UNIVERSITY

of
GLASGOW

Beck, J.C. and Prosser, P. and Selensky, E. (2002) Graph transformations
for the vehicle routing and job shop scheduling problems. Lecture Notes
in Computer Science 2502:pp. 60-74.

http://eprints.gla.ac.uk/3639/

Graph Transformations for the Vehicle Routing
and Job Shop Scheduling Problems*

J. Christopher Beck!, Patrick Prosser?, and Evgeny Selensky?

! ILOG SA, Paris, France. cbeck@ilog.fr
2 Department of Computing Science, University of Glasgow, Scotland.
pat/evgeny@dcs.gla.ac.uk

Abstract. The vehicle routing problem (VRP) and job shop schedul-
ing problem (JSP) are two common combinatorial problems that can
be naturally represented as graphs. A core component of solving each
problem can be modeled as finding a minimum cost Hamiltonian path
in a complete weighted graph. The graphs extracted from VRPs and
JSPs have different characteristics however, notably in the ratio of edge
weight to node weight. Our long term research question is to determine
the extent to which such graph characteristics impact the performance of
algorithms commonly applied to VRPs and JSPs. As a preliminary step,
in this paper we investigate five transformations for complete weighted
graphs that preserve the cost of Hamiltonian paths. These transforma-
tions are based on increasing node weights while reducing edge weights
or the inverse. We demonstrate how the transformations affect the ratio
of edge to node weight and how they change the relative weights of edges
at a node. Finally, we conjecture how the different transformations will
impact the performance of existing VRP and JSP solving techniques.

1 Introduction

The vehicle routing problem (VRP) and the job shop scheduling problem (JSP)
are two common combinatorial problems that have natural graphical represen-
tations. In fact, these two problems have a number of similarities both in their
graphical representations and on a conceptual level. While the structure of the
graphs is largely similar (and is, indeed, identical for core subproblems), the
graph characteristics tend to be different. In particular, the difference that forms
the focus of the work in this paper is that graphs representing VRP problems
tend to have very high edge weights relative to node weights while JSP graphs
are the reverse.

It is our conjecture that we can develop a deeper understanding of the models
and algorithms for VRPs and JSPs by examining and transforming the charac-
teristics of the underlying graph representations and by experimenting with the
transformed problems. In this paper, we present five graph transformations each
of which is based on increasing node weights while decreasing edge weights or

* This work was supported by EPSRC research grant GR/M90641 and ILOG SA.

the inverse. From the perspective of VRPs and JSPs, the transformations that
increase node weights relative to edge weights will make the graph look more like
a JSP problem than a VRP. Similarly, the inverse transformation will give the
problem characteristics that are more typical of VRPs. Our long term research
direction, therefore, is to identify interesting problem reformulations (perhaps
based on graph transformations), apply them to VRP and JSP problems, and
empirically analyze the performance of existing VRP and JSP techniques.

Previous work provides a basis for our intuitions and forms a preliminary
analysis. In Beck et al. [2] the three order-dependent transformations presented
below were applied to VRP problems. It was shown that:

— a guided local search based VRP solving technique significantly outperforms
a constructive, constraint programming based scheduling technique when
applied to VRP problems;

— the VRP solving technique sometimes performs worse when the problems
are transformed by the order-dependent transformations than it performs
on the non-transformed problems;

— the JSP solving technique performs marginally better on the transformed
problems than on the non-transformed problems.

While this work is interesting, no systematic analysis of the changes in the
graph characteristics induced by the transformation techniques was performed.
In addition, neither the direct order independent nor inverse transformations
presented below were tested. In this paper, we present the graph transformations
in a more general framework and perform a systematic analysis of their impact
on complete weighted graphs. Each of these transformations preserves the cost of
Hamiltonian paths. We are interested in the extent to which the transformations
change the ratio of edge weights to node weights and in the extent to which the
relative weights of edges are changed. It is our intuition, based on preliminary
empirical evidence, that these two characteristics have an impact on VRP and
JSP solving techniques.

In the following section, we define VRPs and JSPs in more depth together
with their standard graphical representations. We also discuss some similarities
and differences between these problems which provide motivation for our interest
in graph transformations. We then present the graph transformations addressed
in this paper followed by an empirical study of the impact of the transforma-
tions on characteristics of the graphs. We conclude by making some conjectures
regarding how the use of the transformations may affect the performance of
existing VRP and JSP solving techniques.

