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Summary 
MR_L/MP-lpr/lpr (MRL/lpr) mice develop a spontaneous autoimmune disease. Serum from 
these mice contained significantly higher concentrations of nitrite/nitrate than serum from age- 
matched control M R L / M P - + / +  (MRL/+) ,  BALB/c or CBA/6J mice. Spleen and perito- 
neal cells from MRL/Ipr mice also produced significantly more nitric oxide (NO) than those 
from the control mice when cultured with interferon (IFN) ~/and lipopolysaccharide (LPS) in 
vitro. It is interesting to note that peritoneal cells from MRL/lpr mice also produced markedly 
higher concentrations of interleukin (IL) 12 than those from M R L / +  or BALB/c mice when 
cultured with the same stimuli. It is striking that cells from MRL/Ipr mice produced high con- 
centrations of  NO when cultured with IL-12 and LPS, whereas only low or background levels 
of NO were produced by similarly cultured cells from M R L / +  or BALB/c mice. The en- 
hanced NO synthesis induced by IFN-'y/LPS was substantially inhibited by anti-IL-12 anti- 
body. In addition, IL-12-induced NO production can also be markedly inhibited by anti-IFN-~ 
antibody, but only weakly inhibited by anti-tumor necrosis factor c~ antibody. The effect of 
IL-12 on NO production was dependent on the presence of natural killer and possibly T cells. 
Serum from MRL/Ipr mice contained significantly higher concentrations of  IL-12 compared 
with those of M R L / +  or BALB/c control mice. Daily injection of recombinant IL-12 led to 
increased serum levels of IFN-~/ and N O  metabolites, and accelerated glomerulonephritis in 
the young MRL/Ipr mice (but not in the M R L / +  mice) compared with controls injected with 
phosphate-buffered saline alone. These data, together with previous finding that N O synthase 
inhibitors can ameliorate autoimmune disease in MRL/Ipr mice, suggest that the high capacity 
of such mice to produce IL-12 and their greater responsiveness to IL-12, leading to the pro- 
duction of high concentrations of NO, are important factors in this spontaneous model of au- 
toimmune disease. 

M RL/MP-lpr/Ipr (MRL/Ipr) 1 mice develop a sponta- 
neous autoimmune disease and have been used ex- 

tensively as a model for clinical SLE. The disease is charac- 
terized by lymphadenopathy, autoantibody production, and 
inflammatory manifestations such as nephritis, vasculitis, and 
arthritis (1, 2). The cause of the disease is likely to be mul- 
tifactorial, including a single gene mutation (Ipr) of the fas 
apoptosis gene on mouse chromosome 19 (3, 4) and back- 
ground genes from the MRL strain (1, 4). 

Recent studies show that MRL/Ipr mice excreted signif- 
icantly higher concentrations of urinary nitrate/nitrite than 
age-matched normal C3H mice (5). Furthermore, MRL/  

1Abbreviations used in this paper: HRP, horseradish peroxidase; L-NMMA, 
L-N G monomethyl arginine; MRL/lpr, MRL/MP-lpr/lpt;, NO, nitric ox- 
ide; NOS, nitric oxide synthase. 

lpr mice showed markedly reduced proteinuria and mini- 
real glomemlar proliferation when treated orally with L-N G 
monomethyl arginine (L-NMMA), an inhibitor of nitric 
oxide synthase (NOS) (5). These data therefore strongly 
suggest that nitric oxide (NO) is an important mediator of 
the disease manifestation of  MRL/lpr mice. However, the 
mechanism(s) for this exaggerated N O  synthesis by MR L/  
lpr mice remains obscure. 

N O  is a critical mediator of a variety of biological func- 
tions, including vascular relaxation, platelet aggregation, 
neurotransmission, tumoricidal and microbicidal activity, 
and immunosuppression (6-10). It is also implicated in a 
range of immunopathologies (11-13). NO is derived from 
the guanidino nitrogen atom(s) (14) and molecular oxygen 
(15, 16) in a reaction catalyzed by the enzyme NOS. There 
are three major isoforms of NOS (17): the neuronal form 
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(nNOS) and the endothelial form (eNOS) produce the 
amounts o f  N O  required for physiological functions. The  
cytokine-inducible  form (iNOS) is induced by a number  o f  
immunological  stimuli, such as IFN-% TNF-~x, and LPS, 
and catalyzes the high output  o f  N O  which can be cyto-  
toxic. 

Since the expression and functional activities o f  I F N - y  
and TNF-or in SLE and its animal models are highly vari- 
able and controversial (18, 19), we explored the possibility 
that the exaggerated N O  synthesis in MP, L/lpr mice may 
be due to enhanced product ion o f  other  factor(s). W e  re- 
port  here that spleen and peritoneal cells from MILL/Ipr 
mice produced significantly higher concentrations o f  lL-12 
than those from the control  MP,  L / + ,  or BALB/c  mice 
when stimulated with LPS and IFN- 'y  in vitro. IL-12 and 
LPS synergistically stimulated the spleen and peritoneal cells 
from MILL/lpr mice, but  not  from the control  M R . L / +  
mice, to produce high levels o f  N O .  Furthermore,  young 
M1LL/Ipr mice developed accelerated glomerulonephrit is  
when injected with r lL-12 compared with control  injected 
with PBS alone. Thus, the enhanced capacity to produce 
IL-12 and the higher responsiveness to IL-12/LPS to p ro-  
duce N O  may play an important  role in the pathogenesis o f  
MRL/Ipr mice. 

