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Abstract 
 

Contiguous allocation of parallel jobs usually suffers 
from the degrading effects of fragmentation as it requires 
that the allocated processors be contiguous and has the 
same topology as the network topology connecting these 
processors. In non-contiguous allocation, a job can 
execute on multiple disjoint smaller sub-meshes rather 
than always waiting until a single sub-mesh of the 
requested size is available. Lifting the contiguity 
condition in non-contiguous allocation is expected to 
reduce processor fragmentation and increase processor 
utilization. However, the communication overhead is 
increased because the distances traversed by messages 
can be longer. The extra communication overhead 
depends on how the allocation request is partitioned and 
allocated to free sub-meshes. In this paper, a new non-
contiguous processor allocation strategy, referred to as 
Greedy-Available-Busy-List, is suggested for the 2D mesh 
network, and is compared using simulation against the 
well-known non-contiguous and contiguous allocation 
strategies. To show the performance improved by 
proposed strategy, we conducted simulation runs under 
the assumption of wormhole routing and all-to-all 
communication pattern. The results show that the 
proposed strategy can reduce the communication 
overhead and improve performance substantially in terms 
of turnaround times of jobs and finish times. 
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1. Introduction 
 

In a multicomputer, processor allocation is responsible 
for selecting the set of processors on which parallel jobs 
are executed. Most strategies employed in a 
multicomputer are based on contiguous allocation [2, 5, 
10, 13, 16]. These strategies often result in high external 
processor fragmentation, as has been shown in [16]. 
External fragmentation occurs when there are free 
processors sufficient in number to satisfy the number 
requested by a parallel job, but they are not allocated to it 
because the free processors are not contiguous or they do 
not have the same topology as the network topology 
connecting these processors. 

Several studies have attempted to reduce such 
fragmentation [4, 6, 7, 12, 15]. One solution suggested is 
non-contiguous allocation [4, 7, 12, 15]. In non-
contiguous allocation, a job can execute on multiple 
disjoint smaller sub-networks rather than always waiting 
until a single sub-network of the requested size is 
available. Although non-contiguous allocation increases 
message contention in the network, lifting the contiguity 
condition is expected to reduce processor fragmentation 
and to increase processor utilization [15].  

Most of the existing studies [2, 5, 10, 13, 16] on 
allocation have been conducted in the context of the 
contiguous allocation. There has been comparatively very 
little work on non-contiguous allocation. Although 
contiguous allocation eliminates the communication 
overhead between processors by allocating them 
contiguously, non-contiguous allocation can alleviate the 
communication overhead as well as eliminate both 
internal and external fragmentation that result from 
contiguous allocation. Internal fragmentation occurs when 
more processors are allocated to a job than it requires. 
Existing research studies [2, 4, 5, 6, 10, 12, 13, 15, 16] on 
both contiguous and non-contiguous allocation have been 
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carried out in the context of the 2D mesh. The 2D mesh 
has been used as the underlying network in a number of 
practical and experimental parallel machines, such as 
iWARP [3] and Delta Touchstone [9]. In this study, we 
investigate the performance merits of non-contiguous 
allocation for reducing processor fragmentation on the 2D 
mesh and compare its performance to that of the previous 
allocation strategies. To do so, non-contiguous allocation 
strategy, notably Greedy-Available-Busy-List (GABL), is 
suggested. The GABL strategy combines the desirable 
features of both contiguous and non-contiguous allocation 
strategies. The performance of the GABL strategy will be 
compared against the existing well known non-
contiguous allocation strategies Paging(0) and MBS [15], 
these two strategies have been selected because they have 
been shown to perform well when compared to existing 
strategies. Also, the performance of GABL is compared 
against the existing well known contiguous First Fit 
strategy [16]. First Fit has been used to represent the 
contiguous class of strategies as it has been found to 
perform well [16].  

In this study, All-to-All communication pattern is 
considered because it causes much message collision and 
it was known as a weak point for the non-contiguous 
allocation strategies [12].  

The rest of the paper is organized as follows. Section 2 
contains a brief summary of allocation strategies 
previously proposed for 2D mesh. Section 3 contains the 
proposed non-contiguous allocation strategy. Section 4 
compares the performance of the contiguous and non-
contiguous allocation strategies. Section 5 concludes this 
study.  
 
2. Related Work 
 

This section provides a brief overview of some 
existing contiguous and non-contiguous allocation 
strategies. 
 
2.1 Contiguous Allocation Strategies 

 
Contiguous allocation has been investigated 

extensively for 2D mesh multicomputers [2, 5, 10, 13, 
16]. Most of the previous studies have focused on 
reducing the degrading effects of high external 
fragmentation caused by the contiguous allocation 
strategies. Below we describe some of these strategies. 

