

Gharai, L. and Perkins, C. (2006) Holographic and 3D teleconferencing
and visualization: implications for terabit networked applications. In, 25th
IEEE International Conference on Computer Communications, 23-29
April 2006, pages pp. 1-5, Barcelona, Spain.

http://eprints.gla.ac.uk/3599/

Holographic and 3D Teleconferencing and Visualization:
Implications for Terabit Networked Applications

Ladan Gharai
Information Sciences Institute

University of Southern California
3811 N. Fairfax Drive #200
Arlington VA 22203, USA

Colin Perkins
Department of Computing Science

University of Glasgow
17 Lilybank Gardens

Glasgow G12 8QQ, UK

Abstract— We discuss the evolution of teleconferencing and
networked visualization applications to support 3-dimensional
display technologies. The implications of a continuation of
Moore’s law, coupled with constraints on device clock rate due to
power consumption, suggest that future end system and network
architectures will become increasingly parallel in nature. Given
this, we review trends in programming language design that will
ease development of highly concurrent systems, and suggest how
network transport protocols might evolve to support them.

I. INTRODUCTION

The natural evolution of teleconferencing and visualization
systems is towards ever higher fidelity media, from the high
resolution flat displays of current systems to the autostereo-
scopic and holographic displays that will drive future 3-
dimensional virtual environments and visualization systems.
We draw on our experience developing UltraGrid [1] – the
high-end in current teleconferencing systems – to discuss how
advances in media capture and display devices, microprocessor
architecture and networks will affect the design of future
systems. We contend that, in order to fully utilize terabit
networks and multicore processors, a paradigm shift from
straight-line to concurrent application design and transport
protocols is needed.

We begin, in Section II, with a brief background on
how autostereoscopic 3D applications operate, motivating the
need for additional parallelism in transport protocols and for
changes in programming languages. We discuss the direction
of changes needed in transport protocols and programming
languages in sections III and IV respectively, and draw our
general conclusions in section V.

II. BACKGROUND

Current high-end teleconferencing and real-time networked
visualization systems use high definition TV (HDTV) video
formats at 60 frames per second, with exceptional picture
quality, for an uncompressed data rate somewhat over one
gigabit per second. This can be transported uncompressed over
high-end networks [1], but is typically compressed to save
network capacity. Compression by approximately a factor of 5
is commonly used in low-latency environments, while a factor
of 50 is more usual when latency is not an issue, and can be
achieved with acceptable quality.

Moving to 3-dimensional images dramatically increases
these requirements: it has been suggested that a holographic
display with equivalent spatial resolution to current HDTV
displays requires 400 megapixels for horizontal parallax only
viewing [2], a compressed data rate on the order of 80
Gbps if trends in compression carry over to 3-dimensional
imaging1. Accommodating vertical parallax movement will
likely increase this by at least another order of magnitude.

In addition to bandwidth requirements, such 3-dimensional
teleconferencing systems will also require significant amounts
of computational power to support their image processing
and compression. We expect to see continued progression of
Moore’s law, and the consequent evolution of end system
and network hardware, in parallel to the evolution in media
formats. We see no reason why transistor density will not
continue to increase, but it has become increasingly clear that
clock rates cannot grow according to past trends since power
consumption has become a limiting factor. Accordingly, we
expect to see the increased transistor budget being used to
develop increasingly parallel systems, in terms of multicore
processors and with the integration of multiple functions onto
single devices (such as crypto or network offload, or digital
signal processing support).

It is also likely that emerging network architectures will
be constructed from parallel components and links, with only
limited aggregation. This is, once again, due to physical
limitations in the conversion between optical and electrical
domains at high rates, since power consumption and cooling
are limiting factors in the electrical domain. Therefore, while
it is possible to construct 40 Gbps links, establishing four 10
Gbps links is more cost effective; a trend likely to continue at
higher data rates.

Given these related trends, we expect emerging network
architectures and future multimedia applications to have highly
parallel structures. Indeed, applications such as the capture,
encoding and transport of 3-dimensional moving images are
inherently parallel. Figure 1 shows the operation of a time-
multiplexed 3-dimensional system: multiple cameras capture
a scene from different view points, the camera outputs are

1Early results with compression of 3-dimensional images [3] achieve
compression ratios of 26 to 1 and 15 to 1 depending on the algorithm chosen,
consistent with typical compression ratios for 2-dimensional images

AP

 1

 3

 N

 ... 3Eo 3Ee 3Fo 3Fe ...

