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INTRODUCTION

The past decade has seen a rapid increase in the use of clinical trials as a vehi-

cle for collecting economic information and estimating the cost-effectiveness of

interventions (43). The existence of patient-level information on both costs and

effects from clinical trials has generated interest in statistical methods for cost-

effectiveness analysis, with a key focus on the quantification and presentation of

uncertainty. This paper reviews recent developments and provides an overview of

the state-of-the-art of quantitative methods for cost-effectiveness analysis.

A key structural feature of the paper is the use of a common example to il-

lustrate the various methodological issues and techniques that are discussed. We
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have chosen to use our own work on the cost-effectiveness of the implantable car-
dioverter defibrillator (ICD) versus drug therapy for patients at high risk of sudden
cardiac death. This study was chosen for two reasons: First, it illustrates many of
the challenging analytical aspects of contemporary trial-based cost-effectiveness
analysis, and second, we have the data! A brief summary of the published cost-
effectiveness analysis (36) is presented in Box 1. A further published analysis of
cost-effectiveness by risk strata (47) is summarized in Box 2.

Box 1
Example: Cost-effectiveness of the implantable cardioverter defibrillator∗
Background: In the Canadian Implantable Defibrillator Study (CIDS) we as-

sessed the cost-effectiveness of the implantable cardioverter defibrillator (ICD) in
reducing the risk of death in survivors of previous ventricular tachycardia (VT) or
fibrillation (VF).

Methods: Health care resource use was collected prospectively on the first 430 pa-
tients enrolled in CIDS (n= 212 ICD, n= 218 amiodarone). Mean cost per patient,
adjusted for censoring, was computed for each group based on initial therapy as-
signment. Incremental cost-effectiveness of ICD therapy was computed as the ratio
of the difference (ICD–amiodarone) in cost to the difference in life expectancy (both
discounted at 3% per year). All costs are in 1999 Canadian dollars; C$1≈US $0.65.

Results: Over 6.3 years, mean cost per patient in the ICD group was C$87,715
versus C$38,600 in the amiodarone group (difference C$49,115; 95% CI C$41,597
to C$56,593). Life expectancy for the ICD group was 4.58 years versus 4.35 years
for amiodarone (difference 0.23, 95% CI−0.12 to 0.57), for incremental cost-
effectiveness of ICD therapy of C$213,543 per life-year gained.

Box 2
Example: Effect of clinical risk stratification on cost-effectiveness of the im-

plantable cardioverter-defibrillator. The Canadian Implantable Defibrillator Study∗∗
Background: Three randomized clinical trials showed that implantable cardio-

verter-defibrillators (ICDs) reduce the risk of death in survivors of ventricular tach-
yarrhythmias, but the cost per year of life gained is high. A substudy of the Canadian
Implantable Defibrillator Study (CIDS) showed that 3 clinical factors, age≥70
years, left ventricular ejection fraction≤35%, and New York Heart Association
class III, predicted the risk of death and benefit from the ICD. We estimated the
extent to which selecting patients for ICD therapy based on these risk factors makes
ICD therapy more economically attractive.

Methods: Patients in CIDS were grouped according to whether they had 2 or
more of 3 risk factors. Incremental cost-effectiveness of ICD therapy was computed
as the ratio of the difference in mean cost to the difference in life expectancy between
the 2 groups.

∗Source: Abridged abstract from Reference (36).
∗∗Source: Abridged abstract from Reference (47).
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Results: Over 6.3 years, the mean cost per patient in the ICD group was Cana-
dian (C) $87,715 versus $38,600 in the amiodarone group (C$1≈US$0.67). Life
expectancy for the ICD group was 4.58 years versus 4.35 years for amiodarone, for
an incremental cost-effectiveness of ICD therapy of C$213,543 per life-year gained.
The cost per life-year gained inpatients with≥2 factors was C$65,195, compared
with C$916,659 with<2 risk factors.

We begin by introducing the “cost-effectiveness (CE) plane” as a device for pre-
senting and relating the two central parameters of interest in economic evaluation:
the difference (treatment minus control) in effectiveness (1E) and the difference
in cost (1C). We show how the CE plane is useful for presenting uncertainty in the
location of these two parameters and also uncertainty in the ratio between them,
1C/1E, known as the incremental cost-effectiveness ratio (ICER). Using the
CE plane, we review methods for estimating and presenting the uncertainty that
can arise in cost-effectiveness results. Although much research has focused on
methods for calculating confidence intervals for cost-effectiveness ratios, this
calculation can be problematic with ratio-based statistics. Instead, we advocate
plotting the joint density of cost and effect differences on the cost-effectiveness
plane, together with cumulative density plots over the cost-effectiveness surface
known as cost-effectiveness acceptability curves to summarize the overall value for
money of interventions. We also outline the net-benefit formulation of the cost-
effectiveness problem and show that it has particular advantages over the stan-
dard incremental cost-effectiveness ratio formulation. In the final section of the
paper we consider some areas of continuing development of statistical methods
for cost-effectiveness analysis such as the use of a Bayesian interpretation of
probability, arguing that this is most natural given the decision-making context of
cost-effectiveness analysis.

THE COST-EFFECTIVENESS PLANE

In Figure 1 we illustrate the cost-effectiveness (CE) plane, due originally to Black
(4). The CE plane is a two-dimensional space with the x-axis being the average
difference (treatment minus control) in effectiveness (1E) per patient and the
y-axis being the average difference in cost (1C) per patient. Although costs are in
money units such as dollars, the effectiveness units are typically health outcomes
such as life-years gained or quality-adjusted life-years (18). In principle, the axes
are unbounded from positive to negative infinity, and the origin represents the
control group because scales are in difference form. To minimize confusion, we
label the four quadrants using the points of the compass.

