

Bani-Mohammad, S. and Ould-Khaoua, M. and Abaneh, I. and
Mackenzie, L. (2006) Non-contiguous processor allocation strategy for
2D mesh connected multicomputers based on sub-meshes available for
allocation. In, Proceedings of the 12th International Conference on
Parallel and Distributed Systems, 12-15 July 2006 Vol 2, pages pp. 41-
48, Minneapolis, Minnesota, USA.

http://eprints.gla.ac.uk/3497/

Non-contiguous Processor Allocation Strategy for 2D Mesh Connected
Multicomputers based on Sub-meshes Available for Allocation

S. Bani-Mohammad
Glasgow University,
Computing Science,
Glasgow G12 8RZ,

UK.
saad@dcs.gla.ac.uk

M. Ould-Khaoua
Glasgow University,
Computing Science,
Glasgow G12 8RZ,

UK.
mohamed@dcs.gla.ac.uk

I. Ababneh
Al al-Bayt University,
Computing Science,

Mafraq 25113,
Jordan.

ismail@aabu.edu.jo

Lewis M. Mackenzie
Glasgow University,
Computing Science,
Glasgow G12 8RZ,

UK.
lewis@dcs.gla.ac.uk

Abstract

Contiguous allocation of parallel jobs usually suffers
from the degrading effects of fragmentation as it requires
that the allocated processors be contiguous and has the
same topology as the network topology connecting these
processors. In non-contiguous allocation, a job can
execute on multiple disjoint smaller sub-meshes rather
than always waiting until a single sub-mesh of the
requested size is available. Lifting the contiguity
condition in non-contiguous allocation is expected to
reduce processor fragmentation and increase processor
utilization. However, the communication overhead is
increased because the distances traversed by messages
can be longer. The extra communication overhead
depends on how the allocation request is partitioned and
allocated to free sub-meshes. In this paper, a new non-
contiguous processor allocation strategy, referred to as
Greedy-Available-Busy-List, is suggested for the 2D mesh
network, and is compared using simulation against the
well-known non-contiguous and contiguous allocation
strategies. To show the performance improved by
proposed strategy, we conducted simulation runs under
the assumption of wormhole routing and all-to-all
communication pattern. The results show that the
proposed strategy can reduce the communication
overhead and improve performance substantially in terms
of turnaround times of jobs and finish times.

Keywords

Multicomputers, Contiguous Allocation, Non-contiguous
Allocation, Fragmentation, Turnaround Time, Finish
Time, System Utilization, Performance Comparison,
Simulation.

1. Introduction

In a multicomputer, processor allocation is responsible
for selecting the set of processors on which parallel jobs
are executed. Most strategies employed in a
multicomputer are based on contiguous allocation [2, 5,
10, 13, 16]. These strategies often result in high external
processor fragmentation, as has been shown in [16].
External fragmentation occurs when there are free
processors sufficient in number to satisfy the number
requested by a parallel job, but they are not allocated to it
because the free processors are not contiguous or they do
not have the same topology as the network topology
connecting these processors.

Several studies have attempted to reduce such
fragmentation [4, 6, 7, 12, 15]. One solution suggested is
non-contiguous allocation [4, 7, 12, 15]. In non-
contiguous allocation, a job can execute on multiple
disjoint smaller sub-networks rather than always waiting
until a single sub-network of the requested size is
available. Although non-contiguous allocation increases
message contention in the network, lifting the contiguity
condition is expected to reduce processor fragmentation
and to increase processor utilization [15].