 ... 2De 2Eo 2Ee 2Fo ...

 ... nDo nDe nEo nEe ...

 Multiplexing System
 Depacketize and

 Video Capture
and Packetizing System

camera array

 ... 1Do 1De 1Eo 1Ee ...

 2

 2Eo 2Ee ... nEo nEe 1Fo 1Fe 2Fo 2Fe ...

 ... 1Do 1De 2Do 2De ... nDo nDe 1Eo 1Ee

3D autostereoscopic display

Network
MRTP packets

AP

Fig. 1. The operation of a networked time-multiplexed 3D system. Each of the interlaced cameras (1—N) capture a scene from different view points. The
camera outputs are labelled by: camera number (1—N), a scene identifier (..., D, E, F, ...), and an even or odd (e or o) field indicator. These fields are captured
and packetized by the capture system, and transported over the network via a multi-stream real-time transport protocol (MRTP). On the receiving side, even
and odd fields of each scene from all the cameras are demultiplexed, decompressed, and displayed by the autostereoscopic display, creating a 3D image. Site
boundaries and aggregation points (AP) for network traffic are shown.

packetized, compressed and transported as parallel streams to a
receiver where the images are decompressed, and even and odd
fields from each camera are time-multiplexed and displayed in
rapid succession, providing a multi-view point 3-dimensional
image [4] on an autostereoscopic display. A key point to note
is that while there is some inevitable aggregation of flows at
site boundaries, no single network or end system element can
process all the generated data.

To support development of 3-dimensional conferencing and
visualization environments we must therefore fully utilize
the parallelism inherent in multicore chips and high speed
networks. Existing transport protocols are mostly single stream
transport, with no support for parallelism, and concurrent
programming is a difficult and labour intensive task: both need
to change if we are to readily and effectively develop future
teleconferencing systems. We expound further on the direction
of these changes next.

III. MULTI-STREAM REAL-TIME TRANSPORT

Research and development on transport protocols for high
speed networks has largely focused on single stream transport
in networks with large bandwidth delay products. For example,
much has been done to improve the response of TCP to
congestion, either by changing the way it reacts to packet loss
(e.g. [5]), or by making use of variations in network transit
time as an additional source of information on congestion (e.g.
[6]). Also, several non-TCP protocols have been developed
(e.g. [7–9]) with congestion response optimised for the needs
of high performance bulk data transfer. While there are some
significant differences in the details of their operation, TCP
and the other protocols considered are conceptually similar at
the fundamental level: they transport a single sequential stream
of data objects in a single transport flow, which is somehow
optimised for use on a single high speed link.

We contend that such protocols are not sufficient to fully
utilize terabit networks and support future high-end media
applications, where data is generated in parallel, and where
the transport medium is architected in parallel too. We believe
these applications would benefit from a multi-stream real-time
transport protocol, to provide support for parallel data transfer,

in terms of data partitioning and naming, synchronisation and
coordination of multiple flows, and congestion control and
adaptation of parallel flows.

A. Data Partitioning and Naming

When considering a future teleconferencing system such as
that illustrated in Figure 1, we observe that data flows through
the system, and is processed, as a sequence of parallel streams.
The data for each stream will be compressed and packetised
as a sequence of meaningful application data units (ADUs) to
enable robust network transport [10], and each ADU must be
uniquely named to enable correct reconstruction of the data.

A key issue is that there is no single coordination point in
the system. This makes it difficult to use a simple sequence
number to identify ADUs. Instead, a more complex name
must be used, taking into account to what stream an ADU
belongs, as well as the position of the ADU within the stream.
This requirement for structured ADU names is in contrast to
many existing protocols. For example, RTP [11] uses a single
sequence number as the ADU name, and does not impose any
additional naming structure.