Materials and Methods  

Mice. Female MILL/Ipr and age- and sex-matched control 
M R L / M P - + / + ,  BALB/c, and CBA/6J mice were obtained 
from Harlan Olac Ltd. (Bicester, UK). Some of the mice were 
bred in the animal facilities, University of Glasgow, from pairs 
obtained from Harlan Olac. They were housed in a conventional 
animal facility. 

Cytokines and Reagents. Murine rlFN-"/was a kind gift of Dr. 
G. Adolf (Bender, Vienna, Austria). Murine rlL-12 and mono- 
clonal (clones C15.6 and C15.1.2) and polyclonal (sheep no. 7) 
anti-IL-12 antibodies were generously provided by Dr. Stan Wolf  
(Genetic Institute, Boston, MA). Polyclonal anti-IL-12, anti- 
IFN-y, and anti-TNF-oe antibodies were raised in rabbits immu- 
nized with murine rlL-12, r lFN-y, or TNF-cx, respectively using 
a standard protocol. Monodonal anti-CD4 (YTS191) and anti- 
CD8 (YTS169) were kindly provided by Dr. H. Waldmann (Uni- 
versity of Oxford, Oxford, UK). Monoclonal anti-NK antibody 
(5E6, endotoxin removed) was obtained from PharMingen (San 
Diego, CA). Monoclonal anti-Thyl.2 (F7D5) was obtained from 
Olac Ltd. Fresh rabbit serum was used as a source of complement. 
t -NMMA and D-NMMA were kindly provided by Dr. S. 
Moncada (Glaxo Wellcome Research Laboratory, Beckenham, 
UK). LPS (Salmonella enteriticlis) and Con A were obtained from 
Sigma (Poole, UK). 

Mouse Peritoneal and Spleen Cell Preparation. Peritoneal cells were 
collected by injecting 5-7 ml of ice-cold PBS into the peritoneal 
cavity before harvesting and kept on ice before use. Spleen was 
then removed and a single cell suspension prepared by gently forc- 
ing the spleen through a sterile tea strainer into a petri dish in 
HBSS (Gibco, Paisley, UK) containing 1% FCS. The cells were then 
washed in serum-free HBSS and viability determined by trypan 
blue exclusion. 

Cell Depletion. Single cell suspensions (107 cells/m]) in PBS 
were incubated on ice for 30 min with anti-CD4, anti-CD8 (hy- 

bridoma culture supernatant, 1:1 dilution), anti-NK (5E6, 5 p.g/ 
nal), anti-Thyl.2 (ascites, 1:500 dilution) or anti-Thyl.2, plus anti- 
NK. After 2 washes with ice-cold PBS, the cells were incubated 
with or without rabbit complement (1:20) in 96-well culture plates 
for 45 min at 37~ at 2 X 10 s cells/well in 100 p.1 of cornplete 
culture medium (P, PMI 1640; Gibco) supplemented with 10% 
heat-inactivated FCS, 50 U/ml penicillin, 50 p-g/ml streptomy- 
cin, and 50 ~M 2-mercaptoethanol). Cells were then pelleted by 
centrifugation of the plate and the supernatant was carefully re- 
moved. The incubation was repeated with fresh complement and 
followed by two washes with warm medium. Samples of the re- 
sidual cells were phenotyped in parallel tubes by flow cytometry 
(Becton Dickinson & Co.) using FITC- or PE-conjugated anti- 
bodies to CD4, CD8 (13ecton Dickinson & Co., Oxford, UK) 
and CD3 (PharMingen). 

Ceil Culture. Spleen (2 • 105 viable cells/well) or resident 
peritoneal cells (1.5-3 • 105 cells/well, varied between different 
experiments) in 200 p-1 were cultured in full medium in 96-well 
plates (Nunc, Roskilde, Denmark) at 37~ and 5% CO2 for up to 
6 d. To stimulate for NO synthesis, graded doses of IL-12 and 
LPS were titrated and optimal doses determined. IFN-y was used 
at 50 U/ml unless indicated otherwise. To stimulate for IL-12 
production, graded doses of LPS were titrated with 50 U/ml of 
IFN-',/. In the antibody neutralization experiments, cells were 
preincubated with specific antibodies to murine IL-12 (sheep no. 7 
or rabbit anti-IL-12), IFN-% or TNF-ot for 30 rain at 37~ be- 
fore the addition of stimulators. Concentrations of antibody used 
were supraoptimal for neutralizing the amounts of cytokines 
likely to be produced as determined in preliminary experiments. 

