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Purpose. This article presents an iterative framework for
managing the dvnamic process of health technology assess-
ment. The framework uses Bayesian statistical decision
theory and value of information (VOI) analysis to inform
decision making regarding appropriate patient management
and to direct future research effort over the lifetime of a tech-
nology. Within the article, the framework is applied to a
policy decision regarding preoperative patient management
before major elective surgery, for which trial data are avail-
able. Method. The evidence available prior to the trial is
used to determine the appropriate method of patient man-
agement and to ascertain whether, at the time of commis-
sioning, the trial was potentially worthwhile. The prior
information is then updated with the trial data via a
Bavesian analysis using informative priors. This post trial
information set is then used to reassess the appropriate
method for patient management and to determine whether

1. INTRODUCTION

Decisions made by health care systems around
the globe regarding which health care technologies
to fund from collective resources now routinely
incorporate formal economic evaluations.' As for all
decision making in health care, decisions about
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there is a requirement for any further research. Results. Prior
to the trial, preoperative optimization with dopexamine is
identified as the appropriate method of patient manage-
ment. The results of the VOI analysis suggest that a short-
term trial was potentially worthwhile (population expected
value of perfect information [EVPI] = £48 million). Following
the trial, the uncertainty surrounding the choice of appro-
priate patient management and the potential worth of fur-
ther research had increased (population EVPI = £67 million).
Conclusions. The article demonstrates the value and practi-
cality of applying the iterative framework to the dynamic
process of health technology assessment. It is only by formally
incorporating all of the information available to decision mak-
ers, through informed priors, that the appropriate decisions
can be made.

reimbursement are inevitably undertaken in a con-
text of uncertainty concerning the effectiveness and
resource costs of health care interventions and
programs. Therefore, 2 related sets of decisions need
to be taken: those concerning appropriate service
provision on the basis of existing information and
those concerned with whether to fund additional
research to reduce the uncertainty relating to the
decision. Information acquisition is not costless, and
the allocation of funds to the enhancement of
the decision makers’ information set, in a budget-
constrained health service, reduces the “pot” of
resources available for health service provision. Hence,
a framework is necessary to unify these decisions and
to ensure that health technology assessment (HTA)
is subject to the same evaluation of efficiency as



service provision. The Bayesian decision-theoretic
approach provides an explicit and rigorous frame-
work within which both types of decision problem
posed in health technology assessment can be
addressed.

Furthermore, the process of health care decision
making is not static. New information affecting
health care decisions becomes available throughout
the life cycle of all technologies. For example, the
National Institute for Health and Clinical Excellence
(NICE) in the United Kingdom considers whether a
new technology can be considered cost-effective for
use in the National Health Service (NHS) based on
available evidence, identifies research priorities fol-
lowing that initial decision, and reviews its decision
approximately 3 years later.” Hence, the process of
health technology assessment needs to be iterative
over the lifetime of the technology and needs to
incorporate some formal process for learning.”* This
requires the use of a Bayesian approach, which pro-
vides a dynamic framework to incorporate learning
and assist decision making throughout the life cycle
of the technology. In the framework, the decision-
analytic model becomes the vehicle of health tech-
nology assessment, informing decision making
regarding routine service use as well as directing
future research effort, on an iterative basis, from the
emergence of a new technology as feasible for use
with patients and throughout its life cycle.

Although the potential value of applying the
Bayesian decision-theoretic approach for health tech-
nology assessment has been discussed,” it has not
been placed formally within the iterative framework
that is increasingly important in decision making.

The aim of this article is to demonstrate the itera-
tive framework, from the characterization of prior
uncertainty through to the incorporation of new
information and the reassessment of policy deci-
sions, for a specific health technology. The chosen
application relates to the evaluation of alternative
arrangements for the preoperative management of
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high-risk surgical patients. This application was
selected due to the availability of data from a ran-
domized trial conducted in the United Kingdom in
1999." The analysis examined the decision uncer-
tainty and value of information both before and after
the trial was conducted, addressing the sequence of
decisions common to the assessment of any health
technology. The application demonstrated that an
explicit and rational approach to the sequence of
decisions in health technology assessment is possi-
ble, valuable, and practical.

The application has 2 key features that are impor-
tant to reflect within the analysis. First, there is lim-
ited prior evidence available concerning the effects
and, in particular, the costs of the various patient
management strategies. For one of the patient man-
agement strategies (pre-op with adrenaline), there is no
direct prior information at all. Second, the additional
evidence with which the information set is updated
comes from a small clinical trial with no prospec-
tive economic evaluation, although information on
resource use was collected and an economic evalua-
tion undertaken retrospectively.” As such, this
example illustrates that the iterative framework can be
applied to situations of limited evidence availability.

In addition to demonstrating the iterative frame-
work, this article explores methods for capturing the
correlation between cost and effect within the
Bayesian analysis. This was undertaken as a sensi-
tivity analysis through consideration of 3 alternative
model structures. The article also reports the results
of an analysis by surgical subgroup, on which the
trial was originally stratified."

The article is organized as follows: section 2 pro-
vides the methodological background to the analysis;
the application is presented within section 3, with the
prior analysis in section 3.1 and the posterior analy-
sis in 3.2, Section 4 presents a discussion of the issues
surrounding the iterative framework, both generally
and specific to the application presented. Finally,
some general conclusions are drawn.

2. METHODOLOGICAL BACKGROUND

The important role fulfilled by decision analysis in
public policy decision making has been discussed by
practitioners® and policy makers.” In recent years, a
Bayesian decision-theoretic framework has been pre-
sented for addressing the 2 key decisions for public pol-
icy decision making in health care.’” These 2 separate
but complementary decisions involve the selection
of health care policy on the basis of current information
and the decision to collect further information to



inform the policy-making process in the future. Within
the framework, the choice between mutually exclusive
strategies is made on the basis of expected utility. This
has long been accepted as a rational basis for decision
making'*** and renders irrelevant traditional rules of
inference and issues of statistical significance.” Instead,
the uncertainty surrounding the decision based on
expected utility is formally valued to establish the
worth of acquiring additional information, through fur-
ther research. This formal assessment of uncertainty
involves the established techniques of Bayesian value
of information analysis' that have also been applied to
decisions in environmental economics'®'” and clinical
decision-making."®

Value of information analysis involves establishing
the difference between the expected value of a deci-
sion made on the basis of existing evidence and,
following the collection of further information, the
expected value of a decision made on the basis of new
evidence. The expected value of perfect information
(EVPI) values the resolution of all uncertainty, through
the provision of perfect information, and provides a
measure of the maximum return to further research.

