UNIVERSITY

of
GLASGOW

Beck, J.C. and Prosser, P. and Selensky, E. (2002) On the reformulation
of vehicle routing problems and scheduling problems. Lecture Notes in
Computer Science 2371:pp. 282-2809.

http://eprints.gla.ac.uk/3638/



On the Reformulation of Vehicle Routing
Problems and Scheduling Problems*

J. Christopher Beck!, Patrick Prosser?, and Evgeny Selensky?

! 4C, University College Cork, Ireland cbeck@4c.ucc.ie
2 Department of Computing Science, University of Glasgow, Scotland.
pat/evgeny@dcs.gla.ac.uk

Abstract. We can reformulate a vehicle routing problem (VRP) as an
open shop scheduling problem (SSP) by representing visits as activities,
vehicles as resources on the factory floor, and travel as set up costs be-
tween activities. In this paper we present two reformulations: from VRP
to open shop, and the inverse, from SSP to VRP. Not surprisingly, VRP
technology performs poorly on reformulated SSP’s, as does scheduling
technology on reformulated VRP’s. We present a pre-processing trans-
formation that “compresses” the VRP, transforming an element of travel
into the duration of the visits. The compressed VRP’s are then reformu-
lated as scheduling problem, to determine if it is primarily distance in the
VRP that causes scheduling technology to degrade on the reformulated
problem. This is a step towards understanding the features of a problem
that make it more amenable to one technology rather than another.

1 Introduction

In the capacitated vehicle routing problem with time windows, m identical ve-
hicles initially located at a depot are to deliver discrete quantities of goods to
n customers. Each customer has a demand for goods and each vehicle has a ca-
pacity. A vehicle can make only one tour starting at the depot, visiting a subset
of customers, and returning to the depot. Time windows define an interval for
each customer within which the visit must be made. A solution is a set of tours
for a subset of vehicles such that all customers are served only once and time
window and capacity constraints are respected. The objective is to minimise
distance travelled, and sometimes additionally to reduce the number of vehicles
used. The problem is NP-hard [2].

An n x m job shop scheduling problem (JSSP) consists of n jobs and m
resources. Each job consists of a set of m completely ordered activities. Each
activity requires a resource and has an execution duration on that resource.
The complete ordering defines a set of precedence constraints, such that an
activity cannot begin execution until the preceeding activity has completed.
Activities that require the same resource cannot overlap in their execution and
no pre-emption is allowed. The problem is then to decide if all activities can be

* This work was supported by EPSRC research grant GR/M90641 and ILOG SA.



scheduled within a given makespan, while respecting the resource and precedence
constraints. The job shop scheduling decision problem is NP-complete [2].

What are the characteristics of vehicle routing problems that make them
more amenable to local search techniques allied to construction methods? What
properties of scheduling problems make them more suitable to systematic search
and powerful constraint propagation? In this paper, we take a first step toward
answering these questions. We present reformulations between the VRP and fac-
tory shop scheduling problems! (SSP’s), and identify three significant differences
between VRP’s and SSP’s. We then propose a pre-processing transformation of
VRP’s that reduces one of these differences, namely the ratio of processing times
to transition times. We then investigate the behaviour of this transformation us-
ing standard VRP and JSSP benchmarks.

2 Transformations: VRP < SSP

VRP — SSP: We reformulate the VRP into a SSP as follows. Each vehicle is
represented as a resource, and each customer visit as an activity. The distance
between a pair of visits corresponds to a transition time between respective
activities. Each activity can be performed on any resource, and is constrained
to start execution within the time window defined in the original VRP. Each
activity has a demand for a secondary resource, corresponding to a visit’s demand
within a vehicle. For each resource R there are two special activities Startg and
Endg. Activities Startg and Endg must be performed on resource R. Startg
must be the first activity performed on R and Endg the last. The transition time
between Startr and any other activity A; corresponds to the distance between
the depot and the i*" visit. Similarly the transition time between Endg and A;
corresponds to the distance between the depot and the it" visit. The processing
time of Startr and Endg is zero. We associate a consumable secondary resource
with every (primary) resource to model the capacity of vehicles. Consequently a
sequence of activities on a resource corresponds to a vehicle’s tour in the VRP.
In the resultant SSP each job consists of only one activity, each activity can be
performed on any resource, and there are transition times between each pair of
activities. The problem is then to minimise the sum of transition times on all
machines and maybe also to minimise the number of resources used.

