

Renaud, K. and Lo, J. and Bishop, J. and Zyl, P. and Worrall, B. (2003)
Algon: a framework for supporting comparison of distributed algorithm
performance. In, Eleventh Euromicro Conference on Parallel, Distributed
and Network-Based Processing, 5-7 Febuary 2003, pages pp. 425-432,
Genova, Italy.

http://eprints.gla.ac.uk/3650/

Algon: A Framework for Supporting Comparison of Distributed Algorithm
Performance

Karen Renaud
Department of Computing Science

University of Glasgow
karen@dcs.gla.ac.uk

Johnny Lo Judith Bishop
Pieter van Zyl Basil Worrall

Department of Computer Science
University of Pretoria

Abstract

Programmers often need to use distributed algorithms
to add non-functional behaviour, such as mutual exclusion,
deadlock detection and termination, to a distributed ap-
plication. They find the selection and implementation of
these algorithms daunting. Consequently they have no idea
which algorithm will be best for their particular applica-
tion. To address this difficulty the Algon framework provides
a set of pre-coded distributed algorithms for programmers
to choose from, and provides a special performance dis-
play tool to support choice between algorithms. The per-
formance tool is discussed in this paper.
The developer of a distributed application will be able

to observe the performance of each of the available algo-
rithms according to a set of of widely accepted and easily-
understandable performance metrics and compare and con-
trast the behaviour of the algorithms to support an informed
choice. The strength of the Algon framework is that it does
not require a working knowledge of algorithmic theory or
functionality in order for the developer to use the algo-
rithms.

1 Introduction

Many programmers find developing distributed applica-
tions an overly complex task [14]. In addition to the normal
intensively demanding cognitive activity involved in work-
ing with abstract tasks during programming, they have extra
concerns to deal with such as the non-determinism, con-
tention and synchronisation issues of distributed systems
[18].
One of essential issues that many programmers find

daunting is the use of distributed algorithms in their sys-
tems. For example, distributed systems often need to ensure
that distributed mutual exclusion is maintained with respect
to a particular resource, or need to incorporate a distributed

deadlock detection element into the system. Distributed al-
gorithms can be categorised according to functionality, and
within each category various tried and tested algorithms
are widely available and have been tailored to distribution-
specific problems [26, 27]. Each algorithm achieves the
expected result in a different way and with different per-
formance characteristics. Whilst programmers may under-
stand the superficial functionality of the algorithm, a far
deeper understanding is required in order to critically eval-
uate these algorithms and to make an informed decision
about the correct algorithm to use for any particular system.
Another problem is the fact that programmers may not

sufficiently understand the nature and needs of the dis-
tributed system itself. An application may need to em-
ploy distributed mutual-exclusion, snapshots or deadlock-
detection algorithms but the algorithms in everyday use are
often centralised and inappropriate for distributed systems
[26].
Initiating all programmers into the mysteries of algo-

rithms is neither viable nor tenable. A far better alternative
is to provide the algorithms as reusable software compo-
nents, and then to provide support for choice between algo-
rithms offering the same functionality. The use of software
components in this way allows us to separate the algorithm
from the application so that the algorithm can be indepen-
dently tested, configured, upgraded or replaced. This ap-
proach is in stark contrast to the usual practice of interspers-
ing the algorithm with the application code, which does not
give the programmer this degree of flexibility.
The Algon1 system provides a framework for incorporat-

ing algorithmic software components into a distributed sys-
tem. It reduces the complexity related to distributed algo-
rithmic concerns in a distributed system, and supports pro-
grammers in finding the best possible algorithm for their
system without the arduous and time-consuming task of
mastering the algorithms. Algon includes:

� a library of algorithms be to be used as and when re-

1Algon stands for Algorithms On the Net.

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

quired;

� a tool for selecting;

� a framework for incorporating said algorithms into the
system;

� a tool for depicting the performance of an algorithm
and for comparing this performance to that of another
algorithm in the same family.

Many programming languages routinely provide libraries of
mathematical functions to simplify the programmer’s task.
Following the same principle Algon provides programmers
with a store of algorithms so that they can experiment and
thereby arrive at the algorithm with the best performance
for their particular application.
We previously reported on the structure and rationale of

the Algon framework [4], and on the role of Java in facilitat-
ing the framework [5]. This paper focuses on further work
which has been done in order to extend Algon by including
a performance visualisation aspect to support a choice be-
tween algorithms. Section 2 discusses issues related to re-
porting on algorithm performance in order to support choice
between algorithms. Section 3 briefly reviews the Algon
structure to demonstrate how the software components are
accommodated. Section 4 discusses aspects relating to the
visualisation of algorithm metric measurement. Section 5
gives details of the implementation of the performancemea-
surement and display tool. Section 6 compares Algon to
related work in the field. Section 7 concludes.

