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ABSTRACT 

Autoimmune diseases show high diversity in the affected organs, clinical 

manifestations and disease dynamics. Yet they all share common features, such as the 

ectopic germinal centers found in many affected tissues. Lineage trees depict the 

diversification, via somatic hypermutation (SHM), of immunoglobulin variable-

region (IGV) genes. We previously developed an algorithm for quantifying the 

graphical properties of IGV gene lineage trees, allowing evaluation of the dynamical 

interplay between SHM and antigen-driven selection in different lymphoid tissues, 

species, and disease situations. Here, we apply this method to ectopic GC B cell 

clones from patients with Myasthenia Gravis, Rheumatoid Arthritis, and Sjögren’s 

Syndrome, using data scaling to minimize the effects of the large variability due to 

methodological differences between groups. Autoimmune trees were found to be 

significantly larger relative to normal controls. In contrast, comparison of the 

measurements for tree branching indicated that similar selection pressure operates on 

autoimmune and normal control clones. 

 

Keywords: germinal centers, somatic hypermutation, Myasthenia Gravis (MG), 

Rheumatoid Arthritis (RA), Sjögren’s Syndrome (SS).  
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1 INTRODUCTION  

Germinal Centers (GCs) in primary lymphoid follicles are where rapid B cell 

proliferation, differentiation, somatic hypermutation (SHM) of immunoglobulin 

variable region (IGV) genes, and antigen-driven selection, lead to the preferential 

survival of those B cells with high affinity receptors to the antigen. Mutational lineage 

trees, depicting clonal relationships between related cells within a lineage, have 

frequently been drawn to illustrate IGV gene diversification in GC B cell clones 

derived from a few founder B cells. The qualitative features of IGV lineage trees have 

been used to interpret the dynamics of the GC response [1-2]. However, qualitative 

observations are limited to only the most obvious tree shape characteristics, and can 

only be used to compare a small number of trees at one time. Hence, we developed a 

rigorous computer-aided algorithm for the measurement of graphical shape properties 

of lineage trees, MTree© [3]. This method enables a more extensive investigation of 

the dynamics of the GC response. Previous studies have demonstrated the usefulness 

of this method, and resulted in new insights of various aspects of the GC reaction in 

normal situations [3-4], ageing [5-6], B cell malignancies [7,8], and chronic viral 

diseases (Margolin et al, submitted). In the present study, the GCs of individuals with 

autoimmune (AI) diseases are studied using lineage tree analysis. 

The general cause and trigger of most AI diseases is unknown. Most AI disease 

studies focus on the role of T cells in the initiation of inflammation, whereas the 

production of pathogenic auto-antibodies by B cells is often overlooked [9]. 

Nevertheless, in many autoimmune diseases, ectopic GC-like areas develop within the 

afflicted tissue or organ, where AI B cells do undergo SHM and antigen mediated 

selection [10-14]. Hence, understanding the nature of ectopic GC B cell selection may 

yield new insights into the development of these diseases.  
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We created mutational lineage trees based on published IGV sequences from 

ectopic GC or affected tissue B cell clones in patients with Myasthenia Gravis (MG), 

Rheumatoid Arthritis (RA), Sjögren’s Syndrome (SS), and Multiple Sclerosis (MS). 

These IGV lineage trees were analyzed using our MTree© program and compared to 

IGV trees from normal human samples. We observed a high variability between the 

different data sets [15] due to the data having been generated by different research 

groups at different times, using several methods to extract DNA sequences from 

samples of patients in which disease duration and severity probably varied as well. 

Moreover, the methods of tree generation from sequence alignments differed for some 

data sets. In the present study, we used a number of scaling techniques to alleviate the 

effects of experimental inconsistencies between research groups. Although the effects 

of the varying experimental methods were not completely neutralized, our analysis 

reveals that AI disease lineage trees are larger than their normal counterparts, likely as 

a result of the chronic nature of AI disease. Surprisingly, however, the selection 

process of the AI germinal center remains similar to that of the normal GC. 