CytokineAssays. IL-12 concentration was determined by an 
ELISA method using a combination of two rat monoclonal anti- 
bodies (C15.1.2 and C15.6, Genetic Institute) to mouse IL-12 
(p40 chain) as capture antibodies, and a sheep anti-mouse IL-12 
antibody (sheep no. 7) or a rabbit anti-mouse IL-12 (Rab.74.6) as 
detecting antibody. ELISA in 96-well plates (Immulon 4; Dyna- 
tech, Billingshurst, UK) was developed with a biotin-conjugated 
donkey anti-sheep IgG antibody (Sigma) followed by StrepAvi- 
din-horseradish peroxidase (HRP) or a H1kP-conjugated donkey 
anti-rabbit IgG (SAPU, Carluke, UK) accordingly, TMB HRP 
substrate (KPL Laboratories, Gaithersburg, MD); optical density 
was read on a Dynatech MR5000 ELISA reader at 630 nm. Re- 
combinant murine IL-12 (Genetic Institute) was used as standard. 
Normal donkey serum (2%) was used as blocker. IL-12 produc- 
tion was also determined by Western blot. Peritoneal cells from 
four 13-wk-old MP,.L/Ipr mice were pooled and cultured at 2.5 
• 105 cells/ml in 25-cm 2 flasks in the presence or absence of 
IFN-y (50 U/ml) and LPS (i p.g/m]). Culture supernatant was 
harvested at 6, 12, 24, and 48 h, 3-ml samples were immune pre- 
cipitated with rat monoclonal anti-IL-12 antibodies (clones C 15.1.2, 
and C15.6, both against the p40 chain oflL-12), and the immune 
complexes were captured by protein A-Sepharose beads. The 
precipitate was then resolved on 10% SDS-PAGE and transferred 
to nitrocellulose membranes (Bio-Rad, Herts, UK). After block- 
ing with Tris-buffered saline containing 0.1% Tween 20 and 2% 
BSA, the membrane was incubated sequentially with anti-IL-12 
antibody (sheep no. 7), biotin-conjugated donkey anti-sheep 
IgG, and HRP-conjugated avidin, and protein bands visualized 
by the enhanced chemiluminescence (ECL) system (Amersham 
Biosciences, Amersham, Bucks, UK). Recombinant murine IL- 
12 was run in parallel with the test samples. 

The IFN-2t concentration was also determined by ELISA using 
a rat monoclonal antibody (R46AT) and a rabbit anti-mouse 
IFN-~/antibody. The assay was developed with an alkaline phos- 
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p h a t a s e - c o n j u g a t e d  goat  an t i - r abb i t  IgG an t ibody  (Sigma) fol- 
l owed  by  p - n i t r o p h e n y l  phospha te .  Opt ica l  dens i ty  was read o n  a 
D y n a t e c h  MtL700  ELISA reader  at 410 nm.  R e c o m b i n a n t  m u r i n e  
I F N - ' , / w a s  used  as standard.  In  s o m e  exper iments ,  an  E L I S P O T  

Figure  1. Enhanced N O  syn- 
thesis in MRL/Ipr mice in vivo 
and in vitro. (a) Serum nitrite/ 
nitrate levels in MRL/Ipr lupus 
strain (n = 47) and three control 
strains (n = 40) of  mice at differ- 
ent ages. Total nitrite and nitrate 
concentration in serum was de- 
termined by the nitrate reductase 
method which converted nitrate 
into nitrite before measurement 
(see Materials and Methods). 
LPS/IFN-'y-induced N O  pro- 
duction by splenic (b-d) or peri- 
toneal (e) cells from young (6- 
wk; b and d) and old (25-wk; c 
and e) MILL/Ipr, M R L / + ,  or 
BALB/c mice. Spleen or perito- 
neal cells from three mice per 
group were pooled and stimu- 
lated in 96-well culture plates 
with IFN-y (50 U/m]) and ei- 
ther 1 b~g/m] (b, c, and e) or 
graded doses (d) of  LPS. In some 
cultures (d) L-NMMA (500 p,M) 
was added. Culture supernatants 
were collected at daily intervals 
and nitrite levels were measured 
by the Greiss method. Data 
shown are time course (b, c, and 
e), or (d) at day 6 as mean and SD 
of triplicate cultures. (*P <0.05, 
**P <0.01). (d, dotted line) Ni-  
trite level in unstimulated cul- 
tures. Consistent results were ob- 
tained in more than 10 repeated 
experiments. 

assay was also used to e n u m e r a t e  the  n u m b e r  o f  IFN-~/--secreting 
cells. This  was carried ou t  as descr ibed prev ious ly  (20). 

Assays for N O  Production. Tota l  ni trate and  nitri te concen t r a -  
t ion in s e r u m  was d e t e r m i n e d  by  the  convers ion  o f  ni trate in to  

1 4 4 9  H u a n g  et al. 

 on A
ugust 22, 2007 

w
w

w
.jem

.org
D

ow
nloaded from

 

http://www.jem.org


nitrite as described previously (21). Briefly, serum samples (30 p~l) 
were incubated with an equal volume of reaction buffer contain- 
ing nicotinamide adenine dinucleotide phosphate (1 mg/ml), ra-  
vin adenine dinucleotide (8.3 mg/ml), KH2PO 4 (0.1 M), and ni- 
trate reductase (0.7 mg/ml; Sigma), added immediately before 
use. Conversion was carried out at 37~ for 2 h in a 96-well 
ELISA plate (Immulon 2; Dynatech). Total nitrite content was 
then measured in a chemiluminescence NO analyzer (Dabisi 
model 2107; Quantitech Ltd., Milton Keynes, UK) according to 
the manufacturer's instruction. Nitrate standard was run in parallel 
with test samples. The assay was performed in triplicate and had a 
detection limit of  5 p~M. Nitrite concentration in culture super- 
natants was determined in triplicate by the Greiss reaction (22), 
using NaNO2 as standard with a detection limit of 1 b~M. 