2 Performance Measurement and Reporting

The measurement of software performance by and for
experts is a well-known task [12, 25] and dedicated algo-
rithmicists have developed techniques to judge the perfor-
mance of algorithms [23, 2]. One technique, competitive
analysis, compares an algorithm to a powerful adversary on
a worst-case input [17]. Koutsoupias and Papadimitriou re-
port that this technique is less than optimal since it fails to
discriminate and does not suggest good approaches. Clearly
there is a need for a better way to compare algorithms. In
distributed systems it becomes even more difficult due to
the non-deterministic nature of the systems. Konkin et al.
[16] claim that there has been very little progress in provid-
ing programmers with tools to tune their applications in the
last 15 years. This implies that tuning mechanisms have not
kept up with developments in the distributed domain.
Algorithmic comparison techniques and results, while

adequately recorded in academic publications, appear to be
inaccessible to the average developer. They do not under-
stand the various performance implications and expecting
them to do so is unrealistic and unnecessary. Much com-
plexity is already successfully hidden from developers and

they are none the worse for it. Up to a few years ago the av-
erage developer had no need to be concerned about compli-
cated distributed algorithms but with more and more devel-
opers entering the distributed arena it is no longer possible
to shield them entirely.
Algon was developed with the express aim of making

algorithms more accessible to the multitude of uninformed
developers currently struggling with these concepts. Algon
does this by building a bridge between the intensely theo-
retical world of algorithmicists and the pressured practical
world developers inhabit. Algorithmicists readily admit that
their experimentswith algorithms and their performance are
often unnatural and impractical [17]. Aspnes andWaarts [1]
review the extensive work done on optimality of algorithms
given certain conditions such as a particular sequence of
messages or a particular sequence of failure events. Such
assumptions allow academics to study particular problems
but may not be relevant in a real-life setting.
Algon aims to give developers an insight into the dif-

fering performance of algorithms in a particular system —
without requiring a deep understanding of the algorithms
themselves. We therefore provide a visualisation of perfor-
mance measurement data in such a way that a non-expert
can easily understand and interpret it and we thereby sup-
port the making of an informed decision with respect to
the use of one algorithm or another. This type of perfor-
mance visualisation can provide information that cannot be
obtained in any other way since it reports on algorithms in
action, in a real-life application, and it may be that algorith-
micists would also benefit from using this visualisation.

3 The Algon Concept

Middleware frameworks have been shown to be viable
for the deployment of software components on the Internet
[8]. However, they tend to require a certain amount of tai-
loring of the application and the introduction of new meth-
ods. The problem with the wide-scale deployment of com-
ponents over the Internet is that the frameworks and wrap-
per interfaces each have to be custom-made for a given sys-
tem. This is wasteful in terms of time and money and is
doomed to failure if the programmers do not understand the
functioning of the legacy software.
The objective of Algon is to produce a library of pre-

coded distributed algorithmswhich can be incorporated into
a distributed component-based application while maintain-
ing a clear separation between components. Having decided
to treat distributed algorithms as a candidate separate con-
cern, the next step is to develop a mechanism for structuring
the base code so as to enable this separation [21]. Algon’s
algorithms have been implemented in such a way that the
code is split into logical processes, enveloped within a dis-
tributed system and augmented with a pre-coded distributed

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

algorithm. The resulting component can then be added to
a distributed system with the minimum of changes to the
original code of the application. To illustrate the concept,

Readers Writers RS

Application P

Classic Algorithm C

Disk Controller

Scan−Print System

(c)
Dining Philosophers

(b)

(a)

Figure 1. Centralised View of an Application
consider an application, P , as shown Figure 1(a), using a
classic algorithm, C, to achieve some required behaviour.
Example applications are shown in Figure 1(b) & (c). In
example (b) there is a resource, RS, which requires mutual
exclusive access. In (c) there are two devices whose usage
has to be coordinated.
Consider, for example, the situation where there is a need

to distribute the behaviour previously provided by the algo-
rithm C. The programmer would traditionally have to re-
code the algorithm and incorporate it into the application
in place of C. Algon provides a mechanism whereby the
distribution features can be added to the application in the
form of a component.

