of the sample prior to testing. The software fits linear equations 

to the lines drawn on the sample using a simple search algorithm (see Figure 4). Using 

the fitted equations the inter-fibre angle is readily calculated at several points within 

Region A of the specimen and Equation (2) is used to provide the shear angle. Due to the 

finite thickness and varying contrast of the drawn lines error is inevitable in the fitting 

procedure. This is manifest as ‘noise’ in the shear angle output. However, this error is 

small compared to the error involved in a manual visual analysis and the automated 

method allows the collection of a much larger number of data points. 

 

Figure 4 

 

The software also allows accurate determination of the fabric’s initial state of 

deformation prior to testing. While an initial inter-tow angle of 90o is the ideal scenario, 

loading and handling the specimens invariably leads to some small degree of fabric shear 

prior to testing. Experience shows that this initial shear can dramatically influence the 

repeatability of the test data. Thus, careful image analysis following testing allows 

shifting of the test results which leads to significant improvements in the quality of the 

measured data, demonstrated in Section 4. All results presented here use image analysis. 

3 NORMALISATION PROCEDURE 

Ideally, determination of material properties in a characterisation test should be 

independent of test method and sample size. For example, the shear modulus or shear 
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viscosity (depending on material and modelling approach) and consequently the shear 

force produced during testing of a material should be independent of both sample 

dimensions (PF and BE tests) and length / width ratio (BE test). Appropriate 

normalisation techniques must be used before results from different tests can be 

compared directly. 

 

3.1 Normalisation of Picture Frame force 

 

A simple argument is used to justify normalisation of PF test results by the side length of 

the PF rig. A similar argument was presented in Harrison et al. [33, 34] and also Peng et 

al. [31, 32]. For clarity and continuity in later sections, the derivation is summarised here. 

 

Figure 5 

 

Figure 5a shows two PF experiments of different size. The stress-power in extending the 

PF is: 

iii dFP &=           (5) 

where i = 1 or 2 corresponding to Figure 5a, Fi are the measured forces and  are the 

crosshead displacement rates. Note that for the PF geometry: 

id&

ii Ld ⎟
⎠
⎞

⎜
⎝
⎛ −=

24
sin θπθ&&

         (6) 
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If the angular shear rate, , is the same in both (a) and (b) in Figure 5a and the material is 

sheared to the same shear angle, 

θ&

θ , then Equation (6) can be written as: 

ii Lkd 1=&           (7) 

where k1 is the same constant in both equations. Equation (7) can be substituted in 

Equation (5) to find: 

iii LFkP 1=           (8) 

If the power dissipated by a given material (compressible or incompressible) at a given 

deformation and deformation rate increases linearly with the initial volume of material 

deformed, then for a given initial material area, the stress-power generated in shearing the 

picture frame at a specified angle and angular shear rate will increase linearly with the 

initial area of the sample. This argument assumes that the material properties of the 

sample are homogeneous throughout, irrespective of sample size (and therefore the 

tension in the tows). Thus, 

2LAVP AA ∝∝∝          (9) 

where VA is the initial volume of the material and AA is the initial area of the material. 

This can be written as  where mAAi VmP = A is the power storage/dissipation per unit 

initial volume of the material and is a function of θ. For compressible materials the 

volume changes with shear angle. The instantaneous volume can be written as thickness 

multiplied by current area 

θcos2
iAAi LTcP =          (10) 

where TA is the instantaneous thickness of the sheet for a given θ . cA is the power 

storage/dissipation per unit current volume at a given θ  and . The form of cθ& A versus θ  
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will depend on the thickness behaviour as a function of shear angle, ( )θT . For a given 

thickness behaviour, cA will be a constant at any given θ and . Equation (10) can be 

substituted into Equation (8) to find: 

θ&

iiAA FkLTc 1cos =θ          (11) 

given 

θcos12 kk =           (12) 

Equation (11) can be used to show: 