 

2 MATERIALS AND METHODS 

2.1 Sources of sequences and database of IGV and tree data  

A thorough literature and GenBank search yielded IGV sequences from patients with 

AI diseases. IGV sequences, lineage trees we created, and all tree measurements were 

stored in a database created specifically for lineage tree data storage and analysis, using 

a Microsoft SQL server (http://www.microsoft.com/sql/default.mspx), with a user-

friendly Microsoft Access interface. Database tables store the administrative data of the 

experimental groups, the patients and the diseases, along with IGV sequences, the trees 

themselves and the resulting tree measurements. The tables are set up hierarchically, 



 

5 

using unique identification keys so that data in different tables can be connected and 

obtained through queries (Supplementary Figure 1), and allow for a convenient 

connection with statistical application programs.  

 

2.2 Lineage tree generation and measurements 

Some of the studies we found [10,12,14] contained lineage trees but no published 

sequences. In others, only sequences were published [16-21]; in these cases, germline 

genes were identified by alignment with published human IGV using DNAPLOT 

(http://vbase.mrc-cpe.cam.ac.uk/), and accordingly grouped and aligned using 

ClustalW (http://www.ebi.ac.uk/clustalw/). Trees were then generated using our 

program IgTree© (M. Barak et al, in preparation), which is specifically tailored to 

deal with IGV sequences. Lineage tree shape properties were quantified as described 

[15] by our MTree© program (Supplementary Figure 2, Supplementary Table 1).  

 

2.3 Scaling 

Tree properties were scaled by either the sequence alignment length (S), or by pick 

size – the total number of sequences, defined as either the "Tree" pick size (the 

number of sequences used per tree, not including the root sequence, but may have 

included identical sequences); or the "Lab group" pick size, i.e., the total number of 

sequences available in the study group that could be used to generate the trees.  

 

2.4 Statistical analysis 

GC simulation results (Shahaf et al. in preparation) show that lineage tree properties 

are not normally distributed. Hence we used the Mann-Whitney nonparametric test for 
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independent samples, and the Wilcoxon test for related samples. Multiple comparison 

correction (as we measured 25 different tree properties) was done by the FDR method 

[22], thus the minimal α=0.05/25=0.002. FDR correction was performed separately 

for the unscaled and scaled data as they were compared independently of each other. 

Only differences that remained significant after FDR correction were considered as 

meaningful.  

 

2.5 R:S Analysis 

Replacement and silent mutations were enumerated and statistically analyzed with a 

computer program developed in our Lab (Zuckerman et al., unpublished) using the 

Lossos et al. multinomial correction [23] to the Chang & Casali method [24].  

 

3 RESULTS 

3.1 Large variability of AI data sets and the necessity for data scaling  

Mutational lineage trees of B cell clones from patients with MG, RA, SS, and MS 

[6,16-21], and from normal human GCs [25-26], were created from published and 

unpublished IgV sequence data; we also used published lineage trees [12,10,14]. Each 

dataset contained IGV sequences from different IGV groups and patients (Table 1). 

Where lineage tree measurements of different groups within a dataset did not 

significantly differ, such groups were combined [15]. Sample trees are shown in 

Figure 1.  

Tree measurements of AI data sets were compared to those of trees from normal 

human samples of both Peripheral blood lymphocytes (PBL [8]) and germinal centers 

(GC [6,26]), revealing large variability between the data of the different groups, 
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including between data sets of the same disease (Figure 2). Despite this variability, in 

all but two sets [10,14] the trees were larger than in the normal control data sets, 

whether we look at the number of leaves L, i.e. end cells in the sample (Figure 2A), 

the total number of mutations per clone, N (Figure 2B), or the maximum path length 

from root to leaf, PLmax (Figure 2C). This suggests a more vigorous diversification 

process in the ectopic AI GCs than in the normal controls.  

The differences found between the L, N, and PL of the different AI datasets are 

most likely due to small methodological differences at all stages of data extraction 

(sampling, cell labeling, and DNA amplification), the source of tissue sample and the 

duration of the disease at time of sequence extraction. Moreover, tree generation 

methods may differ between data sets as some trees [10,12,14] were taken from 

published data where IGV sequences were not available. Two AI datasets [10,14] had 

smaller N and PL measures than those of the normal controls, probably also due to 

methodological differences in Ig sequence extraction and tree generation, as both 

these data groups come from the same lab.  