Classic Algorithm C
Application P

Middleware M k

Distributed Layer D
Scheduler S

Algorithm A i

Figure 2. Distributed View of the Application using
an Algon component.

The proposed architecture for an application system is
shown in Figure 2(a). The application-specific code, P , and
classic algorithm, C, remain unchanged. Figure 2(b) illus-
trates how this architecture might be implemented on a sys-
tem with three nodes. In order to distribute C’s behaviour,
the system is extended by adding:

1. a distribution layer,D, which consists of:

(a) a scheduler S, and

(b) an algorithm Ai.

The distribution layer, D, is selected specifically to
match the algorithm, C.

2. a middleware backboneMk, which facilitates commu-
nication with other participants. It can use any suitable
communication structure such as Java RMI, CORBA
IIOP, DCOM or .NET.

Our intention is to provide developers with a range of
distributed algorithms for any particular problem. To make
these algorithms easily interchangeable, a standard inter-
face is implemented for specific types of algorithms. For
a specific classic problem i, the interface Ii is used by the
scheduler to interact with all algorithms implementing that
interface. This makes it easier to introduce new algorithms
and to specify, at runtime, the algorithm that should be used.
An example of this is the ME (Mutual-Exclusion Group
of Algorithms) interface being implemented by the Ricart-
Agrawala mutual exclusion algorithm [26] (Figure 3). An-
other example of this could be where the DD (Deadlock-
Detection Group of Algorithms) interface being imple-
mented by the Chandy-Misra OR model deadlock-detection
algorithm [7]. The developer can choose the algorithm to be
used by means of a graphical user interface, and also indi-
cate the identities of the nodes involved in the distributed
system. This makes the algorithms interchangeable without
any need for recompilation.
To illustrate howAlgon works, consider the classic prob-

lem of a disk-controller applicationwith various readers and
writers. Assume that it is necessary to allow distributed
readers and writers to access the disk contents simulta-
neously — hence requiring the services of a distributed
mutual-exclusion algorithm. For the purposes of this dis-
cussion we will use the Ricart-Agrawala algorithm [24].
An example of the Algon approach is shown in Figure

3. Two nodes have readers, while a third has a writer, with

AME,RA

������
������
������
������

Application

R

S

ME

RA

AME,RA

������
������
������
������

Application

R

S

ME

RA

AME,RA

RS

������
������
������
������

Replicated System

Application

S

ME

RA

W

Original
System

Algon
Layer

Middleware

Figure 3. Using Algon to add a distributed mutual
exclusion algorithm

the third node holding the shared resource. The reader or
writer will invoke methods on the scheduler, S, in order to
acquire permission to read or write. The scheduler holds a
reference to the algorithm,RA, which implements theME

interface. The algorithm will use the middleware backbone
to communicate with other readers and writers as required.

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

This section has given a brief overview of Algon. The
next section will discuss issues pertaining to the measure-
ment and visualisation of algorithm performance so that de-
veloper choice can be facilitated.

4 Performance Metrics

Portraying the performance of algorithms to the unini-
tiated is not trivial. For example, the Ricart-Agrawala al-
gorithm for mutual exclusion [24], which will be used to
illustrate our approach in this paper, involves distributed
sites sending requests and replies to other participating
sites, comparing timestamps, and keeping queues of wait-
ing sites. Other algorithms provide better performance with
even greater complexity. Systems do exist for illustrating
the functioning of algorithms [3, 6, 15] but the primary
function of these systems is in supporting education and
research and they are not intended to be components for
development.
It is therefore desirable to quantify certain aspects of al-

gorithmic performance so as to be able to compare algo-
rithms — and not attempt to compare actual mechanisms
for achieveing their purpose. Various metrics can be used
to measure performance of algorithms in distributed sys-
tems [1, 12, 19, 26], for example: (1) response or waiting
time; (2) synchronisation delay; (3) number of messages
exchanged; (4) throughput; (5) communication delay; (6)
node fairness; (7) CPU cycle usage; or (8) memory usage.
Selected performance metrics need to be generic enough

to be applied to a variety of algorithms, and straightforward
enough to be understood by developers. We need to en-
sure that the developer can obtain metrics which reflect the
needs, priorities and workloads of the particular distributed
system [22], since no single metric can be optimal for all
applications [11].
For the initial prototype we chose to measure perfor-