2

2

1

1

2 L
F

L
F

k
Tc AA ==          (13) 

where cATA/k2 is a constant for any given θ and . Thus, by considering the energy 

required to extend a PF, one can show that two PF tests of different size will give the 

same size ratio between force and side length when sheared to the same angle. In practice 

corners are cut from the square specimen to facilitate loading in the PF rig. For non-

square or cruciform test samples where the contribution to the load force from the arm 

area is considered to be negligible (i.e. yarns are removed in the arm sections to produce 

non-woven arm regions) the argument above can be modified [32] to account for the 

shape of the test specimen and referring the Figure 5b, Equation (13) becomes 

θ&

( ) ( )22

22
2

1

11

2 fabfab

AA

L
LF

L
LF

k
Tc ⋅

=
⋅

=         (14) 

where Lfab i is shown in Figure 5b and the measured force is now normalised by both the 

PF side length and the width of the arms of the cruciform specimen. If on the other hand 

yarns in the arm regions are not removed and these regions are considered to contribute 
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to the measured force in the same way as the central region of the specimen then, 

referring to Figure 5c, it can be shown that Equation (13) becomes 

22
2

22

1

1

2 4 c

AA

LL
LF

L
F

k
Tc

−
⋅

==         (15) 

where Lc is the side length of the corner cut-outs. Equation (15) was used in this 

investigation (L2 was 145 mm and Lc was about 13 mm resulting in a small increase in 

the normalised force of about 3 percent compared to Equation (13)). 

 

3.2 Normalisation of bias extension force 

Energy arguments (Section 3.1) indicate that PF test results can be normalised by the 

side length of the PF rig (or any other characteristic length). Similar arguments apply also 

to the BE test, thus BE results could be normalised by a characteristic length for 

comparison with results from tests on different sized samples with the same length / 

width ratio, λ . However, a method of normalising BE data for comparison with other BE 

tests of different length / width ratios or with PF tests is less obvious because of the 

different shapes of the test specimens and also the different deformations induced by the 

BE and PF experiments. 

 

The BE test is essentially a uniaxial tensile test. For most materials the usual procedure is 

to monitor the strain in a gauge section of the material while measuring tensile stress in 

order to determine the tensile modulus. This method can cause problems when applied to 

engineering fabrics. To illustrate the complication that can occur, consider the 

deformation of two test samples of different geometries as shown in Figure 6. The 
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material behaviour is the same for both specimens. Fibre inextensibility is assumed and 

fibre direction is indicated by the dashed lines. Figure 6(a) shows a square specimen 

before (top left) and after deformation (bottom left), Figure 6(b) shows a larger (twice the 

area) square specimen before (top right) and after deformation (bottom right). The strain 

in both specimens is homogenous and equal. In this example, the material is considered 

to deform elastically, though the argument applies equally well to rate-independent 

plastic behaviour. Since the constitutive behaviour of both samples is the same the shear 

stress induced throughout both samples is equal and therefore the strain energy density in 

both samples is the same (note that inextensible fibres do not contribute to the strain 

energy density of the material, irrespective of the tensile stress they support since their 

tensile strain is zero). Since twice as much material undergoes deformation in Figure 6(b) 

compared with Figure 6(a), twice the total elastic energy is stored. Since the distance 

moved in the direction of the applied force in both cases is equal, due to the kinematic 

constraints imposed by the inextensible fibres, it follows that the extension force is twice 

as high in Figure 6(b) compared with Figure 6(a), as indicated in the diagram. The 

implication is that the tensile stress across the gauge section A-A’ is half that across B-

B’. This may seem to produce a paradox – the same type of material deformed to the 

same strain should produce the same stress. This is an implicit assumption of the gauge 

section method of determining material properties. However, the situation shown in 

Figure 6 is possible since greater tensile stresses are induced along the inextensible fibres 

across the gauge section in Figure 6(b) compared to Figure 6(a) due to the extra amount 

of deforming material. These fibre stresses allow the balance of forces across any given 

section to be maintained. The higher the E/G ratio of the fabric (where E is the tensile 
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modulus of the reinforcement and G is the trellis shear modulus of the fabric), the smaller 

is the contribution of the fibres to the deformation energy of the sample (see Appendix A) 

and the greater is their ability to transmit stresses throughout the specimen. For high 

modulus rather than inextensible fibres, the deformation state of the two specimens 

described above would differ very slightly due to extension induced in the reinforcement 

directions. However, any fibre strain would be very difficult to detect and for practical 

image analysis purposes would be completely overshadowed by the trellis shear 

deformation of the sample. One way to avoid this problem is to take into account the 

shape and deformation field induced across the entire test specimen. With this in mind a 

normalisation method has been developed that takes these factors into account and is 

presented in the following section. 