If we consider the ideal circumstance of knowing our (x, y) coordinates on
the CE plane for sure, with no uncertainty, then a number of eventualities can
arise. For example, treatment is said to “dominate” control, being less costly and
more effective if the (x, y) coordinates are located in the SE quadrant and the
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Figure 1 Incremental cost-effectiveness plane showing four quadrants, line representing
the ceiling ratio for decision making and the location of the point estimate of incremental
costs and effects for the CIDS data example.

mirror image—control dominates treatment—in the NW quadrant. In these two
circumstances, the efficiency-based decision to adopt the new therapy or not is
self-evident. But most new therapies locate in the NE quadrant where increased
effectiveness is achieved at increased cost. In this situation, the decision to adopt
the new therapy will depend on where the (x, y) coordinates fall in the NE quadrant
and whether this point lies below the acceptable “ceiling ratio” of the decision-
maker. As illustrated by the ray extending from the origin, the assumption is that the
dollar amount that the decision-maker is willing to pay for a unit of effectiveness
is known (call thisλ). If the incremental cost-effectiveness ratio (ICER) of the
new therapy (1C/1E), i.e., the slope of a straight line from the origin that passes
through the (1E,1C) coordinate, is less than the decision-maker’s willingness to
pay (λ), then the treatment should be adopted.

Using our example, if we assume, for the moment, that our ICD data (Box 1)
had no uncertainty, then the true cost difference per patient would be C$49,100
and the true increase in survival would be 0.23 years for an ICER of C$214,000
per life-year gained. If we assume that the maximum that society is willing to pay
for a year of life is C$100,000, then ICD therapy should not be adopted. This is
shown graphically in Figure 1 by the point estimate of cost-effectiveness falling
above and to the left of the line with slopeλ = C$100,000. Of course, the problem

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor



23 Feb 2002 12:36 AR AR153-17.tex AR153-17.SGM LaTeX2e(2001/05/10)P1: ILV

is that all the parameters are uncertain, including the amount society is willing to
pay for a unit of effect.

ESTIMATION OR HYPOTHESIS TESTING?

In practice, we have only estimates of the cost and effect differences, and it is
important that uncertainty in those estimates is also presented. It is straightforward
to calculate confidence intervals for each of the cost and effect differences,1C
and1E, using standard methods, and these intervals can also be plotted on the
cost-effectiveness plane (38). For example, in the CIDS trial, the 95% confidence
intervals for1C are (C$41,600 to C$56,600) and for1E are (−0.12 to 0.57).
These results are represented on the cost-effectiveness plane in Figure 2, which,
in addition to a point estimate of the cost and effect difference of ICD therapy,
also shows I-bars representing the confidence intervals around those estimates.
The horizontal I-bar represents the confidence interval for the effect difference,
and the vertical I-bar represents the confidence interval for the cost difference.

Figure 2 Confidence limits and the confidence box on the cost-effectiveness plane
for the ICD data example.
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Both have the point estimate of the cost and effect differences at their center
and together the intervals define a box on the cost-effectiveness plane. Of note
with our ICD example is that the box “straddles” the y-axis but lies completely
above the x-axis, reflecting the fact that the difference in survival in the CIDS
trial was not significant (p> 0.05) but that the difference in cost was significant
(p< 0.05).

Our example in Figure 2 is just one situation that can arise when analyzing the
results of an economic analysis conducted alongside a clinical trial with respect
to the significance or otherwise of the cost and effect differences. In fact, there
are nine possible situations that could arise, and these are illustrated on the cost-
effectiveness plane in Figure 3 with multiple “confidence boxes.”

In situations 1 and 2, one intervention has been shown to be significantly more
effective and significantly cheaper than the other and is therefore clearly the treat-
ment of choice—the new treatment is preferred in the SE quadrant (situation 1)
and the control treatment in the NW quadrant (situation 2). In situations 7 and 8,
we have one treatment shown to be significantly more costly, but also significantly
more effective. It is in these situations that it is clearly appropriate to estimate an
ICER and where much research effort has been employed to ascertain the most
appropriate method for estimating the ICER confidence interval.

Figure 3 Nine possible situations that can arise concerning the significance (or otherwise)
of cost and effect differences illustrated on the cost-effectiveness plane. Boxes indicate the
area bounded by the individual confidence limits on cost and effect: statistically significant
differences are indicated where the box does not straddle the relevant axis.
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A potential problem arises in the situations where either the cost difference
(situations 3 and 5) or the effect difference (situations 4 and 6) is not statistically
significant. (Note that our ICD example falls into situation 4.) It is common to
find analysts in these situations adapting the decision rule to focus only on the
dimension where a difference has been shown. For example, it might be tempting in
situation 4, our ICD example, to assume that ICD and amiodarone have the same life
expectancy and only compare them in terms of cost. This form of analysis, known as
cost-minimization analysis, uses the logic that among outcome-equivalent options
one should choose the less costly option.

