UNIVERSITY

of
GLASGOW

Gharai, L. and Perkins, C. (2002) Implementing congestion control in the
real world. In, IEEE International Conference on Multimedia and Expo,
2002, 26-29 August 2002 Vol 1, pages pp.397-400, Lausanne,
Switzerland.

http://eprints.gla.ac.uk/3601/

IMPLEMENTING CONGESTION CONTROL IN THE REAL WORLD

Ladan Gharai

Colin Perkins

University of Southern California
Information Sciences Institute

ABSTRACT

It is well known that congestion control is a key issue for
the safe deployment of multimedia applications over IP, We
describe our initial experiences implementing TCP-friendly
congestion control in a systern designed to deliver HDTV
content over IP. In particular we discuss the effects of packet
reordering on the calculated throughput, and highlight the
problems this can pose for high-rate applications.

1. INTRODUCTION

Given the proliferation of high speed networks and multi-
media applications, it is becoming increasingly important
to consider congestion control. This is especially critical
for applications with unusual bandwidth requircments, duc
to their potential to disrupt existing network traffic.

An example of the emerging class of ultra-high rate mul-
timedia applications might be delivery of gigabit rate high
definition television (HDTV) signals over IP networks, We
have implemented such a system [7], at a constant data rate
of 850 Mbps, and have experience of the problems such
high rate traffic can cause. To make this application safe for
use outside carefully controlled testbeds, we desired to im-
plement congestion control. This paper describes our initial
experiences with TCP-friendly rate control of this applica-
tion.

The paper is organized as follows, Section 2 describes the
demonstrator system, and outlines algorithms for multime-
dia congestion control. Section 3 describes our implemen-
tation, while Sections 4 and 5 discuss experimental setup
and results. The lessons learnt from our experiment are de-
scribed in section 6, along with directions for further work,
Finally, Section 7 concludes the paper.

2. BACKGROUND

In previous work, we developed a prototype telepresence
system that uses HDTV equipment (o provide very high

0-7803-7304-9/02/$17.00 C2002 |IEEE

quality telepresence over IP networks [7]. The system runs
at rates of approximately 850 Mbps, delivering 1280x720
pixel video at 60 frames-per-sccond in 24-bit YUV color. It
is implemented with off-the-shell components: a PC-based
server running Linux, with HDTV /O and gigabit Ethernct
cards, It uses standard RTP over UDP/IP network transfer
protocols {8, 4].

Our wide arca tests with this system proved the viability of
transporting high bandwidth video streams over IP. How-
ever, they also highlighted a severe limitation: due to the
lack of congestion control our tests could only be conducted
with permission, and careful monitoring, from the network
operations stafl, so as to ensure that such a high-rate non-
congestion controlled stream did not adversely affeet other
traffic on the network.

In order for multimedia traffic and TCP/IP (lows to co-cxist
and receive a fair share of available bandwidth, the non-TCP
traffic must be TCP friendly, A TCP friendly flow will fairly
sharc bandwidth with other flows, while judiciously seek-
ing free bandwidth. It has been shown that, for a saturated
steady state TCP sender, throughput is propertional to in-
verse of the square root of the packet loss rate, p [5]. This is
known as the TCP-friendly equation, and it provides an up-
per bound on the steady state throughout 7", for packet size
S, round trip time R, retransmission timeout tgro &~ 4R
and the steady state loss event rate p, such that:

S
T = n
R\/%+tn'[‘o(3\/¥)p(l + 32p%)

Utilizing the TCP-[riendly equation has resulted in a class
of equation based congestion control schemes, such as the
TCP friendly rate control (TFRC) protocol [3]. The basic
concept is to regulate throughout using equation 1, guaran-
teeing that the flow is TCP-friendly. Once a sender is aware
of the loss event rate p and the round trip time R, it can com-
pute its fair share of bandwidth and adjust its sending rate
accordingly. Damping is applicd, to ensure that the rate of
adaptation is smoother than TCP, while maintaining long-
term fairness. The dynamics of TERC, and its interaction
with TCP, arc described in {3].