In order to distinguish between methodological and actual differences, data were 

scaled by pick sizes or sequence alignment lengths. The sequence alignment length 

directly affects the number of nodes in a tree: the longer an alignment length, the 

greater the chances of finding mutations, hence longer alignments give large N and 

PL, amongst other outcomes. Thus N, PL, and partial paths on the tree (such as T, 

DASN or DLSN) may be scaled by sequence alignment length, to reduce the effects 

of sequence length differences, The pick size – the number of actual sequences which 

were sampled and are included in the tree – directly affects the number of leaves, 

which in turn affects the tree size N, and the degree of tree branching, as measured by 
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OD. Therefore, we scaled the N or OD measurements by either the "Tree pick size", 

or the "Lab group pick size", as defined above.  

A comparison of the average sequence alignment lengths (Figure 3C) between data 

sets showed some variability, although slight, relative to that of AI datasets in the tree 

size measurements. On the other hand, the variability of the lab pick size and tree pick 

size (Figure 3 A and B) of the different AI data sets seemed to reflect the variability 

seen in the unscaled tree measurements. 

 

3.2 Scaling confirms larger diversification in AI lineage trees 

All measurements were scaled by the sequence alignment lengths and then the rates of 

mutation per division, as measured by the PL, or the related measure DLFSN, were 

compared (Figure 4). Although variability between the AI data sets persisted, most of 

their PL and DLFSN measurements remained significantly larger than those of the 

normal controls, supporting the hypothesis of a more vigorous diversification process 

in the AI germinal centers.  

 

3.3 B cell selection in AI GCs is normal 

While trees from AI diseases have longer paths, representing a longer diversification 

process, this may or may not indicate changes in B cell selection. The degree of tree 

branching, measured as the number of outgoing branches per node or outgoing degree 

(OD), indicates the extent of selection pressure, based on the assumption that 

selection will kill cells and thus reduce the number of leaves and hence of branches 

[4]. Unscaled OD measurements did not vary greatly between all different AI data 

sets, (not shown). Nonetheless, the experimental variability likely influenced OD 

measurements as well, hence they were scaled by tree pick size (number of sequences 
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sampled to create the tree), as the more sequences that are available to build a tree, the 

higher the likelihood of an increase in tree branching. A comparison of the scaled OD 

measurements (Figure 5) revealed that, in spite of the variability between AI data 

groups, the values remained of similar magnitude or smaller than those of normal 

controls. This suggested a trend of normal tree branching and correspondingly, a 

normal selection strength acting on the B cells in the ectopic germinal centers.  

Similarly, the distances between adjacent split nodes (DASN), and the distances 

from a leaf to the last (or closest to the leaf) split node (DLSN), which are shorter in 

more branched trees and hence directly reflect selection strength, were scaled by 

sequence alignment length (Figure 6). The scaled DASN and DLSN, although slightly 

less variable than their unscaled values, were still mostly as large as those of control 

tissues, confirming the hypothesis of normal selection pressure.  

As an additional verification, we performed R:S mutation analysis [23-29] on our 

data, showing that the AI clones underwent positive antigen-mediated selection, at 

least as strong as that in normal clones (Supplementary Table 3). R:S analysis is 

known to give many false positive indications of selection [30-31]. Nonetheless, it 

may be used to validate the existence of selection in cases where it has already been 

suggested by our lineage analysis, though it cannot be used to refute our findings in 

cases where we found no selection.  

 

3.4 MS data from two time points 

Sequences obtained from two MS patients [20] were taken at two points in time each: 

Patient 1 was sampled at disease onset  (time 0) and 1 year later (time 1); Patient 2 

was sampled 9 years (time 0) and 13 years (time 1) after initial Diagnosis. Sequences 

from the two time points were compared in [20] for each patient using oligoclonal 
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patterns, heavy chain CDR3 lengths – which are a measure of repertoire diversity in 

normal populations – and frequencies of VH families used. The study concluded that 

a more active diversification pattern occurred in the initial stages of the disease 

followed by a persistence of "memory" clones that were selected for their antigenic 

specificities.  

 In order to better understand the diversification and selection pressures which occur 

over time in MS, we created IGV lineage trees from published sequences [20]. The 

tree measurements of those clones from the same patient that appeared in both time 

points were compared to each other, and a paired Wilcoxon test was performed. 

Because only four clones from both time points were available for each patient, tests 

lacked statistical significance. Nevertheless interesting trends were observed. although 

the number of accumulated mutations per cell, as measured by PL, increased from the 

first time point to the second in both patients, as would be expected if the same clones 

continued to develop with time, the degree of tree branching, represented by the 

maximum OD value (Figure 7), remained similar. Thus, in contrast to the conclusion 

of [20], our analysis suggests similar diversification patterns at both time points for 

both patients. Moreover, an increase in selection pressure in patient one and a 

decrease in patient two was shown by the DASN and DLSN measurements (Figure 7). 

