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Glucocorticoids are pivotal in the maintenance of memory and cognitive functions as well as other essential physiological processes
including energy metabolism, stress responses, and cell proliferation. Normal aging in both rodents and humans is often characterized by
elevated glucocorticoid levels that correlate with hippocampus-dependent memory impairments. 113-Hydroxysteroid dehydrogenase
type 1 (113-HSD1) amplifies local intracellular (“intracrine”) glucocorticoid action; in the brain it is highly expressed in the hippocam-
pus. We investigated whether the impact of 113-HSD1 deficiency in knock-out mice (congenic on C57BL/6] strain) on cognitive function
with aging reflects direct CNS or indirect effects of altered peripheral insulin-glucose metabolism. Spatial learning and memory was
enhanced in 12 month “middle-aged” and 24 month “aged” 118-HSDI ™'~ mice compared with age-matched congenic controls. These
effects were not caused by alterations in other cognitive (working memory in a spontaneous alternation task) or affective domains

(anxiety-related behaviors), to changes in plasma corticosterone or glucose levels, or to altered age-related pathologies in 113-HSD1

Py

mice. Young 113-HSDI~'~ mice showed significantly increased newborn cell proliferation in the dentate gyrus, but this was not main-

tained into aging. Long-term potentiation was significantly enhanced in subfield CA1 of hippocampal slices from aged 113-HSD1

Ry

mice. These data suggest that 113-HSD1 deficiency enhances synaptic potentiation in the aged hippocampus and this may underlie the
better maintenance of learning and memory with aging, which occurs in the absence of increased neurogenesis.
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Introduction

Deficits in cognitive function are prominent although not inevi-
table features of normal aging. In aged animals and humans,
interindividual differences in cognitive function associate with
variation in plasma glucocorticoid (GC) levels (Issa et al., 1990;
Yau et al., 1995; Lupien et al., 1998). Chronic GC excess is detri-
mental to the hippocampus, potentiating excitatory neurotrans-
mission, disrupting key electrophysiological functions such as
long-term potentiation (LTP) thought to underpin memory,
causing dendritic atrophy and sometimes even neuronal death
(McEwen et al., 1999). Conversely, maintaining low GC levels
throughout life minimizes age-related hippocampal atrophy and
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cognitive impairments (Landfield et al.,, 1981; Meaney et al.,
1988).

Previous findings suggest that GC action depends not only on
circulating hormone levels and the density of intracellular min-
eralocorticoid (MR) and glucocorticoid (GR) receptors, but also
on prereceptor metabolism by intracellular enzymes (Seckl and
Walker, 2001), specifically the 11B-hydroxysteroid dehydroge-
nases (11B-HSDs). 11B-HSD type 2, a high-affinity 11p3-
dehydrogenase, catalyzes rapid inactivation of GCs, acting to ex-
clude GCs from otherwise nonselective MR in the distal nephron.
11B-HSD2 is barely expressed in the adult CNS. In contrast, 113-
HSD type 1 is highly expressed in liver and adipose tissue and is
the major isozyme in the adult brain in rodents (Moisan et al.,
1990) and humans (Sandeep et al., 2004). Although 113-HSD1 is
bidirectional in tissue homogenates, in intact cells, including
neurons, 113-HSD1 is a reductase, catalyzing regeneration of
active GCs [cortisol in humans; corticosterone (CORT) in ro-
dents] from inert circulating 11-keto forms [cortisone; 11-
dehydrocorticosterone (11-DHC)], themselves produced by re-
nal 113-HSD2. Thus, 113-HSD1 locally amplifies GC action
(Seckl and Walker, 2001). The directional predominance of 1183-
HSDL1 is believed driven by proximity to hexose-6-phosphate
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dehydrogenase in the endoplasmic reticulum, which generates
plentiful NADPH cosubstrate for 113 reduction (Bujalska et al.,
2005). Primary hippocampal neuronal cultures express 113-
HSD1; 11-DHC (through its conversion to CORT) potentiates
excitatory amino acid neurotoxicity in these cells, and inhibition
of 11B8-HSD attenuates such cell endangerment (Rajan et al.,
1996).

In vivo, 11B-HSD1 knock-out (11B8-HSDI1 /") mice resist
metabolic disturbances such as hyperglycemia with dietary obe-
sity, effects compatible with reduced intrahepatic and adipose GC
action (Kotelevtsev et al,, 1997; Morton et al., 2004). 11B-
HSDI /" mice also have lowered intrahippocampal CORT levels
(Yauetal.,2001). The original 113-HSDI ~/~ mice on the 129P2-
OlaHsd background cannot perform the conventional hidden
platform water maze task, but show less age-related deficits in a
simplified flag-cued version of the water maze (Yau et al., 2001).
Although compatible with the notion that reduced 11B8-HSD1
activity is beneficial, this finding leaves open the question as to
whether this is a cognitive or perceptual effect. Intriguingly, the
11B-HSD inhibitor carbenoxolone improves aspects of cognitive
function in humans (Sandeep et al., 2004). Whether these effects
in mice and humans reflect direct or indirect (e.g., metabolic)
actions on the brain is uncertain. We measured hippocampus-
dependent cognitive function in aged 118-HSDI /" mice red-
erived on the C57BL/6] background and examined whether the
underlying mechanisms for the improved cognitive phenotype
with age was centrally mediated (LTP and neurogenesis in the
aged hippocampus) and/or an indirect consequence of changes
in peripheral GC levels or glucose homeostasis.