mance using only the first four metrics. These were most
suited to specifically measuring algorithm performance.
The fifth metric is more dependent on network load than a
specific algorithm, the sixth difficult to quantify and the sev-
enth and eighth producemeasurements of debatablemerit in
judging algorithm efficacy. Experience may suggest other
metrics and the interface has therefore been designed in
such a way that the inclusion of additional metrics is trivial.
Visualisation is a powerful tool which is being used in-

creasingly to enhance understanding in a variety of different
application areas [28]. Visualising algorithm performance
in a simple and understandable manner merits some con-
sideration. To provide a visualization of this data one has
to consider the granularity and nature of the data to be de-
picted. One could choose to collect and display immediate
up-to-the-minute data, showing process state as it enters and
leaves critical sections, for example. On the other hand, it

may be more useful to collect cumulative data which tracks
the progress of the system and depicts it in a form that shows
the variations in the system’s performance. In terms of sup-
porting comparisons, averaged data over a whole time pe-
riod— perhaps for a session, or a certain time period, could
conceivably be the most useful type of data. The cumula-
tive and averaged displays can depict either one algorithm’s
performance or differences between the performance of al-
gorithms in a visual format thus supporting and facilitating
an informed decision-making process.
Each of these data types contribute something different

to the decision-making process and we are loath to deprive
the developer of any so we provide all of them. While many
tools concentrate on providing one of the three perspectives
few if any provide all at the same time, as Algon does. The
following visualisations were employed:

1. Dynamic data about the state of the nodes participating
in the distributed algorithm is displayed in the form of
a table with a row for each node participating in the
distributed algorithm, and a column for each metric.

2. Cumulative data portraying, in the form of a graph,
data about performance during a user-defined interval,
which helps the developer to identify deviations.

3. Averaged retrospective data depicts performance for a
session, day or specified time period. For this we used
an established visualisation technique called parallel
coordinates [13] This allows us to view relations in
multivariate data. The advantage of this technique is
that it is extensible enough to allow comparisons of
multiple algorithms and that algorithms can be com-
pared on many different axes at the same time.

The following section discusses implementation details
and demonstrates the performance display.

5 The Performance Display Tool

The performance comparison support tool was devel-
oped to work with the algorithms already implemented in
Algon. During the development some key implementation
issues emerged:

1. How to measure the performance according to the var-
ious metrics? If we wanted to monitor method invoca-
tions or other externally observable behaviour it could
be done non-invasively [16, 30]. However, since some
of the metrics require the participation of the algorithm
in recording data it must be achieved invasively by in-
serting code into the algorithm so that it records things
like response times and messages sent and received.
There are two ways to keep the tool informed of this
data:

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

(a) Allow the tool to query the processes.

(b) Require the processes to inform the tool of their
measurements.

We decided on the second option since it will be dif-
ficult for the tool to query processes that need to be
blocked or idle for much of the time. It is better for
the process to inform the tool after each measurement
has been made. The process can detect the presence of
the tool and in its absence simply does not measure or
report.

The algorithm processes thus measure their own per-
formance and invoke a method on the tool to inform it
of the measurements. The tool assists in storing this
information in its own data structures. Various oper-
ations are performed on the data, such as calculating
averages, for example. The performance tool stores
the data for a specific session so that it can be used for
comparison purposes later.

2. How to allow the user to specify the metrics to be
recorded? We wanted this to be dynamic so it is done
by means of a configuration file which can be set using
a graphical user interface prior to running the system.

3. What additional non-essential functionality should be
incorporated? We decided to allow the users to save
the graphs and to print them, and to import the pre-
recorded performance results of various system runs
in order to support comparison. Navigation is often
allowed in visualisations [29] but it is not suitable for
our tool and was therefore not implemented.

Figure 4 demonstrates the dynamic system snapshot. The
response time of all processes participating in a system us-
ing the Maekawa disrtibuted mutual exclusion algorithm is
shown in Figure 5. The comparison of the response time of
a particular node using the Maekawa and Ricart-Agrawala
algorithms over a time period of seconds is shown in Fig-
ure 6. Figure 7 displays information about average metric
values for the Maekawa and Ricart-Agrawala algorithms.
From this graph it is clear that, for the particular distributed
system being evaluated, the Maekawa algorithm performs
far better than the Ricart-Agrawala algorithm in terms of
response time. If throughput is the most important factor in
the system, however, the Ricart-Agrawala algorithm might
be a better choice.