Within the framework, the EVPI for the decision
can be determined directly from the results of the
probabilistic analysis, with each iteration repre-
senting a possible future resolution of the existing
uncertainty for which the optimal decision (the
intervention that maximizes net benefit) can be
identified. For a decision involving j interventions
where net benefit is dependent on a set of unknown
parameters 0, the EVPI is simply the difference
between the expected value of the decision made on
the basis of existing information (max; E, NB(j, 0))
and the value of the decision made with perfect
information (max. NB(j, 06)) averaged over all possi-
ble realizations Di{ uncertainty (E, max, NB(j, 0)):

EVPI = E, max, NB(j, 8) — max; E, NB(j, 6).

Information is a public good; as such, generation of
perfect information for 1 instance of a decision
ensures that the information is available for other
instances of the decision. Hence, the overall value of
perfect information surrounding a health care policy
decision depends on the number of times that the
decision is faced over the lifetime of the technol-
ogy.*® The population-level EVPI is determined by
scaling up the individual EVPI according to the inci-
dence of the decision.

In addition, the EVPI can be calculated for indi-
vidual or various combinations ol parameters to
assess the potential worth of research concerning

particular elements of the decision. This process
involves determining the reduction in the costs of
uncertainty associated with resolving the uncer-
tainty concerning sets of parameters. For a subset of
parameters @, the expected value of partial perfect
information (EVPPI) is simply the difference
between the expected value of the decision made on
the basis of existing information (max; E; NB(j, 6))
and the value of the decision made with perfect
information about ¢ and current information about
the remaining parameters (y) (max; E, | A NB(j, @, y))
averaged over all possible realizations of uncertainty
about ¢ (E, max; (E,| , NB(j, ¢, y)):

v

EVPPI, = E, max, E, |  NB(j, ¢, y) — max; E; NB(j, 6).

There has been an increase in the application of
Bayesian methods within health care.’**' The potential
of Bayesian approaches to health care evaluation was
recognized by the NHS Health Technology Assessment
program in the United Kingdom, which commissioned
a review of methods? that was subsequently published
as a book.” To date, however, there have been no pub-
lications detailing the application of a fully informed
decision-theoretic Bayesian analysis.

3. AN APPLICATION OF BAYESIAN
DECISION ANALYSIS

Preoperative optimization for high-risk patients
undergoing major elective surgery is a goal-oriented
policy that involves admitting surgical patients
ahead of surgery, inserting a pulmonary artery
catheter to monitor cardiac index, and administering
inotropes. The aim is to enhance presurgical cardio-
vascular flow and oxygen delivery and hence
improve chances of survival postsurgery. As such,
the policy involves increased resource use before
surgery (including a stay in an intensive or high-
dependency care unit), with the prospect of reduced
resource use (due to reductions in complications)
postsurgery. Two inotropes are available for admin-
istration during preoperative optimization—namely,
dopexamine and adrenaline. The policy issues for
the decision maker are first, on the basis of the avail-
able evidence, whether preoperative optimization is
cost-effective, employing which inotrope for which
patient groups, and, second, whether more evidence
is required to support this choice of strategy.

The most recent study of preoperative optimization
involved a randomized controlled trial comparing
2 methods of delivering preoperative optimization
(through adrenaline and through dopexamine) with



standard patient management. The study was con-
ducted in a population of high-risk patients undergo-
ing major elective surgery and found a mortality
benefit for patients in the preoperative optimization
groups.'® In addition, the study showed a lower rate of
complications and resource use associated with preop-
erative optimization. A retrospective cost-effectiveness
analysis found that preoperative optimization (with
either inotrope) dominated usual care, whereas adren-
aline was both more effective and more expensive than
dopexamine (with each additional life-year costing
£23,940)."" Previous trials comparing preoperative
optimization with dopexamine (pre-opd) and stan-
dard patient management found similar clinical
results.*** In addition, there was some evidence that
the use of dopexamine reduced hospital costs and
constituted a cost-effective method of managing high-
risk surgery.”® Given this prior evidence, a decision
regarding preoperative management of patients
undergoing major elective surgery could have been
taken before the most recent trial was conducted. In
these circumstances, it is not clear that the recent
study was worthwhile. However, regardless of the
cost-effectiveness of the recent trial, once the results
are available, they should be incorporated with the
prior evidence and estimates of cost-effectiveness to
form an updated information set. This posterior infor-
mation set should then form the basis for readdress-
ing the decisions regarding patient management and
the need for further evidence.

The analysis of preoperative optimization is orga-
nized as follows: in section 3.1, the information posi-
tion that existed before the most recent trial is used to
estimate prior cost-effectiveness, determine the appro-
priate method of patient management before the trial
was commissioned, and consider whether, at the time
of commissioning, the trial was potentially worth-
while. In section 3.2, this prior analysis is updated
with the results of the most recent trial. From this pos-
terior information position, the decision concerning
the appropriate method of patient management is
readdressed and an assessment made of whether fur-
ther research is potentially worthwhile.

3.1. Prior Analysis

3.1.1. Background

The aim of the prior analysis was to model the
information position that existed before the most
recent trial to estimate the prior cost-effectiveness of
the management strategies, determine the appropri-
ate method of patient management before the trial

was commissioned, and consider whether, at the
time of commissioning, the recent trial was poten-
tially worthwhile.