Most of the existing studies [2, 5, 10, 13, 16] on
allocation have been conducted in the context of the
contiguous allocation. There has been comparatively very
little work on non-contiguous allocation. Although
contiguous allocation eliminates the communication
overhead between processors by allocating them
contiguously, non-contiguous allocation can alleviate the
communication overhead as well as eliminate both
internal and external fragmentation that result from
contiguous allocation. Internal fragmentation occurs when
more processors are allocated to a job than it requires.
Existing research studies [2, 4, 5, 6, 10, 12, 13, 15, 16] on
both contiguous and non-contiguous allocation have been

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

carried out in the context of the 2D mesh. The 2D mesh
has been used as the underlying network in a number of
practical and experimental parallel machines, such as
iWARP [3] and Delta Touchstone [9]. In this study, we
investigate the performance merits of non-contiguous
allocation for reducing processor fragmentation on the 2D
mesh and compare its performance to that of the previous
allocation strategies. To do so, non-contiguous allocation
strategy, notably Greedy-Available-Busy-List (GABL), is
suggested. The GABL strategy combines the desirable
features of both contiguous and non-contiguous allocation
strategies. The performance of the GABL strategy will be
compared against the existing well known non-
contiguous allocation strategies Paging(0) and MBS [15],
these two strategies have been selected because they have
been shown to perform well when compared to existing
strategies. Also, the performance of GABL is compared
against the existing well known contiguous First Fit
strategy [16]. First Fit has been used to represent the
contiguous class of strategies as it has been found to
perform well [16].

In this study, All-to-All communication pattern is
considered because it causes much message collision and
it was known as a weak point for the non-contiguous
allocation strategies [12].

The rest of the paper is organized as follows. Section 2
contains a brief summary of allocation strategies
previously proposed for 2D mesh. Section 3 contains the
proposed non-contiguous allocation strategy. Section 4
compares the performance of the contiguous and non-
contiguous allocation strategies. Section 5 concludes this
study.

2. Related Work

This section provides a brief overview of some
existing contiguous and non-contiguous allocation
strategies.

2.1 Contiguous Allocation Strategies

Contiguous allocation has been investigated

extensively for 2D mesh multicomputers [2, 5, 10, 13,
16]. Most of the previous studies have focused on
reducing the degrading effects of high external
fragmentation caused by the contiguous allocation
strategies. Below we describe some of these strategies.

Two Dimensional Buddy System (2DBS): The 2DBS
allocation [10] applies to square mesh systems with
power of two side lengths. Processors allocated to jobs
also form square sub-meshes with power of two side
lengths. If a job requests a sub-mesh of size ba× such
that ba ≤ , the 2DBS allocates a sub-mesh of size ss× ,

where ()()⎡ ⎤bas ,maxlog2= . For example, if a job requests
two processors it is allocated a square partition of
processors with a side length of two, resulting in two idle
processors and an internal fragmentation of 50%. This
strategy suffers from high fragmentation [4, 15]. Also, it
cannot be used for non-square meshes and does not have
complete sub-mesh recognition ability [4, 15].

First Fit (FF) and Best Fit (BF): The problem of
missing an existing possible allocation explained above is
solved using First Fit and Best Fit allocation strategies
[16]. The free sub-meshes are scanned and First Fit
allocates the first sub-mesh that is large enough to hold
the job, whereas Best Fit allocates the smallest suitable
sub-mesh by choosing the corner that has the largest
number of busy neighbors. Bit arrays are used for
scanning of available processors.

Stack Based Allocation (SBA): This strategy finds a
free sub-mesh quickly by reducing the search space
drastically through the use of a simple coordinate
calculation and spatial subtraction [2]. It could be
implemented efficiently using a stack, as demonstrated in
[2]. Simulation results have shown that the SBA strategy
allocates processors faster than the previous allocation
strategies and still delivers competitive performance [2].

The above allocation strategies consider only
contiguous regions for the execution of a job. As a
consequence, the distance of the communication paths is
expected to be minimized in contiguous allocation. Only
messages generated by the same process are expected
within a sub-mesh and therefore cause no inter-job
contention in the network. On the other hand, the
restriction that jobs have to be allocated to contiguous
processors reduces the chance of successfully allocating a
job. It is possible to fail in the contiguous allocation
strategies to allocate a job while a sufficient number of
processors are available [4], i.e., fragmentation occurs in
these strategies.

