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Fig. 3. The learning curves for the “Nonnegative PCA” algorithm. The
dashed, circle and solid curves are drawn for the algorithm with constant
learning rate � , adaptive learning rate �(k) and constant learning rate �
respectively, showing nonnegative reconstruction error (lower curve), and
crosstalk error (upper curve).

Fig. 4. The curve of the adaptive learning rate.

V. CONCLUSION

We have derived convergence conditions on the learning rate and the
initial weight vector of the discrete-time “Nonnegative PCA” algorithm
developed in [3]. A rigorous mathematical proof is given which does
not change the discrete-time algorithms to the corresponding differen-
tial equations. The convergence condition on the learning rate helps al-
leviate the guesswork that accompanies the problem of choosing suit-
able learning rate in practical computation. Computer simulation re-
sults confirm our theoretical results and show the efficiency and effec-
tiveness of our convergence theory.
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Clustering via Kernel Decomposition

A. Szymkowiak-Have, Mark A. Girolami, and Jan Larsen

Abstract—Spectral clustering methods were proposed recently which
rely on the eigenvalue decomposition of an affinity matrix. In this letter,
the affinity matrix is created from the elements of a nonparametric density
estimator and then decomposed to obtain posterior probabilities of class
membership. Hyperparameters are selected using standard cross-valida-
tion methods.

Index Terms—Aggregated Markov model, kernel decomposition, kernel
principal component analysis (KPCA), spectral clustering.

I. INTRODUCTION

The spectral clustering methods [1]–[3] are attractive in the case
of complex data sets, which possess for example manifold structures,
when the classical models such as K-means often fail in the correct
estimation. The proposed models in the literature are, however, incom-
plete, since they do not offer methods for the estimation of the model
hyperparameters which have to be manually tuned [1]. The need arises
to construct a self-contained model, which would not only provide ac-
curate clustering but also which would estimate both the model com-
plexity and all the necessary parameters for estimation. The additional
advantage can also be provided by the probabilistic outcome, where the
confidence in the point assignment to the clusters is given.

The kernel principal component analysis (KPCA) [4] decomposition
of a Gram matrix has been shown to be a particularly elegant method
for extracting nonlinear features from multivariate data. KPCA has
been shown to be a discrete analogue of the Nyström approximation
to obtaining the eigenfunctions of a process from a finite sample [5].
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Building on this observation the relationship between KPCA and non-
parametric orthogonal series density estimation was highlighted in [6],
and the relation with spectral clustering has recently been investigated
in [7]. The basis functions obtained from KPCA can be viewed as the
finite sample estimates of the truncated orthogonal series [6], however,
a problem common to orthogonal series density estimation is that the
strict nonnegativity required of a probability density is not guaranteed
when employing these finite order sequences to make point estimates
[8], this is of course also observed with the KPCA decomposition [6].

To further explore the relationship between the decomposition of
a Gram matrix, the basis functions obtained from KPCA and density
estimation, a matrix decomposition which maintains the positivity of
point probability density estimates is desirable. In this paper we show
that such a decomposition can be obtained in a straightforward manner
and we observe useful similarities between such a decomposition and
spectral clustering methods [1]–[3].

The following sections consider the nonparametric estimation of a
probability density from a finite sample [8] and relates this to the iden-
tification of class structure within the density from the sample. Two
kernel functions, the choice of which dependent on the data type and
dimensionality, are proposed. The derivation of the generalization error
is also presented, which enables the determination of the model param-
eters and model complexity [9], [10]. The experiments are performed
on artificial data sets, as well as on more realistic collections.

II. DENSITY ESTIMATION AND DECOMPOSITION OF THE

GRAM MATRIX

Consider the estimation of an unknown probability density function
p(x) from a finite sample of N points fx1; . . . ;xNg where x 2 Rd.
The sample drawn from the density can be employed to estimate the
density in a nonparametric form by using a Parzen window estimator
(refer to [8]–[10] for a review of such nonparametric density estimation
methods) such that the estimate is given by

p̂(x) =
1

N

N

n=1

Kh(x;xn) (1)

where Kh(xi;xj) denotes the kernel function of width h, between
points xi and xj , which itself satisfies the requirements of a density
function [8]. It is important to note that the pairwise kernel function
values Kh(xi;xj) provide the necessary information regarding the
sample estimate of the underlying probability density function p(x).
Therefore, the kernel or Gram matrix constructed from a sample of
points (and a kernel function which itself is a density) provides the
necessary information to faithfully reconstruct the estimated density
from the pairwise kernel interactions in the sample.