As we have argued elsewhere (10), the problem with this simple approach
to decision making in situations where either cost or effect is not statistically
significant is that it is based on simple and sequential tests of hypotheses. But the
deficiencies of hypothesis testing (in contrast to estimation) are well known and
gave rise to the memorable adage, “absence of evidence is not evidence of absence”
(2). The concern is that a focus on hypothesis testing leads to an overemphasis
on type I errors (the rejection of the null hypothesis of no difference when there
is in fact no difference) at the expense of type II errors (the failure to reject the
null hypothesis of no difference when in fact a difference does exist). In a review
of clinical evaluations, Freiman and colleagues (24) showed how a substantial
proportion of studies reporting “negative” results had insufficient power to detect
quite important differences in treatment effect. Consistent with these recent debates
in the clinical evaluation literature, the goal of economic evaluation should be
the estimation of a parameter—incremental cost-effectiveness—with appropriate
representation of uncertainty, rather than hypothesis testing.

ESTIMATING UNCERTAINTY: THINKING
OUTSIDE THE BOX

The point estimates (means) from the effect and cost distributions provide the
best estimate of the treatment and cost effects and should be used in the primary
analysis. While confidence intervals for cost-effectiveness ratios are a valid ap-
proach to addressing uncertainty in cost-effectiveness analysis for situations 7 and
8, problems arise when uncertainty is such that the ICER could be negative (48).
However, these problems can be overcome through either the appropriate repre-
sentation of uncertainty on the cost-effectiveness plane (6, 51), or the use of the
net-benefit statistic that represents a new framework for handling uncertainty in
CEA and which does not suffer from the problems associated with the ICER in
situations where negative ratios arise (49). In this section we review each of these
issues in turn to emphasize how analysts should be estimating and presenting un-
certainty in the results of their analyses in the potential situations outlined above.

Confidence Limits for Cost-Effectiveness Ratios

With patient-level information on the costs and effects of treatment interventions,
it is natural to consider representing uncertainty in the ICER using confidence
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intervals. However, as a ratio statistic, the solution to confidence-interval estimation
is not straightforward.

The intuition behind this problem is that where there is nonnegligible proba-
bility that the denominator of the ratio could take a zero value, the ICER becomes
unstable since for a zero denominator the ICER would be infinite. For a positive
cost difference (the numerator of the ICER) as the effect difference approaches
zero from the positive direction, the ICER tends to positive infinity. As the effect
difference approaches zero from the negative direction, the ICER tends to negative
infinity. For negative cost differences the ICER signs are reversed. This discon-
tinuity about the zero effect difference causes statistical problems for estimating
confidence limits; for example, there is no mathematically tractable formula for
the variance of the statistic. Even where the effect difference is significantly dif-
ferent from zero, it would be inappropriate to assume that the ICER’s sampling
distribution followed a normal distribution.

There have been many proposed solutions to the problem of estimating con-
fidence limits for the ICER, many of which were simply approximations that
could perform rather poorly in some situations. However, a general consensus has
emerged in support of two main approaches: the parametric method introduced by
Fieller (23) half a century ago and the nonparametric approach of bootstrapping
(19), both of which have been described in relation to cost-effectiveness analysis
(9, 11, 14, 40, 42, 46, 53). We now illustrate each approach in turn, employing the
example data from the CIDS trial (Box 1).

FIELLER’S THEOREM CONFIDENCE INTERVALS In Fieller’s approach, it is assumed
that the cost and effect differences (represented by1C and1E, respectively)
follow a joint normal distribution. The standard cost-effectiveness ratio calcula-
tion of R=1C/1E can be expressed asR1E−1C= 0, with known variance
R2 var(1E ) + var(1C ) − 2R cov(1E, 1C ). Therefore, we can generate a stan-
dard normally distributed variable by dividing the reformulated expression through
by its standard error:

R1E −1C√
R2 var(1E)+ var(1C)− 2Rcov(1E,1C)

∼ N(0, 1).

Setting this expression equal to the critical point from the standard normal distri-
bution,zα/2 for a (1− α) 100% confidence interval, yields the following quadratic
equation inR:

R2
[
1E2− z2

α/2 var(1E)
]− 2R

[
1E ·1C − z2

α/2 cov(1E,1C)
]

+ [1C2− z2
α/2 var(1C)

] = 0.

The roots of this equation give the Fieller confidence limits for the ICER,R. These
roots are reproduced in the appendix; while apparently complicated, recall that in
order to calculate the roots, only five pieces of information are required: the es-
timated effect difference, the estimated cost difference, their respective variances
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Figure 4 Fieller’s theorem (a) and bootstrap (b) confidence limits on the CE plane for the
ICD data example.

and the covariance between them. Figure 4ashows the assumption of joint normal-
ity on the cost-effectiveness plane for the ICD data of Box 1 by plotting ellipses of
equal probability covering 5%, 50%, and 95% of the integrated joint density. Also
plotted are the estimated confidence limits using Fieller’s theorem (C$86,800 to
C$-408,000), represented by the slopes of the lines on the plane passing through
the origin. Note that the “wedge” defined by the Fieller confidence limits falls
inside the 95% ellipse—taking tangents to the 95% ellipse, as was suggested in an
early paper as a possible method for approximating the interval (51), would over-
estimate the width of the interval since the wedge area covers not only the 95%
of the joint density covered by the ellipse but also areas above and below the 95%
ellipse. By contrast, Fieller’s approach automatically adjusts to ensure that 95% of
the integrated joint density falls within the wedge, which makes Fieller’s approach
an exact method (subject to the parametric assumption of joint normality of costs
and effects holding).