The consequences which led to the observed changes are unknown, and more clones 

and time points would be necessary to make clear conclusions as to the nature of the 

B cells in the ectopic germinal centers of MS patients.  

 

4 DISCUSSION  

The present study aimed to investigate the ontogeny and progress of AI diseases, 

using lineage tree analysis of Ig sequences. To reduce the variability caused by 
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methodological differences between experimental groups, data were scaled by pick 

size or sequence alignment length. The results depicted the larger sizes of AI trees 

relative to the normal controls, indicating more mutations accumulated and a more 

vigorous diversification process, as expected due to the chronic nature of AI diseases. 

Even more notable was the unexpected discovery that selection acting on AI disease 

cells was no different from that in controls, despite the irregular locations of ectopic 

GCs. This conclusion is significant because, while the oligoclonal nature of the 

sequences in the germinal center was apparent from the experimental studies from 

which data were extracted, the extent of selection, if any, was unclear. In this context 

it is noteworthy that follicular dendritic cells have been identified in ectopic GCs in 

RA [32], SS [10], and MG [12] and their presence supports the evidence for antigen-

driven selection. 

The study by Colombo et al., [20], where Ig sequences were extracted from MS 

patients at two time points in the course of their disease, concluded that a more active 

diversification pattern occurs in the initial stages of the disease. The analysis 

presented here does not support this conclusion, as diversification shown by the PL 

measures continues at a similar pace. Moreover, the selection pressures in both cases 

seem to operate similarly on the clones. 

Lineage tree analysis thus has the potential of yielding new findings concerning 

ectopic GCs in MS and other AI diseases. In order to successfully do so, in future 

studies larger Ig sequence sampling, the sampling of more than two time points, and 

the study of more patients must be undertaken. Furthermore, studies in which 

sequences are extracted from a larger number of patients with the same disease 

undergoing different treatments, or varying in symptoms or response to treatment, at 

different time points, may lead to an understanding of the progression of the diseases 
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and the effects of their treatments. In most Ig sequence data available to date, only the 

V segment of the Ig gene is sequenced, and hence in this study only the V segments of 

the Ig sequences were aligned for tree generation. As a result, trees are smaller than 

they would have been had the whole IGV segment been used.  
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FIGURE LEGENDS 

Figure 1.  Sample tree figures created from B cell clones extracted from:  A. Normal 

Peyer's  patch [5];  B. Light chain B cell clones from the parotid gland of a SS patient 

[21];  C. Heavy chain B cell clones from a lymph node of a SS patient [19];  D. Heavy 

chain B cell clones from the CSF of an MS patient [16].  Double circles represent the 

germline (unmutated) root sequence; the dark circles are experimentally generated 

sequences, most of which are leaves; the dashed circles represent deduced 

intermediate sequences.  The numbers along the vertical lines represent the number of 

mutations unique to a sequence compared to the immediately preceding sequence.  

 

Figure 2 . Comparison of AI disease data to normal controls, unscaled: A) Number of 

leaves, L; B) Number of nodes, N; C) maximum path length, PLmax. Data sources 

are as in Table 1. Significant differences between AI datasets to normal GC control 

are labeled by ‘*’; Significant differences between AI datasets to normal PBL controls 

are labeled by ‘#’. P Values are given in Supplementary Table 2(A). Tree properties 

are as described in the text and in Supplementary Table 1.  

 

Figure 3. Comparison of all data sets for Lab group pick size (A), and Tree pick size 

(B) – both given in numbers of sequences; and sequence alignment length (C), given 

in number of nucleotides (except for groups 1 and 5, for which we do not have the 

sequence alignment lengths). Data sources are as in Figure 2. Tree properties are as 

described in the text and in Supplementary Table 1.  

 

Figure 4. Comparison of maximum PL (white) and DLFSN (striped) measures of AI 

data sets to normal controls, scaled by the sequence alignment length (minimum and 
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average measures reveal similar trends). Data sources and significance markers are as 

in Figure 2; P Values are given in Supplementary Table 2(B). Tree properties are as 

described in the text and in Supplementary Table 1.  