2.2 Non-Contiguous Allocation Strategies

Advances in switching techniques such as the proposal

of wormhole routing [11], has made communication
latency less sensitive to the distance among the
communicating nodes [4]. This has made allocating a job
to non-contiguous processors plausible. Allocation of jobs
to non-contiguous nodes allows jobs to be executed
without waiting if the number of available processors is
sufficient [4]. Below we describe some of the non-
contiguous allocation strategies that have been suggested
in the literature.

Paging: In the Paging strategy [15], the entire 2D
mesh is divided into pages that are sub-meshes with equal
sides’ length of indexsize _2 , where indexsize _ is a

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

positive integer. A page is the allocation unit. The pages
are indexed according to several indexing schemes (row-
major, shuffled row-major, snake-like, and shuffled
snake-like indexing). A paging strategy is denoted as
Paging(indexsize _). For example, Paging(2) means that
the pages are 4×4 sub-mesh. The number of pages a job
requests is computed using ()⎡ ⎤Psizeba /× , where Psize
is the size of the pages, and a and b are the side lengths
of the requested sub-mesh. In this paper, we only consider
the row-major indexing scheme because using the
remaining indexing schemes has only a very slight impact
on the performance of Paging [15].

Multiple Buddy System (MBS): The MBS is an
extension of the 2D buddy strategy. The mesh is divided
into non-overlapped square sub-meshes with side lengths
equal to the powers of two upon initialization. The
number of processors, p , requested by an incoming job
is factorized into a base of four representation

of ()⎣ ⎦
∑
=

××
p

i

ii
id

4log

0
22 , where 30 ≤≤ id . The request is

then allocated to the mesh according to the factorized
number in which id number of ii 22 × blocks is
required. If a required block is unavailable, MBS
recursively searches for a bigger block and repeatedly
breaks it down into buddies until it produces blocks of the
desired size. If that fails, the requested block is then
broken into four requests for smaller blocks and the
searching process repeats [15].

Adaptive Non-Contiguous Allocation (ANCA): In [4],
ANCA always attempts to allocate a job contiguously.
When contiguous allocation fails, it breaks a job request
into two equal-sized sub-frames. These sub-frames are
then allocated to available locations if possible;
otherwise, each of these sub-frames is broken into two
equal-sized sub-frames, and then ANCA try to allocate
these sub-frames to available locations and thus take
advantage of non-contiguous allocation, and so on.

In Paging strategy, there is some degree of contiguity
because of the indexing schemes used. Contiguity can
also be increased by increasing size_index. However there
is an internal processor fragmentation for size_index ≥ 1,
and it increases with size_index [15]. An issue with MBS
strategy is that it may not allocate a contiguous sub-mesh
although one exists. In fact, contiguous allocation is
explicitly sought in MBS only for requests with sizes of
the form n22 , where n is a positive integer. ANCA
strategy can disperse the allocated sub-meshes more than
it is necessary. It requires that allocation to all sub-frames
occurs in the same decomposition and allocation iteration,
skipping over the possibility of allocating larger sub-
frames for a large part of the request in a previous

iteration. Moreover, stopping when a side length reaches
one can cause external fragmentation.

Our proposed strategy maintains a degree of contiguity
between processors larger than that of the previous non-
contiguous allocation strategies if the number of
requested processors is available in the mesh so that the
communication between processors in GABL is lower
than that of previous non-contiguous allocation strategies.
Moreover, it eliminates both internal and external
fragmentation.

3. Proposed Allocation Strategy

The target system is a LW × 2D mesh, where W is the

width of the square mesh and L its length. Every
processor is denoted by a coordinate (yx,), where

Wx ≤≤1 and Ly ≤≤1 [7]. Each processor is connected
by bidirectional communication links to its neighbor
processors, as depicted in Fig. 1. This figure shows an
example of a 4×4 2D mesh, where allocated processors
are denoted by shaded circles while the free processors
are denoted by white circles.