Detection of Serum Autoantibodies by ELISA. This was carried out 
as described previously (23) using single (ss) or double (ds) stranded 
calf thymus DNA (Sigma) as target antigens, Pooled serum from 
20-wk-old MRL/lpr mice of known high titer of anti-DNA anti- 
bodies was used as standard serum. One titration unit was arbi- 
trarily defined as the amount of antibody present in a fixed dilu- 
tion of the standard serum (1/10,000 for anti-ssDNA and 1/1,000 
for anti-dsDNA antibodies). 

Renal Histology. Mouse kidney tissues were fixed in formalin 
and embedded in paraffin; 5-p~m sections were stained with peri- 
odic acid-Schiff. For histological examination by light microscopy, 
sections were randomly labeled and examined blind twice by two 
investigators. The severity of  kidney pathology was assessed by 
the extent of enlargement of glomeruli and mesangial cell prolif- 
eration, tuft-to-capsule adhesions, protein casts in tubules, inter- 
stitial cellular infiltration, and vasculitis. 

Statistical Analysis. Statistical significance (p value) was calcu- 
lated by the Mann Whitney test (Minitab software program; 
Minitab Inc., State College, PA). 

Results 

MRL/lpr Mice Produced Higher Concentrations of NO Me- 
tabolites than Normal Mice. Serum from MRL/Ipr, MRs +, 
BALB/c ,  and CBA mice o f  various ages were analyzed for 
N O  metabolites by convert ing nitrate to nitrite and then 
determining the total nitrite content.  Serum from MRL/Ipr 
mice consistently contained significantly higher concentra-  
tions o f  nitrate and nitrite than those from age- and sex- 
matched M R . L / + ,  BALB/c,  or CBA/6J  mice (Fig. 1 a). 
There  was no significant difference be tween the concentra-  
tions of  N O  metabolites p roduced  by M R L / + ,  BALB/c,  
or CBA mice. These results therefore confirm previous 
findings (5) that MRL/lpr mice produce exaggerated levels of  
N O  in vivo. 

To analyze the mechanism(s) for the exaggerated p ro-  
duction o f  N O  by the MP,.L/lpr mice, spleen (Fig. 1, b-d) 
or peri toneal (Fig. 1 e) cells from MRL/Ipr, M R . L / + ,  or 
BALB/c  mice were cultured with I F N - y  and LPS in vitro 
for up to 8 d, and the concentrations of  nitrite in the cul- 
ture supernatants determined.  Cells from MR.L/Ipr mice 
consistently produced significantly higher levels o f  N O  
than similarly cultured cells from age-matched young  (6- 
wk-old ,  Fig. 1, b and d) or old (24-wk-old,  Fig. 1, c and e) 
MRL/+,  or BALB/c  mice. The  product ion o f  N O  was 
LPS dose dependent  and was inhibitable by L - N M M A  
(Fig. 1 d). IFN-~/a lone  or LPS alone induced only a mini-  
m u m  level o f  N O  synthesis by spleen cells (see Fig. 3, b and 
c). LPS alone did, however,  induce significant levels o f  N O  
product ion by Ipr peritoneal cells (see Fig. 3 e). 

Peritoneal and Spleen Cells from MRL/Ipr Mice Produce High 
Concentrations oflL-12. W e  next investigated the produc-  

Figure 2. Enhanced IL-12 production by peritoneal 
calls from MkL/lpr mice. Pooled peritoneal cells from 
three mice per group of MR.L/Ipr or MR.L/+ strains (2- 
3-mo-old) were cultured in the presence or absence of 
IFN-~/ (50 U/ml) and LPS. IL-12 production in the cell 
cultures (triplicates) was determined by ELISA: (a) LPS 
dose-responses at day 4; (b) time course with 1 txg/ml 
LPS. The data shown were representative of three repeated 
experiments. (c) Western blot analysis of IL-12 expression 
showed inducible IL-12 p40 chain (time course) identical 
to that of the rIL-12 control. The two distinct p40 bands 
may be due to different degrees of glycosylation (24). 
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Figure 3. Spleen and peritoneal cells from MILL/Ipr mice produced high concentrations of  N O  in response to rlL-12 and LPS. Pooled splenic (a-c) or 
peritoneal (d-f) cells from MtLL/Ipr, MILL/+,  and BALB/c mice (3-mo-old, three mice per group) were stimulated in 96-well culture plates with or 
without fixed or different doses of  rIL-12 and LPS. Culture supernatants were collected at daffy intervals and nitrite levels measured by the Greiss 
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(a) or peritoneal (b) cells from three MP,_L/Ipr mice (3-too-old) were stimulated for 6 or 4 d, respectively, with graded doses of IFN-'y and 1 txg/ml LPS 
in the presence of a rabbit anti-IL-12 antiserum (Rab.74.6) or preimmune control serum (1:100). Nitrite concentrations were expressed as mean and SD 
oftriphcate cultures. (Dotted lines) Nitrite levels in cultures with LPS alone. Results from two repeated experiments were similar. (Note different scale for 
a and b). 