Materials and Methods

Animals

11B-HSDI1~’~ mice, originally generated by targeted disruption of the
11B-HSDI gene on the 129P2/OlaHsd background (Kotelevtsev et al.,
1997), were backcrossed to the outbred MF1 background for two gener-
ations. For the studies described here, the outbred 113-HSDI ~/~ mice
with approximately equal amounts of MF1 and 129 genomes were trans-
ferred to the C57BL/6] strain (Harlan, Bicester, UK) by continuous back-
cross for 12 generations. After this extensive backcross, the congenic
strain generated is >99.9% genetically identical to the parental strain
and, therefore, age-matched C57BL/6] mice were used as controls. 113-
HSDI~/~ mice were crossed every year with wild-type C57BL/6] mice to
prevent genetic drift. The heterozygous mice were then bred with ho-
mozygous knock-outs for the following year’s experimental crosses. The
experimental animals were obtained from homozygous knock-out mat-
ings (no more than three crosses). C57BL/6] control mice were obtained
at 6—8 weeks old from Harlan and left undisturbed to age in our facility
alongside the 118-HSD1 ™/~ mice housed under standard conditions on
a 12 h light/dark cycle (lights on at 7:00 A.M.), with food and water ad
libitum. The C57BL/6] genetic background was chosen because this
strain is recommended for water maze-testing (Crawley, 1999). All pro-
cedures were performed in strict accordance with the U.K. Animals (Sci-
entific Procedures) Act, 1986. Young mice were 3-5 months of age,
middle-aged mice were 12 months of age, and aged mice were 24-26
months of age.

Behavioral studies

Water maze. Young (5 months) and aged (24—25 months) 118-HSDI1 ™/~
mice and C57BL/6]J controls were tested in the Morris water maze (120
cm diameter) filled with opaque water (25 = 1°C). Mice were trained to
swim to a 15 cm diameter hidden platform located in the center of one of
four quadrants of the pool 1 cm below the water surface. This task is one
of the most widely used tests of spatial memory in mice, despite the fact
that interpretation can sometimes be difficult as a consequence of non-
spatial factors (e.g., wall hugging, floating, jumping off platforms) found
in many mouse strains (Wahlsten et al., 2005). However, C57BL/6] mice

Yau et al. o Enhanced LTP and Memory in Aged 773-HSD7 "~ Mice

are among the best performers in the water maze and many mice can be
tested in a day in contrast to other spatial memory tasks, such as the radial
arm maze. First, the mice were given 2 d of nonspatial training (three
trials per day, with curtains around pool) to find the submerged platform
marked with a visible tower block protruding 10 cm on top to test for
visual, motivational, or motor deficits that may influence their perfor-
mance in spatial learning. Mice unable to reach the platform within 30 s
on day 2 were excluded. Spatial learning was tested next with no curtains
around the pool during which mice had to navigate toward the hidden
platform using the available spatial cues in the room. The mice were
given 16 trials (20 min intertrial interval) over four consecutive days.
Trials started with the mouse placed into the pool facing the wall at one of
four start locations chosen randomly across trials and allowed to swim
until they found the platform. Any mouse that failed to find the platform
within 90 s was guided onto the platform by the experimenter. The
animal is then left on the platform for 30 s before being returned to its
home cage and dried under a warming lamp. One hour after the last
training trial, a probe test was performed with the platform removed
from the pool and the mice allowed to swim freely for 60 s. Swim paths
were monitored by a video camera mounted in the ceiling. Measures of
latency, swim speed, and percentage time in each quadrant of the pool
during the probe trial were analyzed by Watermaze software (Actimet-
rics, Evanston, IL).

Y-maze. A new group of young (3 months), middle-aged (12 months),
and aged (24 months) 113-HSDI ~/~ mice and C57BL/6] controls were
tested in the Y-maze (apparatus consisted of three enclosed arms, 50 cm
long, 11 cm wide, and 10 cm high made of black Plexiglas, set at an angle
of 120° to each other, in the shape of a Y). The floor of the maze was
covered in mice-soiled sawdust mixed between trials to eliminate olfac-
tory cues. Visual cues were placed around the maze in the testing room
and kept constant throughout the testing sessions. The test consisted of
two trials separated by a time interval [intertrial interval (ITI)]. Briefly, in
the first trial (acquisition trial), mice were placed at the end of a pseudo-
randomly chosen arm (start arm) and allowed to explore the maze for 5
min with one of the arms closed. Mice were returned to their home cage
located away from the test room during the intertrial interval. In the
second trial (retention trial), the mice were allowed to explore freely all
three arms of the maze for 5 min. The time spent in each arm was
registered from video recordings by an observer blind to the genotype of
the mice. The time spent in the novel arm (previously closed in the first
trial) was calculated as a percentage of the total time in all three arms
during the first 2 min of the retention trial. This time corresponds to the
maximal exploratory activity in the novel arm, which declines thereafter
(Dellu et al., 1992; Conrad et al., 1999). Values were compared with a
random level (chance level) for time spent exploring the three arms (i.e.,
33%). A 1 min ITI was first used to control for spontaneous novelty
exploration of the mice and also to test that the mice (particularly the
aged mice) are able to see the spatial cues. Mice were retested 7 d later to
measure spatial memory performance with a 2 h ITL. Middle-aged mice
were retested 1 year later, when 24 months of age, in the same maze but in
a different environment.

Working memory: spontaneous alternation. All three arms of the
Y-maze were left open and the animal was introduced at the center of the
maze with the facing direction randomized. The number and sequence of
arms entered were recorded for 5 min. The percent alternation was cal-
culated as the number of alternations (entries into three different arms
consecutively) divided by the total possible alternations (i.e., the number
of arms entered minus 2) and multiplied by 100.

Elevated plus maze and open field. After the Y-maze, the same 113-
HSDI1 ™/~ and control mice (24—25 months) were tested in the elevated
plus maze and then in the open field. All mice were handled briefly in the
testing room daily 5 d before testing in the apparatus. The plus maze
consisted of two open arms (25 X 5 cm) and two closed arms (25 X 5 cm,
surrounded by 15 cm high walls made of pearl translucent acrylic). The
base of the maze was made of black opaque acrylic and the two pairs of
identical arms, which emerged from a central platform (5 X 5 cm),
positioned opposite each other; the maze was supported 1 m above the
ground. The test was initiated by placing the mouse on the central plat-
form of the maze facing one of the open arms and letting it explore freely
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for 5 min. The maze floor and walls were cleaned with alcohol between
tests. A video camera above the apparatus recorded the behavior of each
mouse.

The open-field apparatus was a square open box constructed from
black acrylonitrile butadiene styrene (50 X 50 X 15 cm) and the floor was
separated into 36 equal squares with adhesive tape. At the start of the test,
a mouse was put in one corner of the open field and allowed to explore
freely for 5 min, during which its behavior was monitored with a video
camera. After each session, the open-field box was wiped with ethanol to
remove any olfactory cues. Parameters measured from the video were
ambulation (number of segments crossed with all four paws) in each
zone, time spent grooming, rearing, and defecation.