397

3. DESIGN AND IMPLEMENTATION

TCP friendly rate control relies on the sender being able to
adjust its sending rate according to the amount of loss the
flow is experiencing. In TFRC, loss is measured as a loss
event fraction by the receiver. TFRC distinguishes between
loss fraction and loss event fraction, o better emulate TCP.
Loss event fraction measures the fraction of loss occurring
more than one round trip time (RTT) apart. In other words,
once an initial loss occurs, any other following loss within
a RTT is ignored. This closely mimics most TCP variants.

18 " s 15 1t o 3) 2] ", 0w

e S e B e e oo oo
time
= packet loss, afler one R'TT

o packel loss, within ong RTT Iast packet

= RYT
10 - 18 TRIC [Loss Intervals

Figure 1: TFRC Loss Intervais.

Handling of loss intervals in TFRC is shown in Figure 1.
TFRC recommends the use of N = 8 intervals, however as
seen in Figure 1, N +1 intervals are actually maintained. To
compute the average loss interval, TFRC chooses the max-
imum of the values of Eizo I, and 22:1 I,,. Therefore,
if the interval since the last packet loss ovent, Iy, is large,
it is accounted for in the computation of the loss event rate,
helping TFRC increase its sending ratc in the absence of
loss.

To implement TFRC, the following two feedback loops are
needed: first, the sender must periodically send perceived
RTT to the receiver, thercby allowing the receiver to com-
pule the loss event rate, p. Secondly, the recciver must send
the computed lose event rale, p, back to the sender. Figure
2 illustrates the process.

2 —
_vender - i
RR APP (;’ 23
B % 1
U *, N
—= == g s N ¥ B
= . %77
- .
N ol S CHVH N Lo . o
3 No
! APPSR RN e
1ETF pcket o
arrival history

Figure 2: TERC feedback leops implemented in RTCP.

Our implementation uses RTP over UDP/IP transport. RTP
provides feedback using the RTP Control Protocol, RTCP.
Atregular intervals, implementations generate Receiver Re-
port (RR) or Sender Report {(SR) packets, providing recep-
tion quality feedback and support for lip-synchronization.
Application specific feedback is supported using APP pack-
ets, that are piggy-backed at regular intervals with RR or SR

398

SuperNel
(Mixture of Mi60 and GSR muters)

- U ESI-West

e e
sender

D._._

[S[-Tiast

S

N

Figure 3: The network used in our tests.

packets. In our implementation, cach time the sender gen-
erates a sender report it also sends the RT'T to the recciver
in an APP packet. Likewise, when the receiver sends back a
receiver report it also includes an APP packet with the latest
computation on the loss event rate, p.

4, EXPERIMENTAL SETUP

To test our system, we need a wide-area network capable
of supporting high rate UDP flows. Several such networks
have become available recently, including Internet2 and the
DARPA SuperNet testhed. We report on tests conducted
using SuperlNet (previous experiments have used Internet2),

The SuperNet testbed comprises several research networks,
connected using a cross-couniry overlay on a commercial
ISP network. The individual rescarch networks are mutti-
gigabit capacity, and the overlay is intended to support giga-
bit rate applications. In practice, the capacity of the overlay
neiwork varics with the load on the underlying network.

The network path we tested is shown in Figure 3. The wide
arca path from ISI East in Arlinglon, VA, to ISI West in
Los Angeles is nine IP hops. We configurcd a tunnel to
return traffic from the router in LA, looping traffic back to
our laboratory. This allows us to display the results, and
gives a network path with 10 logical — 18 actual — hops and
a 132ms round trip time.

The sender and receiver are Dell PowerEdge 2500 servers
with dual 1.2GH¢ Pentium ITI processors, running Linux
2.4.2. They arc cquiped with 3Com 3¢985 gigabit Ethernet
and DVS HDstationOEM HDTV interface cards. We cap-
ture live HDTV centent, packetize and transmit RTP pack-
ets destined for the tunnel interface of the receiver. The
routing is such that the packets traverse the network before
returning though the tunnel to the receiver, where they are
depacketized and displayed. The full rate of the system
is 850 Mbps, although it can adapt by sending at reduced
frame rate.

When the underlying network is lighily loaded, we have
consistently been able to run cross-country HDTV-over-IP

/ﬁm““““"‘“"—\\
ACKA ‘4/ ACKA 1/ ACK 2 / ACKS / ACKT '/

Thres duplicate ACKS

(]

ACK ‘/‘ACKi

Figure 4: Packet reordering gives the appearance of loss

at 850 Mbps without packet loss. As the network becomes
more loaded, typically during business hours, we see packet
loss in our application, indicating congestion in the network.