t ion o f lL -12 ,  a powerful  immune  stimulatory cytokine, by 
the MRL/Ipr mice. Peritoneal cells from normal BALB/c  
or M R . L / +  mice produced only a low level o f l L - 1 2  when 
cultured with IFN- 'y  and LPS in vitro. By contrast, per i to-  
neal cells from age-matched MRL/lpr mice produced up to 
10-fold more  IL-12 when  cultured under  identical condi-  
tions (Fig. 2). IL-12 product ion by the cells o f  MRL/lpr 
mice was LPS dose- and t ime-dependent ,  reaching a pla- 
teau level after 12 h (Fig. 2, b and c). LPS or IFN-~ /a lone  
induced min imum amounts o f  IL-12 synthesis. Similar re- 
sults were obtained with spleen cells, except that the levels 
of  IL-12 produced were lower (data not  shown). 

Spleen and Peritoneal Cells from MRL/Ipr Mice Produce High 
Levels of NO When Stimulated with IL-12 and LPS. Subse- 
quent experiments were therefore carried out  to investigate 
the possible link between IL-12 and N O  synthesis by 
MP,.L/lpr mice. Spleen cells from MRL/lpr mice produced 
markedly higher concentrations o f  N O  than those from 

age-matched BALB/c  or MRL/+ mice when cultured 
with IL-12 and LPS (Fig. 3, a-c). Nitr i te  was detectable in 
the culture supernatant after 2 d and cont inued to increase 
up to day 6 (Fig. 3 a). N O  product ion was both IL-12 and 
LPS dependent  (Fig. 3, b and c). High  concentrations o f  ni-  
trite were also detected in cultures o f  peri toneal cells from 
MRL/Ipr mice (Fig. 3, d and e). N O  product ion in the 
present system is dependent  on the adherent cell popula-  
t ion (>90% macrophages) and barely detectable in the 
nonadherent  cell population. However ,  removal o f  nonad-  
herent cells significantly reduced (by 70-82%) the IL -12 -  
induced N O  product ion (Fig. 3 J~. This suggests that the 
IL-12-dr iven  N O  synthesis was via its effect on nonadher-  
ent cells. 

Since IFN-',/  and IL-12 are known  to induce each 
other 's  synthesis, we then determined whether  the en- 
hanced product ion o f  N O  by spleen and peritoneal cells 
from MRL/Ipr mice activated by IFN-~/and  LPS was IL-12 

method. (a and d) Kinetics of NO production with 1 ~g/ml LPS plus 10 ng/ml rlL-12. (b and e) show LPS dose-responses with 10 ng/ml IL-12 at days 
6 and 4, respectively. (c) IL-12 dose-response with 1 Ixg/m-t LPS at day 6. (f) Induction of NO production by IL-12/LPS or IFN-~//LPS by adherent 
and nonadherent peritoneal cells from MRL/Ipr mice. Nonadherent cells were separated from adherent cells by plastic adhesion and cultured in separate 
wells with fixed doses of LPS (1 Izg/ml) and IL-12 (10 ng/ml) or IFN-'y (50 U/ml). Data shown are nitrite concentrations as percentage of the total un- 
separated cells in the control cultures (mean of triplicates). (*P <0.05, *'P <0.01). 
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Figure 5. Inhibition of lL-12/  
LPS-induced NO production by 
antibodies to IL-12, IFN-3', and 
TNF-(x, and by L-NMMA. 
Pooled spleen (from two mice, 
a) or peritoneal (from five mice, 
b) cells from 2-3-mo-old MR.L/ 
lpr mice were stimulated for 6 or 
4 d, respectively, with rlL-12 (10 
ng/nfl) and LPS (1 p~g/ml) with 
or without addition ofpolyclonal 
antibodies (50 ~g/ml) to mouse 
IL-12, IFN-% TNF-c~, IFN-~/ 
and TNF-~x, or control normal 
rabbit IgG (NR IgG). In some 
spleen cell cultures, a NOS in- 
hibitor, L-NMMA or its inert 
enanfiomer control I)-NMMA 
(500 p.M) were added. Data 
shown are mean and SD of  
triplicate cultures (*P <0.05, 
**P <0.01). Similar results were 
obtained from four experiments. 
(Dotted line, b) Nitrite level in the 
cultures of  peritoneal cells with 
LPS alone. 
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Figure 6. IL-12/LPS-induced IFN-'y 
production in normal and lupus mice. 
Pooled spleen cells from age- and sex- 
matched MP,.L/Ipr, MR.L/+,  or BALB/c 
mice (n = 3) were stimulated with 
IL-12 and LPS for 3 d and IFN-y pro- 
duction was determined by ELISA. (a) 
Dose-response studies of  IL-12 with 
1 Izg/ml LPS; (b) dose-response studies of 
LPS with 10 ng/ml IL-12, IFN-'y levels 
in the unstimulated cultures were <35 
pg/ml.  Data shown are mean and SD of 
triplicates cultures. 

dependent. Spleen and peritoneal cells were stimulated 
with IFN-~/ and LPS as above in the presence of a rabbit 
anti-IL-12 antiserum. The production of NO by these cells 
was markedly inhibited by the antiserum but not by the 
control preimmune serum (Fig. 4). The inhibition was in- 
complete. This was because IFN-y and LPS can be ex- 
pected to directly activate macrophages to produce NO. 
The ability of an anti-IL-12 antibody to inhibit N O  syn- 
thesis also indicated that the IL-12 detected by ELISA in 
the culture supernatants of cells activated with IFN-',//LPS 
(e.g., Fig. 2) was not due to the IL-12 p40 homodimer. 