The first step in the prior analysis involved iden-
tifying the evidence available prior to the recent
trial. A search of the literature (see the appendix for
details of the search strategy) identified 3 articles as
relevant to the decision question being addressed
prior to 1999 (Shoemaker and others 1988; Boyd and
others 1993; Guest and others 1997).>**>*® Two of these
articles detailed randomized trials of preoperative
optimization (employing the inotropic agent dopex-
amine to enhance oxygen delivery) versus standard
patient management in high-risk patients undergo-
ing major elective surgery.”*** The first** was under-
taken in the United States, the second” in the
United Kingdom. Both trials measured effectiveness
in terms of 28-day survival postsurgery. The third
article provided a basic cost analysis of the UK
trial.?® Table 1 presents a summary of the results
from the trials and the cost analysis.

3.1.2. Methods

3.1.2.1. Model structure. The structure of the decision
model is presented in Figure 1. Figure 1a illustrates
the decision concerning the choice of management
strategy for high-risk patients undergoing major elec-
tive surgery. Figure 1b illustrates the sequence of
events that a patient might experience for each man-
agement strategy. The sequence of events represented
in the model includes the emergence of complications
within 28 days of surgery and postsurgical mortality.
Mortality postsurgery includes surgical mortality (that
occurring within 28 days of surgery) and other mortal-
ity (occurring after 28 days postsurgery). Nonsurgical/
other mortality is further split according to time
period: mortality within 6 months, mortality within
1 year, and mortality 2 years postsurgery.

The model was constructed within Excel™ incor-
porating the Crystal Ball™ add-in program.

3.1.2.2. Characterizing decision uncertainty. The
uncertainty that existed prior to the recent trial was
reflected in the model through prior probability distri-
butions, which were assigned to each of the parame-
ters. These distributions were specified from the prior
evidence identified from the literature, using patient-
level data where possible.

1) Probabilities

Beta distributions were used to represent the
uncertainty surrounding each of the probability
parameters in the model.'**’



Table 1

Summa

ry of Clinical Trial Results

UK Trial Published 1993*
Cost Analysis Published 1996*"

US Trial
Published 1988*

Active Intervention Control Active Intervention Control
Number of patients 53 54 28 30
Age, yr 69 (61, 77)° 72.5 (66, 80)° 56.4 + 3.1° 53.4 £ 2.5°
Sex, males/females (%) 74/26 61/39 75/25 39/61
Intensive care unit days 1.67 (0.79, 5)° 1.8 (0.83, 4.1)" 10:2 +£1:6° 15:8 F 3:1°
Hospital days 12 (7, 40)° 14 (7, 37)° 19.3 +2,4° 25,24 9,4
Complications 0.68 + 0.16" 135+ 0.20
Postoperative death, n (%) 3 (5.7) 12 (22.2) 1 (4) 10 (33)
Patient cost £ 6525 (£4201, £17,469)"  £7525 (£4660, £16,156)° £19,127%4 £39,300°¢

a. Median (interquartile range).
b. Mean + standard error of the mean.

c. Average patient cost.

d. Converted to £UK using an exchange rate of $1.50 to £1.

complication

Standard patient management

Pre-operative optimization with dopexamine

28 day mortality

Pre-operative optimization with adrenaline

Treatment

no complication

mortality 6 months

survive 28 days

survive 6 months

survive 1 year

mortality 2 years

survive 28 days

28 day mortality

&
mortality 1 yr

survive 2 years

mortality 6 months

survive 28 days

survive 6 months

survive 1 year

mortality 2 years

survive 28 days

]
mortality 1 year

survive 2 years

Figure 1

(a) The patient management decision. {b) Decision tree for each patient management strategy.



Both the probability of complication and the proba-
bility of 28-day mortality were calculated directly from
information contained within the reports of the trials
for standard patient management and preoperative
optimization with dopexamine (pre-opd).*** The
impact of employing preoperative optimization with
adrenaline (pre-opa), rather than dopexamine, on the
probability of complications was modeled via a rela-
tive effect. This relative effect was specified as a normal
distribution with a unitary mean (pre-opa is expected
to be associated with the same probability of complica-
tions as pre-opd) and a 5% chance that the probability
was equivalent to that of standard patient management.
The profile of complications and the probability of
28-day mortality were linked to the relative effect to
reflect expected differences between dopexamine and
adrenaline “on circulation to the gut”* and consequent
differences on postoperative morbidity. When the
probability of complications for pre-opa was equal to
or less than that of pre-opd, the profile of complica-
tions and the probability of 28-day mortality were
equivalent to the values for pre-opd, but when the
probability of complications was higher than that for
dopexamine, the profile of complications and the prob-
ability of 28-day mortality were equivalent to those
associated with standard patient management.

The probability of mortality for the remaining time
periods was based on standard mortality rates.*” This
implies that after 28 days postsurgery, 1) the proba-
bility of mortality returns to the standard rate for a
population of the same age, and 2) the probability of
longer term mortality is independent of the complica-
tion status. These assumptions are both implicit in
models or trials that restrict follow-up to 28 days.

2) Survival

The distributions of expected survival duration
for the pathways involving mortality within 28 days
were derived directly from a Bayesian bootstrap of
the UK trial data for the standard patient manage-
ment and pre-opd strategies.”® These distributions
were applied to the 28-day mortality pathways for
pre-opa according to the prior on the relative effect,
as with the probability of 28-day mortality.

For each time period beyond 28 days, survival
duration was represented by a uniform distribution,
reflecting the assumption of an equal probability of
dying on any particular day within the interval.

3) Costs

The UK cost analysis detailed the median and
interquartile range of the procedure costs broken
down by stage (preoperative, intraoperative, and

postoperative) and the costs of managing complica-
tions.*® This evidence was used as an input into a
series of patient-level simulations that provided
patient cost profiles for each possible patient path-
way. These simulations were in turn used as inputs
within a Bayesian bootstrap to generate a distribu-
tion of the mean costs for each of these pathways.*

The process of constructing the cost profiles
required the compilation of all of the appropriate
cost elements occurring at each stage and in the
event of complications. For pre-opd and standard
patient management data for the elements of the cost
profiles were provided in the cost analysis.”® Two
sets of cost profiles were constructed for pre-opa,
incorporating the actual cost of the drug, for use in
conjunction with the relative effect (see above). The
first set reflected the situation where pre-opa was
considered equivalent to pre-opd and used the data
from the cost analysis concerning pre-opd. The sec-
ond set used the data from the cost analysis con-
cerning standard patient management to reflect the
situation where pre-opa was considered equivalent
to this method of management.