BOOTSTRAP CONFIDENCE INTERVALS The approach of nonparametric bootstrap-
ping has been gaining in popularity with the advent of powerful desktop comput-
ing. It is a resampling procedure that employs raw computing power to estimate an
empirical sampling distribution for the statistic of interest rather than relying on
parametric assumptions. Bootstrap samples of the same size as the original data
are drawn with replacement from the original sample and the statistic of interest
is calculated. Repeating this process a large number of times generates a vector of
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bootstrap replicates of the statistic of interest, which is the empirical estimate of
that statistics’ sampling distribution.

In terms of the cost-effectiveness application, the approach involves a three-step
procedure:

1. Sample with replacementnC cost/effect pairs from the patients in the control
group (wherenC is the number of observed patients in the control group) and
calculate the mean cost and effect in this bootstrap resample.

2. Sample with replacementnT cost/effect pairs from the patients in the treat-
ment group (wherenT is the number of observed patients in the treatment
group) and calculate the mean cost and effect in this bootstrap resample.

3. Using the bootstrapped means from the steps above, calculate the difference
in effect between the groups, the difference in cost between the two groups,
and an estimate of the incremental cost-effectiveness.

This three-step procedure provides one bootstrap replication of the statistic of
interest; repeating this process a large number of times (at least 1000 times is rec-
ommended for confidence interval calculation) generates the empirical distribution
of cost-effectiveness.

Each of 1000 bootstrapped effect and cost differences from step 3 above are
plotted on the cost-effectiveness plane in Figure 4b for the ICD data example. Con-
fidence limits can be obtained by selecting the 26th and 975th of the 1000 replicates
[which excludes 25 (or 2.5%) of observations from either end of the empirical
distribution]; this effectively ensures that 95% of the estimated joint density falls
within the wedge on the cost-effectiveness plane defined by the confidence limits.
As is clearly apparent from Figure 4b, the bootstrap estimate of the joint density
and the bootstrap confidence limits (C$88,200 to C$−491,000) are very similar to
those generated by Fieller’s theorem. This suggests that for this particular exam-
ple, the assumption of joint normality for the cost and effect differences is reason-
able. The Fieller limits are therefore preferred in this case for two main reasons:
(a) Parametric methods are commonly more powerful than their nonparametric
counterparts when the parametric assumptions hold; and (b) Fieller’s approach
always generates the same result; two analysts both employing the bootstrap
method with the same data will generate slightly different results due to the play of
chance.

Beyond the Confidence Interval: Acceptability Curves

Although commentators are now largely agreed on the most appropriate meth-
ods for ICER confidence interval estimation, such intervals are not appropriate in
all the nine situations outlined above. One important problem concerns negative
ratios. In the NW and SE quadrants, the ICER is negative and its magnitude con-
veys no useful meaning. The problem is that in the positive quadrants low ICERs
are preferred to high ICERs (from the point of view of the more costly more
effective treatment). However, no such simple arrangement exists in the negative
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quadrants. Consider the three following points in the SE quadrant: A (1LY,−$2000);
B (2LYs, −$2000); C (2LYs,−$1000); giving negative ICERs of−$2000/LY,
−$1000/LY and−$500/LY, respectively. Therefore, in terms of magnitude, A has
the lowest ICER, with C the highest and B between the two. However, it should
be clear that B is preferred to both A and C as it has the highest number of life
years saved and the greatest cost-saving. Furthermore, negative ICERs in the NW
quadrant of the plane (favoring the existing treatment) are qualitatively different
from negative ICERs in the SE quadrant (favoring the new treatment) yet will be
grouped together in any na¨ıve rank-ordering exercise (note the treatment of neg-
ative ratios in the bootstrapping of the ICD data above; since the negative ratios
were in the NE quadrant they were ranked above the highest positive ratios to give
a negative upper limit to the ratio).

A solution to this problem can be found by returning to the original decision
rule introduced above. If the estimated ICER lies below some ceiling ratio,λ,
reflecting the maximum that decision-makers are willing to invest to achieve a
unit of effectiveness, then it should be implemented. Therefore, in terms of the
bootstrap replications on the cost-effectiveness plane in Figure 4b, we could sum-
marize uncertainty by considering what proportion of the bootstrap replications
fall below and to the right of a line with slope equal toλ, lending support to
the cost-effectiveness of the intervention. Of course, the appropriate value ofλ

is itself unknown. However, it can be varied to show how the evidence in favor
of cost-effectiveness of the intervention varies withλ. In terms of the bootstrap
method, we would simply plot the proportion of bootstrap replications falling on
the cost-effective side of the line asλ is varied across its full range from 0 through
to∞. Alternatively, if we are happy with an assumption of joint normality in the
distribution of costs and effects, we can consider the proportion of the parametric
joint density that falls on the cost-effective surface of the CE plane. We employ
this parametric approach and the resulting curve for the ICD example based on the
joint normal assumption shown in Figure 4a is presented in Figure 5 and has been
termed a cost-effectiveness acceptability curve (51), as it directly summarizes the
evidence in support of the intervention being cost-effective for all potential values
of the decision rule.

This acceptability curve presents much more information on uncertainty than do
confidence intervals. The curve cuts the vertical axis at the p-value (one-sided) for
the cost difference (which is p< 0.0001 in our ICD example) since a value of zero
for λ implies that only the cost is important in the cost-effectiveness calculation.
The curve is tending toward 1 minus the p-value for the effect difference (which
in the ICD example is p= 0.10), since an infinite value forλ implies that effect
only is important in the cost-effectiveness calculation. The median value (p= 0.5)
corresponds to the base-case ICER, which is C$214,000 in our example.