IL-12/LPS-induced NO Production Involves IFN-T and 
TNF-c~. Production of  NO by spleen and peritoneal cells 

from MR_L/lpr mice activated with IL-12 and LPS can be 
completely abrogated by anti-IL-12 antibody, markedly in- 
hibited by anti-IFN-'g antibody, and was marginally af- 
fected by anti-TNF-ot antibody, but was further inhibited 
by the combination of anti-IFN-y and anti-TNF-e~ anti- 
bodies (Fig. 5), suggesting that IL-12/LPS-induced NO 
synthesis may be via IFN-~/and TNF-eL. However, there was 
no direct correlation between NO synthesis and the level 
of IFN-'y produced in cultures of spleen cells from MRL/  
lpr, MR.L/+,  or BALB/c mice when stimulated with IL- 
12 and LPS under identical conditions (Fig. 6, as compared 
to Fig. 3, b and c). Thus, whereas cells from MR.L/Ipr mice 
produced a high concentration of NO and those from the 

lOO 

8o 

c 
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Figure 7. IL-12/LPS-induced N O  synthesis involves 
NK and T cells. Pooled peritoneal cells from two MP.L/lpr 
mice (5-mo-old) were pretreated with antibodies against 
CD4, CD8, NK cell marker 5E6, Thyl .2 ,  or NK 5E6 plus 
Thyl .2  and then followed by incubation with rabbit serum 
as the source of complement. The cells were then stimu- 
lated for 4 d with rlL-12 (10 ng/ml) and LPS (1 txg/ml), or 
cultured in medium only as unstimulated control. Data are 
from one of two similar experiments and are expressed as 
percentage of N O  concentration in the control cultures of  
stimulated cells without pretreatment (mean + SD, n = 3, 
*P <0.05, **P <0.01). 
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MR.L/+ and BALB/c mice produced only a minimum 
amount of  NO, cells from the BALB/c mice produced 
markedly higher concentrations of  IFN-~/than those pro- 
duced by cells from MRL/Ipr mice which was indistin- 
guishable from those of  M R L / +  mice. Spleen cells from 
BALB/c mice also produced markedly higher concentra- 
tions of  IFN-~/ and higher numbers of IFN-~/--secreting 
cells than those from MRL/Ipr mice when cultured with 
the T cell mitogen, Con A (2.5 ~g/ml), over an extended 
period (up to 120 h) as detected by ELISA and by 
ELISPOT (data not shown). 

IL-I2-induced NO Synthesis Involves NK and T Cells. 
To determine the cell types involved in the enhanced N O  
synthesis, cell-depletion experiments were carried out in vitro 
using cytolytic antibodies and complement. Depletion of  
Thyl .2 + cells partially reduced NO production, whereas 
depletion of  NK cells almost completely abrogated the pro- 
duction of  NO by peritoneal cells from MRL/Ipr mice 
stimulated with IL-12 and LPS (Fig. 7). Depletion of  
CD4 + or CD8 + cells alone had only a modest effect. Since 
some NK cells also express CD8 and Thyl .2  antigens (25), 
it is likely that IL-12-induced NO synthesis involves mainly 
NK cells in addition to the adherent population. 

Evidence for the Enhanced IL-12 Synthesis in MRL/Ipr Mice 
In Vivo. To confirm the in vitro observations of  enhanced 
IL-12 activity in the lupus model, experiments were carried 
out to measure serum levels of  IL-12, IFN-% and TNF-ot 
in mice of different age and compared with those of  sex- 
and age-matched M R L / +  and BALB/c control mice. Fig. 8 
shows that serum IL-12 levels were markedly higher in the 
Ipr mice, especially in the old mice with clinical disease 
compared with controls (12-fold in 5-8-too-old mice). This 
was in parallel with the elevated levels of  nitrite/nitrate in 
the serum (Fig. 1 a). Treatment of young (1-2-too-old) 
mice with LPS for as little as 2 h resulted in significantly 
higher serum IL-12 levels in MRL/Ipr mice compared with 
similarly treated control M R L / +  mice (Fig. 8 c). Serum 
IFN-~/ and TNF-a  were found to be low, variable, and 
comparable (data not shown). 

rlL-12 Accelerates Autoimmune Disease in MRL/lpr Mice. 
To investigate directly the role oflL-12 in the induction of  
autoimmune disease, young (3-wk-old) MRL/Ipr mice were 
given daily intraperitoneal injections of  rlL-12 (300 ng/ 
mouse/day) or a similar volume of  PBS for 9 wk. Mice 
were then killed and the histopathology of  the kidney ex- 
amined. Gross morphology of the kidneys from the IL-12- 
treated mice had a pale waxy surface and were firmer on 
sectioning, whereas those from the control PBS-injected 
mice appeared normal. Histological examination revealed 
enlarged glomeruli with significant glomerular and mesan- 
gial hypercellularity in the IL-12-treated group. In particu- 
lar, most of  the IL-12-treated group showed severe damage 
to the glomeruli, with thickening of the Bowman's capsule 
basement membrane and tuft-to-capsule adhesions and pro- 
tein casts (Fig. 9 c) which were largely absent or scanty in 
the PBS-treated group (Fig. 9 a). In contrast, pyelonephritis 
with extensive vasculitis and infiltration of mononuclear 
cells at the kidney medullary region (Fig. 9 b) was promi- 
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nent in all the mice in the PBS-treated group. These changes 
were minimal in the IL-12-treated mice (Fig. 9 d). 