SSP — VRP: We have for each resource a vehicle, and for each activity a
customer visit. The visits have a duration the same as that of the corresponding
activities. Each visit can be made only by the vehicles corresponding to the set
of resources for the activity. Any ordering between activities in a job results in
precedence constraints between visits. Transition times between activities corre-
spond to travel distances between visits. The deadline D imposes time windows
on visits. Assuming we have m resources, and therefore m vehicles, we have 2m
dummy visits corresponding to the departing and returning visits to the depot.

! We will refer to the jobshop and the open shop scheduling problems as the shop
scheduling problem, i.e. SSP.



A vehicle’s tour corresponds to a schedule on a resource. For the n x m JSSP we
have a VRP with m(n + 2) visits and m vehicles. Each visit can be performed
only by one vehicle. Since there are no transition times in the JSSP, there are no
travel distances between visits, but visits have durations corresponding to those
of the activities. There are precedence constraints between those visits corre-
sponding to activities in a job. The decision problem is then to find an ordering
of visits on vehicles that respects the precedence constraints and time windows.

In [3] Selensky investigated the two extreme cases identified above, i.e. the
reformulation of benchmark VRP’s as SSP’s (and their subsequent solution using
ILOG Scheduler) and the reformulation of JSSP benchmarks as VRP’s (solved
using ILOG Dispatcher). The VRP’s used were the 56 Solomon benchmarks
[4] and jobshop problems of size 6x6 [6] and 15x15 [5]. The VRP instances
reformulate to strange open shop problems, having essentially single activity
jobs, a vast selection of resources for each activity, vanishingly small durations,
and comparatively enormous transition times. Conversely the JSSP instances
map to VRP’s where a visit can be performed only by one vehicle and there is
no travel! Not surprisingly, the performance of the tools was greatly degraded
as the problems were reformulated.

While these results do not come as a great surprise, they do lend support
to the belief that there are characteristics of vehicle routing and scheduling
problems that make them more suitable to their standard resolution technology.
Three differences stand out. The transformed VRP have many more alternative
resources than typical scheduling problems. The SSP has more complex temporal
relations than the typical VRP. The activity duration is small and transition is
large in VRP, whereas in SSP it is the converse. In this paper we focus on
just one of these, the ratio of activity duration to transition time. We present
a transformation that attempts to reduce the difference between the transition
time and activity duration in VRP’s and investigate its effect on problem solving.

3 Compressing the VRP

The basic idea of this transformation is to reduce travel within a VRP by adding
a portion of travel costs to the costs of visits. Consequently, when the VRP is
reformulated as a SSP that SSP will have activities with relatively large durations
and small set up cost and look more like a normal SSP than a VRP. First, we
show how to compress a travelling salesman problem (TSP). We then take into
consideration time windows, and show how to apply our transformation to the
VRP.

Compressing the TSP: Consider a travelling salesman problem where nodes
have costs as well as edges. The cost of visiting a node is then the cost of the
edge entering the node plus the cost of the edge exiting the node, plus the cost of
the node itself. We can transform this cost such that the node cost is increased
and the costs on the entering and exiting edges are reduced.

Consider node j, with entering edge (i, j) and exiting edge (4, k), with costs
Cj, Ci; and Cj, respectively. Let Crpin = min(Cy,;,Cj,). We can reduce the



cost of both edges by Cj,in, such that one of these becomes zero, and add to the
node cost 2 X Cpin- This preserves the cost of entering, visiting, and exiting j.
More generally, for a TSP we can process each node i as follows

1. let C,i, be the cost of the cheapest edge incident on node i;

2. for each edge incident on node 7 subtract C,i, from the edge’s cost;
3. add a cost of 2 x Cy,in to C;, the cost of node i;

4. the node now has at least one incident edge of zero cost.

We need only process each node once, i.e. after processing, a node has at
least one zero cost incident edge and re-processing will have no effect. Figure
1 shows the sequence of transformations of a four-node clique. All nodes start
with zero cost and are processed in alphabetic order. Note that if we processed
the vertices in a different order we might end up with a different final graph, i.e.
the transformation is order dependent.

(a) Original graph (b) Step 1. Processing node A
B[2] B[2]

(c) Step 2. Processing node B (d) Step 3. Processing node C'

Fig. 1. Transformation of a 4-node clique. New node costs are shown in square brackets.

Compressing the VRP: In a Hamiltonian path we have two distinguished
nodes, i.e. the start node s and end node e, and the transformation is then
modified as follows. Since s is not entered and e is not exited, we do not add to
those vertices twice the cost of its minimum incident edge. Instead, we add the
minimum cost once only, and process all other vertices as above.