 

3.2.1 Energy Normalisation Method of BE Data 

An alternative method of normalising the BE data is through the use of energy 

arguments. One advantage of this method is that no gauge section is required, i.e. the 

length / width ratio can be just two. This is particularly useful when dealing with fragile 

fabrics that are more difficult to handle and cut, that disintegrate easily and tend to pull 

apart or show intra-ply slip at relatively low strains. The argument involves determining 

the relative contribution to the deformation energy from Regions A and B of the sample 

(see Figure 2). It is based on a number of simple approximations that are clearly stated in 

the following derivation 

 

Figure 7 
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Figure 7 shows three geometries. Figure 7(a) shows a PF geometry before and after shear, 

Figure 7(b) show a hypothetical geometry, initially with a square central region, before 

and after shear and Figure 7(c) show a typical BE test, before and after shear, with 2>λ . 

The hypothetical test geometry is used in developing the following normalisation 

argument for BE test with 2≥λ . Examination of Figure 7(c) reveals 

AB VV ⎟
⎠
⎞

⎜
⎝
⎛

−
=

32
2
λ          (16) 

where  and  are the initial volumes of material in Regions A and B respectively and AV BV

2AB θθ =           (17) 

where Aθ  and Bθ  are the shear angles in Regions A and B respectively. Thus, ideal 

kinematics are assumed throughout this energy argument. It follows from Equation. (17) 

that 

2AB θθ && =           (18) 

where  and  are the angular shear rates in regions A and B respectively, note that 

Equation (17) and (18) also apply for Figure 7(b). Since Region C remains un-deformed 

during the course of an ideal test

Aθ& Bθ&

1, Equation (7) applies to both Figure 7(a) and Figure 

7(b) though in this case i = 3 or 4 and k1 is a constant. As before, Equation (7) holds as 

long as the shear rate and shear angle of Region A in Figure 7(a) and (b) are equal. Under 

these conditions an equivalent to Equation (10) can be written for the geometry of Figure 

7(b) 

                                                 
1 Note, region C may compact due to tension in the tows, an energy contribution neglected in this analysis. 
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BBAA VmLTcdFP +== θcos2
44

&        (19) 

where is the initial volume of Region B and  is the same constant at a given BV AATc θ  

and  as in Equation (13). Here mθ& B is the power storage / dissipation per unit initial 

volume of the material. Using Equation (16) this can be written as 

( )
( )32

2cos2
cos

2
42

44 −
+==

λ
θ

θ
LTc

LTcdFP BB
AA

&

     (20) 

where cB is the power storage/dissipation per unit current volume in Region B and can be 

plotted as a function of θ , the shear angle in Region A. TB is the thickness of the material 

in Region B. Assuming Region B will generate the same proportion of the total stress-

power of the material at a given λ , θ  and  irrespective of the size of the sample it 

follows that 

θ&

( ) ( )θ
θ
θ

X
Tc

Tc

AA

BB =
cos

2cos

        (21) 

where in general X is purely a function of θ . Substitution of Equations (8), (11) and (21) 

in Equation (20) gives 

( )32
cos2

cos
2
42

4441 −
+=

λ
θ

θ
XLTc

LTcLFk AA
AA

      (22) 

which can be rearranged to give 

⎥⎦
⎤

⎢⎣
⎡

+−
−

=
XL

F
k
Tc AA

232
32

4

4

2 λ
λ

        (23) 

where for a given shear angle and angular shear rate the constant 
2kTc AA  is the same as 

in Equation (13). Thus, if X were known, this equation could be used to normalise the 

force of the hypothetical test of Figure 7(b). Equation (23) can be modified further to 
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apply to the BE test geometry shown in Figure 7(c). Assuming the volume in Region A 

of Figure 7(c) is equal to the volume of Region A in Figure 7(b) then it can be shown that 

3254 −= λLL          (24) 