Spleen cells from the rlL-12-treated mice showed a sig- 
nificantly higher percentage o fCD 3  § (51.5 vs 44.5%, P = 
0.02, n = 5), CD8 + (9.2 vs 5.3%, P = 0.02) and double 
negative (22.6 vs 17.3%, P = 0.02) T cells than those from 
untreated mice. There was, however, no significant differ- 
ence in the spleen weight or the percentage of  CD4 + T 
cells in the spleen cell populations between the two groups. 
There was also no significant difference in the anti-ss or ds 
DNA antibody (total antibody as well as IgM and IgG iso- 
type) concentrations in the serum between treated and un- 
treated mice (data not shown). However, serum IFN-3J 
(16.5 -+ 3.8 vs 5.2 + 1.4 pg/ml, P = 0.0189) and nitrite/ 
nitrate (54.2 + 2.6 vs 29.6 - 3.0 IxM, P = 0.0304) were 
elevated in the IL-12-treated mice compared with those of  
PBS-treated mice. 

a b 
ZOO00 I .T'20000 

E 
~) 15000 

0 

m 
10000- 

I 
. a  

E 5000 

! �9 MRL/Ipr (n-4) 
I [ ]  MRL/+ (n-4) 
[ ]  SALB/c (n-S) 

i 

I I MRL/Ipr (n-8) 
[ ]  BALB/c (n=6) 

.15000 

�9 10000 

'5000 

E 

eq 
1 

1 

E 

o 
U~ 

Figure  8. 

0 ~ 0  

Young Old  
(1-Z mo) (5-8 mo) 

80000 [ ]  MRL/+ . ') 

I 
�9 MRL/Ipr -'1- I 

60000 

40000 

20OO0 

0 50 500 

LPS dose (ng /mouse)  

Elevated serum IL-12 levels in untreated and LPS-treated 
MI~L/lpr mice. Serum IL-12 levels in untreated (a) young (I-2 mo) and 
(b) old (5-8 too), and in (c) LPS-treated young (1-2 too) MRL/Ipr mice. 
Control mice were sex- and age-matched MR, L / +  or BALB/c mice. For 
the LPS treatment, a total of  six groups o f  mice (four per group) were in- 
jected (i.v. tail vein) with 50 or 500 ng per mouse of  LPS in 0,1 ml PBS 
or PBS alone as indicated. Serum samples were collected 2 h after the 
treatment and IL-12 levels were determined. All samples were assayed in- 
dividually by ELISA; the statistical significance o f  differences between lu- 
pus and the control strains of  the same age groups is indicated (*P <0.05). 
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Figure 10. Schematic representation of the possible mechanism for the 
induction of renal pathology (glomerulonephritis) in MP, L/Ipr mice by 
enhanced IL-12 production and NO synthesis (for details see text). 

It is interesting to note that treatment of  M I L L / +  mice 
with IL-12 did not induce any detectable renal pathology 
(glomerulonephritis or proteinuria, data not shown), sug- 
gesting that MRL/lpr mice are genetically predisposed to 
the effect o f  IL-12. However ,  treatment of  MRL/Ipr mice 
(starting age: 2 mo) with a sheep ant i -mouse IL-12 anti- 
body (sheep no. 7, 100 ~g /mouse  i.p., weekly for 7 wk) 
led to a initial reduction of  proteinuria followed by a re- 
bound (data not shown) possibly due to increased forma- 
tion of  immune  complexes resulting from repeated injec- 
tion of  foreign proteins. 

Discuss ion  

Data presented here demonstrate that serum from MILL/  
lpr mice contained significantly higher concentrations of  
IL-12 with or without  treatment with LPS in vivo com-  
pared with those o f  similarly treated control M R . L / +  mice. 
In addition, spleen and peritoneal cells f rom MRL/lpr mice 
produced significantly higher concentrations of  IL-12 than 
MILL~+ or BALB/c  mice in response to activation by 
IFN-~/and  LPS in vitro. Furthermore, cells f rom MiLL/Ipr 
mice were more  responsive to IL-12 and LPS, producing 
higher concentrations of  N O  than those from the control 

M I L L / +  mice. Finally, daily injection o f r lL -12  led to ac- 
celerated glomerulonephritis in the MRL/Ipr mice but not 
in the M R . L / +  mice. 