5. EXPERIMENTAL RESULTS

We conducted a number of experiments with our system,
both local area and on the wide area network described in
Section 4. As expected, the network performance varied:
much of the time it was loss free, but there were instances
when packet loss was observed, making congestion control
NECEssary.

We are still evaluating the performance of our system in the
presence of packet loss, and tuning our congestion control
and rate adaptation algorithms. These results are outside the
scope of this paper (although we discuss the issues in Sec-
tion 6). The results we present here reflect our experience
when the network was lightly loaded, and loss free.

In the absence of packet loss, we noticed that our conges-
tion control function was suggesting we send at a relatively
low rate (and was stable at that rate). This was somewhat
unexpected, since TCP performance, and by extension the
performance of TFRC congestion control, is driven mostly
by packet loss. Indeed, a naive interpretation of equation 1
would say that zero packet loss should result in infinite rate,

That interpretation does not, however, take into account the
effects of packet reordering in the network. Experiments
showed that some amount, up to 1.3% depending on time
of day, of packets were reordered (a value not incompalible
with [1, 2, 6]).

Our hypothesis is that reordering causes the congestion con-
trol function to return lower-than-expected rates. For ex-
ample, packets that arrive at least four places out of order
would cause TCP to deliver a triple duplicate ACK, giving
the appearance of loss (see Figure 4). The analysis bchind
the TCP-fricndly rate control equation [5] reflects this, so
TFRC can also be expected to treat reordering as loss.

To validate this hypothesis, we took a closer look at packet
reordering and how it cffects the computation of the loss
cvent rate. The results shown in Figure 3 plot the evolution

399

D.0001 T T T

T
Legs Evant Rata —- —
Reordering Eventa 1

Ba-05

E8-05

FAYAY

N\.\j

Loss Event Rate

40-05

2805

0 . . "
40 45

Timetseconds)

80

Figure 5: Evolution of Loss Event Rate due to reordering.

of the loss event rate along with reorderings that give the ap-
pearance of loss and start a new loss interval, I, as defined
by TFRC. It is cvident that changes in the loss cvent rate cor-
relate with the new intervals, demonstrating that significant
packet reordering causes TFRC to change its transmission
rate,

It is also interesting to note that throughout the graph, when
new loss intervals are substantially spaced apart, this results
in a gradual reduction in the loss event rate. A good example
of this occurs at about second 48 in the graph. As discussed
in Section 3, TFRC may or may not include the last interval
I, in its computation of the average loss intervals. Clearly,
around point 48 second in the graph, due to lack of loss, Ty
gradually grows, and this growth correlates to the gradual
reduction of the loss event rate.

As an additional validation step, we conducted a number of
performance tests with TCP traffic. Although there was not
an exact match, we found that — after the hosts were tuned
for optimal performance — the Linux TCP stack gave com-
parable throughout Lo that predicted by our congestion con-
trol function., Our results show the Linux TCP achieving
throughput on the order of twice that of our TFRC imple-
mentation. This is somewhat more than expected, perhaps
due to the use of SACK TCP in Linux which is less sensitive
to reordering than the Reno TCP uvscd in the derivation of
the TCP-friendly equation, but not unreasonable. Detailed
comparison of TCP and TFRC throughput in the presence
of reordering is ongoing, but omitted here due to lack to
space,

We also note that the fraction of reordered packets we ob-
serve appears to be somewhat independent of the transfer
rate. This can be cxpected to disrupt the operation of the
congestion control algorithm to some degrec.

6. LESSONS LEARNT AND FUTURE WORK

First, and foremost, our experience has taught us that packet
reordering is not innocuous, even on the scales of 0.2%.
The results presented show that TFRC loss events caused by
packets arriving too late and out of order can significantly
affect throughput in the absence of actual packet loss.

Our implementation utilizes RTCP to provide the feedback
loops needed by TFRC, Since feedback timing is important,
and directly impacts calculation of the loss event rate, wo
are investigating the interaction between RTP and the TFRC
protocol. In particular, how often loss event and round irip
time information can be communicated, and how the trans-
mission rate can be adapted.

