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Abstract

Stochastic resonance has seen wide application in the physical sciences as a tool to

understand weak signal amplification by noise. However, this apparently counter-

intuitive phenomenon does not appear to have been exploited as a tool to enhance

vibrational energy harvesting. In this note we demonstrate that by adding periodic

forcing to a vibrationally excited energy harvesting mechanism, the power available

from the device is apparently enhanced over a mechanism without periodic forcing.

In order to illustrate this novel effect, a conceptually simple, but plausible model

of such a device is proposed to explore the use of stochastic resonance to enhance

vibrational energy harvesting.
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1 Introduction

Stochastic resonance is an intriguing and counter intuitive phenomenon. First

proposed by Benzi and co-workers in the early 1980s, it was devised as a

mechanism to explain the means by which weak forcing of solar insolation

can produce the dramatic swings in the Earth’s climate seen in periodic ice

ages [1]. Subsequently, a significant body of work has explored applications in a

diverse range of fields such neurophysiology [2], quantum systems [3] and signal

processing [4]. Experimental work has also demonstrated stochastic resonance

in a range of physical systems such as an ac-driven Schmitt trigger [5], a

bistable ring laser [6] and more recently MEMS-scale cantilevered beams [7].

On-going work is continuing to exploit stochastic resonance in climate science,

human cognition and the development of nano-scale devices.

The underlying mechanism of stochastic resonance requires a bi-stable non-

linear system which is excited by noise, such as a double well potential [1]. If

the system is trapped in either potential well, the effect of noise is merely to

excite the dynamics locally, with the probability of a transition between the

potential wells determined by the so-called Kramers rate [8]. For a large po-

tential barrier between the two potential wells this probability is clearly small.

However, if the dynamics are now forced such that the height of the potential

barrier oscillates, then the transition probability is also forced. If this forcing

is matched to the mean time between transitions (inverse Kramers rate), then

stochastic resonance can occur. In stochastic resonance the system is driven

across the weakened potential barrier by noise with the result that a large

amplitude response occurs. This has the counterintuitive effect that the addi-

tion of noise to a weak periodic signal can amplify the signal with a greatly
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enhanced signal-to-noise ratio. It is this amplification effect which has led to a

diverse range of applications of stochastic resonance and which we will exploit

to enhance vibrational energy harvesting.

Cartmell has shown that combined excitation and parametric forcing can mod-

ify energy flows in a deterministic oscillator [9]. In addition, although early

work on stochastic resonance focused on bi-stable systems excited by white

noise, more recent work has shown that similar effects are possible in systems

where stochastic noise is replaced with high frequency excitation [10]. This

analogous phenomenon occurs when the excitation frequency is well separated

from the forcing frequency of the potential well. Since machine vibration is

never truly stochastic, this provides a mechanism to link stochastic resonance

to real mechanical devices, such as those used for vibrational energy harvest-

ing.

Energy harvesting has emerged as an important new topic with the goal of

fabricating devices that can generate electrical power by exploiting ambient

vibrational energy [11] or thermal gradients [12]. These mechanisms are seen

as a practical means of powering remote wireless sensors in automotive or

aerospace applications, without the need for a battery or wiring harness. Typ-

ically, a cantilevered beam with a piezoelectric strip is used to transform vibra-

tional energy into electrical energy through damping [13]. For small displace-

ments of the beam, peak power generation in the mechanism will occur when

the natural frequency of the beam is tuned to the peak of the vibration noise

spectrum. Here, we propose to exploit the phenomenon of stochastic resonance

to enhance the performance of such devices. In particular, if the cantilevered

beam is instead clamped at both ends it forms a simple bi-stable mechanical

system with a double potential well. If the beam is then forced (periodically
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compressed and relaxed) so as to modulate the height of the potential barrier

while being excited by noise, stochastic resonance can occur. It is proposed

that additional energy can then be extracted from the ambient vibration noise

spectrum, leading to enhanced power generation over a conventional linear os-

cillator. We expect further exploitation of stochastic resonance in a range of

mechanical devices.