Fasted plasma glucose and insulin levels

Naive young (5 months) and aged (26 months) 118-HSDI~’~ and
C57BL/6] control mice were fasted overnight (16 h). Blood samples were
taken by tail venesection into EDTA microtubes (Sarstedt, Leicester, UK)
in the morning (9:00 to 10:00 A.M.). Plasma glucose was measured with
an Infinity Glucose kit (Thermo Scientific, Bucks, UK) and insulin by
enzyme-linked immunosorbent assay (Crystalchem, Chicago, IL).

Glucose tolerance test

In a separate experiment, naive 118-HSD1~/~ and C57BL/6) mice aged
26 months were fasted overnight and then injected intraperitoneally with
2 mg/g body weight p-glucose (25% stock solution in saline). Blood
samples were taken by tail venesection into EDTA-microtubes (Sarstedt,
Leicester, UK) at 0 min (just before glucose injection) and at 5, 15, 30, 60,
and 120 min intervals after the glucose load. Plasma glucose was mea-
sured with an Infinity Glucose kit (Thermo Scientific).

CORT response to an acute restraint stress

Basal morning tail venesection blood samples were taken from naive aged
(26 months) 118-HSD1~/~ mice and age-matched C57BL/6] controls.
On the following morning, the mice were put in a restraint tube for 10
min each and blood sample was taken by tail venesection immediately
after restraint, 45 min and 90 min later.

Basal plasma CORT measurements

Blood samples were taken by tail venesection (=50 ul) from the aged (26
months) and young (5 months) C57BL/6] controls and 113-HSDI -
mice in the morning. Plasma CORT were measured using an in-house
specific radioimmunoassay (Al Dujaili et al., 1981) modified for micro-
titer plate scintillation proximity assay (GE Healthcare UK, Little Chal-
font, UK). The intra-assay and interassay coefficients of variation were
<10%. CORT antiserum was kindly donated by Dr C. Kenyon (Edin-
burgh, UK).

Electrophysiology

11B-HSDI ~/~ mice and age-matched C57BL/6] controls were 26
months of age when electrophysiological recordings were performed.
After cervical dislocation between 10:00 A.M. and 12:00 P.M., slices of
mouse hippocampus (400 wm thick) cut in the parasagittal axis using a
Campden vibroslicer were maintained at 32°C in an interface-type re-
cording chamber containing artificial CSF, pH 7.4, containing (in mm)
124 NaCl, 3 KCl, 26 NaHCO,, 1.25 NaH,PO,, 1 MgSO,, 2 CaCl,, and 10
glucose, and allowed to equilibrate for 60-90 min. The solution was
bubbled with 95% O, and 5% CO, and perfused at a flow rate of 1.5-2
ml/min. Two bipolar stimulation electrodes were placed in the stratum
radiatum on either side of the recording electrode in area CAl. After
stimulation of fibers in the Schaffer collateral-commissural pathway,
field EPSPs (fEPSPs) were recorded using a tungsten recording electrode.
The two pathways were stimulated alternately every 60 s and the strength
of presynaptic fiber stimulation every 60 s for each pathway was adjusted
to evoke fEPSPs that were 50% of the maximal fEPSPs slope. After a
stable baseline (20-30 min), the first pathway was stimulated with a
single 100 Hz train for 1 s for the induction of LTP. Synaptic responsive-
ness was recorded every 30 s for a duration of 30 min after tetanus. The
second unstimulated pathway was used as a control for baseline EPSP
recordings. Custom software (written by Patrick Spooner, Edinburgh
University, UK) was used to control stimulation, record signals, and for
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analysis. The system used National Instruments (Austin, TX) acquisition
hardware (M or E series) combined with Digitimer (Welwyn Garden
City, UK) Neurolog equipment and the software was written in Labview.

Bromodeoxyuridine injections and immunohistochemistry

To assess levels of cell proliferation in the dentate gyrus, a separate cohort
of young (5 months) and aged (2225 months) 118-HSDI1~/~ mice and
age-matched C57BL/6] controls received intraperitoneal injections of
bromodeoxyuridine (BrdU; Sigma, St. Louis, MO) at 50 mg/kg body
weight, one per day for 8 d. On the final day, 2 h after the last injection,
mice were perfused transcardially with 4% paraformaldehyde in phos-
phate buffer. The brains were removed, stored in paraformaldehyde
overnight at 4°C, and then transferred into 20% sucrose. The cryopro-
tected brains were sectioned serially at 40 um through the hippocampus
(—1.22 to —2.46 mm from bregma) in the coronal plane using a freezing
microtome and each section was collected and stored individually in
24-well tissue culture plates (Corning, Corning, NY) containing cryo-
protectant (30% ethylene glycol, 20% glycerol, 50 mm sodium phosphate
buffer, pH 7.4) at —20°C. The immunohistochemical detection of BrdU-
positive cells were performed in a total of nine sections per animal taking
every sixth section (240 wm apart) starting at level of the hippocampus,
where the two horns of the dentate gyri separate (—1.34 mm from
bregma). Free-floating sections were equilibrated in Tris-buffered saline
(TBS), pH 7.6, for 5 min, incubated in citrate buffer, pH 6, for 15 min at
80°C, and treated with 3% hydrogen peroxide for 10 min to block endog-
enous peroxidases. The sections were then equilibrated in borate buffer,
pH 8.5, for 15 min followed by 2 X 5 min washes in TBS, and incubated
in 2N hydrochloric acid for 30 min at 37°C to denature DNA. Nonspe-
cific binding sites were blocked in 20% normal rabbit serum (Vector
Laboratories, Burlingame, CA)/5% bovine serum albumen in TBS for 1 h
atroom temperature (RT). This was followed by incubation overnight at
4°C in primary antibody (sheep anti-BrdU, 1:3000; Europa Bioproducts,
Cambridge, UK). Sections were then incubated at RT for 1 h in secondary
biotinylated antibody (anti-sheep IgG, 1:500; Vector Laboratories). Im-
munopositive cells were visualized by incubation in the avidin biotinyl-
ated horseradish peroxidase solution (Vectastain ABC Elite kit) for 30
min at RT and developed in diaminobenzidine liquid (Dako, High Wy-
combe, UK). Sections were mounted onto microscope slides, counter-
stained with hematoxylin (Vector Laboratories), dehydrated through
graded alcohols, cleared in xylene, and mounted in distyrene plasticizer
xylene mountant. Nonspecific staining was assessed in the absence of
primary antibody. A section from each brain containing the subventricu-
lar zone of the lateral ventricles was included as a positive control.