3.1.2.3. Adoption decision. Following the character-
ization of the parameter uncertainty, Monte Carlo
simulation was used to propagate the uncertainty
through the model. The results were used to identify
the adoption decision (based on expected net bene-
fit) and to represent the uncertainty surrounding the
decision, in the form of cost-effectiveness accept-
ability curves and frontiers.™

3.1.2.4. Value of additional information. The EVPI for
the decision made prior to the recent trial was calcu-
lated, using nonparametric methods direct from the
results of the simulation. The population-level EVPI
was determined by scaling up the individual EVPI
according to the incidence of the decision. Here, the
EVPI per surgical procedure was translated into a
population value through reference to the estimated
number of qualifying surgical procedures® over the
expected lifetime of the decision, discounted at 6%. It
was estimated that 0.4% of all surgical procedures
undertaken in the United Kingdom (3.3 million per
annum) could be considered to be qualifying proce-
dures. The lifetime of the decision was assumed to be
15 years for the prior analysis.”

a. A qualifying surgical procedure is defined as an elective procedure,
undertaken on a high-nisk elderly patient, in cardiovascular surgery, gastroin-
testinal surgery, or general surgery.

b. Fifteen years was chosen because the date of the original trial was
1993; the policy decision continues to be relevant today. and it is estimated
that it will continue to be relevant for a further 2 years at least,
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Figure 2 Prior cost-effectiveness acceptability curves for each patient management strategy.

In addition, value of information techniques were
used to calculate the EVPI for various combinations
of parameters. These combinations were constructed
to represent the type of information collected from
research of different forms (e.g., short- v. long-term
clinical research, with and without economic data)
to determine the maximum return and potential worth
of these different types of research.

3.1.3. Results

3.1.3.1. Adoption decision. The mean expected costs
associated with patients receiving preoperative opti-
mization were £10,850 and £7,980 for adrenaline
and dopexamine, respectively, whereas the mean
expected cost for patients receiving standard man-
agement was £11,890.

Mortality at 2 years was 29% for patients receiving
standard care, compared with 19% for patients
receiving pre-op with adrenaline and 13% for those
receiving pre-op with dopexamine. Translating 2-year
mortality into survival duration generated a mean of
1.68 years postsurgery for patients in the pre-op with
adrenaline group and 1.80 years postsurgery for the
pre-op with dopexamine group, compared with 1.48
years for patients receiving standard care.

Based on mean values, pre-op with dopexamine
dominates both pre-op with adrenaline and standard
care because, on average, it was both more effective
and less expensive.

Figure 2 illustrates the cost-effectiveness acceptability
curves for the comparison between the 3 patient man-
agement strategies. If decision makers were unwilling
to pay anything for an additional life-year, the proba-
bility that pre-opd was optimal (i.e., dopexamine is
cost saving) was 0.71. If decision makers were willing
to pay £20,000 for an additional life-year (A), the
probability that pre-opd was optimal was 0.8, com-
pared with probabilities of 0.19 and 0.01 for pre-opa
and standard patient management, respectively. If
decision makers were willing to pay £30,000 per life-
year gained, the probability that pre-opd was optimal
was 0.797, compared with probabilities of 0.2 and
0.003 for pre-opa and standard patient management,
respectively. The cost-effectiveness frontier for the
decision between the 3 patient management strategies
traces the cost-effectiveness curve for pre-opd due to
it being dominant.

3.1.3.2. Value of information. The EVPI for the deci-
sion between the patient management strategies was
£350 per surgical procedure, given a A value of
£20,000 per life-year, or £370 per surgical procedure,
given a A value of £30,000 per life-year. This trans-
lated into a population EVPI of £48 million or £53
million for a A value of £20,000 or £30,000 per life-
year, respectively. Figure 3 illustrates the population
EVPI over a range of values of A. Initially, the EVPI
falls as the value of A increases, as the reduction in
uncertainty outweighs the increased valuation of the
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Figure 3 Prior expected value of perfect information (EVPI) for the decision between the 3 patient management strategies (UK population).

consequences associated with an incorrect decision.
However, as A increases beyond £10,000 per life-year,
the uncertainty increases along with the valuation of
the consequences; consequently, EVPI increases.

Figure 4 illustrates the population EVPPI for com-
binations of parameters assuming a A value of £20,000
or £30,000 per life-year. This analysis identified that
the cost of uncertainty was greatest surrounding the
short-term (clinical and economic) parameters. Given
a A value of £20,000 per life-year, the EVPPI for a
short-term trial incorporating costs was £48 million.
The majority of this value was related to the uncer-
tainty surrounding the costs and survival associated
with the pre-opa strategy. Research that eliminated
these uncertainties would be worth £37 million, com-
pared with just £1.7 million, to eliminate the uncer-
tainty surrounding the cost and survival associated
with pre-opd and standard care.

3.1.4. Implications of the Results

The results of the prior analysis suggest that, before
the most recent trial was undertaken, a policy of pre-
operative optimization with dopexamine dominated
both standard patient management and preoperative
optimization with adrenaline. However, the uncer-
tainty surrounding the adoption of pre-opd exceeded

the levels considered acceptable by standard conven-
tions of statistical significance or acceptable error
probabilities. Adherence to these rules of traditional
inference would result in the continuation of standard
management for patients. This is a policy that is
expected to have a lower net benefit and is associated
with a much lower probability of being optimal (0.01).
The expected opportunity loss of failing to base the
decision on the expected net benefit is the expected
net benefit foregone. When A is £20,000, this equates
to a loss of £10,250 per surgical procedure.