If a job requests the allocation of sub-mesh of size 2×2
contiguous allocation fails because no 2×2 sub-mesh of
free processors is available, however the four free
processors can be allocated to the job if allocation is non-
contiguous. In what follows we assume that a parallel job
requests, when it arrives, the allocation of a 2D sub-mesh
()baS , of width Wa ≤ and length Lb ≤ . The following

definitions have been adopted from [7].

Definition 1: A sub-mesh),(lwS of width w and length
l , where Ww ≤≤1 and Ll ≤≤1 is specified by the
coordinates (yx,) and (yx ′′,), where (yx,) is the lower
left corner of S , (yx ′′,) is the upper right corner. The
lower left corner node is called the base node of the sub-
mesh, whereas the upper right corner node is the end
node. For example (0, 0, 2, 1) represents the 3 × 2 sub-
mesh S in Fig. 1. The base node of the sub-mesh is (0,
0), and its end node is (2, 1).

: Free Node

Fig. 1: An example of a 4×4 2D mesh

S

 (0,3) (1,3) (2,3) (3,3)

 (0,2) (1,2) (2,2) (3,2)

 (0,0) (1,0) (2,0) (3,0)

 (0,1) (1,1) (2,1) (3,1)

: Allocated Node

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Definition 2: The size of),(lwS is lw× .

Definition 3: An allocated sub-mesh is one whose
processors are all allocated to a parallel job.

Definition 4: A free sub-mesh is one whose processors
are all unallocated.

Definition 5: A suitable sub-mesh),(yxS is a free sub-
mesh that satisfies the conditions: ax ≥ and by ≥
assuming that the allocation of),(baS is requested.

In this study, it is assumed that parallel jobs are by the
scheduler on a First-Come-First-Served (FCFS) basis.
The FCFS scheduling strategy is chosen because it is fair
and it is widely used in other studies [4, 5, 7, 15, 16]. In
the next sub-section, we describe the non-contiguous
allocation strategy.

3.1 Greedy-Available-Busy-List Strategy (GABL)

In GABL strategy, we use an efficient approach [5],

Right of Busy Sub-meshes (RBS) contiguous allocation
strategy, to facilitate the detection of such available sub-
meshes with low allocation overhead. The basic idea in
this approach [5] is to maintain a list of allocated sub-
meshes sorted in non-increasing order of the second
coordinated of their upper right corners. The list is
scanned to determine all the nodes that cannot be used as
base nodes for the requested sub-mesh. These nodes are
then subtracted from the right border line of the allocated
sub-meshes to find the nodes that could be used as base
nodes for the required sub-mesh size.

In GABL strategy, when a parallel job is selected for
allocation a sub-mesh suitable for the entire job is
searched for. If such a sub-mesh is found it is allocated to
the job and allocation is done. Otherwise, the largest free
sub-mesh that can fit inside ()baS , is allocated. Then, the
largest free sub-mesh whose side lengths do not exceed
the corresponding side lengths of the previous allocated
sub-mesh is searched for and allocated if this does not
result in allocating more processors than ba × . This last
step is repeated until ba × processors are allocated.
Allocated sub-meshes are kept in a busy list. Each
element in this list includes id of the job the sub-mesh is
allocated to. When a job departs the sub-meshes it is
allocated are removed from the busy list and the number
of free processors is updated.

This allocation process is implemented by the
algorithm bellow, illustrated in Fig. 2. Note that allocation
always succeeds if the number of free processors ba×≥ ,
and scanning for free sub-meshes uses the RBS
contiguous allocation strategy [5].

Procedure Greedy-Available-Busy-List (a, b):
Begin
{

Total_Allocated = 0

Job_Size = ba ×

Step1. If (number of free processors < Job_Size)
return failure

Step2. If (there is a free S(x, y) suitable for S(a, b))
allocate it using RBS contiguous allocation
algorithm and return success.