Furthermore, since Figure 7(b) and 7(c) now represent the same volume of material, then 

if the angular shear rates of Region A in Figure 7(b) and 7(c) are equal, the stress-power 

generated by the two tests must also be equal. In order to impose the same angular shear 

rate in Figure 7(c) as Figure 7(b), the right hand side of Equation (6) must be multiplied 

by a factor ( )1−λ . It follows that 

( ) 552442 1 LFkLFk −= λ         (25) 

Rearranging Equation (25) gives 

( )
32

1 5
4

−

−
=

λ
λ F

F
         (26) 

Equation (26) can be substituted into Equation (23) to give 

( )
( ) 5

5

1

1

2 232
1

L
F

XL
F

k
Tc AA

+−
−

==
λ
λ

       (27) 

The unknown factor X prevents Equation (27) being used to normalise force data from 

BE tests with a length / width ratioλ . In order to overcome this the following procedure 

is used and involves determining the relationship between  and  and also that 

between  and . Assume that the thickness in Region B will become equal to the 

thickness in Region A when the shear angle in Region A was 

AT BT

Ac Bc

2θ , thus 

( ) ( 2)θθ AB TT =          (28) 
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where θ  is the shear angle in Region A. Determining the relationship between  and  

is perhaps the most complicated part of the derivation. The reasoning behind this step is 

explained at length in Appendix B and results in the relationship: 

Ac Bc

( ) ( )
( ) ( ) ( 2

24
sin2

44
sin

2
2

θ
θπ

θπ

θ
θθ
θθθ AA

A

B
B ccc

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

==
&

&
)      (29) 

where the factor introduced in Equation (29) accounts for the different angular shear rate 

experienced by Region A when the shear angle in this region is θ /2 and Region B when 

the shear angle in region is θ /2 (i.e. when the shear angle in Region A is θ). Note that Eq 

(29) neglects the changing shear resistance of the material as a function of in-plane 

tension [13]. However, given the small in-plane tensions induced in a BE test, this is 

considered a reasonable assumption. Using Equations (28) and (29) it follows that, 

( ) ( ) ( )
( ) ( ) ( 22

2
θθ

θθ
θθθθ AA

A

B
BB TcTc

&

&
= )       (30) 

or 

( ) ( )
( ) ( 2

2
θψ

θθ
θθθξ

A

B
&

&
= )         (31) 

where ψ  and ξ   represent the power dissipation / storage per unit area of Regions A and 

B respectively. Thus, Equations (21), (27), (29) and (31), can be rearranged to find 

( ) ( )
( )

( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛

−+
−+

−
−

−
−

==
θθ
θθ

λ
θψ

λ
λθψ

sincos1
2sin2cos1

32
2

32
1

5

25

L
kFTc AA    (32) 

If ( )θψ  can be found using Equation (32) then a direct comparison between the BE and 

PF test can be made using Equation (13). To do this, examining Equation (32),  and 5F
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5d  are measured during BE tests and λ  and  are known from the initial sample 

geometry. Assuming ideal kinematics the shear angle can be found from  and  using 

5L

d L5 5

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

−
−= −

2
1

12
cos2

2 5

51

L
d

λ
πθ        (33) 

also the angular shear rate in Region A is given as 

( ) 5

5

24
sin1 L

d

⎟
⎠
⎞

⎜
⎝
⎛ −−

=
θπλ

θ
&

&         (34) 

thus using Equations (6), (7), (12) and (34) one obtains  

( ) θλ cos1 5

5
2 L

dk
−

=
&

         (35) 

Thus, all the terms on the right hand side of Equation (32) are obtained apart from 

( 2)θψ . In order to evaluate Equation (32) an iterative scheme can be implemented. 

 

3.2.2 Implementation of iterative technique 

 

In implementing the iterative scheme, the first iteration for ( )θψ  is calculated taking 

( ) 02 =θψ . The values of ( )θψ  are then used to determine ( )2θψ  for the next iteration. 