For applications of unsupervised kernel methods such as KPCA, the
selection of the kernel parameter, the case of the Gaussian kernel h,
is often problematic. However, noting that the kernel matrix can be
viewed as defining the sample density estimate, then methods such as
leave-one-out cross-validation can be employed in obtaining an appro-
priate value of the kernel width parameter. We shall return to this point
in the following sections.

A. Kernel Decomposition

The density estimate can be decomposed in the following proba-
bilistic manner as

p̂(x) =

N

n=1

p(x;xn) (2)

=

N

n=1

p(xjxn)P (xn) (3)

such that each sample point is equally probable a priori, P (xn) =
N�1, i.e., data are assumed independent and identically distributed
(i.i.d). The kernel operation, such that the kernel is itself a density func-
tion, can then be seen to be the above conditional density p(xjxn) =
Kh(x; xn).

The sample ofN points drawn from the underlying density forms a
set and as such we can define a probability space over theN points. A
discrete posterior probability can be defined for a point x (either in or
out of sample) given each of the N sample points

P̂ (xnjx) =
p(xjxn)P (xn)

N

n =1

p(xjxn )P (xn )

=
K(x;xn)

N

n =1

K(x;xn )

� �K(x; xn) (4)

such that N

n=1
P̂ (xnjx) = 1, P̂ (xnjx) � 0 8 n and each P (xn) =

1=N .
Now if it is assumed that there is an underlying, hidden class/cluster

structure in the density then the sample posterior probability can be
decomposed by introducing a discrete class variable such that

P̂ (xnjx) =

C

c=1

P (xn; cjx) =

C

c=1

P (xnjc;x)P (cjx) (5)

and noting that the sample points have been drawn i.i.d from the respec-
tiveC classes forming the distribution such that points are independent
given the class variable, i.e., xn?x j c, then

P̂ (xnjx) =

C

c=1

P (xn; cjx) =

C

c=1

P (xnjc)P (cjx) (6)

with constraints N

n=1
P (xnjc) = 1 and C

c=1
P (cjx) = 1.

Considering the decomposition of the posterior sample prob-
abilities for each point in the available sample P̂ (xijxj) =

C

c=1
P (xijc)P (cjxj), 8 i; j = 1; . . . ; N we see that this is

identical to the aggregate Markov model originally proposed by Saul
and Periera [11], where the matrix of posteriors (elements of the
normalized kernel matrix) can be now be viewed as an estimated state
transition matrix for a first order Markov process. This decomposition
then provides class posterior probabilities P (cjxn) which can be
employed for clustering purposes.

A distance based criterion such as squared error

N

i=1

N

j=1

�K(xi;xj)�

C

c=1

P (xijc)P (cjxj)

2

(7)

can be locally optimized subject to the constraints that each P (xijc)
and P (cjxj) are strictly positive and N

n=1
P (xnjc) = 1,

C

c=1
P (cjx) = 1. Due to these constraints which ensure that

the decomposition provides interpretable probabilities then a matrix
factorization which enforces positivity of the elements in the decom-
position is required. There has been a number of recent publication
which have proposed efficient methods for obtaining such constrained
matrix decompositions [12], [13] and as such the nonnegative matrix
multiplicative update equations (NMF) [12], [13] or equivalently the it-
erative algorithmwhich performs probabilistic latent semantic analysis
(PLSA) [14] can be employed in optimizing the above criteria subject
to the required constraints. The multiplicative methods detailed in [12]
have been employed in the experiments reported in this paper. If the
normalized Gram matrix is defined asG = fP̂ (xi;xj)g = �K(xi;xj)
then the decomposition of that matrix with NMF [12], [13] or PLSA
[14] algorithms will yieldG =WH such thatW = fP (xijc)g and
H = fP (cjxj)g are understood as the required probabilities which
satisfy the previously defined stochastic constraints.
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B. Clustering With the Kernel Decomposition

Having obtained the elements P (xijc) and P (cjxj) of the decom-
posed matrix employing NMF or PLSA, the class posteriors P (cjxj)
will indicate the class structure of the samples.We are now in a position
to assign newly observed out-of-sample points to a particular class. If
we observe a new point z in addition to the sample then the estimated
decomposition components can, in conjunction with the kernel, pro-
vide the required class posterior P (cjz).