 

Figure 5 Comparison of maximum L (gray) and maximum OD (striped) measures of 

AI data sets compared to normal controls, scaled by the tree pick size (minimum and 

average OD measures reveal similar trends). Data sources and significance markers 

are as in Figure 2; P Values are given in Supplementary Table 2(C). Tree properties 

are as described in the text and in Supplementary Table 1.  

 

Figure 6. Comparison of maximum DASN (white) and DLSN (striped) measures, 

unscaled (top) and scaled by sequence alignment length (bottom), of the AI data sets 

to the normal controls. Data sources and significance markers are as in Figure 2; P 

Values are given in Supplementary Table 2(D,E). Tree properties are as described in 

the text and in Supplementary Table 1.   

 

Figure 7. Comparison between time point 1 (white) and 2 (striped) of tree 

measurements T, L, as well as maximum PL, OD, DASN and DLSN values (similar 

trends were found for average values of these measurements), from patient 1 (top) and 

patient 2 (bottom). Tree properties are as described in the text and in Supplementary 

Table 1.  

 

Supplementary Figure 1: The Hierarchical structure of the IGV lineage tree 

database. 
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Supplementary Fig 2  A sample Lineage tree (left) and the same lineage tree in text 

format as tree list (right). A lineage tree is defined, graphically, as a rooted tree where 

the nodes correspond to B cell receptor gene sequences. For two nodes X and Y, we 

say that Y is a child of X if the sequence corresponding to Y is a mutant of the 

sequence corresponding to X, which differs from X by only one mutation, and is one 

mutation further than X away from the original (germline) gene, that is, the root. Two 

B cells with identical receptor genes will thus correspond to the same node. A lineage 

tree depicts the maturation process of a B cell clone at a certain moment of 

observation – it consists only of the IG sequences of cells that were sampled at that 

moment and their ancestors back to the root, which were not necessarily sampled at 

the time of observation. Nodes in the tree can be either the root node, leaves (end-

point sequences), or internal nodes, which can be either split nodes (branching points) 

or pass-through nodes. The complete list of variables measured is given in 

Supplementary Table 1, including remarks on the meaning and usefulness of each 

variable. 
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Table 1: Data sources 
 

Refa Disease / Tissue # of 

Patients

# of 

Trees
Methods Ig Chain 

1 MG / Thymus 1 13 MD HC 

2 RA / ST 2 12 MD HC 

3 RA / ST 2 4 MD HC, λLC, κLC 

4 RA / ST 2 14 SCS HC 

5 SS / LSG 2 4 MD HC, LC 

SS / LSG 10 
6 

SS / LN 
2 

7 
MD HC 

SS / PBL 12 κLC 
7, 8 

SS / PG 
1 

9 
SCS 

λLC, κLC 

MS / CSF 7 
9 

MS / PBL 
2 

3 
SCS HC 

Normal / LN 2 4 MD HC 

Normal / PP 7 10 

Normal / Spleen 
5 

12 
MD HC 

11 Normal / PBL 2 42 SCS LC 

 

1-Sims et al. 2001 [12], 2-Gause et al. 1995 [18], 3-Kim et al. 1999 [14], 4-Miura et 

al., 2003 [17], 5-Stott et al., 1998 [10], 6-Gellrich et al., 1999 [19], 7-PG data; Jacobi 

et al., 2002 [21], 8-PBL data; Jacobi et al., 2002[21], 9-Colombo et al., 2000 [16], 10-

Kuppers et al. [21], 1993, and Banerjee et al., 2002 [5], 11- Abraham et al. 2005[22]. 

Tissues : ST : Synovial tissue ; PG : Parotid Gland; LSG; Labial salivary glands; LN: 

Lymph nodes; PP: Peyer's Patch. Experimental methods: MD: Micro-dissection; 

SCS: Single cell suspensions. aAll trees were generated using our algorithm from 

sequence data, except those in Sims et al., 2001 [12], Stott et al., 1998 [10], and Kim 

et al., 1999 [14], in which only trees and not sequences were given.  
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Supplementary Table 1:  Tree measurements and their definitions 
 

Tree variable definition Abbreviation Range 

Total number of nodes, including the root. Indicates the 

overall tree size. 
N N ∈ [2, ∞) 

Total number of leaves, that is, the number of distinct 

sequences found, for which there were no "descendant" 

sequences. 