6 Related Work

System performance visualisation has not been neglected
by researchers in this area. The research ranges from tech-
niques for monitoring behaviour to techniques for visualis-
ing the collected data. Monitoring can be done either inva-
sively or non-invasively. For example, Konkin et al. [16]

propose a mechanism for inserting performance measure-
ment components into a system. Welch and Stroud’s Kava
tool non-invasively reflects on the behaviour of systems
[30]. Researchers working in visualisation often specialise
their visualisations for particular application areas. For ex-
ample, Dahlberg and Subramanian [9] report on a visualisa-
tion of real-time survivability in mobile networks. Mellor-
Crummey and Whalley [20] have developed a tool for per-
formance tuning which measures performance and allows
programmers to compare performance on different archi-
tectures, for example. Their tool is intended for source-code
tuning and is not suitable for Algon’s purposes. Some tools
have concentrated on visualising the behaviour of parallel
systems [10, 11, 19].
Three factors make these and other similar tools unsuit-

able for use by Algon:

1. Most of these performance visualisation tools perform
a post-mortem visualisation — the measurements are
pre-recorded and then used to provide a visualisation
based on analysis of the entire set of measurements.
While this is useful it is sometimes not flexible enough
to satisfy the developers’ needs in understanding the
performance of the system [29].

2. They visualise the behaviour of the entire system. Al-
gon needs to isolate and depict the behaviour of the
algorithms in isolation.

3. All visualisation tools intended for use with real-life
systems are, to date, intended for use by experts. The
main requirement of Algon’s algorithmic comparison
visualisation is that it should present information in
such a way that it can be easily understood, by non-
experts, and used, both dynamically and retrospec-
tively, to support a choice between two or more algo-
rithms [20].

7 Conclusion

We have reported on the development of a performance
measurement and visualisation tool which supports the
comparison of algorithms based on performance and be-
haviour. This is a significant advance in the use of dis-
tributed algorithms by non-experts. Future work will con-
sider how different algorithms in a system may need to in-
teract with one another. An example of this is the way
the deadlock-detection and deadlock-resolution algorithms
need to work cooperatively in order to deal with deadlock
situations. This handling of interacting concerns, and the
visualisation thereof, needs to be investigated.
This work was partially funded by grant NRF194 from

the National Research Foundation of South Africa. We
would like to acknowledge Nigel Bishop for the usage of

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Figure 4. A Snapshot View

Figure 5. Comparing the Performance of Processes participating in Maekawa

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Figure 6. Comparing the Performance of Nodes using different Algorithms

Figure 7. Viewing Average Performance across Various Metrics

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

the Graph class source code from his book: “Java Gently
for Engineers and Scientists” Addison Wesley 2000.

References

[1] J. Aspnes and O. Waarts. Modular competitiveness for dis-
tributed algorithms. In Proceedings of the twenty-eighth an-
nual ACM symposium on Theory of computing, pages 237–
246. ACM Press, 1996.

[2] A. Bain and P. Key. Modelling the performance of dis-
tributed admission control for adaptive applications. ACM
SIGMETRICS Performance Evaluation Review, 29(3):21–
22, 2001.

[3] M. Ben-Ari. Interactive Execution of Distributed Algo-
rithms. ACM Journal of Educational Resources in Comput-
ing, 1(2es), Summer 2001.

[4] J. M. Bishop, K. V. Renaud, and B. Worrall. Composition
of Distributed Software with Algon — Concepts and Possi-
bilities. In Workshop on Software Composition. SC 2002.,
Grenoble, France, April 6-14 2002. ETAPS.

[5] J. M. Bishop, B. Worrall, K. V. Renaud, and J. Lo. Java and
distribution of applications requiring mutual exclusion and
deadlock detection. Submitted for Review, June 2002.

[6] S. Burdette, T. Camp, and B. Bynum. Distributed BACI:
A Toolkit for Distributed Applications. Concurrency and
Computation: Practice and Experience, 12(1):35–52, Jan-
uary 2000.

[7] K. M. Chandy, J. Misra, and L. M. Haas. Distributed Dead-
lock Detection. ACM Transactions on Computer Systems,
1(2):144–156, May 1983.

[8] S. M. Coetzee and J. M. Bishop. A New Way to query GIS
on the web. IEEE Computer, 15(3):31–45, May–June 1998.

[9] T. A. Dahlberg and K. R. Subramanian. Visualization of
real-time survivability metrics for mobile networks. In Pro-
ceedings of the 3rd ACM international workshop on Model-
ing, analysis and simulation of wireless and mobile systems,
pages 113–118. ACM Press, 2000.

[10] M. T. Heath and J. A. Etheridge. Visualising the Perfor-
mance of Parallel Programs. IEEE Software, 8(5):29–39,
September 1991.