P̂ (cjz) =

N

n=1

P (cjxn)P̂ (xnjz) (8)

=

N

n=1

P (cjxn) �K(z;xn) (9)

=

N

n=1

P (cjxn)
K(z;xn)

N

n =1

K(z;xn )

: (10)

This can be viewed as a form of “kernel”-based nonnegative ma-
trix factorization where the “basis” functions P (cjxn) define the class
structure of the estimated density.

For the case of aGaussian (radial basis function) kernel, this interpre-
tation of a kernel-based clustering motivates the definition of the kernel
smoothing parameter by means of out-of sample predictive likelihood
and as such cross-validation can be employed in estimating the kernel
width parameter. In addition, the problem of choosing the number of
possible classes, a problem common to all nonparametric clustering
methods such as spectral clustering [1], [15] can now be addressed
using theoretically sound model selection methods such as cross-vali-
dation. This overcomes the lack of an objective means of selecting the
smoothing parameter inmost other forms of spectral clustering [1], [15]
as the proposed method first defines a nonparametric density estimate,
and then the inherent class structure is identified by the basis decompo-
sition of the normalized kernel in the form of class conditional poste-
rior probabilities. This highlights another advantage, over partitioning
based methods [1], [15], of this view on kernel-based clustering in that
projection coefficients are provided enabling new or previously unob-
served points to be allocated to clusters. Thus, projection of the nor-
malized kernel function of a new point onto the class-conditional basis
functions will yield the posterior probability of class membership for
the new point.

In attempting to identify the model order, e.g., number of classes,
a generalization error1 based on the out-of-sample negative predictive
likelihood, is defined as follows:

Lout = N
�1

out

N

n=1

log fp(zn)g (11)

where Nout denotes the number of out-of-sample points. The out-of-
sample likelihood (11) is derived from the decomposition in the fol-
lowing manner

p(z) =
1

N

N

n=1

p(zjxn) (12)

=
1

N

N

n=1

C

c=1

p(zjc)P (cjxn): (13)

The p(zjc) can be decomposed given the finite sample such that
p(zjc) = N

l=1 p(zjxl)P (xljc) where p(zjxl) = K(zjxl). So the
unconditional density estimate of an out of sample point given the

1In this context the generalization error is defined as a negative predictive
log-likelihood.

current kernel decomposition which assumes a specific class structure
in the data can be computed as follows:

p(z) =
1

N

N

n=1

N

l=1

C

c=1

K(zjxl)P (xljc)P (cjxn) (14)

where P (xljc) =W and P (cjxn) = H are estimated parameters.

C. Kernels

For continuous data such that x 2 Rd a common choice of kernel,
for both kernel PCA and density estimation, is the isotropic Gaussian
kernel

Kh(x;xn) = (2�)�d=2h�d exp �
1

2h2
kx� xnk

2
: (15)

Of course many other forms of kernel can be employed, though they
may not themselves satisfy the requirements of being a density. For
example in the case of vector space representations of text the standard
similarity measure employed is the cosine inner-product.

K(x;xn) =
x
T
xn

kxk � kxnk
: (16)

The decomposition of this cosine based Grammatrix directly will yield
the required probabilities.

Although, the cosine inner-product does not satisfy itself the den-
sity requirements ( K(x;xn) = 1) it can be applied in the presented
model as long as the kernel integral is finite. This condition is satisfied
when the data points are a priori normalized, e.g., to the unit sphere and
the empty vectors are excluded from the data set. The density values
obtained from such nondensity kernels provide the incorrect general-
ization errors which are scaled by the unknown constant factor and,
therefore, can be still used in estimation of the parameters.