Quantification of BrdU-immunoreactive cells

All slides were randomized and coded before quantitative analysis. BrdU-
positive cells were counted bilaterally on every sixth section through the
dentate gyrus (nine sections per animal) through a 40X objective using a
light microscope. Only cells on the border of the subgranular zone (SGZ)
and hilus (cells located two or more cells away from the SGZ) were
counted. The total number of BrdU-positive cells was estimated accord-
ing to the optical dissector method (West, 1993). BrdU-positive cells in
all focal planes through the 40 wm section (except the uppermost focal
plane) were included. To estimate the total number of BrdU-labeled cells
in the hippocampus, the number of BrdU-positive cells counted in the
SGZ and hilus was multiplied by a factor of 6.

Survival curve and pathology

Cohorts of 113-HSDI ™/~ mice (n = 134) and C57BL/6] controls (n =
142) were monitored on a daily basis from birth up to 127 weeks and any
were deaths noted. The survival was not monitored further and remain-
ing mice were used for experimentation. For the detailed pathology ex-
amination, the tissues had to be processed quickly, so mice that were
found dead were not used. To overcome this, any mice that deviated from
normal health were culled by CO, euthanasia. The alimentary canal from
esophagus to rectum was dissected in one piece and then perfused with
formalin by injecting at equal distances down the tract. The skull was
opened and the brain left in situ. Then, the whole mouse was stored in
10% formalin at 4°C until enough mice were collected for histology. A
total of four aged male 113-HSD1 ~/~ (20-27 months) and 6 C57BL/6]
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Figure 1. Aged 77B3-HSD1™/~ mice show better spatial learning than age-matched

(57BL/6) controls. A, B, Performance in the spatial water-maze task as illustrated by mean
escape latencies (block of 4 trials; A), average swim speeds for each day of training (B), trial 1
latencies for each day of training (€), and trial 1 path lengths to platform for each day of training
(D). Each point represents the mean == SEM. *p < 0.05 compared with all other groups. Two
aged mice from each genotype were excluded after failing the criteria in the visible task (see
Materials and Methods).

control mice (23—28 months) were examined. Organs and tissues exam-
ined histologically were the stomach, small intestine, large intestine and
caecum, adrenal glands, thyroid gland, mesentery, head including eyes,
pituitary, trigeminal ganglion, olfactory and nasal, middle and inner ear,
brain (three levels), lung, liver and gallbladder, kidneys, heart, spleen,
pancreas, seminal vesicles, prostate gland, urinary bladder, testis, lym-
phosalivary complex, dorsal skin, femur, and tibia (serial sections).

Data analysis

All data where appropriate were analyzed using two-factor ANOVA with
genotype and age as the independent variables. Where ANOVA revealed
a significant interaction between factors, post hoc tests were conducted.
Comparison of synaptic responses was performed with ANOVA for re-
peated measures with time as the main variable. Significance was set up
p < 0.05. Values are shown as the mean * SEM.

Results

Aged 11B-HSD1~’~ mice show better spatial learning in the
water maze

Both young (5 months) and aged (24—25 months) 113-HSD1 -
mice, congenic on the C57BL/6] background, and C57BL/6] con-
trols learned the location of the hidden platform as shown by a
decrease in escape latencies over days of training (F(5 ;o) = 29.2;
p <0.001) (Fig. 1A). The number of times the mice failed to find
the platform within the 90 s over the 4 d of training did not differ
between genotype, but did increase with age [F, 5,) = 22.9;p <
0.001; C57BL/6] mice, 0.6 * 0.2 (young) and 3.5 * 0.5 (aged);
11B-HSDI1™’~ mice, 0.6 * 0.3 (young) and 2.2 = 0.6 (aged), data
are the number of times guided to the platform]. Young 1183-
HSD1™’~ and control mice had similar escape latencies despite
the 118-HSDI1~/~ mice displaying faster average swim speeds
(F1,14) = 12; p <0.01) (Fig. 1 B). Aged controls were significantly
impaired (compared with young controls) in spatial learning,
showing longer escape latencies for each day of testing (F, ;) =
47;p < 0.001) (Fig. 1A). Aged 11B8-HSDI ™/~ mice were better at
finding the hidden platform than aged controls across the days of
training (F(, 15y = 4.6; p < 0.05) with shorter mean latencies,
which reached significance on day 4 (F; ;5) = 8.5; p < 0.01). At
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this time, aged 113-HSD1~’~ mice did not differ from young
mice of either genotype. The improved learning in aged 113-
HSDI1~’~ mice did not reflect differences in swim speed (Fig.
1 B). Anxiety-related traits such as thigmotaxis or wall hugging in
the water maze can also affect learning, but the extent of thigmo-
taxis in these mice was small and only apparent during the first
day of training. Interestingly, 118-HSDI ™/~ mice spent a greater
percentage of time near the side walls than aged-matched con-
trols during the first trial (F(, ;,, = 6.0; p < 0.05) and there was an
age effect [F(, 5, = 4.4; p < 0.05; C57BL/6] mice, 0.4 * 0.3
(young) and 2.1 = 0.6 (aged); 113-HSDI /" mice, 2.7 * 1.0
(young) and 7.5 = 3.0 (aged); data are the percentage of time near
side walls during trial 1].