When time windows are associated with nodes the compression can change
the lower and upper bounds on the time of entering and exiting a node. Consider
the problem of finding a Hamiltonian path from s to e, where each node i has
a time window [ES;, LS;], i.e. we must arrive at node ¢ no earlier than E'S; and



no later than LS;. Assume we have a graph with edges (s,%), (s,J), and (3, j)
where C;; < Cs,; and O ; < C, j — Cs ;. Further assume that we process nodes
in the order s, then ¢, then j. On processing start node s, the transformed costs
of node s becomes C; = Cs + Cs,;, and transformed edges C; ; = Cs ; — Cs 4,
and C;; = 0. Node i is then processed, and this has no effect since it has a
zero cost incident edge C/, s On processing node j we get the transformed costs
C; = Ci+2xC;, Cf; = Cf ;—Cyj,and C} ; = 0. Note that via substitution
C" = C,; —Cs; C’z g Consequently, on the transformed graph the cost
of travelhng d1rect1y from s to j is Cs + C, ; — Cj 5, i.e. we arrive earlier on
the transformed graph and might now have to wait before entering node j. A
symmetric argument holds for leaving the node.

Theorem 1. On transforming an arbitrary node i, with time window [ES;, LS;],
its earliest start time becomes ES; — C; ; and its latest start time becomes LS; —
C;,;, where C; ; is the cost of the cheapest edge incident on node 3.

Proof. We need to prove that on travelling from i to j, or from j to 7 in the
transformed graph we maintain any slack that existed in the original graph. The
proof is by cases and is presented in full in [1]. QED

Order Dependence: The transformation is order dependent. We will inves-
tigate three transformations. The first, and most obvious, uses a lexicographic
ordering of vertices. We will refer to this as a lex ordering. The second, we call
maxMin; when selecting a node i to process next we choose a node such that its
cheapest incident edge is a maximum. For example, in Figure 1 this would ini-
tially select node A or node C, as their cheapest incident edges are largest, with
a cost of 4. The intuition behind this is that it will attempt to make the biggest
reduction in edge costs. The third ordering, is minMin. This might be thought
of as the anti-heuristic, selecting to process a node i with smallest minimum
incident edge cost. In Figure 1 this would initially choose node B or D.

4 An Empirical Study

After the VRP has been compressed, we can then reformulate the VRP as a
SSP and solve it using scheduling technology. We now attempt to determine if
any of these compressions of VRP benchmarks result in better solutions, with
or without the reformulation to a SSP.

The experiments were performed on the 56 Solomon benchmarks [4]. These
problems fall into six classes: C1, C2, R1, R2, RC1, and RC2. All problems in
a class have the same set of customer visits, i.e. there is one set of 100 x/y
coordinates corresponding to the customer visits. What differentiates problems
within a class is the distribution of time windows and demands. In C1 and C2
visits are clustered, and in C2 visits have larger time windows and increased
vehicle capacity, i.e. C2 is a less constrained set than C1. The locations of visits
in R1 and R2 are random, and again, each R2 instance has larger time windows
and increased vehicle capacities. The RC set is made up of clustered groups of
randomly generated visits, and again RC2 is a less constrained set than RC1.



The 56 benchmark VRP were transformed as above, using the lex ordering,
maxMin ordering, and minMin ordering. This gives us a total 224 problems,
i.e. the original problems and each problem transformed using the three or-
derings. The problems were then solved using ILOG Dispatcher, each instance
being allowed 10 minutes cpu time. The purpose of this was to determine how
VRP solving technology is influenced by the amount of travel within the prob-
lem. That is, will Dispatcher perform worse or better as we compress problems,
transforming travel between nodes into the cost of processing those nodes? The
same set of 224 problems were then reformulated as scheduling problems and
solved using ILOG Scheduler, and again given 10 minutes cpu time per instance.
Would the transformation result in an improvement in Scheduler’s performance
on the reformulated VRP’s?

Fig. 2. Percentage increase in cost as a result of transforming VRP’s and solving with
Dispatcher

Solving with Dispatcher: Figure 2 shows the percentage change in cost as a
result of the transformation when solving the VRPs with Dispatcher, i.e. with-
out reformulation. The black bars represent lex ordering, the grey bars maxMin
ordering, and minMin ordering is in white. Results are expressed as the average
percentage change in cost compared to the original problem solved with Dis-
patcher. We can see that for clustered problems all of the orderings result in an
increase in cost with a maximum of over 3%. An analysis of the first solutions
found, prior to improvement with local search, showed that the first solutions
were not considerably affected by the transformations (the largest increase in
cost of the first solutions being less than 0.3%). Unfortunately, the results for
problems with a random element in customer distributions are not so clear. How-
ever, this still demonstrates the sensitivity of the VRP solving technology to the
mix of travel and processing time. The maxMin ordering attempts to make the
largest compression of the problem, and this corresponds to our worst perfor-
mance of Dispatcher. This tends to suggest that the VRP technology degrades
as the VRP becomes more like a SSP. This might also suggest that an inverse
transformation, one that was able to stretch the VRP by converting the cost of
processing a visit into additional travel, might improve the VRP technology.