Step3. α = a and β = b
Step4. Subtract 1 from max (α, β) if max > 1
Step5. If (Total _allocated + α × β > Job_Size)
 go to step 4
Step6. If there is a free S (x, y) suitable for S(α, β)
 {
 allocate it using RBS algorithm.
 Total_allocated = Total_allocated + α × β.
}
Step7. If (Total_allocated = Job_Size)

return success.
 else

go to Step 5.

}
End.

Fig. 2: Outline of the GABL algorithm

4. Performance Evaluation

In this section, the time and space complexities of the

proposed allocation strategy are presented first. Then, the
results of detailed simulations that have been carried out
to evaluate the performance of the proposed algorithm
and compare it to Paging(0) and MBS are presented;
These two strategies have been selected because they
have been shown to perform well when compared to
existing strategies in [15].

4.1 Allocation and Deallocation Complexities

When a sub-mesh is allocated, the busy list can be

accessed using the algorithm proposed in [5] in)(2mO
time, where m is the number of allocated sub-meshes in
the system (i.e., for all jobs). In the worst case, the new
proposed algorithm allocates 2bm to a job, where b is
the number of allocated sub-meshes for an incoming job.
Therefore, the time complexity of allocation in GABL
algorithm is in)(2bmO . When a job departs, the busy list

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

is accessed for each released sub-mesh. The number of
released sub-meshes is in)(mO , where m is the number
of allocated sub-meshes. Consequently the time
complexity of the deallocation algorithm is in)(mO .

The proposed algorithm maintains a busy list. As a
result, its space complexity is in)(mO . Such space
incurred by this strategy is small compared to the
improvement in performance (i.e., low turnaround times
and low finish times compared to the previous non-
contiguous allocation strategies as can be seen in the next
subsection).

4.2 Simulation Results

In addition to simulation results for GABL, Paging(0),

and MBS, we also show the results for the contiguous
First Fit allocation strategy in this subsection. This
strategy was chosen because it is a good representative of
traditional contiguous allocation strategies (First Fit, Best
Fit, and Worst Fit) [5, 15, 16]. This strategy allocates an
incoming job to the first available sub-mesh that is found
[16].

We have implemented the proposed allocation and
deallocation algorithms, including the busy list routines,
in C language, and integrated the software into the
ProcSimity simulation tool for processor allocation and
job scheduling in highly parallel systems [14].

The target mesh modelled in the simulation
experiments discussed bellow is square with side lengths
L . Jobs are assumed to have exponential inter-arrival
times. They are served on First-Come-First-Served
(FCFS) basis. The execution times of jobs are assumed to
be exponentially distributed with a mean of one time unit.
We have used uniform distribution to generate the lengths
and widths of requests. The uniform distribution is used
over [1, L], where the width and length of a request are
generated independently. This distribution has often been
used in the literature [5, 7, 15, 16]. Each simulation run
consists of one thousands completed jobs. Simulation
results are averaged over enough independent runs so that
the confidence level is 95% and the relative errors do not
exceed 5%.

The interconnection network uses wormhole routing.
Flits are assumed to take one time unit to move between
two adjacent nodes, and st time units to be routed
through a node. Message sizes are represented by lenP .
Processors allocated to a job communicate with each
other using all-to-all communication pattern [11, 12, 15].
In all-to-all communication pattern, each processor
allocated to a job sends a packet to all other processors
allocated to the same job. The number of messages that
are actually sent is exponentially distributed with a mean
num-mes.

Unless specified otherwise, the performance figures
shown bellow are for a 16 ×16 mesh, st = 3 time units,

lenP = 8 flits and num_mes = 5 messages. The main
performance parameters used are the average turnaround
time of jobs, the finish time for all jobs and the system
utilization. The turnaround time of a job is the time that
the job spends in the mesh from arrival to departure. The
finish time is the time required for completion of all the
jobs. The utilization is the percentage of processors that
are utilized over time. The independent variable in the
simulation is the system load. The system load is defined
as the inverse of the mean inter-arrival time of jobs.