This process is continued until the average percentage change of data values between 

consecutive iterations is less than 0.01%. The iteration procedure can be implemented in 

a spreadsheet. Having calculated the power dissipation factor, ( )θψ , this can then be 

related to the normalised force ii LF  by dividing it by k2, as given in Equation (35) to 
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produce the same result as Equation (13), the normalised axial force. The normalised 

shear force per unit length,  is found using Equation (1). Thus, sN

⎟
⎠
⎞

⎜
⎝
⎛ −

=

24
cos2 2

θπ
ψ

k
NS         (36) 

At this point it is interesting to examine predictions of the normalisation method. Figure 9 

shows the effect of normalising (a) a linear shaped axial force versus shear angle curve 

and (b) a cubic-shaped axial force versus shear angle curve. The linear-shaped curve can 

be assumed to be representative of a stitched fabric whereas the cubic-shaped curve 

corresponds more closely to a woven fabric. Two normalised curves are shown for a BE 

sample with λ = 2. The continuous line has been normalised by the length L5 = 1m (see 

Figure 7) while the dashed line has been normalised using the energy method. The 

difference between the two curves reflects the size of the contribution from Region B to 

the axial force. As expected, the shape of the axial force versus shear angle curve has a 

significant effect on the results. The linear shaped curve produces a much larger 

difference after normalisation than the cubic-shaped curve when the curves are 

normalised by L5 and the energy method. 

 

Figure 8 

 

The energy normalisation method can also be used to approximate the form of un-

normalised axial force versus shear angle curves that would be produced by the same 

material when performing BE tests on samples with the same width but different λ ratios, 

e.g. 2, 2.5 and 3 (see Figure 9). This is done by ensuring that the normalised axial force 
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versus shear angle curves of the different tests for a given material collapse onto a single 

line. Figure 9 shows these un-normalised curves predicted for both linear and cubic-

shaped curves. The results suggest that the lower the λ ratio of a test sample, the lower 

one expects the measured axial force versus shear angle curve to be. Figure 9 suggests 

that the difference in sample dimensions produces only a small difference in the BE 

results, especially at low shear angles. 

 

Figure 9 

 

3.2.3 Validity of the normalisation procedure 

 

The normalisation technique is valid only while the measured shear angle of Region A 

corresponds to the calculated theoretical shear angle. Once the measured shear angle 

deviates from the theoretical shear angle, the shear distribution within the sample no 

longer matches the assumed distribution illustrated in Figure 2. After this point the test is 

measuring the material behaviour under a mixed mode deformation, that is, the material 

undergoes both trellis shear and inter-tow slip as shown in Figure 3, mechanisms that 

may also lead to a change in dimensions of Region C, which is assumed constant in this 

analysis [22, 23]. Thus, measurements of shear angle in Region A versus displacement 

should be made during tests to determine the range of displacement under which the 

normalisation method remains valid. Another factor neglected in the normalisation 

procedure is the effect of in-plane tension on the fabric shearing behaviour. However, 

both experimental [33] and theoretical [8] results have suggested that shear properties of 
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dry fabrics are only weakly affected by in-plane stresses. Thus, given the small 

magnitudes of the stresses present during BE tests, it is considered reasonable to neglect 

this point in the development of the normalisation procedure. 
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4 RESULTS 

4.1 Materials and tests 

 

Two woven fabrics have been tested. The same fabrics were tested by other institutions in 

a recent benchmarking exercise [13]. For consistency with other studies the fabrics will 

be termed Fabrics 1 and 3. The details of each fabric are given in Table 1. 

 

Table 1 

 

PF experiments (without pre-tension) were conducted as well as BE experiments for three 

different length/width ratios (λ ) on both fabrics. 

 

4.1.1 Shifting of BE data 

 

Before normalising BE data, force versus displacement curves were corrected to account 

for fabric pre-shear caused by inherent ‘off the roll’ material variability [37] and 

deformation induced when handling and loading the specimens in the BE grips. Without 

shifting, the data show significant variability. A typical example of un-shifted and shifted 

force versus displacement data is show in Figure 10. 