As well as summarizing, for every value ofλ, the evidence in favor of the
intervention being cost-effective, acceptability curves can also be employed to
obtain a confidence interval on cost-effectiveness. For the ICD example, the 95%
upper bound is not defined and the 95% lower bound is equal to C$86,800.
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Figure 5 Parametric cost-effectiveness acceptability curve for the ICD data example (as-
suming joint normality of cost and effect differences).

Acceptability Curves and Stratified Cost-Effectiveness

In addition to the presentation of precision around parameter estimates such as
cost-effectiveness, it is important to understand heterogeneity in data. For most
(if not all) medical technologies there is variability in response to therapy, and
this can often be systematic, identifying subgroups of patients where the treatment
effect is larger or smaller. Although the standard cautions regarding the “trawl-
ing” for subgroups apply (17, 41), such information is important for presenting
cost-effectiveness data to decision-makers. Selective use of therapies in patients
where it is more effective and cost-effective requires the analyst to present the
decision-maker with data showing both precision and heterogeneity.

The cost-effectiveness acceptability curve is a convenient method for presenting
stratified analyses. Consider the ICD example again, based on the summary pre-
sented in Box 2 where clinical risk stratification by age (≥70 years), left ventricular
ejection fraction (≤35%), and New York Heart Association class (III) indicated
patients who were likely to have a higher mortality benefit. In Figure 6a, we show
how the presence of 0 through to 3 risk factors impacts on the point estimates of
cost-effectiveness, with the cost-effectiveness of treatment being more favorable in
persons with more risk factors (i.e., higher prior probability of death). In Figure 6b,
the acceptability curves for the same groups are presented so the decision-maker
can determine the probability of ICD therapy being cost-effective among subgroups
and conditional upon the value of a life-year (λ).
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Figure 6 Risk stratified CEA for the ICD data example: (a) basecase results on the CE
plane, (b) risk stratified acceptability curves.

The Net-Benefit Framework

Relatively recently, a number of researchers have employed a simple rearrangement
of the cost-effectiveness decision rule to overcome the problems associated with
ICERs (15, 16, 49, 50). In particular, Stinnett & Mullahy (49) offer a comprehen-
sive account of the net-benefit framework and make a convincing case for employ-
ing the net-benefit statistic to handle uncertainty in stochastic cost-effectiveness
analysis. The standard cost-effectiveness decision rule, to implement a new treat-
ment only if1C/1E< λ, can be rearranged to give two alternative inequalities
on either the cost scale (15, 16, 50) or on the effect scale (49). For simplicity, we
focus on the cost scale of Net Monetary Benefit (NMB):

NMB= λ ·1E −1C.

The advantage of formulating the cost-effectiveness decision rule in this way is
that, by using the value ofλ to turn the decision rule into a linear expression,
the variance for the net-benefit statistics is tractable and the sampling distribu-
tion is much better behaved (in that with sufficient sample size net-benefits are
normally distributed). The variance expression for net-benefit on the cost scale is
given by

var(NMB) = λ2 · var(1E)+ var(1C)− 2λ · cov(1E,1C).

Since the net-benefit statistic relies on the value of the ceiling ratioλ to avoid the
problems of ratios statistics when in fact the value of the ceiling ratio is unknown,
the net-benefit can be plotted as a function ofλ. Figure 7 shows this for the net
monetary benefit formulation of net-benefits and includes the 95% confidence
intervals on net-benefits using the formula for the variance given above and as-
suming a normal distribution. The net-benefit curve crosses the horizontal axis at
the point estimate of cost-effectiveness of the intervention, which is C$214,000 in
our ICD example. Where the confidence limits on net-benefits cross the axis gives
the confidence interval on cost-effectiveness. We see from the figure that while
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Figure 7 Net monetary benefit statistic as function of ceiling ratio for the ICD data example
including 95% CI on net monetary benefit. Where the net benefit curves intersect with the
NMB= 0 axis defines the point estimate and 95% confidence interval on cost-effectiveness.
Note that the upper 95% limit on cost-effectiveness is not defined in this example.

the lower limit of cost-effectiveness is $86,800, the upper 95% limit of net-benefit
does not cross the axis, which indicates that the upper limit on cost-effectiveness
is not defined. This is precisely the same result obtained from the analysis of the
acceptability curve in Figure 5. Indeed, the net-benefit statistic provides a straight-
forward method to estimate the acceptability curve. Each point of the acceptability
curve can be calculated from the p-value on the net-benefit being positive. Note
that an acceptability curve calculated in this way gives the exact same acceptability
curve as the analysis on the CE plane suggested by van Hout and colleagues (51),
based on the joint normal distribution of cost and effect differences.

There is much common ground between the net-benefit method and Fieller’s
theorem. Indeed, the formal equivalence of the confidence limits described from
the net-benefit method and from Fieller’s theorem (and by extension the limits
obtained from the acceptability curve above) have recently been demonstrated
(26). Although Fieller’s method fails to produce confidence limits for the ICER
in some situations at a specified level of alpha, the type I error rate, this reflects
a problem not of the method itself, but of the level of uncertainty. While such an
interval can be defined for net benefit, that interval, by definition, will include zero
at the specified level of confidence.
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Since confidence intervals for cost-effectiveness ratios are not always defined,
we strongly recommend that analysts plot their results on the cost-effectiveness
plane, using either bootstrap replications or ellipses under the assumption of joint
normality (see Figure 4a,b). This gives a visual representation of the joint un-
certainty that is straightforward to interpret. Further summary can be obtained
through the acceptability or net-benefit frameworks. Our own preference is the
use of acceptability curves since these curves directly address the question of the
study: How likely is it that the new intervention is cost-effective?