Two Dimensional Buddy System (2DBS): The 2DBS 
allocation [10] applies to square mesh systems with 
power of two side lengths. Processors allocated to jobs 
also form square sub-meshes with power of two side 
lengths. If a job requests a sub-mesh of size ba×  such 
that ba ≤ , the 2DBS allocates a sub-mesh of size ss× , 

where ( )( )⎡ ⎤bas ,maxlog2= . For example, if a job requests 
two processors it is allocated a square partition of 
processors with a side length of two, resulting in two idle 
processors and an internal fragmentation of 50%. This 
strategy suffers from high fragmentation [4, 15]. Also, it 
cannot be used for non-square meshes and does not have 
complete sub-mesh recognition ability [4, 15]. 

First Fit (FF) and Best Fit (BF): The problem of 
missing an existing possible allocation explained above is 
solved using First Fit and Best Fit allocation strategies 
[16]. The free sub-meshes are scanned and First Fit 
allocates the first sub-mesh that is large enough to hold 
the job, whereas Best Fit allocates the smallest suitable 
sub-mesh by choosing the corner that has the largest 
number of busy neighbors. Bit arrays are used for 
scanning of available processors. 

Stack Based Allocation (SBA): This strategy finds a 
free sub-mesh quickly by reducing the search space 
drastically through the use of a simple coordinate 
calculation and spatial subtraction [2]. It could be 
implemented efficiently using a stack, as demonstrated in 
[2]. Simulation results have shown that the SBA strategy 
allocates processors faster than the previous allocation 
strategies and still delivers competitive performance [2]. 

The above allocation strategies consider only 
contiguous regions for the execution of a job. As a 
consequence, the distance of the communication paths is 
expected to be minimized in contiguous allocation. Only 
messages generated by the same process are expected 
within a sub-mesh and therefore cause no inter-job 
contention in the network. On the other hand, the 
restriction that jobs have to be allocated to contiguous 
processors reduces the chance of successfully allocating a 
job. It is possible to fail in the contiguous allocation 
strategies to allocate a job while a sufficient number of 
processors are available [4], i.e., fragmentation occurs in 
these strategies. 

  
2.2 Non-Contiguous Allocation Strategies 

 
Advances in switching techniques such as the proposal 

of wormhole routing [11], has made communication 
latency less sensitive to the distance among the 
communicating nodes [4]. This has made allocating a job 
to non-contiguous processors plausible. Allocation of jobs 
to non-contiguous nodes allows jobs to be executed 
without waiting if the number of available processors is 
sufficient [4]. Below we describe some of the non-
contiguous allocation strategies that have been suggested 
in the literature. 

Paging: In the Paging strategy [15], the entire 2D 
mesh is divided into pages that are sub-meshes with equal 
sides’ length of indexsize _2 , where indexsize _  is a 
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positive integer. A page is the allocation unit. The pages 
are indexed according to several indexing schemes (row-
major, shuffled row-major, snake-like, and shuffled 
snake-like indexing). A paging strategy is denoted as 
Paging( indexsize _ ). For example, Paging(2) means that 
the pages are 4×4 sub-mesh. The number of pages a job 
requests is computed using ( )⎡ ⎤Psizeba /× , where Psize  
is the size of the pages, and a  and b  are the side lengths 
of the requested sub-mesh. In this paper, we only consider 
the row-major indexing scheme because using the 
remaining indexing schemes has only a very slight impact 
on the performance of Paging [15].  

Multiple Buddy System (MBS): The MBS is an 
extension of the 2D buddy strategy. The mesh is divided 
into non-overlapped square sub-meshes with side lengths 
equal to the powers of two upon initialization. The 
number of processors, p , requested by an incoming job 
is factorized into a base of four representation 

of ( )⎣ ⎦
∑
=

××
p

i

ii
id

4log

0
22 , where 30 ≤≤ id . The request is 

then allocated to the mesh according to the factorized 
number in which id  number of ii 22 ×  blocks is 
required. If a required block is unavailable, MBS 
recursively searches for a bigger block and repeatedly 
breaks it down into buddies until it produces blocks of the 
desired size. If that fails, the requested block is then 
broken into four requests for smaller blocks and the 
searching process repeats [15].  

Adaptive Non-Contiguous Allocation (ANCA): In [4], 
ANCA always attempts to allocate a job contiguously. 
When contiguous allocation fails, it breaks a job request 
into two equal-sized sub-frames. These sub-frames are 
then allocated to available locations if possible; 
otherwise, each of these sub-frames is broken into two 
equal-sized sub-frames, and then ANCA try to allocate 
these sub-frames to available locations and thus take 
advantage of non-contiguous allocation, and so on. 