This interpretation provides a means of spectral clustering which, in
the case of continuous data, is linked directly to nonparametric den-
sity estimation and extends easily to discrete data such as for example
text. We should also note that the aggregate Markov perspective allows
us to take the random walk viewpoint as elaborated in [15] and so a
K-connected graph2 may be employed in defining the kernel similarity
KK(x;xn). Similarly to the smoothing parameter and the number of
clusters, the number of connected points in the graph can be also esti-
mated from the generalization error.

The following experiments and subsequent analysis provide an ob-
jective assessment and comparison of a number of classical and re-
cently proposed clustering methods.

III. EXPERIMENTS

In the experimentswe used, the four following data sets are described
here.

1) Linear structure. Data set consist of five two-dimensional
(2-D) Gaussian distributed clusters with a spherical covariance
structure, shown in the left plot of Fig. 1 (left plot). The clusters
are linearly separable. This artificially created data is used for
illustration of a simple clustering problem.

2) Manifold structure. Data set consist of three clusters as shown
in the right plot of Fig. 1. Clusters are formed in the shape of
rings all centered at the origin with radii 3, 5, and 8, respec-
tively. The ring structure is a standard example used in spectral
clustering, for example [1], [2]. The data is 2-D. This is given as
an example of complex nonlinear data on which methods such
as K-means will fail.

2The K-connected graph is performed by remaining the dependencies be-
tween only K closest points.
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Fig. 1. The scatter plots of the artificial data for five Gaussian distributed clusters (left figure) and three cluster ring formations (right panel).

3) Email collection. The Email data set3 consist of emails grouped
into three categories: conference, job, and spam, used earlier in
[16]–[18]. The collection was hand-labeled. In order to process
text data, a term-vector is defined as the complete set of all
the words existing in all the email documents. Then each email
document is represented by a histogram: the frequency vector
of occurrences of each of the word from a term-vector. The
collection of such email histograms is denoted the term-docu-
ment matrix. In order to achieve good performance, suitable pre-
processing is performed. It includes removing stopwords4 and
other high and low frequency words, stemming5 and normal-
izing histograms to unit L2-norm length. After preprocessing,
the term-document matrix consist of 1405 email histograms de-
scribed by 7798 terms. The data points are discrete and high di-
mensional and the categories are not linearly separable.

4) Newsgroups. The collection6 consist originally of 20 categories
each containing approximately 1000 newsgroup documents. In
the performed experiments, four categories (computer graphics,
motorcycles, baseball, and Christian religion) were selected
each containing 200 instances. The labels of the collection are
selected based on the catalogs names the data were stored in.
The data were processed in a similar way as that presented
above. In preprocessing, two documents were removed7. After
preprocessing, the data consist of 798 newsgroup documents
described in the space of 1368 terms.

In the case of continuous space collections (Gaussian andRings clus-
ters) data vectors were normalized with its maximum value so, they fall
in the range between 0 and 1. This step is necessary when the features
describing data points have significantly different values and ranges.
The normalization to the unitL2-norm length was applied for the Email
and Newsgroup collections.

For Gaussian and Rings clusters, the isotropic Gaussian kernel (15)
is used. With discrete data sets (Emails and Newsgroups), the cosine
inner-product (16) is applied.

3The Email database ia available at http://isp.imm.dtu.dk/staff/anna
4Stopword are high frequency words that are helping to build the sentence,

e.g., conjunctions, pronouns, prepositions, etc. A list of 584 stopwords is used
in the experiments

5Stemming denotes the process of merging words with typical endings into
the common stem. For example, in the English language, the endings like, e.g.,
-ed, -ing, -s are considered.

6The Newsgroups collection is available at, e.g., http://kdd.ics.uci.edu/
7Reduction in term space (stopwords removing, stemming, etc.) resulted with

empty documents, which were removed from the data set.

The Gaussian clusters example is a simple linear separation problem.
The model was trained using 500 randomly generated samples, and
generalization error computed from 2500 validation set samples. The
aggregated Markov model, as a probabilistic framework, allows the
new data points, not included in the training set, to be uniquely mapped
in the model. It is possible to select optimum model parameters: h,K
inK-connected graph in discrete data sets and the optimum number of
clusters c by minimizing the generalization error defined by the (11)
and (13).