While data naming may initially be viewed as a minor
implementation detail, it is, in fact, key to the performance
of the system. For example, use of a single sequence number
to identify ADUs will require synchronisation of the parallel
data flows, in order to co-ordinate which parts of the sequence
number space are assigned to which flow, whereas naming
ADUs in terms of flow and position within that flow does not
require such synchronisation. This makes RTP, for example,
inefficient when compression and transmission of a single
logical stream must be performed in parallel, since there is
contention for the RTP sequence number space.

The naming of data elements becomes even more critical in
systems where computational elements must process data from
several flows. For example, consider a system that calculates
the difference between images from adjacent viewpoints as
part of a compression algorithm for 3-dimensional video. This
will need to name not just flows and frames within those
flows, but complex objects within a compressed frame from
another flow, and this must be possible without requiring costly

synchronisation operations. In a data-flow architecture of this
type, processing elements must be able to predictively name
objects in other streams, ensuring the continual parallel flow of
data. All this argues for a transport protocol that supports rich
ADU names, the closest example being, perhaps, the naming
scheme developed to support the Scalable Reliable Multicast
(SRM) protocol [12], which was designed to name data that
is subject to concurrent modification.

B. Synchronization and Coordination of Parallel Flows

Systems designed for interactive use require low end-to-end
latency. That is, the total time from initial media capture at
the source to final media playout at the destination must be
low, and must be predictable [13]. In order to achieve this, we
require both low latency on each path through the system and
network, and tight synchronization between the parallel flows.

The typical approach to flow synchronization in networked
multimedia systems has been to add some buffering delay at
the receiver, to delay other streams to match the maximum
observed latency. For example, if audio and video data for
a streaming movie is sent separately, but the video consis-
tently arrives later than the audio, then additional buffering
is introduced at the receiver to delay the audio such that lip
synchronization is achieved.

This approach is not ideal for the systems we envisage,
since buffering stalls a decoding and rendering pipeline, and
hence other parts of the data-flow system depending on that
pipeline, and imposes large memory and synchronization costs.
It is clear that a better solution would be to provide feedback
to the sender, such that it can adjust the encoding of the media
to move the playout point2 and so regain synchronization.

One approach to such coordination is described in [14].
This uses a shim header, which is inserted into packets at
aggregation points on the edge of the sender and receiver
sites, to monitor the network between those sites. This data is
retrieved and stored at the de-aggregation point, and queried
by receivers to monitor performance across flows. This lets
receivers compare reception quality in their parallel sub-flow
with the reception quality of other flows, and hence send
adjustment requests to the senders.

This approach suffices in systems with relatively low band-
width demands, that use parallelism primarily to increase
processing performance. In such systems the aggregation point
can keep up with the data flows, and generate meaning-
ful statistics. As the number and rate of the parallel flows
increases, however, we believe such designs will become
increasingly impractical, since it will not be realistic for a
single device to process all packets. Accordingly, a distributed
coordination function will be used to summarize reception
quality, with receivers independently making the decision
to adjust media playout based on asynchronous transfer of
summary reception quality data from other receivers. This

2For example, a flow could be more heavily compressed such that it is
running below the bottleneck bandwidth. This would allow queuing delays in
the network to dissipate, reducing the network latency and bringing forward
the playout point for the flow.

more closely follows the loosely coupled RTCP [11] or Mbus
[15] models, than the centralised coordination approach.

C. Congestion Control and Rate Adaptation of Parallel Flows

Congestion control and adaptation of real-time interactive
media applications in best effort IP environments is a difficult
problem for single flows, and more so for multiple parallel
flows. This is due, in large part, to the dominance of the
TCP transport protocol in the Internet, limiting new congestion
control algorithms to mechanisms that are compatible with
TCP, such that they do not disrupt existing network traffic.
There are three key areas where the compatibility requirement
has proven problematic for real-time multimedia applications:

1) A TCP flow has a distinctive transmission rate profile,
following the additive increase multiplicative decrease
(AIMD) model. This does not match the transmission
profile of existing networked multimedia applications,
which are naturally bursty on a different time scales due
to the presence of intra- and inter-coded video frames,
and cannot be expected to match the rate profile of 3-
dimensional video compression systems either.3

2) The notion of fair sharing in TCP translates to (roughly)
equal use of capacity between flows, thereby making it
difficult for flows with different steady state data rates to
co-exist. For example, if a 30 Mbps application-limited
flow shares a link with a 4 Gbps video flow, they will
likely disrupt each other, even if there is sufficient link
capacity for both.