2 Energy Harvesting Device

2.1 Free vibration of a clamped-clamped beam

In order to explore the application of stochastic resonance to vibrational en-

ergy harvesting, a conceptually simple mechanism will now be investigated.

We will consider a beam under a modest compressive load which can buckle

into one of two symmetric equilibrium states. The beam is supported by a

base of negligible mass. The essential behaviour of the beam can be captured

by representing it as a single lumped mass m with two linear springs of stiff-

ness k and natural length l, as shown in figure 1. Dissipation in the beam will

be modeled by a single linear damper c. Using this lumped mass model, the

displacement of the mass will be defined by x from the datum A-A’, (such

that x ≤ √
l2 − d2), while the springs are separated by 2d, such that d < l. It

will initially be assumed assumed that the distance A-A’ is fixed. Following

the analysis of Roundy [14], if the base is excited by a displacement X, it can

be shown that the dynamics of the problem are described by
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mẍ + cẋ + 2kx

(
1− l√

x2 + d2

)
= −mẌ (1)

where the new non-linear term in (1) represents the dynamics of the spring-

mass system. This non-linear term can then be expanded by assuming x/d ¿
1. Although this restriction will not be used later, the resulting equation of

motion captures the full non-linearity of the problem. It can then be shown

that

mẍ + cẋ− 2k

(
l

d
− 1

)
x +

kl

d3
x3 + . . . = −mẌ (2)

A non-dimensional position coordinate ξ =
√

l/d3x and non-dimensional time

τ = t/
√

m/k can be defined. The qualitative non-linear model for the beam

is therefore defined by

ξ′′ + cξ′ − µξ + ξ3 = Q(t) (3)

where (′) indicates differentiation with respect to τ . The free parameter µ =

2(l/d − 1) is used as a measure of the compressive load acting on the beam,

while c = c/
√

km and Q(t) = −(m/k)
√

l/d3Ẍ.

In order to proceed, we will firstly consider an undamped, unexcited system

with c = 0 and Q = 0. Clearly, if the beam is in tension (l < d) then µ < 0

while if the beam is in compression (l > d) then µ > 0 with the critical

buckling load corresponding to µ = 0. It can be seen that for µ < 0, equation

(3) admits a single real equilibrium solution (ξ′′ = 0) at ξ̃0 = 0 corresponding

to an undeflected beam in tension. For µ > 0, equation (3) admits 3 equilibria

defined as ξ̃0 = 0, ξ̃1 = +
√

µ and ξ̃2 = −√µ, corresponding to a symmetric

buckled configuration. A supercriticial bifurcation then occurs when µ changes
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sign [15].

The change to the qualitative behaviour of the system detailed above can be

seen through the use of an effective potential for the problem V (ξ) such that

ξ′′ = −∂V (ξ)/∂ξ. The potential can then be defined as

V (ξ) = −1

2
µξ2 +

1

4
ξ4 (4)

The stability properties of the equilibria defined above can be determined

from the turning points of V (ξ), as can be seen in figure 2. For µ < 0 the

single equilbrium point at ξ̃0 is stable with ∂2V (ξ)/∂ξ2 > 0, while for µ > 0

it becomes unstable with ∂2V (ξ)/∂ξ2 < 0 and the equilibria at ξ̃1 and ξ̃2 are

stable with ∂2V (ξ)/∂ξ2 > 0. It is clear that ξ̃0 becomes unstable when the

two new (stable) equilibria ξ̃1 and ξ̃2 appear at the supercritical bifurcation.

It will be assumed that the beam is initially in a post-buckled state and is in

one of the two symmetric equilibria ξ̃1 or ξ̃2 corresponding to one of the two

available potential wells.