L L ∈ [1, N-1] 

Number of internal nodes, that is, nodes that are not 

root or leaves. 
IN IN ∈ [0, N-(L+1)] 

Number of pass-through nodes, that is, internal nodes 

that have only one child. 
PTN PTN ∈ [0, IN] 

Length of tree trunk from root to the first split node, 

that is, the number of mutations shared by all leaves. 
T T ∈ [0, N-1] 

Path length, where a path is defined from the root to a 

leaf, hence PL gives the number of mutations per leaf.b 
PLa PL ∈ [1, N-1] 

Distance from a leaf to the first (closest to root) split 

node: DLFSN(leaf i) =PL(leaf i)-T 
DLFSNa DLFSN ∈ [1, MaxPL] 

Outgoing degree, representing the number of children 

per split node.c  
ODa 

AvgOD, MinOD, and 

MaxOD  ∈ [1,L] 

AvgOD2 ∈ [2,L] 

The root’s outgoing degree, that is, the number of 

branches emerging from the root.  RootD=1⇔ T>0.  
RootD RootD ∈ [1,L] 

Distance between adjacent split nodes, that is, between DASNa DASN ∈ [1, N-(L+1)] 
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two consecutive splits on the same path.d  

Distance from a leaf to the last (closest to leaf) split 

node.e  
DLSNa DLSN ∈ [1,N-1] 

Distance from the root to any split node. DRSNa DRSN ∈ [1, MaxPL] 

 
a. Minimum, Maximum and Average values measured 

b. Longer path lengths (in one group of trees relative to another) thus indicate that the 

cells are dividing more rapidly, and/or have a higher mutation rate (per division), 

and/or that the hypermutation process has been going on longer in these clones 

relative to those of the other group.    

c. Minimum and maximum OD are measured over split nodes, but if there are no 

splits (L=1) they both equal 1. AvgOD is measured over all nodes, including pass-

through nodes. AvgOD2 represents the outgoing degree averaged only over all split 

nodes.  

ODs are measured of a tree’s level of branching, or “bushiness”, which is 

interpreted as indicating the rate of diversification relative to the strength of the 

selection forces acting on the tree, as selection tends to “prune” the tree (by killing 

cells with disadvantageous mutations) and hence reduce its bushiness.  

d. It is an inverse measure of bushiness (or a direct measure of the relative strength of 

selection) over the whole tree, hence over the whole history of the clone.  

e. It is an inverse measure of bushiness (or a direct measure of the relative strength of 

selection) over the recent history of the clone. 
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Supplementary Table 3:  R:S analysisa 

 
Data 

Set 

# of 

Sequences 

Checked 

Pval Sig in 

FR 

Pval Sig in 

CDR 

R/S <2.9 in 

FR 

R/S>=2.

9 in 

CDR 

2 40 12/40 12/40 29/40 20/40 

  3.00E-01 3.00E-01 7.25E-01 5.00E-01

4 191 143/191 94/191 179/191 90/191 

  7.49E-01 4.92E-01 9.37E-01 4.71E-01

6 74 52/74 42/74 69/74 39/74 

  7.03E-01 5.68E-01 9.32E-01 5.27E-01

7 72 34/72 29/72 64/72 30/72 

  4.72E-01 4.03E-01 8.89E-01 4.17E-01

8 63 20/63 15/63 60/63 18/63 

  3.17E-01 2.38E-01 9.52E-01 2.86E-01

9 101 67/101 55/101 76/101 47/101 

  6.63E-01 5.45E-01 7.52E-01 4.65E-01

DDW 129 11/129 18/129 93/129 52/129 

  8.53E-02 1.40E-01 7.21E-01 4.03E-01

 
aA comparison of the results between the different AI datasets to the normal controls 

supported the results already shown by the OD tree measurements from our study.  

The analysis showed (third column) that the number of IGV sequences in each of the 

corresponding AI datasets had statistically significant differences (p< 0.05) from the 

random diversification frequencies of R and S mutations in the FR.  All AI datasets 

were found to have higher fractions than those in the normal datasets analyzed, 
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indicating that selection occurred in at least some of the AI clones.  Similarly, the AI 

dataset clones had larger fractions of statistically significant differences (p< 0.05) 

from the random diversification frequencies of R and S mutations in the CDR than the 

normal control datasets' clones (fourth column).  Again, this indicated that the AI 

clones analyzed had undergone selection.   