3) There is no direct support for parallel multi-stream
transport, and it is unclear how best to map parallel
application layer flows to the underlying network paths,
which may experience different levels of congestion,
such that they avoid mutual disruption. There is a need
to exchange state between parallel flows, to ensure
the aggregate is TCP-Friendly, even if the individual
flows are not, but this is not supported in the current
TCP-compatible network which does not recognise the
concept of aggregate flows (and end-system approaches,
such as the Congestion Manager [17] suffer from the
communication overheads described in Section III-B).

As a result of these issues, there is considerable interest
in new network architectures, to avoid sharing capacity with
best effort TCP/IP traffic. Many of these are based on the
use of circuit-based paths, since research and development
on dynamic provisioning of lambda paths over heterogeneous
networks [18] is making circuit-based connections more acces-
sible. In a fully dynamic environment, circuits can be provi-
sioned within seconds on the time scale of minutes or hours.
While provisioned paths do not require congestion control,
they do benefit from rate control. Rate control adjusts an
application’s sending rate to the provisioned paths bandwidth
and to potential receiver limitations. A multi-stream protocol

3Proposals such as TFRC [16] aim to send at a smoother rate, matching
the average throughput of a TCP flow. However, this changes, but does not
solve, the rate mismatch problem.

must be able to adjust the application’s send rate over multiple
flows in a manner that benefits the application and best utilizes
the underlying paths.

It is unclear as yet if future terabit networks will support
connection, connectionless or a hybrid of both transports.
The ideal vision is seamless integration of the two technolo-
gies and widespread availability of both. Best effort IP net-
works provide ubiquitous but non-guaranteed service, whereas
connection-oriented transport provides costly but guaranteed
service. In order for best effort transport to remain dominant
and relevant in future terabit networks, it is imperative that
we develop congestion control mechanisms that can support
multi-stream real-time applications in these environments.

D. Discussion

To fully utilize future terabit networks and deploy the
next generation of interactive multimedia applications, we
need the support of multi-stream real-time transport protocols,
as it is clear that our current single stream paradigm will
not suffice. Transport protocol design and deployment is a
complicated and time consuming task. However, we note
that high-end multimedia applications can play the role of
catalyst in protocol design. For example, our experiences
with UltraGrid demonstrated the utility of high end media
application in testing out different congestion control schemes
on real-world networks. We believe 3-dimensional applications
can play a similar role for future terabit networks, providing
us with a real-time application to experiment with transport
protocols and gain a better understanding of packet dynamics
and characteristics of terabit networks.

IV. PROGRAMMING LANGUAGE SUPPORT

A major challenge in future teleconferencing applications
will be software development. As we have shown, high-
dimensional video capture, compression and network transport
are inherently parallel processes, but existing programming
languages and their supporting libraries provide only limited
support for concurrency. These limitations make it difficult
to take advantage of parallelism, by forcing programmers to
work with low-level synchronization and threading constructs
which are tedious to use and error-prone. It is clear that new
programming languages and tools are needed to make effective
use of parallelism, to raise the level of abstraction and support
automatic extraction of implicit concurrency.

There are two promising trends in this area: languages
which use linear type theory to enforce thread-safe access
to data structures for packet processing, and functional array
processing languages which support automatic extraction of
parallelism from large scale matrix and vector computations,
such as those needed to implement video compression. We
now consider these in turn.

A. Use of Linear Types to Manage Concurrency

The theory of linear types allows the construction of
programming languages that provably enforce certain state-
dependent properties of programs. One recent example of

this is PacLang [19], a language developed to ease program
development on network processors such as the Intel IXP2400.

PacLang was developed based on the observation that as
packets flow through a router, only a single component of the
system has access to the packet at any particular time instant.
Such a constraint can be formalized in the type system of
a programming language such that the language constrains
data to be accessible by only a single thread of a multi-
threaded system at any time, ensuring unique ownership as
objects pass between threads. The result is a language which
appears somewhat unusual to those familiar only with more
mainstream languages, but which is readily learnt, and which
provides strong guarantees that allow code to be optimized to
execute in parallel on a distributed memory system.