[11] J. K. Hollingsworth and B. P. Miller. Dynamic control of
performance monitoring on large scale parallel systems. In
Proceedings of the 7th international conference on Super-
computing, pages 185–194. ACM Press, 1993.

[12] H. Hsieh and R. Sivakumar. Performance comparison of
cellular and multi-hop wireless networks: A quantitative
study. ACM Sigmetrics Performance Evaluation Review,
29(1):113–122, June 2001.

[13] A. Inselberg. The plane with parallel coordinates. The Visual
Computer, 1(2):69–92, Oct. 1985.

[14] N. Kaveh and W. Emmerich. Deadlock Detection in Dis-
tributed Object Systems. In V. Gruhn, editor, Joint 8th Eu-
ropean Software Engineering Conference (ESEC) and 9th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-9), Vienna, Austria, Sept. 2001.

[15] B. Kolehofe, M. Papatriantifilou, and P. Tsigas. Distributed
Algorithm Visualisation for Educational Purposes. In 4th
SIGCSE/SIGCUE Conference. ITiCSE’99, Cracow, Poland,
June 1999.

[16] D. P. Konkin, G. M. Oster, and R. B. Bunt. Exploiting soft-
ware interfaces for performance measurement. In Proceed-
ings of the first international workshop on Software and per-
formance, pages 208–218. ACM Press, 1998.

[17] E. Koutsoupias and C. H. Papadimitriou. Beyond competi-
tive analysis. SIAM Journal on Computing, 30(1):394–400,
2000.

[18] J. Kramer. Distributed Software Engineering. In 16th ICSE
Conference, Sorrento, Italy, May 1994. Invited State of the
Art Report.

[19] W. Meira, T. J. LeBlanc, and A. Poulos. Waiting time analy-
sis and performance visualisation in carnival. In Symposium
on Parallel and Distributed Tools. SIGMETRICS, pages 1–
10, Philadelphia, Pennsylvania, 1996.

[20] J. Mellor-Crummey, R. Fowler, and D. Whalley. Tools for
application-oriented performance tuning. In Proceedings of
the 15th international conference on Supercomputing, pages
154–165. ACM Press, 2001.

[21] G. Murphy, A. Lai, R. J. Walker, and M. P. Robillard. Sep-
arating Features in Source Code: An Exploratory Study.
In 23rd International Conference on Software Engineering,
Toronto, Canada, May 12–19 2001.

[22] B. A. Nixon. Managing performance requirements for in-
formation systems. In Proceedings of the first international
workshop on Software and performance, pages 131–144.
ACM Press, 1998.

[23] R. Perlman and G. Varghese. Pitfalls in the design of dis-
tributed routing algorithms. In Symposium proceedings on
Communications architectures and protocols, pages 43–54.
ACM Press, 1988.

[24] G. Ricart and A. K. Agrawala. An Optimal Algorithm
for Mutual Exclusion Algorithms. Communications of the
ACM, 24(1):9–17, Jan. 1981.

[25] C. Shousha, D. Petriu, A. Jalnapurkar, and K. Ngo. Apply-
ing performance modelling to a telecommunication system.
In Proceedings of the First International Workshop on Soft-
ware and Performance, pages 1–6, 1998.

[26] M. Singhal and N. G. Shivaratri. Advanced Concepts in Op-
erating Systems. McGraw Hill, 1994.

[27] G. Tel. Introduction to Distributed Algorithms. Cambridge
University Press, 2nd edition, 2000.

[28] L. Tweedie. Characterizing interactive externalizations. In
Conference proceedings on Human factors in computing
systems, pages 375–382. ACM Press, 1997.

[29] R. J. Walker, G. C. Murphy, B. N. Freeman-Benson,
D. Wright, D. Swanson, and J. Isaak. Visualizing dynamic
software system information through high-level models. In
Conference on Object-Oriented, pages 271–283, 1998.

[30] I. Welch and R. J. Stroud. Kava — Using Byte code Rewrit-
ing to add Behavioural Reflection to Java. In COOTS ’01
— Proceedings of USENIX Conference on Object-Oriented
Technology, San Antonio, Texas, USA, January 29 – Febru-
ary 2 2001.

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

	citation_temp.pdf
	http://eprints.gla.ac.uk/3650/

	citation_temp.pdf
	http://eprints.gla.ac.uk/3650/

	citation_temp.pdf
	http://eprints.gla.ac.uk/3650/

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