The formal valuation of the costs of the uncertainty
suggests that resolution of the uncertainty (perfect
information) would be worth £48 million for the
United Kingdom (assuming a A value of at least £20,000
per life-year). This provides an absolute limit on the
worth of further research concerning all elements of
the decision for this value of A. The analysis of the
costs of uncertainty surrounding groups of parameters
identified short-term (clinical and economic) parame-
ters as having the greatest value of information. The
maximum worth associated with a short-term trial,
incorporating costs, was estimated to be £48 million,
with the majority of this value related to the uncer-
tainty surrounding the costs and survival associated
with the pre-opa strategy (£37 million).
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3.2. Posterior Analysis

3.2.1. Background

The aim of the posterior analysis was to update
the prior information set with data from the recent
trial (Wilson and others 1999) to estimate the poste-
rior cost-effectiveness of the management strategies,
determine the appropriate method of patient man-
agement following the trial, and consider whether
there remained a need for further research.

The recent trial randomized 138 high-risk patients
undergoing major elective surgery to receive pre-op
with adrenaline (46 patients), pre-op with dopexam-
ine (46 patients), or standard patient management (46
patients) (Wilson and others 1999)'°. The randomiza-
tion was stratified by surgery type (vascular, other
abdominal, and surgery for upper gastrointestinal
malignancy), although the trial was not powered
for an analysis on the basis of surgical subgroup. The
methods of patient management were compared on the
basis of mortality, complications, and resource use.
The results showed a mortality benefit for patients
in the preoptimization groups (3/92 v. 8/46) and a

lower rate of complications in the dopexamine group
compared to the adrenaline group. A retrospective
cost-effectiveness analysis of the trial, with survival
duration measured to 2 years and resource use fol-
lowed up to 6 months, identified some important dif-
ferences in resource use between the 3 groups."
Patients who received preoperative optimization
tended to have lower usage of key resources (with
those randomized to dopexamine having the lowest
usage overall). In particular, the use of dopexamine was
associated with a lower length of stay in the hospital.
These differences translated into a difference in the
mean cost of treatments, and the cost-effectiveness
results showed that preoperative optimization (with
either inotrope) dominated standard patient manage-
ment, whereas adrenaline was both more effective and
more expensive than dopexamine (with each addi-
tional life-year costing £23,936)."

3.2.2. Methods

3.2.2.1. Updating the prior model. The updating
process combined the patient-level trial data concern-
ing costs and survival duration with the prior estimates



Table 2 Prior Values Used within the Informed Analysis

Standard Adrenaline Dopexamine

Initial model

nu.trt N (9, 0.19) N (9, 0.27) N (9, 0.14)

sigma.trt N (0.6, 0.14) 1(0,) N (0.6, 0.15) I1(0,) N (0.4, 0.10) I(0,)

logh 1 N (—4.7, 0.34) N (-5.5, 0.85) N (-6.1, 0.61)

logh 2 N (~11.9, 3.78) N (~11.9, 3.78) N (-11.9, 3.78)

logh 3 N (-11.5, 3.33) N (-11.5, 3.33) N (=11.5, 3.33)

fﬂgh 4 N (-10.3, 1.86) N (-10.3, 1.86) N (-10.3, 1.86)
Regression model

betal N (=0.5, 0.36) N (0.18, 0.71) N (0.12, 0.38)

beta2 N (3.85, 1.31) N (0.49, 2.29) N (0.23, 1.32)

N (mean, SD) = normal distribution. Within WinBUGS™, the normal distribution is expressed by the mean and the precision (the inverse of the variance).

of mean cost and mean survival duration generated
from the prior model. This process resulted in posterior
distributions of mean cost and mean survival duration,
which incorporated all of the available information for
each method of patient management.

The Bayesian updating was undertaken using
WinBUGS™ (Windows-based Bayesian inference using
Gibbs sampling), which provides a numerical approxi-
mation of the posterior through Markov chain Monte
Carlo simulation via the Gibbs sampling algorithm.*

The primary analyses were undertaken using the
initial model (see section 3.2.2.2). However, a sensi-
tivity analysis was undertaken that examined differ-
ent methods for the inclusion of correlation within
the model structure (see section 3.2.2.6).

3.2.2.2. Model structure—initial model

1) Survival Duration

Survival duration, determined up to 2 years post-
surgery, was available for each patient from the recent
trial. Within the WinBUGS™ model, survival duration
was modeled using a piecewise exponential distribu-
tion. For this formulation, the follow-up period was
split into 4 distinct time periods (each representing an
important interval in the postsurgical recovery of the
patient®), and a separate exponential function was fit-
ted to approximate the survival function for each
period. Thus, a constant hazard is assumed within
each time period but not across the entire follow-up
period. The mean survival for each patient manage-
ment strategy was calculated by estimating the area

¢. The first period covered the initial 28 days postsurgery (the standard
length of time used to report outcomes in intensive care). The second period
extended to 6 months postsurgery (the interval for which complication data
and costs were available). The third period extended to 1 year postsurgery,
and the final period covered the entire second year postsurgery.

under the survival curve for each interval and sum-
ming across the intervals.

The log-relative hazard form was used for the sur-
vival analysis in the WinBUGS™ model. For each
management strategy, the log hazard rates (logh) for
each period were modeled as normal distributions
specified by a mean (representing the expected
value) and precision (representing the uncertainty
surrounding the mean). The prior values for the
mean and precision were determined from the prob-
abilistic analysis of the prior model by converting
the distribution of the survival probability to a dis-
tribution of the log hazard rates. Table 2 contains
details of the prior values.®

2) Costs

Patient-level data on resource use within the trial,
with a follow-up of 6 months, were available from the
trial. For the cost-effectiveness analysis, this resource
use (including days in hospital, drug use, and inter-
ventions) was converted to a patient-specific cost (for
more details, see Fenwick and others 2002).