The R:S mutation ratio expected under a random process based on the inherent 

mutability of all codons and their frequencies is 2.9; hence an R:S ratio less than 2.9 

in the FR and at least 2.9 in the CDR is believed to represent positive antigen 

mediated selection of the B cell clones analyzedb.  The fraction of sequences to have 

an R:S ratio less than 2.9 (or in the case where S=0, R is less than 2.9)  in the FR is 

shown in the fifth column.  The results indicated that all of the AI datasets had the 

same or higher fractions of clones with an R:S ratio less than 2.9 in the FR.  The sixth 

column which contains the fractions of clones with an R:S ration more, or equal to 2.9 

(or in the case where S=0, R is at least 2.9) in the CDR, resulted in similar indications.  

All AI datasets had higher fractions of clones with an R:S ratio equal or above the 

random ration of 2.9.  Hence, it was apparent that the AI clones underwent positive 

antigen-mediated selection, at least as strong as that  

in normal clones, which supported our previous findings using tree measurement data. 

bJukes T.H., and King J.L. 1979. Evolutionary nucleotide replacements in DNA. Nature 281: 

605-606.  
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Supplementary Table 2: P-values from comparisons of tree properties 
 

AI Datasets 1 2 3 4 5 6 7 8 9  

Control sets 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 

L 3.97E-01 7.96E-05 2.12E-02 7.33E-02 8.69E-01 3.73E-02 4.74E-06 1.60E-07 4.89E-01 7.76E-03 6.85E-01 3.04E-04 4.83E-01   2.07E-03   5.50E-01 9.58E-04 

N 2.81E-01 1.20E-01 7.91E-02 3.31E-02 6.69E-01 8.45E-01 8.66E-10 7.83E-08 1.00E+00 6.82E-01 8.41E-09 2.63E-07 6.00E-04   5.88E-01   6.48E-07 2.90E-05 

 

 

A PLmax 8.69E-02 8.64E-02 2.12E-02 9.78E-02 7.18E-01 4.35E-01 8.66E-10 6.84E-07 7.18E-01 8.61E-01 1.58E-10 2.86E-07 2.57E-03   3.70E-01   2.10E-06 2.76E-04 

PLmin NA NA 6.02E-01 5.28E-01 1.00E+00 5.68E-01 6.81E-02 3.88E-01 NA NA 1.54E-06 1.99E-03 2.12E-01 9.56E-02 9.56E-04 3.35E-04 6.86E-06 1.41E-02 

PLmax NA NA 4.99E-03 1.05E-01 6.52E-01 1.70E-01 9.70E-09 3.68E-06 NA NA 4.41E-10 8.96E-07 1.54E-03 5.19E-02 8.84E-01 1.99E-01 2.12E-05 5.55E-03 

PLav NA NA 1.50E-02 3.28E-01 7.12E-01 2.10E-01 3.88E-08 2.02E-04 NA NA 8.82E-10 3.87E-06 8.89E-03 5.05E-01 1.04E-01 8.07E-03 1.48E-05 5.17E-03 

DLFSNmin NA NA 5.18E-01 2.11E-01 9.82E-02 3.72E-01 1.04E-03 1.48E-03 NA NA 7.03E-07 1.28E-05 7.43E-01 5.09E-01 3.87E-01 9.85E-01 2.90E-06 1.23E-04 

DLFSNmax NA NA 5.78E-03 3.30E-01 6.59E-02 5.87E-02 9.70E-09 1.72E-05 NA NA 4.41E-10 5.22E-06 6.25E-03 1.33E-01 1.73E-01 9.27E-01 4.10E-05 2.31E-02 

 

 

 

 

B 

DLFSNav NA NA 1.16E-02 1.35E-01 8.07E-02 5.87E-02 9.70E-09 1.48E-05 NA NA 4.41E-10 7.87E-07 1.45E-01 5.20E-03 6.11E-01 4.96E-01 2.12E-05 2.56E-03 

L (Leaves) 2.93E-01 4.72E-03 2.67E-01 4.18E-01 8.37E-01 6.99E-01 4.86E-03 5.87E-01 1.95E-01 9.84E-02 1.09E-03 3.60E-01 5.95E-02 4.17E-01 1.46E-01 3.55E-01 7.17E-02 5.93E-01 