2 Vehicle Routing and Job Shop Scheduling

In the delivery variant of the vehicle routing problem (VRP), m identical vehi-
cles initially located at the depot are to deliver discrete quantities of goods to n
customers. The locations of the depot and customers are known. Each customer
has a discrete demand for goods and each vehicle has a discrete capacity, i.e., it

can carry quantities less than or equal to its capacity. A vehicle can make only
one tour starting at the depot, visiting a subset of customers and returning to
the depot. It is also assumed that travel time equals travel distance computed
using the Euclidean metric. A solution consists of a set of tours for a subset of
vehicles such that (i) all customers are served only once, (ii) the total distance
traveled by the fleet is minimal. The problem is NP-hard [7].

An n x m job shop scheduling problem (JSP) consists of n jobs and m re-
sources. Each job consists of a set of m completely ordered activities, where each
activity has a duration for which it must execute and a resource which it must ex-
ecute on. The complete ordering defines a set of precedence constraints, meaning
that no activity can begin execution until the activity that immediately precedes
it in the complete ordering has finished execution. Each of the m activities in a
single job requires exclusive use of one of the m resources defined in the problem.
No activities that require the same resource can overlap in their execution and
once an activity is started it must be executed for its entire duration (i.e., no
pre-emption is allowed). The job shop scheduling decision problem is to decide
if all activities can be scheduled, given for each job a release date of 0 and a due
date of the desired makespan, D, while respecting the resource and precedence
constraints. The job shop scheduling decision problem is NP-complete [7].

While not part of the basic JSP definition, transition times and resource
alternatives have been studied in the scheduling community [6]. In the case of a
transition time, there is an additional temporal constraint specifying a minimum
time interval that must expire between any pair of activities executed on the same
resource. The time interval may differ for different pairs of activities. When
alternative resources are represented, rather than having a single resource to
execute on, each activity has a set of resources from which the one to execute
on must be chosen.

2.1 Graphical Representations

In a graphical representation of a VRP, each node corresponds to a visit. The
duration of the visit is the weight of the node. Edges represent the travel between
visits, with the weight of the edges representing the time required for the travel.
A solution is a set of cycles each of which begins and ends at the distinguished
depot node. Aside from the depot node, each node appears in exactly one cycle.
An optimal solution is one in which the total weight of the cycles (node weights
plus edge weights) is minimized.

A JSP problem can also be represented as a graph. Each activity is repre-
sented by a node with the duration of the activity being the node weight. There
are two types of edges:

— directed, conjunctive edges represent a precedence constraint specifying that
one activity must precede another. Transition time is represented as the
weight of the edge.

— undirected, disjunctive edges represent the fact that the activity pair must
be ordered but that the specific ordering is not predefined in the problem
definition.

A solution is the transformation of each disjunctive edge into a conjunctive edge
such that the longest path in the graph is less than or equal to D.

We observe that the core problem of finding a path or cycle in a graph exists in
both VRP and JSP. In a VRP we must find a set of cycles while in a JSP we need
to find a set of paths, one for each resource, by transforming disjunctive edges
into conjunctive edges. In this paper, we will concentrate on the subproblem of
finding a single minimum cost Hamiltonian cycle in a complete weighted graph.
This is equivalent to a VRP problem with a single vehicle and to a JSP problem
with a single resource.

2.2 Motivation: VRP and JSP Similarities

As well as similar graph representations, on a conceptual level, vehicle routing
problems and scheduling problems are similar. Consider the following;:

— They both involve the execution of tasks (activities in the factory and visits
in the VRP).

— A task can only be completed through the use of one or more resources (tools
and machines on the shop floor, drivers and vehicles in the VRP).

— Resources are often constrained by capacity that specifies, for example, the
number of tasks that can be processed.

— Often there is a set of alternative resources to choose from (similar machines
on the shop floor, a fleet of vehicles in the VRP).

— When a task is completed there may be some interval of time that must
expire before the resource can be used for another task, and this interval
may depend on the pair of consecutive tasks (a transition time or set up cost
on a machine in the factory, a travel distance between visits in the VRP).