Consistent with the mean latencies, the latency for the initial
trial of each day, which reflects recall after 24 h from the previous
day, also showed better learning (shorter latencies) in aged 118-
HSDI1™'~ mice than aged controls (F, 15, = 5.9; p < 0.05) (Fig.
1C). Because, aged controls and 118-HSD1 ™'~ mice had signifi-
cantly slower swim speeds than young mice, the path lengths to
the platform were analyzed to determine any influence of swim
speeds on escape latency. The path lengths on the first and last
days of testing showed a significant group effect (F(5 5, = 13.1;
p < 0.001) and groups by days interaction (F(; 3, = 3.0; p <
0.05). Consistent with the mean latency and first trial latency
findings, aged control mice showed impaired spatial learning
with longer path lengths to the platform compared with young
controls (F<1 17) = = 16.9; p < 0.001) (Fig. 1 D). In contrast, aged
11B-HSD1™’~ mice showed similar path lengths to young mice
of either genotype. To test the retention of the task, the platform
was removed for a 60 s probe test 1 h after the last trial; there were
no significant effects by age or genotype in the probe test (per-
centage of time in target quadrant; young control, 38 * 4; young
HB-HSDI_/_, 38.9 * 2.5; aged control, 36 = 4.5; aged 1183-
HSD1™/~, 32.5 + 2.7). Thus, a lack of 118-HSD1 in aged
C57BL/6] mice enhances acquisition in the water maze task.

Spatial memory in the Y-maze is impaired with age in C57BL/

6] controls but not in 113-HSDI ~/~ mice

To determine whether the age-associated cognitive improvement
in 118-HSDI1 ™/~ mice in the water maze, which involves a com-
ponent of stress, also pertains to a less-stressful cognitive modal-
ity, mice were tested in the Y-maze, a simple two-trial spatial
memory task that involves spontaneous exploratory behavior of
novel areas and presents little or no intrinsic stress and yet is
sensitive to exogenous stress (Conrad et al., 1996) and chronic
GC manipulations (Coburn-Litvak et al., 2003). To test for any
group motivational differences, young (3 months), middle-aged
(12 months), and aged (26 months) mice of both genotypes were
tested using a short 1 min intertrial interval; this immediate
Y-maze task controls the spontaneous novelty exploration of the
mice when no retention is required and is not dependent on
hippocampal function (Sarnyai et al., 2000). All groups spent
more time in the novel arm than the previously visited arms (Fig.
2A). There was no effect of age or genotype, indicating a similar
exploratory drive in all groups.

The delayed version of the Y-maze, with a 2 h intertrial inter-
val, was used to measure hippocampal-dependent memory
(Sarnyai et al., 2000). Two-factor ANOVA revealed a significant
genotype (F(; ¢y = 12.6; p < 0.001) effect and interaction be-
tween age and genotype (F<2 60y = 3.6; p < 0.05). Both middle-
aged and aged control mice showed impaired spatial memory,
spending less time in the novel arm than young controls (Fig.
2B). In contrast, middle-aged and aged 11B8-HSDI /" mice



Yau et al. o Enhanced LTP and Memory in Aged 778-HSD7 "~ Mice

A

1 min IT m C57BL/6J
L111B-HSD1+*
60
=
(4] 50 T
©
3 40_ Chance
Z 30 level
£
GE) 20
= 10
2 0
young mid-age old
(3m) (12m) (24m)

B 2hITI

60 8 g
€ 50 -
< 40 * s
F)) i Chance
o 30 level
=
£ 20
£ 10
F o
4 young mid-age old

(3m) (12m) (24m)

Figure 2. A4, Similar performances of (57BL/6) controls (n = 10—14) and HB-HSDi_/_
mice (n = 10-12) in the Y maze 1 min after the first encounter with the maze. B, Impaired
hippocampal learning and memory in old C57BL/6J (12 and 24 months), but not 7703-
HSD1~/~ mice in the Y maze 2 h after initial encounter with one arm closed. *p < 0.05
compared with (57BL/6) (3 months) controls, Sp << 0.01 compared with age-matched
(57BL/6J controls.

maintained novel arm exploration at similar levels to young mice
of either genotype (Fig. 2 B). Thus 118-HSDI ™/~ mice resist age-
related decline in spatial memory retention in another test and
the genotype difference is evident by middle-age.

Working memory was studied by measuring spontaneous al-
ternation in the Y-maze. There was no significant effect of age or
genotype on the percentage of alternation (data not shown). This
suggests that although hippocampus-dependent spatial memory
is impaired with age in control mice, nonhippocampal working
memory is intact with age in both control and 11B-HSDI ™/~
mice.

Basal and post-stress plasma CORT levels in aged C57BL/6]
control and 113-HSDI1 '~ mice

Aged 11B-HSD1~’~ mice had heavier adrenals than age-matched
C57BL/6] controls (113-HSDI™"~,2.6 + 0.2 mg, n = 8; control,
1.47 + 0.08 mg, n = 10; F, ,,, = 42.2; p < 0.001), presumably
reflecting the increased adrenal synthesis necessary to replace the
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substantial peripheral regeneration usually effected by 118-
HSD1 (Andrew et al., 2005). Basal morning plasma CORT levels
were elevated with age (F(, 55, = 53.6; p < 0.001) (Fig. 3A). There
was no difference by genotype in basal plasma CORT levels in the
young mice, but the aged 113-HSDI1 ™/~ mice showed a trend for
increased CORT levels compared with aged C57BL/6] controls
[p = 0.08 (Fig. 3A); F,, = 8.1, p < 0.05, at time 0 before
restraint stress (Fig. 3B)]. Although both genotypes exhibited a
plasma CORT rise to 10 min restraint stress, levels did not differ
at any time point after stress (Fig. 3B). Interestingly, whereas the
CORT levels in aged C57BL/6] controls remained elevated at 90
min ( p < 0.05 compared with 0 min, paired ¢ test), suggesting
impaired hypothalamic—pituitary—adrenal (HPA) feedback, lev-
els were back to baseline (0 min) in the aged 113-HSDI ~/~ mice
by 45 min ( p = 0.6, paired ¢ test) (Fig. 3B).