We observe that data flow through networked multimedia
applications is conceptually similar to the flow of packets
through a router. In both cases processing follows a linear
sequence of operations, transforming the data as it passes
through different parts of the system, with a clear hand-off
between different pipelined operations. The details are clearly
very different: media capture, compression, packetization and
transmission are more computationally demanding, and require
more extensive transformation of the data than does IP packet
forwarding, but these are differences of degree, rather than
fundamentals. Both applications involve pipelined processing
of a high rate stream of data from source to sink, with some
intermediate transformation. Both can benefit from parallel
execution and a provably clean hand-off of data between
different components in the system. Accordingly, we expect
the concepts of PacLang to be readily applicable to a video
processing language.

B. Functional Array Processing Languages

Another promising area of research is in the development of
modern array processing languages such as single assignment
C [20] or J [21]. These languages use functional programming
techniques to specify array processing operations with a high
level of abstraction, but with a syntax usable by programmers
used to mainstream languages.

Array processing languages are well suited to the imple-
mentation of video compression since they allow operations
on multi-dimensional arrays of pixels to be expressed with a
high level of abstraction. In addition, concepts of functional
programming and immutable data structures are applicable to
compression algorithms, since mutable state is not required
when transforming an input media stream to a compressed
output format. Indeed, many video coding algorithms are most
simply described using a purely functional style, and have been
implemented in low-level imperative languages such as C only
for reasons of efficiency on uniprocessor systems.

With the widespread adoption of multicore processors, it is
becoming more important that algorithms are parallelizable,
than it is that they are efficient on uniprocessor systems. A key
feature of array processing and purely functional languages is
that, in addition to a clear and abstract representation of the
compression algorithm, they provide a number of opportunities

for automatic extraction of parallelism, due to the data flow
and side effect free nature of the resulting code. As a result,
we expect such languages will become more important, since
they will allow easier exploitation of the latent performance
of future hardware.

C. Discussion

We believe the combination of linear types and functional
array processing languages has the potential to greatly ease the
programming of massively parallel hardware for networked
multimedia systems. It should be possible to devise new
programming languages that enforce unique ownership of data
across threads of execution, and that provide opportunities
for automatic extraction of parallelism. The resulting systems
should scale much better than do existing imperative program-
ming languages, should provide a higher degree of confidence
that the resulting code is correct, and should allow algorithms
to be expressed in a concise high-level manner. Such domain-
specific languages can be embedded within existing general
purpose languages to ease implementation of media process-
ing, and to allow such operations to run on future parallel
hardware with relative ease.

The transition to such languages will not, of course, be
trivial. Indeed, we expect it to be a significant challenge to
make these concepts accessible to a wide audience. There are
many prior systems which make use of some of the ideas we
discuss, yet have not found use outside particular niches. There
is a reason to be optimistic however: as discussed in Section II,
we expect future computing hardware to become increasingly
parallel, and increasingly difficult to program to full effect
using traditional imperative languages. Both are reasons to
consider alternatives.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, we believe that future microprocessor designs
will emphasise increased parallelism over increased clock
rates, and that future network architectures will provide for
increased bandwidth through greater link-level parallelism, not
just by providing faster links. These predictions are based on
trends in semiconductor performance and power consumption,
as we describe in Section II.

To take advantage of these changes will require a corre-
sponding shift in the design of network protocols and net-
worked multimedia applications. As we discuss in Section III,
we expect to see the development of network protocols that
provide richer data naming, synchronization and congestion
control primitives. We suggest ways in which this can be done,
drawing on lessons learnt from existing real-time transfer and
reliable multicast and coordination protocols. We also discuss,
in Section IV, directions in which programming languages
can develop to support automatic extraction of parallelism;
essential to make full use of future systems.

Network protocol, language and application development
are slow processes, and deployment is a labour intensive
and iterative task. To make effective use of future terabit
networks, and to support emerging applications, we must

initiate development of needed protocols and tools need soon,
as the current single-stream protocol suite will not suffice.

VI. ACKNOWLEDGEMENTS

This work is supported in part by the US National Science
Foundation under grant #0334182.