— There may be further temporal constraints among the tasks, specifying time
windows when they can and cannot be executed and/or specifying a nec-
essary relationship between tasks (e.g., task B must not be executed until
after task A is finished).

— The problem is solved when the resources have been assigned to tasks and
the tasks have been assigned start times or ordered such that all temporal
and capacity constraints are respected.

— There is an optimization criterion involving the minimization of various def-
initions of the length of time necessary to complete all the activities. For
example, one may seek to minimize the sum of all transition times.

With these similarities, one might expect that similar technology is used to
solve vehicle routing and scheduling problems. But this isn’t the case. For ex-
ample, local search techniques (tabu search, simulated annealing, guided local
search) [8,10,16] are more popular for vehicle routing problems whereas com-
plete and quasi-complete search techniques [9] are used more in scheduling. As a
single data point, ILOG markets two commercial C++ libraries (ILOG Scheduler
and Dispatcher) for solving scheduling and vehicle routing problems respectively.
Though both products are built on constraint programming technology, the core

technology in the scheduling product is global constraint propagation [11,12]
while the core technology in the vehicle routing product is local search [5].

On the other hand, one can see the following important differences between
the two problems:

— Transition time vs activity duration - In scheduling problems the duration of
an activity is typically much larger than the transition time. This is not the
case in the VRP, where, in fact, travel is many times the visit duration. Fur-
thermore, much of the research in scheduling has focused on techniques that
reason directly about the durations of activities while putting less emphasis
on the transition time. The state of the art in constraint-based scheduling is
based to a large extent on global constraint propagation [12,13] and heuris-
tic search techniques [14, 1] that do not directly take into account transition
time. Therefore, we expect that scheduling problems where the transition
time appears to be a key aspect of finding a solution, will be difficult for
current scheduling technology.

— Alternative resources - VRPs have many more alternative resources than are
typically studied in scheduling problems. Although the vehicles might not
all be used, a common benchmark set [15] starts with 20 or more vehicles.
In contrast, existing scheduling research on resource alternatives typically
has many fewer alternatives. For example, Focacci et al. [6] experimented
on problems with up to three alternatives while Davenport & Beck [4] used
problem instances of up to eight alternatives.

— Complex temporal relationships - Scheduling problems tend to have more
complex temporal relationships among activities. As we have seen, prece-
dence constraints among the activities in a job are part of the JSP. More com-
plex metric temporal constraints have been widely explored [3] and strong
global constraint propagation techniques that take such relationships into
account exist [11]. The standard VRP has no temporal constraints.

What are the characteristics of vehicle routing problems that make them
more amenable to local search techniques as opposed to construction methods?
What properties of scheduling problems make them more suitable to systematic
search and powerful constraint propagation?

In this paper, we focus on the issue of transition time vs duration. As noted
above, previous work [2] supports the intuition that VRP and JSP techniques
perform differently on VRP problems that have been transformed to increase
node weight than they do on the original VRP problems. As a first step toward a
systematic understanding of the reasons for these performance differences, in this
paper we investigate how the transformations affect the graph characteristics.

3 Cost-preserving transformations of complete
undirected graphs

We are interested in transformations that preserve the cost of any solution on
the graph. In the following sections, for simplicity, a solution is assumed to be

a cycle on the graph (i.e., we consider traveling salesman problem graphs; when
presenting a transformation we then show how it carries over to the case of
Hamiltonian paths). The cost of a solution is assumed to be the sum of the
weights of the nodes and edges in the respective cycle.

First, we present transformations that reduce the edge weights on a graph by
adding a portion of them to the node weights. We refer to these transformations
as direct. There also exists an inverse transformation which similarly reduces the
node weights and increases the edge weights.