These results suggest a causal relationship between en- 
hanced capacity to produce IL-12 and the spontaneous auto- 
immune  disease in this model  o f  SLE as depicted schemati- 
cally in Fig. 10. An earlier report (5) demonstrated that N O  
is a critical mediator o f  the auto immune disease in MRL/  
lpr mice. It has also been documented that many autoim- 
mune  animal models including the lupus M R L  strain of  
mice do not develop auto immune disease when  kept in a 
germ-free environment  (26, 27), consistent with our find- 
ing that LPS and IFN-~/ are required for the activation of  
macrophages to produce high concentrations of  N O  and 
IL-12, which is produced by monocyte /macrophages  (28). 
In contrast to normal M R L / +  or BALB/c  mice, the pro-  
duction of  N O  in the MRL/lpr mice is further exaggerated 
by the high concentration of  IL-12 produced by activated 
macrophages. IL-12 activates N K  and T cells to produce 
IFN-~ /and  perhaps other yet unidentified factor(s) which, 
together with LPS, further enhance N O  synthesis. This cycle 
o f  amplification produces exaggerated levels o f  N O  leading 
to the pathology. This is consistent with the delayed onset 
o f  N O  synthesis in the cultures activated with IL-12 (Fig. 
3, requiring 4-6  d for optimal production of  NO) .  The  ac- 
tivation of  N K  and T cells by IL-12 for the production o f  
IFN-~/ has been well documented (29-31). However ,  in 
the present system, there was a lack of  direct correlation 
between enhanced N O  synthesis and IFN-~/product ion by 
MtLL/lpr and control M I L L / +  and BALB/c  mice. Never -  
theless, IFN-~  and TNF-o~ were required for IL-12-dr iven 
N O  synthesis. It is therefore hkely that an additional fac- 
tor(s) produced by IL-12-activated N K  or T cells is re- 
quired to synergize with IFN-~/for  the production of  high 
concentrations of  N O .  N K  cell activity is known to be al- 
tered in MILL/lpr  mice. However ,  this was based on their 
lytic activity rather than their activity to produce IFN-% 

IL-12 is essential for the differentiation o f  the T h l  subset 
o f t  cells (32-34). It is also a powerful adjuvant for the in- 
duction of  protective immuni ty  against diseases such as cu- 
taneous leishmaniasis (35) in which T h l  cells are the main 
protective mechanism (for reviews see references 36, 37). 
Our  results indicate that excessive production of  IL-12 or 
the administration o f r lL -12  can cause auto immune disease 
in susceptible mice, demonstrating the negative side of  the 
therapeutic use of  IL-12. This is consistent with a number  
of  recent reports showing that administration of  IL-12 in- 
duced: (a) earlier onset o f  insulin-dependent diabetes mellitus 
in female N O D  mice (38); (b) more  severe and prolonged 

Figure 9. Effects of IL-12 treatment of MRL/Ipr mice on renal pathology. Photomicrographs of kidney sections from MILL/lpr mice (3-mo-old) show- 
ing two essentially normal glomenlli in the kidney cortex ofa PBS-treated control mouse (a); and severe glomerulonephritis in the cortical region of a 
IL-12-treated mouse, including structural damage to two enlarged glomeruli with hypercellularity and adhesion (c), as well as protein casts in the tubules (c 
and d, arrows). In contrast, histological examination of the medullary region shows severe pyelonephritis in the PBS-treated mouse (b) featuring extensive 
mononuclear cell infiltration in the perivascular interstitium, which is, however, markedly reduced in the IL-12-treated mouse (d). Periodic Acid-Schiff 
stain, 5<250 (a and c), • (b and d). 

1457 Huang et al. 

 on A
ugust 22, 2007 

w
w

w
.jem

.org
D

ow
nloaded from

 

http://www.jem.org


disease in adoptively transferred experimental allergic en- 
cephalomyelitis (39); and (c) destructive collagen-induced 
arthritis (40). Our  study here demonstrates that the patho- 
genic effect o f lL-12  in the lupus model is likely to be due 
to the increased production o f  NO.  This finding not only 
advances our knowledge of  the pathogenesis o f  this lupus 
model (and by extension to SLE), it also suggests two po-  
tential means o f  therapeutic intervention o f  the progression 
of  this disease: neutralization o f  IL-12 or inhibition o f  
iNOS. 

Glomerulonephritis is a severe complication o f  the renal 
involvement which is the major cause o f  pathology and 
death in SLE (18, 41). Although it is generally believed that 
the renal pathology is due to autoantibody production, im- 
mune complex deposition and complement activation, slow 
infections have been shown to play an important role in 
triggering these autoimmune responses in many models o f  
autoimmune disorders (26). We  observed here that IL-12-  
treated mice had clearly reduced pyelonephritis which is 

known to be commonly  induced by infections (42). Our  
results suggest that IL-12 might have strengthened the 
host's defense against infection in these mice which are 
otherwise immunodeficient (43-45). Thus, treatment o f  
the autoimmune disease aiming at neutralization o f  IL-12 
may weaken the host immune response, leading to uncon-  
trolled infection. These results therefore demonstrated that 
IL-12 is beneficial in controlling infections. However,  ex- 
cessive production o f  lL-12, as in the lupus mice, will lead 
to severe immunopathology. 

MRL/ Ipr  mice differ from the M R L / +  mice in the im- 
pairment o f  transcription o f  the gene encoding Fas antigen 
by insertion o f  a transposable element into the second in- 
tron o f  the gene (46). However,  Ipr is not a null mutation 
and the inhibition o f  Fas expression is incomplete (47). The 
relationship between the impaired fas gene expression and 
enhanced IL-12 and N O  production by the MRL/ Ipr  mice 
is at present unclear, but amenable to experimental investi- 
gation. 
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