2.2 Forced vibration of a clamped-clamped beam

The simple model of the clamped-clamped beam will now be extended to

include the excitation and linear damping terms discussed above. It will be

assumed that the parameter µ can be forced at frequency ω and with amplitude

η. This implies that the beam is compressed and relaxed in an oscillatory

manner so that the distance A-A’ is now time varying. Such forcing could be

achieved with an electromechanical actuator at the support points A and A’,

as indicated in figure 1. This forcing will modulate the height of the potential

6



barrier to allow stochastic resonance. It will also be assumed that the beam

is excited by external noise Q(t), the properties of which will be discussed

later. The dynamics of the mechanism are now parametrically forced and are

defined by

ξ′′ + cξ′ − µ(1− η cos(ωt))ξ + ξ3 = Q(t) (5)

It can be seen that there is now an external input of energy to the mechanism

from the excitation Q(t) which is then dissipated by the linear damping cξ′.

Importantly, this flow of energy from excitation to the response of the beam

is modulated by the parametric forcing of the beam at frequency ω [9]. The

effective potential of the problem can now be defined as a time dependent,

oscillatory function given by

V (ξ, t) = −1

2
µ(1− η cos(ωt))ξ2 +

1

4
ξ4 (6)

The forcing of the potential is shown in figure 3 over a half cycle. It can be

seen that the height of the potential barrier between the two stable equilibria

of the system is modulated. As will be seen, when properly tuned through the

forcing frequency ω, this modulation will allow the excitation Q(t) to drive

the mechanism between the two potential wells in a stochastic resonance. The

significantly enhanced response of the beam will then provide greater power

to be dissipated by the damper and exploited for energy harvesting.
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2.3 Enhanced vibrational energy harvesting

In order to assess the use of stochastic resonance for vibrational energy har-

vesting, the total power dissipated by the damper will now be investigated.

In principle, this power is available for energy harvesting. The details of the

damper are not considered, although it may represent an electromechanical

device [11] or a piezoelectric strip [13] (recalling that the spring-mass system

represents a continuous beam). We note that power is required to drive the os-

cillatory forcing of the beam at frequency ω. This will be subtracted from the

total power available. We note that traditionally stochastic resonance adds

noise to a periodic signal, whereas our system is stochastically excited and

then periodically forced.

From equation (5) it can be seen that

ξ′ξ′′ − µξξ′ + ξ3ξ′ = −cξ′2 − µη cos(ωt)ξξ′ + ξ′Q(t) (7)

which can be written as

d

dτ

(
1

2
ξ′2 − µ

2
ξ2 +

1

4
ξ4

)
= −cξ′2 − µη cos(ωt)ξξ′ + ξ′Q(t) (8)

and is clearly a statement of conservation of power [11]. We interpret equation

(8) as the balance between the instantaneous power input due to excitation

Q(t), balanced by the rate of change of the kinetic energy and potential energy

of the mechanism and the linear dissipation. Therefore, identifying the total

energy of the system as E = ξ′2/2+V (ξ), where the effective potential energy

is defined by equation (4), it can be seen that
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E ′ = −cξ′2 − µη cos(ωt)ξξ′ + ξ′Q(t) (9)

We now propose from equation (9) that the instantaneous power P available

for energy harvesting is given by

P = cξ′2 − δµη cos(ωt)ξξ′ (10)

The first term, cξ′2, is the usual linear dissipation due to damping. This is

assumed to be harvested by the damper attached to the beam. It is proposed

that the second term, δµη cos(ωt)ξξ′, represents the rate at which work is done

in forcing the beam at frequency ω. However, this term can be of either sign

corresponding to energy input to compress the beam and energy release when

the beam relaxes. In order to provide a conservative estimate of the net power

generated, we ensure that the term only represents a sink of energy and so we

define

δ =





1 if cos(ωt)ξξ′ ≥ 0

0 if cos(ωt)ξξ′ < 0

(11)

Therefore, the power available for energy harvesting is reduced due to the

power required to force the beam at frequency ω.

In order to simulate stochastic resonance the excitation Q(t) will now be

defined. Rather than pure white noise, a number of harmonics are summed

and a strong white noise component added. The harmonics are postulated

to represent the noise emitted from a single cylinder engine rotating with

angular velocity Ω and with crank length to con-rod length ratio 1/3 [16].
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White noise is then added to this periodic signal to represent the un-modelled

high frequency dynamics of the engine so that the excitation is defined as

Q(t) =
1

2
ρ(t)+sin(Ωt)+

1

3
sin(2Ωt)−0.00926 sin(4Ωt)+0.0003 sin(6Ωt) (12)

where the white noise ρ(t) has zero mean and unit variance and the coefficients

represent an approximation to the periodic vibration spectrum [16].