Power and Sample Size Calculations for Cost-Effectiveness

Up to this point we have been considering the analysis of cost and effect information
generated alongside clinical trials, and we have recommended the reporting of
estimated uncertainty in cost-effectiveness results rather than tests of hypothesis
due to a concern of low power. These concerns are exacerbated by the fact that
cost data are generally considered to have higher variance than effect data and that
health economists are rarely invited to contribute to the power calculations at the
design stage of a clinical trial. On the rare occasions that economists have been
involved, it has tended to be the case that calculations are undertaken on costs
and effects separately. However, if the purpose of economic evaluation is to make
inference about cost-effectiveness then sample size and power calculations should
be directly related to this cost-effectiveness result.

A number of authors have suggested the idea of basing power calculations on
the methods used for approximating confidence intervals for cost-effectiveness
ratios (7, 45), including the use of simulation techniques (1). However, the intro-
duction of the net-benefit statistic has simplified matters considerably. Sample size
calculations can now be derived for cost-effectiveness following exactly the same
procedure used for mean effectiveness.

Note that an observed net benefit is significantly positive providing

NMB− zα/2
√

var(NMB) > 0,

where var(NMB) is as given above. Although it is tempting to base the sample size
calculation on the numbers of patients required to show an observed difference as
significant, in fact sample size calculations should be based on the hypothesized
cost and effect differences (denoted1Ẽ,1C̃, generating a hypothesized net mone-
tary benefitNM̃B) such that the study has the appropriate power to detect the
hypothesized net-benefit as different from zero. In algebraic terms:

NM̃B− zβ

√
var(NM̃B) > zα/2

√
var(NM̃B),

wherezβ is the critical value from the standard normal distribution corresponding
to a required power of 1−β, and the variance expressions for net-benefit are
as given above, but based on the hypothesized variance in cost, effect, and their
covariance.
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Substituting the sample variance calculations into the inequality above allows
a straightforward (if rather extensive) rearrangement of the expression to give the
sample size requirement (see the derivation given in the appendix). Note that as
well as the hypothesized cost and effect differences, their associated variances, and
covariance, the sample size also depends on the power and significance levels as
well as the ceiling ratioλ. Assuming power and significance are fixed by conven-
tion, the sample size calculation can be presented as a function of the remaining
unknown valueλ; however, at the design stage a single value must be chosen to
give the final number of patients to be recruited.

As an example, consider the risk stratification analysis of the CIDS data exam-
ple as a hypothesis-generating exercise that leads us to suppose that although im-
plantable defibrillators do not seem good value overall, they may be cost-effective
for patients with all three of the risk factors specified above. Further suppose that
we now wish to design a cost-effectiveness trial to test this hypothesis and we are
prepared to use the observed data from the CIDS study as the basis for the sample
size calculations for the new study. Figure 8 shows the sample size requirements
for such a study for different levels of power to detect a cost-effectiveness ratio
significantly below the ceiling ratio at the 5% level as a function of the ceiling ratio.
At conventional levels of power and significance (90% and 5%, respectively), we

Figure 8 Sample size requirements for a hypothetical cost-effectiveness study to look at
the cost-effectiveness of ICDs in patients with three risk factors.
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would have to recruit 60 patients with all three risk factors to each arm of the trial,
assuming a ceiling ratio of C$100,000 per LYG.

Alternatively, the information in Figure 8 can be used to determine the power of
a cost-effectiveness of known study size to show cost-effectiveness significantly
below a given ceiling ratio. Note the discontinuity of the figure around the hypo-
thesized point estimate of C$23,300; this occurs when the ceiling ratio used by
decision-makers corresponds to the true cost-effectiveness result. In this case then,
no study, however large, will be able to show a significant difference. The impli-
cations of this are that where interventions are only marginally cost-effective,
it is likely to prove very costly to run trials to demonstrate conclusive proof of
cost-effectiveness.

FURTHER ISSUES AND FUTURE DIRECTIONS

Statistical methods for economic evaluations running alongside clinical trials is in
a state of evolution, and we are likely to see many developments and refinements
of the methods in the coming years. We begin by considering the use of Bayesian
methods given the decision-making basis of economic evaluation research. We
then go on to consider the nature and distribution of cost data and issues relating
to their completeness that present particular statistical challenges.

On Being Bayesian with Probability

Although a strict frequentist interpretation of cost-effectiveness acceptability
curves is possible through the consideration of the p-value on net benefits (32), the
natural way to interpret these curves is as the probability that the intervention is
cost-effective. Indeed, this is the way cost-effectiveness acceptability curves have
been presented in the literature to date (44, 51). It has also been argued that the
widespread mistaken interpretation of traditional p-values by researchers as a prob-
ability that the null hypothesis is false may be due to the fact that researchers want
to make probability statements about the null hypothesis in this way (5). A number
of commentators have stressed that such a view of probability in cost-effectiveness
analysis is only possible in a Bayesian framework (27, 33, 39).