 

Figure 10 
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The shifting procedure involves two stages. In the first stage the amount of pre-shear for 

each sample is determined through automated image analysis. The measured pre-shear 

angle is used to calculate the size of the displacement shift required to correct the data, 

using Equation (33). For example, a pre-shear of one degree in a 3:1 sample of width 100 

mm corresponds to a displacement shift of about 1.8 mm.  Once each curve is corrected 

using this method, variability is decreased but can be improved further by a second phase 

of shifting. In this next step shifted curves are plotted together as axial force versus shear 

angle data using Equation (33). An arbitrary axial force is chosen and the shear angle of 

each curve is measured to produce an average shear angle at that force. The difference 

between the actual and average shear angle of each curve at that force can then be 

calculated and used to shift the curves individually, again by an appropriate distance 

along the displacement axis. The resulting force versus displacement curves show much 

improved agreement (e.g. Figure 10). The need for this second stage of shifting is 

necessary since even careful visual analysis of specimens to determine specimen pre-

shear may not totally correct the data. One reason for this is that specimens may show 

variations in pre-shear on a local scale, preventing accurate estimation of the pre-shear 

angle.  

 

Figure 11 

 

Figure 11 shows how specimens can contain pre-shear on a local scale without being 

extended. The figure was produced using a simple BE trellis shear algorithm based on 
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pin-jointed net kinematics and implemented in a spreadsheet. Local pre-shear has been 

verified through measurements of shear angle at different points within Region A using 

the image analysis software described in Section 2.2.1 (see Figure 4). Typical results 

produced during a test on Fabric 3 using a specimen with λ = 2 are shown in Figure 12. 

Clearly, initial variation in shear angle exists at different points within Region A, 

typically of the order of plus or minus two degrees. 

 

Figure 12 

 

4.1.2 PF and BE results 

 

Figure 13 shows un-normalised BE axial force versus shear angle data for both fabrics. 

Good agreement is shown between un-normalised shifted BE curves for all λ ratios at low 

shear angles. In general BE test samples tend to undergo ideal trellis shear behaviour at 

low shear angles but gradually change their mode of deformation as the test progresses. 

As the sample displacement increases the specimens tend to deform through a 

combination of trellis shear and intra-ply slip, as shown in Figure 3. For this reason, 

visual analysis must be used to verify the shear angle at which the sample deformation 

kinematics deviate significantly from ideal trellis shear behaviour. Figure 12 suggests this 

shear angle to be around 30 degrees, similar to that noted in [23]. This is important since 

the assumptions of the normalisation procedure are valid only for trellis shear. It is worth 

noting here that wide specimen BE tests may increase the shear angle (up to 50o in some 

cases) before which the ideal kinematic assumption breaks down [23]. However, altering 
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the shape of the specimen implies modification of the normalisation equation, an issue 

that has been addressed elsewhere [38] but is beyond the scope of this paper. 

 

Figures 13 & 14 

 

Figure 14 shows both PF and BE axial force versus shear angle data following 

normalisation. With regard to the BE data, as predicted in Figure 9, the BE sample with λ 

= 2 produces an axial force slightly lower than the samples with λ = 2.5 and 3 and is 

therefore most affected by the normalisation process. Normalisation produces a slight 

improvement in the reliability of the BE data which can be seen when comparing Figures 

13 and 14.  

 

Theoretically, the normalised BE and PF data should match. However, Figure 14 shows 

the PF data is significantly higher than the BE data, even at low shear angles and also 

contains much greater variability. This behaviour is the opposite of that observed for 

viscous textile composites where BE force versus shear angle curves tend to be higher 

than equivalent PF curves, see Figure 8 in ref. [39]. The explanation for the behaviour of 

viscous textile composites was that the axial force increased with sample extension due 

mainly to intra-ply slip while the specimen approached its locking angle, creating an 

apparent increase in axial force when plotted against shear angle. It is not clear why the 

opposite behaviour is found for dry fabrics in this investigation. One suggestion is that 

intra-ply slip in dry fabrics is a lower energy process than for viscous textile composites 

and therefore does not produce the same large increase in axial force with increasing 
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extension. Nevertheless, this should not result in a lower BE force versus shear angle 

curve than that produced by a PF test unless much of the stored energy due to trellis shear 

is able to relax after fabric locking during a BE test; relaxation facilitated by intra-ply slip 

mechanisms occurring at large shear angles. The latter possibility could be explored in 

subsequent investigations. Another more likely possibility is that the adverse effect of the 