In Fig. 3, the finish times of all jobs are plotted against
the system load for the all-to-all communication pattern.
It can be seen in the figure that all strategies have the
same finish times for the low loads because it is highly
likely that a suitable contiguous sub-mesh is available for
allocation to a job when it arrives to the mesh. However,
there is a difference in finish times between the strategies
for medium and high loads. The GABL could show better
performance than all other strategies when the load is
increased. Moreover, GABL is substantially superior to
all other strategies for high loads.

In Fig. 4, the average turnaround times of jobs are
plotted against the system load for the all-to-all
communication pattern. This figure reveals that GABL
performs much better than all other strategies. Also,
GABL is substantially superior to the First Fit contiguous
allocation strategy. Experiments that use larger messages
sizes (16, 32, and 64 flits) have been also conducted.
Their results lead to the same conclusion on the relative
performance of the strategies. Moreover, the results
indicate that the relative advantage of GABL over the
remaining strategies increases with the message length.

In Fig. 5, the system utilization is plotted against the
system load for the all-to-all communication pattern. It
can be seen in the figure that all non-contiguous
allocation strategies are better than First Fit for all the
system loads. This is due to the fact that contiguous
strategies, represented by First Fit, produce high external
fragmentation under such loads. It can also be noticed that
the system utilization for GABL strategy is slightly better
than all other non-contiguous allocation strategies.

Overall, using the busy list approach enables the
GABL to be the most flexible allocation strategy.
Moreover, when the contention is increased using all-to-
all communication pattern the GABL is superior to the
other strategies as is depicted in Figs. 3 and 4.

5. Conclusions

This study has investigated the performance merits of

non-contiguous allocation in the 2D mesh. To this end,

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

we have proposed a new non-contiguous allocation
strategy, notably Greedy-Available-Busy-List, the GABL
strategy decompose the allocation request based on the
sub-meshes available for allocation. The major goal of
partitioning process is maintaining a high degree of
contiguity among processors allocated to a job. Therefore,
the number of sub-meshes allocated to a job is reduced
and hence the distance traversed by the messages is
reduced. The performance of GABL strategy has been
compared against the existing non-contiguous as well as
contiguous allocation strategies. Simulation results have
revealed that non-contiguous allocation greatly improves
performance despite the additional message contention
inside the network that results from the interference
among the messages of different jobs and it produces
superior utilization than its contiguous allocation
counterpart. Results have also shown that the GABL
strategy is substantially superior to the previous
promising non-contiguous allocation strategies MBS and
Paging(0). Moreover, GABL can be efficient because it is
implemented using a busy list approach. This approach
can be expected to be efficient in practice because job
sizes typically grow with the size of the mesh.

35000

40000

45000

50000

55000

60000

65000

70000

0.0145 0.0165 0.0185 0.0205 0.0225 0.0245 0.0265 0.0285 0.0305

Load

Fi
ni

sh
 T

im
e

FF

GABL

Paging(0)

MBS

 Fig. 3: Finish time vs. system load for the all-to-all
communication in a 16 × 16 mesh.

90

190

290

390

490

590

690

790

890

990

0.0005 0.0025 0.0045 0.0065 0.0085 0.0105 0.0125 0.0145 0.0165 0.0185 0.0205

Load

A
ve

ra
ge

 T
ur

na
ro

un
d

Ti
m

e

FF

GABL

Paging(0)

MBS

 Fig. 4: Average turnaround time vs. system load for the
all-to-all communication in a 16 × 16 mesh.