REFERENCES

[1] L. Gharai, T. Lehman, A. Saurin, and C. S. Perkins, “Experiences
with high definition interactive video conferencing,” in Proc. IEEE
International Conference on Multimedia and Expo, Toronto, July 2006.

[2] C. Slinger, C. Cameron, and M. Stanley, “Computer-generated hologra-
phy as a generic display technology,” IEEE Computer, vol. 38, no. 8,
August 2005.

[3] Z. Yang, C. Y., Z. Anwar, R. Bocchino, N. Kiyanclar, K. Nahrstedt,
R. H. Campbell, and W. Yurcik, “Real-time 3D video compression for
tele-immersive environments,” in Proceedings of Multimedia Computing
and Networking 2006, San Jose, CA, USA, January 2005.

[4] N. A. Dodgson, J. R. Moore, and L. S. R., “Time-multiplexed autostereo-
scopic camera system,” in Proc. SPIE Symposium on Stereoscopic
Displays and Applications VIII, San Jose, CA, February 1997.

[5] S. Floyd, “High speed TCP for large congestion windows,” Internet
Engineering Task Force, December 2003, RFC 3649.

[6] C. Jin, D. Wei, and S. Low, “FAST TCP: motivation, architecture,
algorithms, performance,” in Proceedings of IEEE Infocom 2004, Hong
Kong, March 2004.

[7] R. L. Grossman, M. Mazzucco, H. Sivakumar, Y. Pan, and Q. Zhang,
“Simple available bandwidth utilization library for high-speed wide area
networks,” Journal of Supercomputing, vol. 34, no. 3, 2005.

[8] Y. Gu, X. Hong, and R. L. Grossman, “Experiences in design and
implementation of a high performance transport protocol,” in Proc.
2004 ACM/IEEE Conference on Supercomputing, Pittsburgh, PA, USA,
November 2004.

[9] E. He, J. Leigh, O. Yu, and A. T. DeFanti, “Reliable blast UDP:
Predictable high performance bulk data transfer,” in Proc. IEEE Interna-
tional Conference on Cluster Computing, Chicago, IL, USA, September
2002.

[10] D. D. Clark and D. L. Tennenhouse, “Architectural considerations for
a new generation of protocols,” in Proceedings of ACM SIGCOMM’90,
Philadelphia, PA, USA, September 1990.

[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a
transport protocol for real-time applications,” Internet Engineering Task
Force, July 2003, RFC 3550.

[12] S. Raman and S. McCanne, “Scalable data naming for application level
framing in reliable multicast,” in Proceedings of ACM Multimedia’98,
Bristol, UK, September 1998.

[13] International Telecommunication Union, “One-way transmission time,”
Recommendation G.114, May 2003.

[14] D. E. Ott and K. Mayer-Patel, “Coordinated multi-streaming for 3D
tele-immersion,” in Proc. 12th ACM International Conference on Mul-
timedia, New York, NY, USA, October 2004.

[15] J. Ott, D. Kutscher, and C. S. Perkins, “The message bus: A platform
for component-based conferencing applications,” in Proc. CSCW 2000
workshop on Component-based Groupware, Philadelphia, PA, USA,
December 2000.

[16] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in Proceedings of ACM
SIGCOMM 2000, Stockholm, Sweden, August 2000.

[17] H. Balakrishnan, H. Rahul, and S. Seshan, “An integrated congestion
management architecture for Internet hosts,” in Proceedings of ACM
SIGCOMM’99, Cambridge, MA, USA, September 1999.

[18] T. Lehman, J. Sobieski, and B. Jabari, “DRAGON: a framework for
service provisioning in heterogenous grid networks,” IEEE Communi-
cations, vol. 44, no. 3, March 2006.

[19] R. Ennals, R. Sharp, and A. Mycroft, “Linear Types for Packet Process-
ing (extended version),” Cambridge University Computer Laboratroy,
Technical Report TR-578, 2004.

[20] S. B. Scholz, “Single Assignment C – Efficient Support for High-
level Array Operations in a Functional Setting,” Journal of Functional
Programming, vol. 13, no. 6, 2003.

[21] Jsoftware, Inc., “The J programming language,” Software available
online, http://www.jsoftware.com/.

	citation_temp.pdf
	http://eprints.gla.ac.uk/3599/