Anxiety-related behaviors in aged C57BL/6] controls and
11B-HSD1 /™ mice

Another potential confounding explanation for the differences
with genotype and age in spatial memory tasks is anxiolytic inhi-
bition of cognitive performance reminiscent of the reversal with
antidepressant treatment of pseudodementia seen in elderly hu-
mans with severe affective disorders (Lantz and Buchalter, 2001).
To explore this possibility, anxiety-related behaviors were exam-
ined in the elevated plus maze and open field. No significant
differences were found in the time spent or entries into the arms
of the elevated plus maze between the aged control and 113-
HSDI1~’~ mice, although both groups were more anxious than
their young counterparts (70 and 63% less time in the open arms
than young C57BL/6], p < 0.05, and 113-HSD1~’~ mice, p <
0.01, respectively) (data not shown). Similarly, in the open field
test, locomotion, rearing and grooming behavior, periods spent
immobile, and defecation did not differ between aged 11[3-
HSDI1™/~ and control mice (data not shown). Thus, major anxi-
olytic effects are unlikely to explain the protection against cogni-
tive decline with aging in 118-HSD1~’~ mice.

Lack of effect of 11 3-HSD1 deficiency on glucose tolerance in
aged C57BL/6] mice

Impaired glucose tolerance is linked with cognitive decline with
aging (Convit et al., 2003). Moreover, variations in long-term
glycaemic control within the normal range correlate with cogni-
tive function in elderly humans (MacLullich et al., 2004), and
young 11B3-HSDI1 ™/~ mice resist hyperglycemia with obesity or
stress (Kotelevtsev et al., 1997). However, neither fasting nor post
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glucose load glucose levels differed between aged C57BL/6] con-
trolsand 118-HSD1 ™'~ mice (Fig. 4), and both genotypes of aged
mice showed maintained glucose tolerance within the normal
range for young adult C57BL/6] mice (Morton et al., 2004). In-
sulin resistance without glucose intolerance might also relate to
cognitive changes with aging, although findings are discordant
(Pagano et al., 1996; Convit, 2005). Fasting insulin levels in-
creased with age (F(; 14 = 5.4; p < 0.05) in control C57BL/6]
mice but not in 118-HSDI ™/~ mice (Fig. 4B). Aged 118-
HSDI1~’~ mice showed lower fasting insulin levels compared
with aged C57BL/6] controls (F(, ;) = 6.8; p < 0.05), and the
ratio of fasting insulin/glucose, a measure of insulin sensitivity,
suggests that 118-HSD1 ™/~ but not control C57BL/6] mice have
significantly increased insulin sensitivity with aging (F(, ;,, = 4.9;
p = 0.05) (Fig. 4C). Thus, differences in glucose homeostasis are
also unlikely to account for the cognitive protection with aging in
11B-HSDI1 '~ mice, although their insulin-sensitized phenotype
might be pertinent.

Survival and pathology of the aged 113-HSD1~’~ mice do not
differ from C57BL/6] controls

Another possibility is that 113-HSD1 deficiency might extend the
lifespan or dramatically reduce disease occurrence such that aged
11B-HSDI™'~ mice are functionally “younger” than chronolog-
ically similarly aged controls. To examine this, we allowed 142
C57BL/6] and 134 11B-HSD1 ™/~ mice to age. Kaplan—Meier
analyses suggested that loss of 113-HSD1 did not affect the age-
specific survival or longevity ( p = 0.2 by log rank test), with both
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controland 11B-HSDI ™'~ mice [knock-out (KO)] showing 60%
survival at 30 months of age (data not shown). Some mice (20-30
months) deviated from normal health and were therefore killed
electively and analyzed by detailed histopathology. One control
mouse had mild suppurative arthritis. All mice had perivascular
lymphoplasmacytic infiltrates in the submandibular salivary
gland. 11B-HSD1 deficiency did not appear to influence the se-
verity or distribution of these infiltrates in the salivary glands.
Other age-dependent lesions that were more variable and that did
not appear to be influenced by 113-HSD1 deficiency were liver
atrophy (two control, one KO), fatty liver (one KO), hydrone-
phrosis (one KO), hydrocephalus (one control), and mild poly-
cysticliver (one control). GC excess causes osteoporosis and 113-
HSD1 has been proposed to influence bone density (Cooper et
al., 2003). However, serial sections of decalcified femur, stifle
joint, and tibia/fibula failed to reveal differences between aged
control and 113-HSD1 /™ mice in cortical thickness, trabecular
density, trabecular thickness, distribution of fat in distal tibia, or
qualitative differences in stifle articular surfaces, broadly reflect-
ing findings in young 118-HSDI1~/~ mice (Justesen et al., 2004).
Thus, there was no indication that 118-HSD1 deficiency alters
the general rate of senescence, mortality, or the rates of age-
associated pathologies such as neoplasia, inflammation, or osteo-
porosis. There was also no indication that 113-HSD1 deficiency
altered the prevalence or distribution of age-associated
neoplasms (e.g., follicular B-cell lymphomas or plasmacytoma)
or altered the course or severity of age-dependent
glomerulosclerosis.

LTP is enhanced in aged 113-HSD1~’~ mice

Given the foregoing, it is conceivable that there is a specific CNS
effect of 113-HSD1 deficiency on hippocampal function with
aging. To test this, LTP was induced in the area CAl of hip-
pocampal slices of aging mice by a single 100 Hz tetanus stimu-
lation (1 s duration), which mimics the physiological bursts of
neuronal activity. Hippocampal slices from both genotypes de-
veloped significant LTP that was maintained over the 1 h time
course of the experiment. The mean level of potentiation seen at
30 min in the aged C57BL/6] mice (~110% of the pretetanization
baseline level) (Fig. 5) was much lower than typically observed in
area CA1 from young adult C57BL/6 slices using the same induc-
tion protocol [144 £ 10%, reported by Nguyen et al. (2000)]. In
contrast, aged 11B-HSD1~’~ mice showed significantly in-
creased LTP in CA1 compared with aged C57BL/6] control mice
(F1,23) = 4.79; p < 0.05) (Fig. 5). The stable baseline EPSP in the
control pathway indicates that the potentiation was input specific
(Fig. 5).