In 20 experiments, different training sets were generated, and the
final error is an average over 20 outcomes of the algorithm on the same
validation set. The left plot of Fig. 2 presents the dependency of the
generalization error as a function of the kernel smoothing parameter h,
averaged for all the model orders. The minimum is obtained for h =
0:06. For that optimum h the model complexity c is then investigated
(right plot of Fig. 2). Here, the minimal error is obtained for all 2, 3, 4,
and 5 clusters and as the optimal solution 5 clusters are chosen, which
is explained in the Appendix .

For Gaussian clusters, the cluster posterior p(cjz) is presented on
Fig. 3. Perfect decision surfaces can be observed. For comparison, on
Fig. 4, the components of the traditional kernel PCA are presented.
Here, both the positive and the negative values are observed, which
makes it difficult to determine the optimum decision surface.

The Ring data is a highly nonlinear clustering problem. In the exper-
iments, 600 examples were used for training, for generalization 3000
validation set samples were generated and the experiments were re-
peated 40 times, with different training sets. The generalization error,
shown on Fig. 5, is an average over errors obtained in each of the 40
runs on the same validation set and for all the model orders c. The op-
timum smoothing parameter (Fig. 5, left plot) is equal h = 0:065 and
the minimum in generalization error is obtained for three clusters. As
in the Gaussian clusters example, a smaller model of two clusters is
also probable8.

The cluster posterior for Rings data set and the kernel PCA com-
ponents are presented in Figs. 6 and 7, respectively. Also in this case
perfect (0/1) decision surfaces are observed (Fig. 6), which are the out-
come of the aggregatedMarkovmodel. The components of kernel PCA
present, as in the previous case, the separation possibility but with more
ambiguity for selection the decision surface.

The generalization error for Email collection is shown in left plot
of Fig. 8. The mean values are presented averaged from 20 random
choices of the training and the test set. For training, 702 samples are
reserved and the rest of 703 examples is used in calculation of the gen-
eralization error. Since, used kernel is the cosine inner-product, the

8The generalization error is similar for both 2 and 3 numbers of clusters.
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Fig. 2. The generalization error as a function of smoothing parameter h (left panel) for five Gaussian distributed clusters. The optimum choice is h = 0:06. The
right figure presents, for optimum smoothing parameter, the generalization error as a function of number of clusters. Here, any cluster number below or equal 5
may give the minimum error for which the error values are shown above the points. The optimum choice is a maximum model, i.e., K = 5 (see the explanation
in the text). The error-bars show � standard error of the mean value.

Fig. 3. The cluster posterior values p(cjz) obtained from the aggregate Markov model for Gaussian clusters. The decision surfaces are positive. The separation
in this case is perfect.

K-connected graph is applied to set the threshold on the Gram ma-
trix and remain the dependency only between the closest samples. For
Email collection, the minimal generalization error is obtained when
using 50-connected graph with the model complexity of three clusters.
In this example, since the data categories are overlapping, the smaller
models are not favored as it was in the case of well-separated data as
Rings and Gaussian data sets. In the right plot of Fig. 8, the confusion
matrix9 is presented. With respect to the labels, it can be concludedthat
the spam emails are well separated (99.5%) and the overlapping be-
tween the conference and job emails is only slightly larger. In general,
the data is well classified.

The generalization error for the Newsgroups collection is shown in
the left plot of Fig. 9. For the training, 400 samples randomly selected

9The confusion matrix contains information about actual and predicted clas-
sification done by the classification system.

from the set was used and the rest of the collection (398 examples) was
designated for generalization error. Forty experiments was performed
and Fig. 9 displays the mean value of the generalization error. The
optimum model has four clusters in model using 20-connected graph,
even though the differences around the minimum are small compared
to the maximum values of the investigated generalization error. In the
right plot of the Fig. 8 the confusion matrix is presented. With respect
to the labels, it can be concluded that the data are well separated and
classified. The data points are, however, more confused than in the case
of the email collection. In average, 10% of each cluster is misclassified.

In order to perform the comparison of the aggregated Markov model
with the classical spectral clustering method as presented in [1] another
experiment was performed, the results of which are not presented in
this paper due to space constraints. For both, continuous an discrete
data sets, using both the Gaussian kernel and inner-product the inves-
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Fig. 4. The components of the traditional kernel PCA model for Gaussian clusters. The decision surfaces are both positive and negative.