3.1 Direct transformations

Order-dependent transformation Consider a traveling salesman problem
where nodes have weights as well as edges!. In a solution we must visit each
node once and once only. The cost of visiting a node is then the weight of the
edge entering the node plus the weight of the edge exiting the node, plus the
weight of the node itself. We can transform this cost such that the node weight
is increased and the weights on the entering and exiting edges are reduced.
Consider node j, with entering edge (4, 7) and exiting edge (4, k), with weights
wj, w;; and wj respectively. Let wmin = min(w;;, w;r). We can reduce the
weight of both edges by wmin, such that at least one of these becomes zero, and
add to the node weight 2w,,;,. This preserves the cost of entering, visiting, and
exiting j. More generally, for a TSP we can process each node i as follows:

1. let wmin be the weight of the cheapest edge incident on node i;

2. for each edge incident on node i subtract wy,;, from the edge’s weight;
3. add 6; = 2wmin to w;, the weight of node 4;

4. the node now has at least one incident edge of zero weight.

We need only process each node once, i.e., after processing, a node has at
least one zero-weight incident edge and re-processing will have no effect. Fig. 1
shows the sequence of transformations of a four-node clique. All nodes start with
weights shown in square brackets and are processed in alphabetic order. We start
with the initial problem and then process node A. This removes a weight of 4
from A’s incident edges and adds a weight of 8 to node A (Fig. 1b). We then
process node B. This reduces the weight of incident edges by 1 and adds a weight
of 2 to node B (Fig. 1c). Then we move on to node C' and reduce the weight of
incident edges by 4 and add a weight of 8 to node C (Fig. 1d). Finally, processing
D has no effect because there is a zero-weight incident edge. Note, that if we
processed the nodes in a different order we might end up with a different final
graph, i.e., the transformation is order-dependent.

In a Hamiltonian path we have two distinguished nodes, i.e., the start node
s and end node e, and the transformation is then modified as follows. Since s
is not entered and e is not exited, we do not add to the weights of those nodes
twice the weight of their minimum incident edges. Instead, we add the minimum
weight once only, and process all other nodes as above.

! For a conventional TSP node weights would then be zero.

D[3] D[3]
(a) Original graph (b) Step 1. Processing node A
BJ4] BH4|

D[3] D[3]

(c) Step 2. Processing node B (d) Step 3. Processing node C

Fig. 1. Transformation of a 4-node clique. Node weights are shown in square brackets.

As noted above, the transformation is order-dependent. In this paper we will
investigate three such transformations?. The first uses a lexicographic ordering
of nodes. We will refer to this as a lex ordering. The second, we will call maxMin;
when selecting a node ¢ to process next we choose a node such that its cheapest
incident edge is a maximum over all nodes. For example, in Fig. 1 this would
initially select node A or node C, as their cheapest incident edges are largest,
with a weight of 4. The intuition behind this is that it will attempt to make
the biggest reduction in edge weights. The third ordering is minMin. This might
be thought of as the anti-heuristic, selecting to process a node 7 with smallest
minimum incident edge weight. In Fig. 1 this would initially choose node B or
D.

Order-independent transformation One can also think of a direct transfor-
mation that, unlike the ones presented above, does not depend on the order of
processing the nodes. Indeed, instead of taking a node, updating its weight and
the weights of the incident edges and then choosing a next node, we can do the
following;:

1. for each node, add a cost of §; = 2w, to w;, the weight of node i;

? In [2] it was shown how to use these transformations in the case of time windows
specified on the nodes.

. .. . 8465
2. after processing all the nodes, for each edge (i, j) subtract a weight of =5~

wi_wi;w"_wj from the cost of edge (i, j), where the prime symbol indicates

a transformed value.

This is clearly order-independent. For the same example graph as in Fig. 1
this transformation will result in the graph shown in Fig. 2c. It is easy to check
that for this graph, the cost of any cycle remains the same after the transforma-
tion. The following theorem generalizes this result.

B[2]

D[3] D[9]

(a) Original graph (b) Step 1. Processing nodes

B[8]

D[9]

(c) Step 2. Processing edges

Fig. 2. Order-independent transformation of a 4-node clique. Node weights are shown
in square brackets.

Theorem 1. The order-independent transformation preserves the cost of any
solution on an arbitrary complete undirected graph.

Proof. The proof is by induction. To prove it for n = 3 (i.e., for the simplest case
of a cycle) we need to express the transformed edge and node weights through
the original edge and node weights and substitute these expressions into the cost
of the cycle after transformation.