Fundamentally, the Bayesian approach includes a learning process whereby
beliefs concerning the distributions of parameters (prior distributions) are updated
(to posterior distributions), as information becomes available, through the use of
Bayes’ Theorem. Historically, advocates of the Bayesian approach were seen to in-
habit a different scientific paradigm that was at odds with the frequentist paradigm:
Frequentists considered Bayes methods as subjective and highly dependent on the
prior beliefs employed, whereas frequentist methods were objective and robust.
However, the adoption of such an extreme position would be to reject a set of very
powerful methods that may be of import, even for frequentists (13). The empirical
Bayes methods and Bayesian analysis based on uninformative prior distributions
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are not subjective and have much to offer the frequentist analyst. Acceptability
curves based on observed data, such as those presented in Figures 5 & 6, can be
given the Bayesian interpretation assuming an uninformative prior distribution (8).
Of course, if there is good prior information available on the cost-effectiveness
of an intervention, then analysts may want to use this to formulate the prior in a
Bayesian analysis.

At present, and most likely in the immediate future, health economists conduct-
ing economic analyses alongside clinical trials will have to work within the sample
size constraints imposed by clinical investigators. This is likely to generate the sit-
uation where important economic differences cannot be detected at conventional
levels of power and significance. A number of commentators have suggested that
it may be appropriate for economic analysts to work with “error rates” (in the fre-
quentist sense) that are higher than those employed in clinical evaluation (18, 37).
This suggestion indicates the desire of economic analysts to consider the weight
of evidence relating to the cost-effectiveness of the intervention under evaluation
rather than relying on showing significance at conventional levels. This is most
easily achieved through the use of cost-effectiveness acceptability curves, which
show the weight of evidence for the intervention being cost-effective for all pos-
sible values of the ceiling ratio,λ. Furthermore, a Bayesian view of probability
allows analysts to directly address the study question: How likely is it that the
intervention is cost-effective?

Work is currently ongoing to reanalyze the cost-effectiveness analysis of the
ICD data in a Bayesian framework.

Costing Challenges in Clinical Trials

In the discussion of the previous section on design and analysis issues in cost-
effectiveness, we treated the cost data as if it were complete and followed a standard
normal distribution. In practice, cost data present particular statistical challenges
both in terms of the construct of the cost information and in the expected level of
completeness.

The interest of decision-makers is in the mean total cost for a patient group.
Patient costs are calculated by observing counts of resources used (e.g., visits to
a general practitioner, prescribed medication, outpatient appointments, inpatient
procedures, days spent in hospital), weighting these counts by a unit cost related to
each resource item and summing across items. When considering this cost stochas-
tically in a clinical trial, it is almost always the case that it is the resource use events
that are truly stochastic, but that the unit costs applied are deterministic, with a sin-
gle fixed value. Hence, total cost is really a weighted mixture of other distributions.
Typically, this distribution of cost will be highly skewed with a few patients incur-
ring rare but highly expensive costs (such as inpatient hospital procedures with all
the associated costs) and many patients having few or no costs. Where cost data are
highly skewed in this way, very large numbers of patients will be required before
the assumption of normality (through the central limit theorem) can be applied.
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Due to the mixture nature of the cost distribution and the inappropriateness of
ordinal methods such as Wilcoxon and ordinal logistic regression for cost data
(33a), much recent research has focused on the use of sophisticated statistical
models to explain cost distributions. In particular, two-stage (or hurdle) models
can be employed to distinguish between groups of patients incurring high and low
(often zero) costs (31, 34, 35). However, to prove useful for decision-making these
models need to be able to distinguish defining characteristics of patients that make
them candidates for high- or low-cost pathways. All too often, it is impossible to
predict a priori which patients will turn out to be high cost. Fortunately, however,
and as Lumley and colleagues show (33a), standard t-tests and linear regression
are robust to nonnormality of the data. Furthermore, that the skew coefficient of
the population will be reduced by a factor of

√
n in the sampling distribution of

the mean of that population (wheren is the sample size) may guide the analyst as
to whether that skew will have an important effect on the sampling distribution of
the mean (7a).

Another problem relates to the completeness of the data, both in terms of ad-
ministrative censoring and missing observations. Decision-makers are interested
in the mean cost per patient for the lifetime of the patient. However, clinical trials
rarely follow every patient to death. Instead, a cut-off point is specified at which
time data collection stops and the analysis of the data begins. Where patients were
recruited to the trial over a substantial recruitment period, there can be an admin-
istrative censoring problem such that the follow-up time for patients in the trial
is different, with some having reached the endpoint of interest and some having
been censored.

Of course, censoring is a problem for standard clinical results, not just costs,
and the first attempts to handle censoring in cost data employed standard statis-
tical approaches to survival analysis with cost as the survival metric rather than
time (21, 22). Unfortunately, this approach is invalid since it can be shown that
censoring (which occurs on the time scale) is no longer independent of cost:
Patients accruing cost at a slow rate will more likely be censored in a na¨ıve cost
censoring analysis leading to a bias upwards in the censor-adjusted cost estimate
(25). Instead, a technique has been advocated (known as the Kaplan-Meier sample
average estimator) whereby costs are partitioned over time and uncensored costs are
aggregated at each time interval and weighted by the probability of survival: Sum-
ming across these weighted estimates gives the censor-adjusted total cost estimate
(20, 30).

However, this technique too has disadvantages. It is only unbiased in the limit
as the partition size tends to zero; it cannot handle covariate adjustment and cannot
be used to predict beyond the follow-up of the trial. New techniques are begin-
ning to emerge that address these problems: The inverse probability weighting
method is unbiased (3); an extension to the KMSA estimator has been developed
that allows for covariate adjustment (29); a two-stage estimator has been devel-
oped that when implemented parametrically can be used to predict beyond the
study period (12); and the survival analysis problem for costs has been extended to
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cost-effectiveness through the use of the net benefit statistic (52). Further refine-
ments of these methods are expected to provide a complete solution for analysts
wanting to simultaneously handle censored cost and effect data, while adjusting
for covariates and predicting beyond the follow-up of the trial.