0 : J—\U : ﬁ : l—‘l_l -
_2 c1 c2 R1 R2 RC1

RC2

Fig. 3. Percentage increase in cost as a result of transforming VRP’s, reformulating
them, and solving with Scheduler

Solving with Scheduler: Each of the 224 problems were then reformulated
as SSP and solved using ILOG Scheduler. In Figure 3 we see again the per-
centage change in cost as a result of the transformation (again with black bars
for lex ordering, grey for maxMin ordering, and white for minMin ordering). In
the clustered problems, C1 and C2, we see a reduction in cost, and a compara-
tively larger improvement in the relaxed C2 problems. In the random problems,
R1 and R2, there tends to be an increase in cost, even greater in the less con-
strained R2 problems. This might suggest that the transformations do not fare
well in unstructured problems. In the RC problems it appears that the transfor-
mations reduce cost but only when the problems are less constrained (i.e. the
RC2 problems).

Distance appears to be a crucial factor when solving VRP’s with VRP tech-
nology. When reformulated as scheduling problems, transition times (i.e. travel
time) have more of an impact when problems have structure.

5 Conclusion and Future Work

We have presented reformulations between VRP’s and SSP’s. By solving the
reformulated problems with domain specific technologies we have demonstrated
that the vehicle routing technology appears to be well suited to VRP’s and
not at all suited to reformulated SSP’s [3]. The converse also appears to hold.
However we must add the caveat, that this is no surprise because the benchmark
problems used are extreme cases and should indeed be well fitted to their solving
technologies.

We have presented a transformation process for the VRP, which can be used
as a pre-processing step before solving a problem, or reformulating and solving
a problem. This transformation attempts to compress the VRP by adding an
element of travel into the processing of each node. This was done in the hope
that the reformulated problem would appear to be more like a SSP than a
VRP, i.e. duration of activities would be increased and transition times would
be decreased. Our experiments showed that the transformations can degrade
the VRP technology, suggesting that indeed travel is an important problem



feature. When reformulated as SSP it was less clear. Although the activities now
have increased duration and decreased transition times, they are still peculiar
problems: they remain as single activity jobs that can be performed on any
resource.

In our ongoing studies we are producing VRP’s with more structure, and
structure that we can control. This is done by gradually varying time windows,
vehicle capacity, heterogeneity of the fleet, sequencing constraints between vis-
its, etc. By gradually increasing the richness of these VRP’s we expect to reach
a point where SSP technology competes with VRP technology. Our study will
attempt to determine just what features bring about this competition. In addi-
tion, we plan to investigate the inverse transformation i.e. rather than compress a
VRP we might stretch it. Might this be a pre-processing step that will improve
VRP solving? Also, when there are set up costs in the SSP, might a further
compression improve solving?

Could the transformations and reformulations be of any real use? We believe
so. As we add more constraints to the VRP, such as sequencing constraints
between visits, restrict time windows, and specialise visits to a subset of the fleet,
VRP’s will tend to be more like SSP’s. Similarly, as the tooling on the shop floor
becomes more flexible, such that machines can perform many functions, and the
cost of re-configuring tools increases, the SSP will also tend to have features
similar to the VRP. Therefore on a spectrum that has the VRP at one end and
the JSSP at the other, we expect that as problems become richer it will be less
clear as to just what technology is most appropriate. At that time we might
expect that transformations and reformulations will become an important tool.

Acknowledgements
This work was done while the first author was employed by ILOG, SA.

References

1. J. Christopher Beck, Patrick Prosser, and Evgeny Selensky. On the reformulation
of vehicle routing problems and scheduling problems. Technical Report APES-44-
2002, APES Research Group, February 2002. Available from http://www.dcs.st-
and.ac.uk/ apes/apesreports.html.

2. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

3. Evgeny Selensky. On mutual reformulation of shop scheduling and vehicle routing.
In Proceedings of the 20th UK PLANSIG, pages 282291, 2001.

4. M. Solomon. Algorithms for the Vehicle Routing and Scheduling Problem with

Time Window Constraints. Operations Research, 35:254-365, 1987.

Jssp benchmarks, 15 by 15. http://www.dcs.gla.ac.uk/pras/resources.html.

6. Jssp benchmarks, 6 by 6. http://www.ms.ic.ac.uk/jeb/pub/jobshopl.txt.

ot



	citation_temp.pdf
	http://eprints.gla.ac.uk/3638/