Then assuming n = 4 and considering a 4-node tour 7' we can represent it
as two distinct 3-node tours Ty and T» (for which we already know that the
transformation preserves the costs) that have a common start (and end) nodes

and share an edge. Then we express the cost of T through the costs of T} and T,
bearing in mind that we have to subtract twice the weight of the common edge
(because we do not travel along it) as well as the weights of the nodes connected
by the common edge (as in T' we visit them only once).

Finally, for any n > 4 we notice that an n-node tour can be represented as
pairs of distinct 3-node tours that, as before, have a common edge and a start
node. All the rest can be done as above. QED.

If we have a Hamiltonian path, we never enter the start node s. Therefore
the amount we add to its weight equals ds = wWmin instead of 2w, as for an
arbitrary node. When processing the edges incident on s, we have to subtract a
weight of §s + % from the weight of the edge (s, 7). The same holds for the end
node because we never exit it. All the rest remains as above.

3.2 Inverse transformation

There also exists an inverse transformation that reduces node weights by adding
a portion of them to the edge weights.

This transformation is as follows. At each step we take an arbitrary node i.
Assume, without loss of generality, that the weight of node 7 is w; = 2k+ A, where
A is 0 when w; is even and 1 otherwise. Observe that we can always subtract 2k
from w; and add k to the weight of every edge incident upon . This will preserve
the cost of visiting node 4. Indeed, arriving in i along one of the incident edges
gives us an additional k of travel, entering node ¢ an additional —2k and leaving
the node along another incident edge an additional k).

Observe, first, that this inverse transformation is order-independent. This is
because each edge will either increase its weight or retain the original weight in
the worst case (in fact, the weight of any edge is updated at most twice, i.e.,
when processing the two nodes connected by the edge). Second, as a result of
this transformation we will have 0/1 node weights. A node weight will be 0 if
the original node weight is even, and 1 otherwise.

Consider the same example 4-node clique as above (Fig. 3a). The order of
processing the nodes is not important so we assume a lexicographic ordering.
Processing node A has no effect as there is nothing to subtract from its original
weight of 1 (wa = 2k+1 = 1 and we subtract 2k = 0). Processing node B results
in its weight becoming 0 and the weights of edges AB, DB and CB becoming 6,
4 and 6 respectively. After processing node C' its weight becomes equal to 0, the
weights of edges AC, BC' and DC become 10, 8 and 6. Finally, when processing
node D we subtract 2 from its weight (this gives us a weight of 1) and add 1
to the weights of nodes AD, BD and CD (they become equal to 5, 5 and 7).
Since, as noted above, we end up having 0/1 node weights, processing a node for
a second time will have no effect. The transformed graph is shown in Fig. 3b.

By construction, the inverse transformation always preserves the costs of
cycles. The transformation carries over to the case of Hamiltonian paths as
follows. For an arbitrary node everything is as above. For the start or end node,
we subtract the whole node weight and add it to the weight of each incident

10

D[3] D[1]

(a) Original graph (b) Transformed graph

Fig. 3. Inverse transformation of a 4-node clique. Node costs are shown in square
brackets

edge. As a result, the transformed weights of the start and end node will always
be 0 regardless of whether their original weights are odd or even.

4 An Empirical Study

The idea behind our experiments is to study the behavior of the proposed trans-
formations. In [2] it was shown that transformations of the original problem can
change the performance of typical JSP and VRP algorithms.

We conjecture that the difference in the performance of these algorithms may
be a result of:

1. changes related to the edge weight to node weight ratio (a decrease should
favor the JSP techniques);

2. changes in relative edge weights; the relative weights of edges at a node
may change and this may serve to disguise real VRP problems and reduce
performance in the case of direct transformations or, symmetrically, increase
performance in the case of inverse transformations;

3. changes in relative node weights; they might also influence the behavior of
different heuristics.

In this section we examine the extent of the changes that the different trans-
formations of sections 3.1 and 3.2 have on randomly generated complete undi-
rected graphs.

The transformations preserve the cost of cycles while changing the weights
of edges and nodes. We are interested in the extent to which the weight of a
cycle and the weight of the whole graph is transformed to the edges rather than
the nodes. To assess this “weight transfer” we have two measurements. The first
(Equation (1)) measures the change in the proportion of the weight of a cycle that
results from the edge weights. We expect the direct transformations to produce
negative values as they reduce edge weights in favor of node weights. In contrast,
the inverse transformation should produce a positive value. When measuring p.