In the WinBUGS™ model, the patient-level cost
data were modeled as a lognormal distribution,
implemented by modeling the log cost as a normal
distribution with mean (nu.frt) and precision
(tau.trt). The mean of the log cost (nu.trt) was itself
modeled as a normal distribution, specified by a
mean and precision. This distribution represented
the variation in the mean log cost (the second-order
uncertainty). The prior distributions for the parame-
ters of this distribution were generated from the
probabilistic analysis of the prior model.

d. The values post 6 months were identical irrespective of the patient
management strategy because the longer term survival probabilities (post
28 days) in the prior model were based on published sources and were not
treatment specific.



The distribution of the precision of the log cost
(tau.trt) represented the (first-order) uncertainty in
the simulated patient cost data (see section 3.1.2.2)
and provided an estimate of the extent of variation
within the observed data. To speed up convergence,
this distribution was modeled indirectly through the
standard deviation of the log cost (sigma.frt) and con-
verted to give the precision of the log cost. The distri-
bution of the standard deviation of the log cost
(sigma.trt) was modeled using a half-normal distribu-
tion (a normal distribution truncated at zero to prevent
negative values) specified by a mean and precision.
The simulated patient cost data, created to populate
the prior model (see section 3.1.2.2), were used to
specify the mean and precision parameters of this dis-
tribution. The prior values are detailed in Table 2.

The mean cost for each method of patient man-
agement was determined through a back-transforma-
tion of the log costs.®

3.2.2.3. Adoption decision. The WinBUGS™ analysis
involved a burn-in of 10,000 iterations, followed by a
further 10,000 iterations to approximate the posterior
distributions for cost and survival duration. These
posterior distributions were used to identify the pos-
terior adoption decision (based on mean values) and
to assess the posterior uncertainty surrounding the
decision, in the form of cost-effectiveness acceptabil-
ity curves (CEACs) and cost-effectiveness acceptabil-
ity frontiers (CEAFs).

3.2.2.4. Value of additional information. The EVPI for
the decision made following the recent trial was cal-
culated, using nonparametric methods direct from the
posterior distributions, to assess the potential worth
of further research beyond the trial. The population-
level EVPI was determined by scaling up the individ-
ual EVPI according to the incidence of the decision.
The EVPI per surgical procedure was translated into a
population value using the same incidence data as the
prior analysis, with the lifetime of the decision
reduced to 9 years to accommodate the advancement
of time while the trial was undertaken.

3.2.2.5. Subgroups. The use of Bayesian methods
enabled analyses to be undertaken on the basis of
the surgical subgroup on which the trial was origi-
nally stratified". These reanalyses involved parti-
tioning and analyzing the data according to surgical
subgroup and were undertaken as sensitivity analyses.

¢. Note that the back-transformation only provides a reasonable estimate
of the mean cost if the data are lognormally distributed. If this assumption is
inappropriate, the back-transformation will generate inaccurate results.

The prior for these analyses was that the subgroups
were similar and exchangeable in terms of cost and
survival. As such, the priors for each subgroup were
those specified for the original model.

3.2.2.6. Alternative model structures. During the
updating process, WinBUGS™ handles each node in
the model separately and independently. Therefore,
relationships between nodes are not taken into
account within the analysis unless specified in the
model. The initial model makes no allowance for a
relationship between costs and survival duration,
and hence the results will be uncorrelated. A sensi-
tivity analysis around model structure was under-
taken to examine different methods for the inclusion
of correlation within the model structure. Within
this analysis, 3 additional models, comprising alter-
native methods for incorporating the relationship
between cost and survival, were considered.

The first alternative modeled a causal, structural
relationship between cost and survival. The rationale
for this model was that the relationship between cost
and survival duration was driven by the existence of
postsurgical complications; as such, the data set was
partitioned and analyzed according to patients’ com-
plication status. The model was structured similarly to
a regression equation, with dummy variables (befa1
and betaZ2) representing the existence of complications,
to provide overall results for each method of patient
management. The prior values for the dummy vari-
ables are given in Table 2.

The second alternative modeled the statistical
relationship between cost and survival. Here, a
“frailty” effect was included in the cost and survival
duration equations of the original model, thus ensur-
ing that each node was included within the updating
process of the other.™

The third alternative combined the regression
structure and the frailty terms within one model.

Further details concerning the various model
structures are available from the authors.

3.2.3. Resulis

3.2.3.1. Adoption decision. The mean expected cost
for patients was £8590 for those receiving pre-opa
and £5960 for those receiving pre-opd. For those
patients receiving standard management, the mean
expected cost was £10,180.

The mean survival duration associated with
patients receiving pre-opa and pre-opd was 1.71 years
and 1.62 years, respectively. The mean survival dura-
tion for patients receiving standard management was
1.39 years.
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Figure 5

Based on mean values, standard care was domi-
nated by preoperative optimization employing
dopexamine, whereas preoperative optimization
employing adrenaline was associated with an incre-
mental cost-effectiveness ratio (ICER) of £29,580 per
life-year gained when compared to pre-opd.

Figure 5 illustrates the cost-effectiveness accept-
ability curves for the comparison between the 3
patient management strategies. If decision makers
were unwilling to pay anything for an additional
life-year, the probability that pre-opd was optimal
(i.e., dopexamine is cost saving) was 0.9973. If deci-
sion makers were willing to pay £20,000 per life-year
gained, the probability that pre-opd was optimal was
0.6255, compared with probabilities of 0.3742 and
0.0003 for pre-op with adrenaline and standard
patient management, respectively. If decision makers
were willing to pay £30,000 per life-year gained,
the optimal choice switches to pre-opa, with a
probability that it was optimal of 0.5059, compared
with probabilities of 0.4934 and 0.0007 for pre-op
with dopexamine and standard patient management,
respectively. The cost-effectiveness frontier (not
shown) follows the CEAC for pre-opd up to the point
where the adoption decision switches to pre-opa
(A value of £29,580) and then follows the CEAC for
pre-opa.

3.2.3.2. Value of information. The EVPI for the decision
between the patient management strategies was £650

Posterior cost-effectiveness acceptability curves for each patient management strategy.

per surgical procedure (£67 million for the population)
at a A value of £20,000 per life-year and £1440 per sur-
gical procedure (£148 million for the population) for a
A value of £30,000 per life-year (see Figure 6).