Cell proliferation in the dentate gyrus of the hippocampus is
increased in young but not aged 113-HSD1 ’~ mice

Another possible explanation of maintenance of cognitive func-
tioninaged 118-HSDI ™/~ mice might be increased neurogenesis
itself under inhibitory control by GCs (Gould et al., 1990; Cam-
eron and Gould, 1994). Young and aged C57BL/6] and 118-
HSDI™’~ mice were given BrdU (50 mg/kg, i.p.) daily for 8 d to
label dividing cells. There was a significant increase in cell prolif-
eration in the SGZ, but not the hilus of young 113-HSD1 /"
mice compared with young C57BL/6] controls (F(; ;) = 9.4;p <
0.05) (Fig. 6). With aging, the total number of BrdU-positive cells
was drastically reduced in both genotypes in the SGZ (F(, ,,, =
57.6; p < 0.001) and hilus (F,,,, = 33.2; p < 0.001) of the
dentate gyrus (Fig. 6). Although there was a significant age by
genotype interaction in the SGZ (F, ,,) = 10.6; p < 0.01), cell
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proliferation did not differ significantly in the aged mice by ge-
notype in SGZ or hilus.

Discussion

Aged C57BL/6] mice developed cognitive deficits in the water
maze and Y-maze, the latter apparent by middle age. In contrast,
nonhippocampal tasks such as the immediate version of Y-maze
and spontaneous alternation, a simple working memory task,
were unaffected by aging. The age-related cognitive decline was
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markedly reduced in 118-HSDI /™ mice, which also performed
nonhippocampal tasks as well as controls. These findings build
on our previous report of cognitive protection in aged humans
with 11B-HSD inhibition (Sandeep et al., 2004) and studies in
11B-HSDI1~’~ mice on the 129 background, a strain not optimal
for cognitive testing, which could only be trained to learn the
proximally cued version of the water maze (Yau et al., 2001).
Thus, 11B8-HSD1 deficiency/inhibition protects against the “nor-
mal” hippocampus-associated cognitive decline with aging in
mice and humans. The key question is how and specifically
whether this is mediated in the CNS or via peripheral effects?
Aged 11B-HSDI™’~ mice showed significant enhancement in
LTP in CAl compared with age-matched C57BL/6] controls.
This indicates an important effect of 113-HSD1 likely directly
within the brain on hippocampal function (synaptic plasticity)
and may reasonably be inferred to underlie, at least in part, the
improved learning and memory in the aged 118-HSD1 ™'~ mice.
The level of hippocampal LTP induced in the CAl of the 26-
month-old C57BL/6] mice in the present study was much lower
than typically observed in young adult C57BL/6] mice (Nguyen et
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al., 2000) suggesting a likely effect of age. Although some studies
have reported a decrease in hippocampal LTP with age (Shankar
et al., 1998; Rosenzweig and Barnes, 2003), this has not been a
ubiquitous finding (Deupree et al., 1993; Bach et al., 1999). Strain
and/or age differences may contribute toward the discrepancies
between studies. Whatever, the data show enhanced LTP in CAl
in slices from age-matched mice.

Hippocampal-associated cognitive functions (Issa et al., 1990;
Bodnoffetal., 1995) and LTP (Pavlides et al., 1993; Alfarez et al.,
2003) are inhibited by chronically elevated plasma CORT levels.
The enhanced LTP in aged 113-HSD1 /" mice might be attrib-
utable to reduced intracellular CORT levels, as shown in hip-
pocampus on the 129 background (Yau et al., 2001) and in pe-
ripheral tissues on C57BL/6] (Morton et al., 2004). It does not
appear to be attributable to reduced peripheral CORT levels, in-
deed these tended to be raised basally in aged 113-HSD1 /~
mice, echoing previous findings in young animals on 129 and
129-MF1 strain backgrounds (Kotelevtsev et al., 1997; Harris et
al., 2001; Yau and Seckl, 2001). In contrast, young 113-HSDI -
mice on C57BL/6] have “normal” basal CORT levels, presumably
because of plastic changes in GR in feedback sites (R. Carter, J. R.
Seckl, and M. C. Holmes, unpublished observation). The trend
for increased basal CORT levels in the aged 113-HSDI /™ mice
suggest that this adaptation is not fully maintained with aging.
Clearly reduced circulating CORT levels are not responsible for
the cognitive and LTP effects of 113-HSDI ~/~. However, the
greater recovery of CORT levels after stress in the aged 11[3-
HSDI1~’~ mice may contribute to their improved cognitive per-
formance (Issa et al., 1990; Bizon et al., 2001).

Previous studies have highlighted the possible contribution of
newborn neurons in the dentate gyrus, one of two regions in the
adult mammalian brain that continues to produce new neurons
in adulthood, to cognitive processes (Shors et al., 2002). Because
stress and GCs inhibit the production of hippocampal granule
cells (Cameron and Gould, 1994; Gould and Tanapat, 1999), and
11B-HSD1 is expressed in the dentate gyrus, the presumed reduc-
tion in intrahippocampal CORT levels throughout life in 113-
HSD1~’~ mice might plausibly protect against the documented
age-related decline in neurogenesis (Cameron and McKay, 1999;
Drapeau et al., 2003). Indeed, young 118-HSD1 ™/~ mice had
markedly increased hippocampal neurogenesis, compatible with
lower intrahippocampal CORT levels. This might have long-
lasting effects on hippocampal function because prenatal stress
reduces hippocampal neurogenesis to old age (Lemaire et al.,
2000). Although 11B8-HSD1 is little expressed in the hippocam-
pus until birth (Diaz et al., 1998), it is highly expressed postnatally
(Moisan et al., 1992) and it is therefore conceivable that 1183-
HSD1 deficiency associates with increased neurogenesis from
early postnatal life. However, both genotypes showed markedly
reduced newborn cell proliferation with age in the subgranular
zone of the dentate gyrus, consistent with previous reports (Cam-
eron and McKay, 1999; Heine et al., 2004), although the total
number of newborn cells in aged 118-HSDI /" mice tended to
be greater than aged controls. Approximately 50% of adult-born
granule cells die within 1 month, the remaining mature granule
neurons survive ~5 months (Dayer et al., 2003). Thus, the
marked increase in cell proliferation in the dentate gyrus in young
11B-HSDI1~’~ mice is unlikely to have a significant impact on cell
number in old age, although any effects in middle-age might
contribute. But whether the newly born cells actually mature into
functional neurons requires additional investigation by examina-
tion of their survival and differentiation. It is noteworthy that
although previous studies indicate that newborn cells can help
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cognitive processes, the decreased rate of neurogenesis in aged
rats correlate poorly with cognitive function (Bizon and Gal-
lagher, 2003; Merrill et al., 2003). Our data in the aged 11[3-
HSD1~’~ mice confirm this and suggests that other mechanisms
are likely involved. Whereas complete adrenalectomy in aged rats
increases hippocampal neurogenesis to young levels (Cameron
and McKay, 1999; Montaron et al., 1999), 113-HSD1 deficiency
improved cognitive function in aged mice in the absence of any
marked increase in neurogenesis. Thus, although complex struc-
tural changes associated with lower intracellular GC levels in the
aged hippocampus (less dendritic atrophy) (Magarinos and
McEwen, 1995) has not been excluded, the data suggest that in-
creased neurogenesis in old age per se is not responsible for the
maintenance of cognitive function in 113-HSDI /™ mice.