Fig. 5. The generalization error as a function of smoothing parameter h for three clusters formed in the shape of rings (left panel). The optimum choice is
h = 0:065. On the right figure the generalization error as a function of number of clusters is shown for the optimum choice of smoothing parameter. The error
bars shows the standard error of the mean value.

tigation of the overall performance in classification10 was made. It was
found that both aggregated Markov model and the spectral clustering
model for selected model parameters did equally well in the sense of
misclassification error. However, the spectral clustering model was less
sensitive to the choice of smoothing parameter h. The benefit of the
proposed method is that a full set of posterior probabilities of cluster
membership can be obtained.

IV. DISCUSSION

The aggregated Markov model provides a probabilistic clustering
and the generalization error formula can be derived leading to the pos-
sibility of selecting model order and parameters. These virtues were not
offered by the classical spectral clustering methods like [1] and [15].

In the case of continuous data, it can be noted that the quality of
the clustering is directly related to the quality of the density estimate.

10measured by the miss-classification error

The clustering is then a two-stage process, first, a nonparametric kernel
density is obtainedwith thewidth parameter being selected using cross-
validation. Once a density has been estimated the proposed clustering
method attempts to find modes in the density. Also, if the density is
poorly estimated due to perhaps a window smoothing parameter which
is too large then class structure may be oversmoothed and so modes
may be lost, in other words essential class structure may not be identi-
fied by the clustering. The same argument applies to a smoothing pa-
rameter which is too small thus causing nonexistent structure to be dis-
covered. The same argument can be made for the connectedness of the
underlying graph connecting the points under consideration.

The disadvantage of the proposed model, in comparison to other
spectral clustering methods is that the computational complexity may
be larger due to the nonlinear optimization required. In the experi-
ments reported, the matrix decomposition is initialized with the Gram
matrix eigenvectors which improved convergence speed and eventual
solutions.
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Fig. 6. The cluster posterior values p(cjz) obtained from the aggregate Markov model for Rings. The decision surfaces are positive. The separation in this case
is perfect.

Fig. 7. The components of the traditional kernel PCA model for Rings structure. The decision surfaces are both positive and negative.

Fig. 8. Left upper panel presents the mean generalization error as a function of both the cluster number and the k – cutoff threshold in the k-connected graph
for Emails collection. For clarity in made decision the selected cut off thresholds (K = 50 and K = 100) are shown on the right plot. The optimal model is the
choice ofK = 50 (50-connected graph) with three clusters. Lower figure presents the confusion matrix for labeling produced by the selected optimal model and
the original labeling. Only the small confusion can be observed.
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Fig. 9. Left upper panel presents the mean generalization error as a function of both the cluster number and the k – cutoff threshold in the k-connected graph for
Newsgroups collection. The error for selectedK (10 20 30 40) is shown on the right plot. The optimal model complexity is four clusters when using 20-connected
graph. Lower figure presents the confusion matrix for labeling produced by the selected optimal model and the original labeling. Only the small confusion can be
observed.

APPENDIX

In the case of the presented model, the minimal values of the gener-
alization error are observed for all the model complexities smaller or
equal the correct complexity. It is noticed only in the case of well-sep-
arated clusters, which is the case of the presented examples. When per-
fect (0/1 valued) cluster posterior probability p(cjzi) is observed, the
probability of the sample p(zi) is similar for both smaller and larger
models. It is true, as long as the natural cluster separations are not split,
i.e., as long as the sample has large (close to 1) probability of belonging
to one of the clusters p(cjzi) � 1. As an example, let us consider the
structure of three linear separable clusters. The generalization error 13
depends on the out-of-sample kernel function K(zjxl), which is con-
stant for various values of the model parameter c and the result of the
Gram matrix decomposition P (xljc)P (cjx

n
). Therefore, the level of

the generalization error as a function of model complexity parameter
c depends only on the result of the Gram matrix decomposition. In the
presented case, for the correct, three cluster scenario, the class poste-
rior takes the binary 0/1 values. When smaller number of clusters are
considered, the out-of-sample class posterior values are still binary as
in the presented model it is enough that the out-of-sample is close to
any of the training samples in the clusters and not to all of them. For
more complex models, the class posterior is no longer binary, since the
natural cluster structure is broken, i.e., at least two clusters are placed
close to each other and the point assignment is ambiguous. Therefore,
the generalization error values are increased.
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On Stability of Recurrent Neural Networks—An Approach
From Volterra Integro-Differential Equations