11

for an instance, we generate 1000 random cycles consisting of |V'| nodes, where
|V'| is the number of nodes in the graph, and compute the arithmetic mean p(p.).

The second measurement (Equation (2)) assesses the relative change in the
relative weight contribution of the edges in the overall graph. This again is a
measure of the extent to which the transformations increase the edge weights
while decreasing the node weights. As with Equation (1), we expect the direct
transformations to result in negative values and the inverse transformation in
positive values.

— Z(iﬂ')EC wéj - E(i,j)EC’ Wij

Pe : (1)
Lijec Wis + 2 j)ec Wi
Xier Wi _ 2 (i,5)er Wis
o= 2, er Wit iev Wi D yer Wiitdlev Wi (2)

E(i,j)eE Wij
(i)er Wii T2 ey Wi

In (1) the summation is for all edges and nodes in a given cycle C. In (2)
the summation is for all edges and nodes in a graph; as before, dashed values
correspond to the transformed graph.

To estimate the extent of the changes in the relative edge weights we compare
all pairs of edges at a node and count the number of times that the weight-based
ordering of the pair changes from the original graph to the transformed graph.
Similarly to measure the changes in the relative node weights we calculate the
number of changes in the relative node weight for all pairs of nodes.

> i
€edges = N ik) (3)
;
€nodes = Z]V 1 (4)

where ¢}, = 1 if edges (¢, 7) and (i, k) at node i change their relative weights as

a result of transformation and 0 otherwise; N, = |V| W is the number
of such edge pairs in a graph; £;; = 1 if nodes i and j change their relative weight
and 0 otherwise; and, finally, N,, = W is the overall number of node pairs
in the graph. In expression (3) the summation is for all nodes and pairs of their
incident edges, in expression (4) for all pairs of nodes.

First, we generate graphs of sizes 10, 20, ..., 100 nodes: 100 instances of each
size, 1000 instances in total. Every instance is generated such that the edge
weights are uniformly distributed between 1 and 50, the node weights between
0 and 50. To every graph we then apply the five transformations described in
sections 3.1 and 3.2.

In Figs. 4 and 5 the arithmetic means u(p.) and p(p) are shown against the
graph size. We can see that both |u(p.)| and |u(p)| for the order independent
transformation is greater than for any order dependent one. This suggests, there-
fore, that the order independent transformation may be a better choice when we
want to increase an average node weight to edge weight ratio in a graph.

12

n(pg)

0.6 -

0.5 -

0.4 -

0.3

0.2

0.1

»
»

»
»
»

10 20 30 40 50 60 70 80 90 100 Number of

0

-0.1 1

-0.2

-0.3 -

T T T T T T T T T 1 Nodes

-4 Inverse = Order Independent -e-Lex = MaxMin —- MinMin

Fig. 4. u(p.) vs graph size

n(p)

0.3 4

0.2

0.1 4

Number of

-0.1 -

-0.2

-0.3 -

Nodes

10 20 30 40 50 60 70 80 20 100

-4« Inverse -# Order Independent -e-Lex = MaxMin - MinMin

Fig. 5. p(p) vs graph size

13

e edges)
012 4

0.10 -
0.08 -
0.06
0.04 -

0.02 -
Number of
Nodes

0 T 1
10 20 30 40 50 60 70 80 90 100

- Order-Independent -&-Lex -& MaxMin -5- MinMin

Fig. 6. p(ccdges) vs graph size

Figs. 6 and 7 depict p(€ecqges) and p(€nodes) against the graph size for the
direct transformations. Experiments showed that, in contrast to the direct trans-
formations, p(€edges) and p{€nodes) for the inverse transformation do not depend
on the size of graphs. Finally, experimenting with different ranges of edge and
node weights in the original generated graphs we obtained results similar to the
ones presented above.

Overall, our experiments demonstrate that the order independent direct
transformation has a larger impact on the relative edge and node weights than
the other direct transformations. That is, the order independent transformation
transfers more of the weight of a cycle to the nodes than the other direct trans-
formations. The inverse transformation transfers weights even more strongly as
we can see by comparing the absolute values of the inverse transformation to
that of the direct transformations.