ODmin 2.26E-01 1.18E-04 1.32E-02 5.35E-01 9.67E-01 2.40E-01 2.91E-04 2.59E-07 7.74E-01 4.23E-02 1.26E-01 3.83E-02 8.60E-01 2.11E-02 6.02E-01 1.28E-02 9.81E-01 2.43E-02 

ODmax 5.64E-02 5.66E-05 1.50E-02 5.96E-01 3.42E-01 3.26E-01 1.52E-05 2.16E-07 7.12E-01 4.23E-02 3.69E-01 2.19E-02 6.68E-01 2.77E-02 3.46E-01 5.89E-02 5.88E-01 1.63E-02 

ODavg 1.46E-01 1.88E-04 3.46E-02 6.67E-02 7.12E-01 1.47E-01 1.98E-05 6.04E-07 4.84E-01 1.45E-02 4.05E-01 8.59E-04 4.63E-01 5.72E-03 4.91E-01 2.37E-03 7.24E-01 2.05E-03 

 

 

 

 

C ODavg2 1.35E-01 6.74E-03 1.32E-02 9.84E-01 6.52E-01 5.92E-01 5.29E-05 2.26E-05 9.02E-01 2.62E-01 1.43E-01 2.68E-01 6.31E-01 1.25E-01 6.02E-01 1.69E-01 7.96E-01 1.10E-01 

DASNmax 1.23E-01 3.36E-01 6.48E-01 5.56E-01 7.05E-01 8.83E-01 2.93E-06 5.31E-04 6.69E-01 1.18E-01 1.02E-02 2.72E-02 7.06E-02     3.67E-01 2.15E-02 2.98E-02 

DASNav 1.00E-01 2.61E-01 7.05E-01 1.25E-03 4.42E-01 9.42E-01 1.21E-02 3.13E-02 6.69E-01 1.18E-01 8.20E-03 4.90E-02 3.56E-01     9.69E-01 6.90E-02 4.70E-01 

DLSNmax 6.03E-01 2.60E-01 5.68E-04 7.33E-02 2.43E-01 1.29E-02 8.66E-10 2.40E-05 2.75E-02 8.17E-03 2.25E-11 1.28E-05 1.54E-03     3.40E-01 1.45E-06 7.16E-03 

 

 

D 

 DLSNav 8.45E-01 2.02E-02 2.97E-04 2.51E-01 4.09E-01 1.63E-02 8.66E-10 6.91E-05 1.38E-02 4.15E-03 2.25E-11 4.93E-07 4.90E-04     1.32E-01 5.81E-06 2.23E-03 

DASNmax NA NA 8.87E-01 9.46E-01 9.62E-01 8.00E-01 4.18E-05 5.32E-04 NA NA 3.10E-02 2.74E-02 1.37E-01 2.10E-01 2.16E-01 4.46E-01 1.41E-01 5.19E-02 

DASNav NA NA 8.87E-01 7.36E-01 7.40E-01 1.00E+00 8.90E-02 1.91E-01 NA NA 7.70E-03 2.75E-02 6.73E-01 8.31E-01 5.67E-01 9.13E-01 2.97E-01 4.51E-01 

DLSNmax NA NA 1.37E-03 3.69E-01 6.59E-02 1.12E-02 9.70E-09 1.61E-04 NA NA 4.41E-10 1.49E-05 2.90E-03 3.72E-01 7.56E-02 2.75E-01 1.02E-05 3.12E-02 

 

 

 

E DLSNav NA NA 7.94E-04 8.51E-02 2.27E-01 8.38E-03 9.70E-09 2.44E-04 NA NA 4.41E-10 4.09E-07 1.23E-03 2.63E-01 1.22E-01 7.10E-02 4.10E-05 7.76E-03 

 
A - P-values of unscaled L, N, and PLmax values between the AI datasets to the normal GC and PBL controls.  B - P-values of PL and DLFSN values scaled 
by sequence alignment length in comparisons between the AI datasets to the normal GC and PBL controls.  C - P-values of L and OD values when scaled by 
tree pick size in comparisons between the AI datasets to the normal GC and PBL controls. D - P-values of unscaled DASN and DLSN values between the AI 
datasets to the normal GC and PBL controls. E - values of DASN and DLSN values when scaled by sequence alignment length between the AI datasets to the 
normal GC and PBL controls. Highlighted values were found to be significant after FDR correction. Tree properties and dataset identities described in the text 
and in Supplementary Table 1. 
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