As noted in Section 3, we piggyback feedback information
into RTCP APP packets. Standard reporting intervals are on
the order of seconds, too slow for effective TFRC feedback,
but the reduced reporting interval of

TRTOP = 360/Bsesa£on (2)

where Bapggion 18 the session bandwidth expressed in kilo-
bits per second may be used. For our application, this corre-
sponds to a report every 400us on average, casily allowing
feedback at least once per round trip time (although the pro-
cessing load may prohibit this).

Processing load is also an issue when implementing the loss
interval calculation. We noticed that our implementation
obscrved packet loss at a lower data ratc when the calcula-
tion of the TFRC parameters was enabled, even if they were
not used to control the sending rate. Investigation pointed to
the calculation of the average loss interval: performing this
computation for every packet is a significant bottleneck, ¢s-
pecially Tor high-rate sources (tosts show that the loss event
calculation, for a [ull rate HD'TV source, consumes 14% of
the CPU on an otherwise unloaded host),

There are also issues with rate adaptation, since the obvi-
ous method of changing the transmission rate — adapting
the video frame rate — will cause significant step changes in
the throughput, and cannot choose any arbitrary rate. TFRC
assumes the TCP-friendly rate can be selected, and it is not
clear how deviations affect the system behavior. These is-
sues also feed into the human factors of the system: not only
must the rate adaptation fit the dictates of TCP-fricndly be-
haviour, it must be chosen to avoid disturbing viewers with
sudden quality changes.

7. CONCLUSIONS

When discussing congestion control, it is common to focus
on packet loss, since that is the primary driver in TCP, and

400

TCP-friendly, congestion control. There are, however, real-
world IP networks in which packet loss is a extremely rare
event, but where packet reordering is not infrequent. Our
measurements show that this reordering limits the transmis-
sion rate of both native TCP flows, and multimedia flows
controlled by the TCP friendly rate control protocol.

We understand the desire to be TCP-friendly, but it is not
clear that this behavior is appropriate for multimedia appli-
cations, Indeed, onc of major philosophies in the design of
RTP was Application Level Framing, making applications
tolerant to packet loss and reordering. We believe that, if
the network is not congested, emulation of TCP's response
to packet reordering is overly conservative.

To allow the deployment of high-ratc multimedia, such as
HDTV-over-IP, it is necessary to develop congestion control
that is both safe and usable. The TFRC protocol is clearly
safe, but we have demonstrated scenarios where its overly
conservative nature limits its usefulness. It is desirable to
develop modifications to TFRC that decouple its response to
congestion and packet reordering, so that reordering without
congestion ceases to be a limiting factor,

8. ACKNOWLEDGMENTS

This work is supported by DARPA ITO and by hardware
donated by Iniel corporation.

9. REFERENCES

[11 1. C. R. Bennett, C. Partridge, and N. Shectman. Packet recrdering is
not pathological nctwork behavior. [EFE/ACM Transactions on Net-
working, 7(6):789-798, December 1999,

[2] E. Blanton and M. Allman. On making TCP more robust to packet
reordering. ACM Computer Communication Review, January 2002.

[3] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation based con-
gestion control for unicast applications. In SIGCOMM Symposium on
Cormmunications Architectures and Protocols, 2000.

[4] L. Gharai, G. Gonceher, C. Perkins, D. Richardson, and A. Mankin.
RTP payload format for SMPTE 292M. Internet Draft, Internet Engi-
neering Task Force, February 2002. Work in progress.

[5] 1. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
throughput: A simple moedel and its empirical validation, ACM Coni-
puter Communication Review, 28(4):303-3 14, September 1998.

[6] V. Paxson, End-to-end internet packet dynamics. [EEE/ACM Trans-
actions of Networking, 7(3), June 1999,

[7] C. 8. Perkins, L. Gharai, T. Lehman, and A, Mankin, Experiments
with delivery of HDTV over IP nctworks. In Proceedings of the 12th

International Packet Video Workshop, Pittsburgh, April 2002,

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP:
A iransport protocol for real-time applications. [ETF Audio/Video
Transport Working Group, January 1996, RFC1889.

{8

	citation_temp.pdf
	http://eprints.gla.ac.uk/3601/

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