SUMMARY AND CONCLUSIONS

In this paper, we have been concerned with the emerging quantitative techniques for
analyzing the results of cost-effectiveness analyses undertaken alongside clinical
trials. In particular, we have emphasized the use of the cost-effectiveness plane
as a device to present and explore the implications of uncertainty. As a general
rule, we would encourage analysts to make more use of the cost-effectiveness
plane because we believe that it gives the clearest intuitive understanding of the
implications of uncertainty for the analysis.

We stress the importance of estimation in cost-effectiveness studies rather than
hypothesis testing: demonstrating that the application of separate and sequential
tests of hypothesis could result in poor inference due to lack of power. Furthermore,
any direct test of a cost-effectiveness hypothesis must involve the ceiling ratio for
decision-making,λ, which is itself unknown. Therefore, formal tests of hypothesis
are unlikely to be useful in economic evaluation studies; however, the use of
confidence intervals for representing uncertainty in the ICER is limited. Rather,
we advocate the use of acceptability curves that directly address the concern of
the decision-maker: How likely is it that the intervention is cost-effective? This
interpretation requires a Bayesian view of probability, but a Bayesian approach is
the most natural approach for decision-making.

The net-benefit framework provides a very important contribution to the anal-
ysis of uncertainty for incremental cost-effectiveness by removing the reliance on
ratio statistics, which are inherently problematic from a statistical point of view. In
particular, net-benefit methods allow straightforward calculation of acceptability
curves, a simple solution to the problem of power calculation, and have recently
been employed to directly estimate cost-effectiveness within a regression frame-
work (28). The use of regression for cost-effectiveness is important because it
provides both a framework to handle censoring of the data and a mechanism for
exploring subgroup analysis. Both these issues are likely to receive increasing
attention, and we look forward to continued refinement of the methods in this area.
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TECHNICAL APPENDIX

Fieller’s theorem for ICER confidence limits

We start from the quadratic equation in R, the limits of which are the Fieller
confidence limits:

R2
[
1E2− z2

α/2 var(1E)
]− 2R

[
1E ·1C − z2

α/2 cov(1E,1C)
]

+ [1C2− z2
α/2 var(1C)

] = 0.

This equation is solved using the standard quadratic formula

−b±√b2− 4ac

2a

where:

a = 1E2− z2
α/2 var(1E)

b = −2
[
1E ·1C − z2

α/2 cov(1E,1C)
]

c = 1C2− z2
α/2 var(1C).

Substituting these values into the expression above simplifies only slightly with
the 2s cancelling to give

[
1E ·1C− z2

α/2 cov(1E,1C)
]
±
√[
1E ·1C− z2

α/2 cov(1E,1C)
]2−

[
1E2− z2

α/2 var(1E)
]
·
[
1C2− z2

α/2 var(1C)
]

1E2− z2
α/2 var(1E)

In order to estimate these limits, only five simple sample statistics require es-
timation. For a comparison of control and treatment interventions indicated by the
subscripts C and T respectively we have:

1. 1E = ET − EC = 1

nT

nT∑
i=1

ET i − 1

nC

nC∑
j=1

ECj

2. 1C = CT − CC = 1

nT

nT∑
i=1

CT i − 1

nC

nC∑
j=1

CCj

3. var(1E) = var
(
ET
)+ var

(
EC
) = s2

ET

nT
+ s2

EC

nC

4. var(1C) = var
(
CT
)+ var

(
CC
) = s2

CT

nT
+ s2

CC

nC

5. cov(1E,1C) = cov
(
ET ,CT

)+ cov
(
EC,CC

)
= ρT

√
var
(
ET
)

var
(
CT
)+ ρC

√
var
(
EC
)

var
(
CC
)
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whereE andC represent effect and cost respectively,s2
i j is the sample variance for

i = cost or effect in thej = control or treatment groups andρ j is the correlation
coefficient between costs and effects in each group. Both the sample variance and
correlation can be estimated using standard methods and are output by all standard
statistical packages.

Sample size calculations

We start from the desire to have the power to show a hypothesized NMB as sig-
nificant:

NM̃B− zβ

√
var(NM̃B) > zα/2

√
var(NM̃B)

and rearrange to get

NM̃B > (zα/2+ zβ)
√

var(NM̃B).

Substituting into the above expression the standard expressions for NMB and its
variance gives:

λ ·1Ẽ −1C̃ > (zα/2+ zβ)
√
λ2 · var(1Ẽ)+ var(1C̃)− 2 · λ · cov(1Ẽ,1C̃).

This gives an expression in the same five statistics as given above. Substituting
in the expressions for these five sample statistics and rearranging onn (assuming
equal sample sizes in each trial arm) gives

n>
(zα/2+ zβ )2 · {λ2 · [ s̃2

ET+ s̃2
EC] + [ s̃2

CT+ s̃2
CC] − 2 · λ · [ρTs̃ETs̃CT+ ρCs̃ECs̃CC]}

[λ · (ẼT − ẼC)− (C̃T − C̃C)]2

remembering that the variance expressions above relate to the hypothesized vari-
ances in the population, not the variances of the estimators.
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