Pingzhou Liu and Qing-Long Han

Abstract—The uniformasymptotic stability of recurrent neural networks
(RNNs) with distributed delay is analyzed by comparing RNNs to linear
Volterra integro-differential systems under Lipschitz continuity of activa-
tion functions. The stability criteria obtained have unified and extended
many existing results on RNNs.

Index Terms—Delay, recurrent neural networks (RNNs), stability,
Volterra integro-differential systems.

I. INTRODUCTION

In this letter, we consider the following recurrent neural network
(RNN) model

dx(t)
dt

= �Dx(t) +B
t

a
K(t� s)F (x(s))ds

x(s) = �(s); x 2 (a; t0); t0 � 0
(1)

which is the generalization of the most extensively studied model

dy

dt
= �Dy +BF (y) +Du: y(t0) = y0 (2)

by introducing distributed delay and translating equilibrium
to the origin, where x; y 2 Rn are the state vectors, D =
diag(d1; d2; . . . ; dn) 2 Rn�n is a constant diagonal matrix
with di > 0; B = [bij ] 2 Rn�n is a constant connection
weight matrix, u 2 Rn is a constant input vector, the delay kernel
K( � ) = [kij( � )] 2 L1(R+). F ( � ) = col(f1( � ); f2( � ); . . . ; fn( � ))
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is a vector-value activation function from Rn to Rn and is assumed
to be of class GL or L and F (0) = 0. If F 2 GL, then there exist `i,
such that 8x; y 2 R and x 6= y

0 �
fi(x)� fi(y)

x� y
� `i; i = 1; 2; . . . ; n: (3)

If F 2 L, then there exist constants `i, such that 8x; y 2 R

jfi(x)� fi(y)j � `ijx� yj; i = 1; 2; . . . ; n: (4)

In the following we only consider the case of a = 0 or a = �1. If
a = 0, the system has finite memory and one needs to deal with “uni-
form” stability. If a = �1, the system has infinite memory. In practice
situations, the distant past usually has less influence compared to the
recent behavior of the state. The case of a = �1, which has drawn
the most concern in the neural networks research, is just a mathemat-
ical simplification.

In this letter, we will use the well-known results about linear Volterra
integro-differential equations and the nonlinearity nature of Lipschitz
continuity (3) or (4), to study the global uniform asymptotic stability
of (1). As we put different kinds of delays under one umbrella—dis-
tributed delay, it also provides a way to approximately consider the
delay dependency of the neural networks by choosing an appropriate
and easy-to-handle delay kernel.

II. VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

Let C(a;1)(a = 0 or a = �1) denote the set of all continuous
functions ': (a;1) ! Rn such that, for any t 2 R1, the semi-norm

k'kt = supfj'(s)j : a < s � tg

is finite. Let B( � ) 2 L1(R+) be a real matrix function.
Consider the following linear Volterra integro-differential equation

[9], [10]

dx(t)

dt
= Ax(t) +

t

a

B(t� s)x(s)ds (5)

for t � t0 with x(t) = '(t), where x(t) =
col(x1(t); x2(t); . . . ; xn(t)) 2 Rn with Euclidean norm
jxj = ( n

i=1 x
2
i )
1=2 and A is a real constant matrix, t � t0 and

x(t) = �(t) on a � t � t0. The solution of (5) with initial values
(t0; �) will be denoted by x(t; t0; �).

Notice that for a = �1, (5) is autonomous. It follows that one
needs only to consider the case of a = �1 with initial time t0 = 0.
Moreover, stability and uniform stability are equivalent.

Let

�ij =
1

0

bij(t)dt; �
+
ij =

1

0

jbij(t)jdt and

Ri =

n

j=1

(jaij j+ �ij
+):

Theorem 1: [9]: Let B( � ) 2 L1 and

jaii + �iijjakk + �kkj >
j 6=i

jaij + �ij j
j 6=k

jakj + �kj j

(6)
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