We now consider the response of the mechanism with and without periodic

forcing of the beam. We select µ = 1 and η = 0.7, corresponding to the

springs being compressed to approximately 65% of their natural length and

then modulated such that the distance A-A’ changes by approximately 15%

with frequency ω. With zero forcing (η = 0), the mechanism is excited in

a single potential well with small amplitude vibration, as shown in figure

4. However, with the addition of periodic forcing (η 6= 0) the mechanism

fluctuates between the two potential wells in a state of stochastic resonance

with large amplitude displacements, again shown in figure 4. In stochastic

resonance the mechanism is highly excited such that the linear dissipation cξ′2

is greatly enhanced. However, the additional term δµη cos(ωt)ξξ′ in equation

(10) will reduce this improvement in power output due to the work done in

forcing the beam. The net integrated energy output from both cases is shown

in figure 4. It can be seen that the forced mechanism in stochastic resonance

apparently delivers significantly more energy from the excitation Q(t) than the

unforced mechanism. The forcing frequency ω required for stochastic resonance

can be estimated from the Kramer’s rate, the probability of transition between

the potential wells [8].
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The response of the mechanism away from stochastic resonance is shown in

figure 5. In this case the mechanism is unable to transition between the two

potential wells. It can be seen that the integrated energy output is now greater

for the unforced mechanism, due to the work done in forcing the beam. Fi-

nally, the power available from the forced and unforced mechanisms is shown

in figure 6. It can be seen that the forced mechanism dissipates significantly

more power than the unforced mechanism, but that some of this power is

required to force the beam. However, the net power available and integrated

energy output is greater at stochastic resonance. Having introduced the ap-

plication of stochastic resonance to vibrational energy harvesting, it is clear

that other mechanical systems could be shown to be capable of exhibiting this

phenomena.

3 Conclusions

The concept of stochastic resonance has been investigated as an effective new

means of enhancing vibrational energy harvesting. Using a simple conceptual

model of an energy harvesting mechanism it has been shown that periodic

forcing can apparently be used to increase the mechanical energy available for

extraction through energy harvesting. While a device using stochastic reso-

nance will be mechanically more complex than a conventional device, and will

be less efficient than the ideal mechanism investigated here, it is believed that

the apparent enhancement in energy harvesting may be significant in practice

and will be pursued through further analytical and experimental investigation.
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Fig. 1. 1 degree-of-freedom beam model comprising a single lumped mass m with

spring constant k and displacement x(t) from (unstable) equilibrium driving a

damper with damping coefficient c. The device experiences base excitation with

displacement X(t) and the distance A-A’ is modulated at frequency ω.

14



Μ=1

Μ=0.5

Μ=-1

-2 -1 0 1 2
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

ξ

V

Fig. 2. Effective potential V (ξ) for a 1 degree-of-freedom beam model. Single equilib-

rium ξ̃0 for µ < 0 with two new equilibria ξ̃1 and ξ̃2 appearing after the supercriticial

bifurcation at µ = 0.
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Fig. 3. Forcing of the double potential well with µ = 1 and forcing amplitude η = 0.7
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Fig. 4. Tuned system in stochastic resonance with ω = 1.2 a: Response with forcing

(η = 0.7) b: Response without forcing (η = 0) c: External noise Q(t) with 〈ρ(t)〉 = 0

d: Energy available from the mechanism with forcing (solid line) and without forcing

(dashed line) with damping c = 0.5.
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Fig. 5. Un-tuned system far from stochastic resonance with ω = 0.5 a: Response

with forcing (η = 0.7) b: Response without forcing (η = 0.) c: External noise Q(t)

and 〈ρ(t)〉 = 0 d: Energy available from the mechanism with forcing (solid line) and

without forcing (dashed line) with damping c = 0.5.
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d: Net power available from forced system.
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