5 Conclusion and Future Work

The experiments in this paper contribute to a deeper understanding of the
graph transformations and allow us to develop some conjectures with respect
to scheduling and routing performance. We expect for example, that the direct
transformations will tend to increase the performance of scheduling algorithms
as they reduce the edge weights in favor of node weights. This translates into a
reduction in transition time between activities and longer activity durations. As
argued above, this results in a problem that is closer to the problems upon which
much of the research in scheduling has been done. Within the direct transforma-
tions, we see that the order independent transformation not only transfers more

14

H(Enodes)
018

0.16 -
0.14 -
0.12 A
0.10 -
0.08 -
0.06
0.04
0.02 -

Number of

0 T T T 1 Nodes

10 20 30 40 50 60 70 80 S0 100

-# Order Independent -e-Lex -4« MaxMin = MinMin

Fig. 7. p(€nodes) vs graph size

relative weight to the nodes than the other direct transformations but that it
does so while performing about the same as the other transformations in terms
of relative node weights and relative edge weights. This means that the order
independent transformation will not degrade the heuristic ordering of nodes and
edges that can be generated from the original problem. As a consequence, we
conjecture that the order independent transformation will result in the greatest
increase in the performance of scheduling algorithms of all the direct transfor-
mations.

In the other direction, the experiments demonstrate that the inverse trans-
formation successfully transforms the graphs to place more weight in the edges of
the graphs. We conjecture that this should increase the performance of routing
algorithms.

Our future work is to apply these transformations systematically to VRP and
JSP problems and to test our conjectures with respect to algorithm performance.
In the longer term, we are interested in investigating further transformations in
order to isolate the characteristics that contribute to the performance of different
search algorithms.

15

References

1.

10.

11.

12.

13.

14.

15.

16.

J. C. Beck and M. S. Fox. Dynamic problem structure analysis as a basis
for constraint-directed scheduling heuristics. Artificial Intelligence, 117(1):31-81,
2000.

J.C. Beck, P. Prosser, and Selensky E. On the reformulation of vehicle
routing probelms and scheduling problems. APES technical report 44-2002,
http://www.dcs.st-and.ac.uk/~apes/apesreports.html.

A. Cesta, A. Oddi, and S.F. Smith. A constraint-based method for project schedul-
ing with time windows. Journal of Heuristics, 2000. to appear.

A.J. Davenport and J.C. Beck. An investigation into two approaches for constraint
directed resource allocation and scheduling. In INFORMS, 1999.

B. DeBacker, V. Furnon, P. Shaw, P. Kilby, and P. Prosser. Solving vehicle routing
problems using constraint programming and metaheuritics. Journal of Heuristics,
6:5001-523, 2000.

F. Focacci, P. Laborie, and W. Nuijten. Solving scheduling problems with setup
times and alternative resources. In Proceedings of the Fifth International Confer-
ence on Artificial Intelligence Planning and Scheduling, 2000.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic, 1995.

W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proceedings of
the Fourteenth International Joint Conference onf Artificial Intelligence (IJCAI-
95), pages 607613, 1995.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671-680, 1983.

P. Laborie. Algorithms for propagating resource constraints in AI planning and
scheduling: Existing approaches and new results. In Proceedings of the 6th European
Conference on Planning (ECP01), 2001.

W. P. M. Nuijten. Time and resource constrained scheduling: a constraint satisfac-
tion approach. PhD thesis, Department of Mathematics and Computing Science,
Eindhoven University of Technology, 1994.

C. La Pape. Implementation of Resource Constraints in ILOG SCHEDULE: A
Library for the Development of Constraint-Based Scheduling Systems. Intelligent
Systems Engineering, 3(2):55-66, 1994.

S. Smith and C. Cheng. Slack based heuristics for constraint satisfaction schedul-
ing. In Proceedings of the Eleventh National Conference on Artificial Intelligence
(AAAI-93), pages 139-144, 1993.

M. Solomon. Algorithms for the Vehicle Routing and Scheduling Problem with
Time Window Constraints. Operations Research, 35:254-365, 1987.

C. Voudouris and E.P.K. Tsang. Guided Local Search. European Journal of Op-
erational Research, 113(2):80-110, 1998.

	citation_temp.pdf
	http://eprints.gla.ac.uk/3639/