PF boundary conditions is more prominent for dry fabrics than viscous textile composites 

since dry fabrics can be fastened more securely within the PF clamps. If this is the case 

then assuming that PF test results in which test samples buckle at low shear angles are 

discarded, the lowest of the PF curves is the most accurate of all the PF data. With regard 

to which is the more reliable data; the lowest PF test curve or the BE data, the argument 

presented above coupled with the extremely good repeatability of the BE test results 

suggests the latter, at least until a shear angle of about 30 degrees. Beyond 30 degrees the 

BE test induces intra-ply slip (see Figures 3 and 12), a mode of deformation not 

particularly relevant to the forming process and therefore less indicative of the material’s 

behaviour under forming conditions.  

 

5 CONCLUSIONS 

An energy normalisation method has been devised to allow direct comparison between 

PF and BE test data for rate-independent compressible fabrics. The method takes into 

account the non-homogeneous deformation kinematics that occur throughout the BE test 

specimen. A large amount of variability in results was found to be inevitable when 

conducting PF tests. Variation was also found in BE data, though a method of correcting 

the data, based on results of visual analysis, was described. Agreement between BE data 
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conducted using different sample dimension ratios was found to be very good following 

correction of the data and improved further following application of the energy 

normalisation method. Results of the energy normalisation method indicate that the shape 

of the axial force versus shear angle curve, produced during a BE test, is important in 

determining the amount by which the data is modified following normalisation; linear-

shaped curves undergo a greater correction than non-linear curves. This suggests that 

stitched fabrics will usually be more affected by the normalisation than woven fabrics.  

 

Comparison between PF and BE data following normalisation was poor. This poor 

comparison, coupled with the observation that the PF axial force versus shear angle data 

lay above that of the BE tests indicate that the boundary conditions of the PF test may 

severely affect axial force versus shear angle results, more so than for viscous textile 

composites. Further work should be performed to investigate this possibility. 

 

Perhaps the most significant conclusion of this work has been the validation of the 

theoretical argument using experimental data. For woven fabric, the normalisation 

procedure produces results which are not significantly different to results normalised by 

L5. As a result it can be stated that a reasonable method of producing a close 

approximation to properly normalised data for woven fabrics is simply to divide the axial 

force by L5 and also to use greater specimen ratios for the tests. This approximate 

procedure might be adopted if high accuracy in the results is not required. Furthermore, 

the same energy normalisation method can now be applied with confidence to biaxial 

testing methods [13, 23]. The latter can potentially overcome the limitations of the PF 
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and BE tests, namely, fabrics under significant in-plane tension can be tested (not 

possible in uniaxial BE tests) and boundary conditions are not so problematic (as with the 

PF test). The resulting data could be normalised reliably using energy arguments 

analogous to those presented here for the uniaxial BE test. 
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Appendix A: Mechanical Behaviour of an Elastic Four-Bar Linkage Connected by 

Elastic Hinges 

 

The following argument illustrates how the proportion of energy stored in reinforcement 

fibres decreases with increasing fibre stiffness relative to trellis shear stiffness. Figure 

A1(a) shows a four bar elastic linkage, freely jointed (pinned) at A and D but with elastic 

hinges at B and C. The springs represent the stiff reinforcement fibres while the hinges 

represent the trellis shear stiffness of an analogous biaxially reinforced composite 

material. Figure A1(b) shows one quarter of the system which is in equilibrium. The 

linkage has been extended by applying a force in the positive y-direction (opposed by an 

extensive force on the opposite corner of the linkage in the negative y-direction). The 

equilibrium configuration for the system (i.e. the relative amount of elastic strain in the 

springs versus the elastic rotation of the hinges at which equilibrium is reached) depends 

on the elastic modulus of both the springs and hinges. One way of determining the 

equilibrium configuration is by using the principal of virtual work.  