3.2.3.3. Subgroups. Table 3 summarizes the expected
cost and expected survival duration results, the ICER,
and the EVPI for the subgroup analyses. Standard
care was dominated for each of the subgroups,
although the choice between the inotropes for achiev-
ing oxygen delivery varied between the subgroups. In
addition, the extent of the uncertainty and the value
of information surrounding the decision varied
between the subgroups, with the upper gastrointesti-
nal malignancy group facing the largest uncertainty
(both parameter and decision) and the highest EVPL.
This was reflected in the high population EVPI for
this group, despite the small population of patients
facing this type of surgery.

3.2.3.4. Alternative model structures. Table 4 summa-
rizes the expected cost and expected survival duration
results, the ICER, and the EVPI for the sensitivity
analyses on model structure. The results show that
when some allowance is made for a relationship
between costs and survival duration, the expected
mean cost (and standard error) falls, whereas the
expected mean survival duration (and standard error)
increases. These results hold across all of the model
structures employed and concord with the empirical
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Table 3 Results for the Surgical Subgroups: Expected Costs, Expected Survival Duration, ICER, and EVPI

Population EVPI

Pre-op with Pre-op with Standard
Mean (SEM) Adrenaline Dopexamine Management A= £20k A = £30k
Other abdominal
Cost (£) 5810 (740) 5980 (572) 6820 (1130) £17 million £24 million
Survival (days) 660 (30) 630 (40) 560 (40)
ICER — Dominated Dominated
Upper gastrointestinal
malignancy
Cost (£) 11,080 (2010) 7420 (870) 12,640 (2030) £39 million £75 million
Survival (days) 460 (80) 430 (70) 420 (80)
ICER £40,790 — Dominated
Vascular
Cost (£) 11,190 (2030) 5720 (660) 12,920 (2040) £2 million £8 million
Survival (days) 650 (40) 660 (40) 460 (70)
ICER Dominated — Dominated

EVPI = expected value of perfect information; ICER = incremental cost-effectiveness ratio.

evidence that there is a small, negative correlation
between cost and survival (=0.1). The results, for each
of the alternative models, were similar to those of the
initial model (with standard care dominated and pre-
operative optimization with dopexamine both cheaper
and less effective than preoperative optimization with
adrenaline), although the ICER varied according to the

model structure. The level of uncertainty and the
value of information surrounding the decision did not
differ markedly between the model structures.

3.2.4. Implications of Results

The results of the posterior analysis suggested that
a policy of preoperative optimization was the optimal



Table 4 Results for the Different Model Structures: Expected Costs,

Expected Survival Duration, ICER, and EVPI

Population EVPI

Pre-op with Pre-op with Standard
Mean (SEM) Adrenaline Dopexamine Management A= £20k A= £30k
Initial model
Cost (£) 8590 (980) 5960 (470) 10,180 (1340) £67 million £148 million
Survival (days) 620 (30) 590 (30) 510 (40)
ICER £29,580 — Dominated
Regression model
Cost (£) 7950 (780) 5670 (390) 9570 (1200) £87 million £111 million
Survival (days) 630 (30) 590 (30) 500 (40)
ICER £34,140 = Dominated
Frailty model
Cost (£) 8530 (960) 5900 (470) 10,090 (1350) £60 million £137 million
Survival (days) 640 (30) 610 (30) 520 (40)
ICER £22,740 - Dominated
Bivariate regression
Cost (£) 7910 (770) 5660 (390) 9490 (1220) £78 million £126 million
Survival (days) 640 (30) 610 (30) 510 (40)
ICER £25,440 — Dominated
EVPI = expectled value of perfecl information; ICER = incremental cost-elfectiveness ratio,

choice for managing high-risk patients undergoing
major elective surgery following the recent trial. The
choice concerning inotrope depended crucially on
the value that the decision maker was willing to pay
for additional life-years in this patient group (A). For
A values above £29,580, pre-opa should be adopted;
below this, pre-opd was the optimal choice. The
uncertainty surrounding the decision also depended
crucially on A. However, the decision uncertainty was
much higher than would be acceptable by standard
conventions of significance irrespective of the value
of L. Adherence to these conventions would result in
the continuation of standard patient management
with a much lower probability of being optimal
(0.0003) and expected losses per surgical procedure
(£114 million annually). The formal valuation of
the costs of uncertainty suggested that resolution of the
uncertainty would be worth £67 million for the whole
population (given a A value of £20,000 per life-year).
This provides an absolute limit on the worth of further
research concerning all elements of the decision, for
this value of A, and suggests that further research is still
potentially worthwhile following the trial.

4. DISCUSSION

Before the 1999 trial, the optimal adoption deci-
sion was a policy of preoperative optimization with
dopexamine irrespective of the decision makers’ will-
ingness to pay for life-years gained. Following the

trial, the optimal adoption decision involved preop-
erative optimization, although the choice between the
inotropes dopexamine and adrenaline was dependent
on the willingness to pay. Comparison of the results
from the prior and posterior analyses illustrates that
the incorporation of the trial data reduced the uncer-
tainty surrounding the estimates of expected cost and
expected survival duration.

However, this reduction in parameter uncertainty
did not translate into a reduction in decision uncer-
tainty. In fact, the posterior analysis exhibited greater
decision uncertainty than the prior model. For the
prior analysis, the probability that the adoption deci-
sion (pre-opd) was cost-effective exceeded 0.71
regardless of the willingness to pay for life-years
gained. For the posterior analysis, the probability that
the adoption decision was cost-effective dropped to
0.52 at the point where the decision switched
between pre-opd and pre-opa (£29,580).