0.02

0.12

0.22

0.32

0.42

0.52

0.62

0.72

0.82

0.0355 0.0405 0.0455 0.0505

Load

U
til

iz
at

io
n FF

GABL

Paging(0)

MBS

 Fig. 5: System utilization vs. system load for the all-to-all
communication in a 16 × 16 mesh.

6. References

[1]

˝Blue Gene Project˝,
http://www.research.ibm.com/bluegene/index.html, 2005.

[2] B.-S.Yoo, C.-R. Das, A Fast and Efficient Processor
Allocation Scheme for Mesh-Connected Multicomputers,
IEEE Transactions on Parallel & Distributed Systems,
vol. 51, no. 1, pp. 46-60, 2002.

[3] C. Peterson, J. Sutton, P. Wiley, iWARP: a 100-MPOS
VLIW microprocessor for multicomputers, IEEE Micro,
vol. 11, no. 13, 1991.

[4] C.-Y. Chang, P. Mohapatra, Performance improvement
of allocation schemes for mesh-connected computers,
Journal of Parallel and Distributed Computing, vol. 52,
no. PC981459, pp. 40-68, 1998.

[5] G.-M. Chiu, S.-K. Chen, An efficient submesh allocation
scheme for two-dimensional meshes with little overhead,
IEEE Transactions on Parallel & Distributed Systems,
vol. 10, no. 5, pp. 471-486, 1999.

[6] I. Ababneh, F. Fraij, Folding contiguous and non-
contiguous space sharing policies for parallel computers,
Mu’tah Lil-Buhuth wad-Dirasat, Natural and Applied
Sciences Series, vol. 16, no. 3, pp. 9-34, 2001.

[7] I. Ababneh, S. Bani Mohammad, Noncontiguous
Processor Allocation for Three-Dimensional Mesh
Multicomputers, AMSE Advances in Modelling &
Analysis, vol. 8, no. 2, pp. 51-63, 2003.

[8] I. Ismail, J. Davis, Program-based static allocation
policies for highly parallel computers, Proc. IPCCC 95,
IEEE Computer Society Press, pp. 61-68, 1995.

[9] Intel Corporation, A Touchstone DELTA system
description, 1991.

[10] K. Li, K.-H. Cheng, A Two-Dimensional Buddy System
for Dynamic Resource Allocation in a Partitionable
Mesh Connected System, Journal of Parallel and
Distributed Computing, vol. 12, no. 1, pp. 79-83, 1991.

[11] Kumar V., Grama A., Gupta A. and Karypis G.
Introduction To Parallel Computing, The
Benjamin/Cummings publishing Company, Inc.,
Redwood City, California, 2003

[12] Kuniyasu Suzaki, Hitoshi Tanuma, Satoshi Hirano, Yuuji
Ichisugi, Chris Connelly, Michiharu Tsukamoto, Multi-
tasking Method on Parallel Computers which Combines
a Contiguous and Non-contiguous Processor Partitioning
Algorithm. PARA 1996: 641-650.

[13] P.-J. Chuang, N.-F. Tzeng, Allocating precise submeshes
in mesh connected systems, IEEE Transactions on
Parallel and Distributed Systems, vol. 5, no. 2, pp. 211-
217, 1994.

[14] ProcSimity V4.3 User’s Manual, University of Oregon,
1997.

[15] V. Lo, K. Windisch, W. Liu, B. Nitzberg, Non-
contiguous processor allocation algorithms for mesh-
connected multicomputers, IEEE Transactions on
Parallel and Distributed Systems, vol. 8, no. 7, pp. 712-
726, 1997.

[16] Y. Zhu, Efficient processor allocation strategies for
mesh-connected parallel computers, Journal of Parallel
and Distributed Computing, vol. 16, no. 4, pp. 328-337,
1992.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

	citation_temp.pdf
	http://eprints.gla.ac.uk/3497/

	citation_temp.pdf
	http://eprints.gla.ac.uk/3497/

	citation_temp.pdf
	http://eprints.gla.ac.uk/3497/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