11B-HSD1 deficiency in mice associates with improved met-
abolic profiles, notably reduced glucose and insulin levels on obe-
sogenic high fat diets (Kotelevtsev et al., 1997; Morton et al.,
2004). Hyperglycemia and, less clearly, hyperinsulinaemia, are
associated with decline in cognitive function with aging in hu-
mans and some animal models (Convit et al., 2003; Convit, 2005;
McCall, 2005). However, the aged 113-HSDI ~/~ mice showed
identical glucose tolerance to controls, militating against im-
proved glucose tolerance as a cause for the cognitive findings. In
contrast, aged 118-HSD1 ™/~ mice showed increased insulin sen-
sitivity. Reports in rodents and humans on the cognitive effects of
insulin resistance without impaired glucose tolerance are dis-
crepant (Biessels and Gispen, 2005; Convit, 2005). Perhaps the
most pertinent is the neuron-specific insulin receptor knock-out
mouse, which has normal cognitive function (Schubert et al.,
2004); these data suggest that the cognitive maintenance in aged
11B-HSD1™'~ mice is unlikely to be a consequence of altered
glucose-insulin homeostasis. Similarly, the 118-HSD inhibitor
carbenoxolone improved cognitive function in humans without
altering plasma glucose levels (Sandeep et al., 2004). Thus, the
implication is that direct CNS effects of 113-HSD1 /"~ are more
likely responsible for the cognitive protection seen, an assertion
supported by the greater CA1 LTP.

Another major finding in this study is that the cognitive ben-
efits of mice lacking 113-HSD1 are not attained at the expense of
accelerated decline of other organs, notably determined by the
“hard end point” of mortality. Whereas our C57BL/6] mice did
not develop metabolic dysfunction with aging on chow diet, so
the metabolic protection afforded by 113-HSD1 deficiency ap-
pears moot, the enzyme is also expressed in inflammatory cells
such as the macrophage (Thieringer et al., 2001). Indeed, 113-
HSDI1~’~ mice clear acute inflammation more slowly (Chapman
etal., 2006; Gilmour et al., 2006). However, there was no evidence
of any gross alteration in pathology with aging in 118-HSDI ™/~
mice, suggesting that any proinflammatory/immune effects of
11B-HSD1 deficiency are not deleterious, at least in mice housed
in a clean environment. In addition, any inflammation would be
anticipated to impair memory with age (Teunissen et al., 2003;
Dik et al., 2005), but this was not seen. Similarly, 118-HSD1 is
expressed in the vasculature and 113-HSDI/~ mice exhibit in-
creased angiogenesis, at least in myocardial ischemia (Small et al.,
2005). Angiogenesis supports neoplasia and metastasis, but there
was no evidence of excess of these pathologies with aging in 113-
HSDI™’~ mice.

In summary, 11B-HSDI1 /" mice congenic on C57BL/6]
background strain show better maintenance of learning and
memory with aging. Enhanced hippocampal LTP in aged 113-
HSDI1~’~ mice may underlie the cognitive improvement. 118-
HSD1 regeneration of active GCs from circulating inert GCs ap-
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pears to make a physiologically significant impact on CORT
actions within the hippocampus in vivo, most notably with aging.
Note, however, that our results do not control for possible ma-
ternal effects because the 113-HSDI ™/~ mice and C57BL/6] con-
trols were not littermates. Previous studies have shown that dif-
ferences in maternal care in rats can influence the development of
behavior and endocrine responses to stress in the adult offspring
(Liu et al., 1997; Francis et al., 1999; Liu et al., 2000). Whether the
11B-HSD1 mutation affects maternal behavior is not known.
Although we cannot exclude potential effects of differences in
maternal behavior, our data would suggest a predominant ge-
netic effect because (1) the improved cognitive phenotype has
been shown previously on a different genetic background (Yau et
al., 2001); (2) although maternal effects tend to influence the
adult offspring behavior (Liu et al., 2000; Francis et al., 2003) and
this may persist to old age (Meaney et al., 1988), in our study we
only see the improved cognition in aged 118-HSDI~’~ mice and
notinyoung 113-HSD1 ™/~ mice;and (3) atleast in our hands, in
11B-HSD2~'~ mice similarly congenic on C57BL/6] and which
lack the fetoplacental “barrier” enzyme to maternal GCs during
prenatal development, we see persisting (programming) effects
on the offspring’s affective but not cognitive function (Holmes et
al., 2006) (Holmes and Seckl, unpublished observation), effects
similar, although not identical, in both littermates and the sepa-
rately mated inbred lines. Why 113-HSD1 should regenerate po-
tentially damaging GCs in the hippocampus is obscure. Perhaps
11B-reductase activity acts to help maintain constitutive GC-
sensitive cellular functions when circulating levels are low, such
as during the circadian nadir, or as an extra “booster” on stress.
Interestingly, 113-HSD1 is increased in the hippocampus in late
gestation, perhaps increasing GCs for neuronal and glial matura-
tional events (Wan et al., 2002). The damaging effects may only
emerge when there is a chronic increase in 113-reductase activity
and poor HPA feedback, such as might occur during aging or
disease, presumably beyond an age when selectional pressures
act. Whatever the evolutionary context, selective 113-HSD1 in-
hibitors may be therapeutically useful in age-related cognitive
impairments.
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