This increase in decision uncertainty was due to a
shift in the positions of the distributions of expected
costs and survival duration for pre-opa and pre-opd fol-
lowing the posterior analysis. These shifts were a result
of differential weightings attached to the prior evi-
dence. In particular, the posterior estimate of survival
duration for pre-opa was heavily influenced by the
prior, whereas the estimate for pre-opd was heavily
influenced by the trial data. As a result, the estimates
for survival duration were closer and the incremental
survival duration was lower in the posterior analysis



than in the prior analysis, leading to a positive ICER
for pre-opa (£29,580). This increase in decision uncer-
tainty, between the prior and posterior analyses, was
carried through and translated into an increase in the
value of information. For the prior model, the resolu-
tion of uncertainty would be worth £48 million for the
population (£350 per surgery). Following the incorpo-
ration of the trial data, the expected value of perfect
information was £67 million for the population (£650
per surgery). Thus, the situation occurs where incorpo-
rating additional trial data has increased the uncer-
tainty surrounding the adoption decision and increased
the worth of further research.

This analysis illustrates that a fully Bayesian deci-
sion analysis can be undertaken, even within the con-
text of small trials and with the existence of relatively
little prior information. In addition, through sensitiv-
ity analysis, this example has illustrated that it is pos-
sible to examine the impact of additional data on
specific patient subgroups. If the decision maker were
able to differentiate policy on the basis of surgical sub-
group, the results of the subgroup sensitivity analysis
suggest that preoperative optimization should be
adopted for all patients, with dopexamine employed
to achieve optimization for those undergoing vascular
surgery and adrenaline used for those undergoing
other abdominal surgery. For those patients undergo-
ing surgery for upper gastrointestinal malignancy, the
inotrope employed to achieve optimization depends
crucially on the decision makers’ willingness to pay
for additional life-years.

The sensitivity analyses regarding model structure
illustrated that it was possible to incorporate correla-
tion between parameters into the model, although the
results suggest that for this particular example, mod-
eling the correlation between cost and effect does not
have a great impact on either expected cost-effective-
ness or the value of information.

This study has demonstrated that an explicit and
rational approach to the whole sequence of decisions
in health technology assessment is both valuable and
practical. However, some areas of the process remain
to be addressed. The retrospective nature of the prior
analysis meant that it was not possible to elicit infor-
mative prior distributions for the parameters for which
there was no information.” This particularly affected
the estimates of cost and effect for preoperative opti-
mization with adrenaline. These estimates were
instead handled through a number of assumptions
regarding the relationship between the available data
and the required data. The retrospective nature of
the prior analysis also affected the structure employed
for the prior model. For example, the piecewise

exponential distribution employed 4 time periods,
which were largely dictated by the availability of data
from the trial. The results of the prior analysis would
be affected by this structure. A prospective prior
analysis may well have involved a different structur-
ing for survival duration and could have drawn differ-
ent conclusions.

Within this study, updating was only undertaken
for the cost and effect parameters and only as a
result of additional data from 1 clinical trial.
However, the process could easily be adapted to
allow updating of each and every parameter within
the model, from any number of disparate sources of
information. Cooper and others” demonstrated the
construction of a comprehensive decision model
within WinBUGS™ that would enable this process.
The approach would allow all sources of evidence to
be incorporated within the model and thus form part
of the decision-making process. Where the same evi-
dence source is used to populate different compo-
nents within the model, this approach would ensure
that all sources of uncertainty and correlation were
captured within, and propagated through, the model
and thus reflected within the decision. Where there
are multiple sources of prior evidence available, for-
mal evidence synthesis methods should be used to
ensure that uncertainty is incorporated appropri-
ately within the model.” These methods can also be
incorporated within a single unified Bayesian deci-
sion model evaluated within WinBUGS™ >4

The framework, as demonstrated within this study,
can only determine the potential worth of further
research, with EVPI providing a necessary (but not suf-
ficient) condition for establishing the value of further
research. It is only in a situation where the EVPI is low
that it can be used to determine whether research is
worthwhile per se, by eliminating the requirement for
further information. The sufficient condition for the
worth of specific further research requires that the
expected value of sample information (EVSI) exceed
the costs of the specific research. The difference between
the EVSI and the costs of research is the expected net
benefits of sampling (ENBS), an estimate of the societal
payoff from the research. Specific research is worth-
while if the ENBS is positive. Technically efficient
research can be identified through manipulation of
research design parameters (e.g., sample size, sample
allocation, etc.) to maximise ENBS."”* Methods are
available for establishing EVSI when net benefits are nor-
mally distributed®”*” and, more recently, for a range of
conjugate data structures.*® However, the complexity
and computational challenges of nonconjugate prior
distributions are yet to be resolved.



5. CONCLUSIONS

In conclusion, this study has illustrated that it is
possible to implement an iterative framework for
health technology assessment. Within this frame-
work, the model is implemented early in the life cycle
of the technology, and new information is incorpo-
rated into the model, through the use of Bayesian
methods, as it emerges. Hence, the model becomes
the vehicle for managing the process of health tech-
nology assessment throughout the life cycle of the
technology, directing each stage on the basis of the
current level of information, thus ensuring consis-
tency in decision making over time between health
care provision, research and development priorities,
and research methods.

APPENDIX
SEARCH STRATEGY FOR LITERATURE SEARCH

Search Strategy
Search terms used:

preoperative optimisation/optimization

preoperative care

preoperative management

perioperative optimisation/optimization

perioperative management

perioperative care

goal orientated/oriented management

#1 or #2 or #3 or #4 or #> or #6 or #7
9. oxygen delivery

10. oxygen administration

11. oxygen supply

12. preoxygenation/pre-oxygenation

13. #9 or #10 or #11 or #12

14. #8 and #13

15. cardiac monitoring

16. physiological monitoring

17. cardiac output

18. #15 or #16 or #17

19. #8 and #18

20. #14 or #19

21. #20 and (TG = “HUMAN")

22. #21 and (PY<="1996")

W N o=

e~ O &1

Databases searched:

Medline (204 records)
Embase (35 records)
BIDS Science Citation Index (37 records)

Accepted at title stage: 10 records were accepted
at the title stage.

Accepted at abstract stage: 5 records were accepted
at the abstract stage.

Accepted at the paper stage: 3 papers were accepted
at the paper stage.
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