 

Figure A1 about here 

 

In Figure 1A(b) the system is moved from its equilibrium position through a virtual 

displacement in the x direction. The force at point C due to the spring is, 

jiF ˆsinˆcos χχ keKes +−=       (A1) 
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where the spring elongation oLLe −=  and  is the un-extended length of the spring, K 

is the spring constant (the force required to stretch the spring a unit length),  and  are 

unit vectors in the x and y directions. Also, the moment due to the hinges 

oL

î ĵ

kM ˆθC=         (A2) 

where C is the elastic constant of the spring (the moment required to turn the hinge an 

angular unit), k̂  is a unit vector in the z-direction (i.e. out of the plane of the page). Using 

the principal of virtual work and referring to Figure A1(b) 

0. =−= φδ δM.δF rW s       (A3) 

where use of the δ  (or δ  for a vector quantity) indicates a virtual increment. From 

Figure A1 

ir ˆsinφL=         (A4) 

and  

rδiδr ˆ=         (A5) 

thus 

φ
φ

cosL
drd =         (A6) 

Combining Eq’s (A1-A3) and (A5) the following is obtained 

φ
θφ

cos
sin

L
CKe =        (A7) 

From Figure A1(b) 

24
θπφ −=         (A8) 
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and by combining with the identity: φφφ 2sin
2
1cossin =  and substituting e, Eq (A7) 

gives 

0
cos
22 =−−

θ
θ

k
CLLL o        (A9) 

Thus given K, C, Lo and θ  it is possible to find L by solving Eq (A9) and therefore find 

the strain in the springs, e. Figure A2 shows the tensile strain versus θ  for various ratios 

of k/C (the spring constants of the linear springs and hinges). As expected the tensile 

strain of the connecting bars increases with shear angle and decreases with the magnitude 

of the k/C ratio. 

Figure A2 about here 

Using the tensile strain, the energy stored in the linear elastic springs and hinges can be 

calculated as a function of shear angle. The ratio between the two can then be found as 

2

2

θC
Ke

E
E

h

s =         (A10) 

Using Eq (A10) the ratio of energies stored in the springs and the hinges versus shear 

angle is plotted in Figure A3 for various k/C ratios. It is clear that for a higher k/C ratio, a 

lower amount of energy is stored in the springs. While this analysis is clearly a 

simplification of actual engineering fabric behaviour, the same basic principles hold true. 
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Appendix B: Determining the Relationship between  and  Ac Bc

Consider a constant displacement rate test. At any given instant  and  can each be 

related to two factors; the shear resistance and the rate of strain in the two respective 

regions of the fabric, i.e. 

Ac Bc

( ) ( ) ( )θθθθ AAA Fc &∝  and ( ) ( ) ( )θθθθ BBB Fc &∝  

One method of determining the relationship between  and  might be to compare the 

ratio between the two functions at any given time. This produces the equation: 

Ac Bc

( )
( )

( ) ( )
( ) ( )θθθ

θθθ
θ
θ

BB

AA

B

A

F
F

c
c

&

&
=          (B1) 

and using Eq (18) find  

( )
( )

( )
( )θ
θ

θ
θ

B

A

B

A

F
F

c
c 2

=          (B2) 

However, the ratio on the right hand side of Eq (B2) depends on the material behaviour 

which is unknown (see Figure B1).  

 

Figure B1 

 

Thus, comparing  and  at any given time does not provide a useful relationship 

between  and  and so some other method must be found. An alternative is to 

compare  and  when the fabric in each region is at the same state of strain, i.e. at 

two different times during the same constant displacement rate test. According to Eq (17) 

the shear angle in region A is always twice that in region B. Thus, the shearing resistance 

Ac Bc

Ac Bc

Ac Bc
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in Region A when the shear angle in Region A is 2θ  is the same as that in Region B 

when the shear angle in Region A is θ . Thus: 

( ) ( ) ( 222 θθθθ AAA Fc &∝ )  or ( ) ( ) ( )22 θθθθ ABA Fc &∝  and ( ) ( ) (θθθθ BBB Fc &∝ )  

and 

( )
( )
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( )θθ
θθ

θθθ
θθθ

θ
θ

B

A

BB
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B

A

F
F

c
c

&

&

&

& 222
==        (B3) 

For a constant displacement rate, d  and for any given sample size, L,  Eq (6) can be used 

to find the angular velocity in Regions A and B, i.e. in Region B 

&

( ) ( )

⎟
⎠
⎞
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⎛ −
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and in region A: 
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Thus the right hand side of Eq (B3) is easily found and gives Eq (29). 
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