In Paging strategy, there is some degree of contiguity 
because of the indexing schemes used. Contiguity can 
also be increased by increasing size_index. However there 
is an internal processor fragmentation for size_index ≥ 1, 
and it increases with size_index [15]. An issue with MBS 
strategy is that it may not allocate a contiguous sub-mesh 
although one exists. In fact, contiguous allocation is 
explicitly sought in MBS only for requests with sizes of 
the form n22 , where n  is a positive integer. ANCA 
strategy can disperse the allocated sub-meshes more than 
it is necessary. It requires that allocation to all sub-frames 
occurs in the same decomposition and allocation iteration, 
skipping over the possibility of allocating larger sub-
frames for a large part of the request in a previous 

iteration. Moreover, stopping when a side length reaches 
one can cause external fragmentation.  

Our proposed strategy maintains a degree of contiguity 
between processors larger than that of the previous non-
contiguous allocation strategies if the number of 
requested processors is available in the mesh so that the 
communication between processors in GABL is lower 
than that of previous non-contiguous allocation strategies. 
Moreover, it eliminates both internal and external 
fragmentation. 

 
3. Proposed Allocation Strategy 

 
The target system is a LW ×  2D mesh, where W is the 

width of the square mesh and L  its length. Every 
processor is denoted by a coordinate ( yx, ), where 

Wx ≤≤1 and Ly ≤≤1 [7]. Each processor is connected 
by bidirectional communication links to its neighbor 
processors, as depicted in Fig. 1. This figure shows an 
example of a 4×4 2D mesh, where allocated processors 
are denoted by shaded circles while the free processors 
are denoted by white circles.  

If a job requests the allocation of sub-mesh of size 2×2 
contiguous allocation fails because no 2×2 sub-mesh of 
free processors is available, however the four free 
processors can be allocated to the job if allocation is non-
contiguous. In what follows we assume that a parallel job 
requests, when it arrives, the allocation of a 2D sub-mesh 
( )baS ,  of width Wa ≤ and length Lb ≤ . The following 

definitions have been adopted from [7]. 
 

Definition 1: A sub-mesh ),( lwS  of  width w  and length 
l , where Ww ≤≤1  and Ll ≤≤1  is specified by the 
coordinates ( yx, ) and ( yx ′′, ), where ( yx, ) is the lower 
left corner of S , ( yx ′′, ) is the upper right corner. The 
lower left corner node is called the base node of the sub-
mesh, whereas the upper right corner node is the end 
node. For example (0, 0, 2, 1) represents the 3 × 2 sub-
mesh S  in Fig. 1. The base node of the sub-mesh is (0, 
0), and its end node is (2, 1). 
 
 
 
 
 
 
 
 
 
 
 
 

: Free Node 

Fig. 1: An example of a 4×4 2D mesh 

S 

   (0,3)         (1,3)         (2,3)         (3,3)    

                  (0,2)         (1,2)         (2,2)         (3,2)    

     (0,0)         (1,0)         (2,0)          (3,0)  

      (0,1)         (1,1)          (2,1)         (3,1)    

: Allocated Node 
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Definition 2: The size of ),( lwS  is lw× . 
 
Definition 3: An allocated sub-mesh is one whose 
processors are all allocated to a parallel job. 
 
Definition 4: A free sub-mesh is one whose processors 
are all unallocated. 
 
Definition 5: A suitable sub-mesh ),( yxS  is a free sub-
mesh that satisfies the conditions: ax ≥  and by ≥  
assuming that the allocation of ),( baS  is requested. 

In this study, it is assumed that parallel jobs are by the 
scheduler on a First-Come-First-Served (FCFS) basis. 
The FCFS scheduling strategy is chosen because it is fair 
and it is widely used in other studies [4, 5, 7, 15, 16]. In 
the next sub-section, we describe the non-contiguous 
allocation strategy. 

 
3.1 Greedy-Available-Busy-List Strategy (GABL)  

 
In GABL strategy, we use an efficient approach [5], 

Right of Busy Sub-meshes (RBS) contiguous allocation 
strategy, to facilitate the detection of such available sub-
meshes with low allocation overhead. The basic idea in 
this approach [5] is to maintain a list of allocated sub-
meshes sorted in non-increasing order of the second 
coordinated of their upper right corners. The list is 
scanned to determine all the nodes that cannot be used as 
base nodes for the requested sub-mesh. These nodes are 
then subtracted from the right border line of the allocated 
sub-meshes to find the nodes that could be used as base 
nodes for the required sub-mesh size. 

In GABL strategy, when a parallel job is selected for 
allocation a sub-mesh suitable for the entire job is 
searched for. If such a sub-mesh is found it is allocated to 
the job and allocation is done. Otherwise, the largest free 
sub-mesh that can fit inside ( )baS ,  is allocated. Then, the 
largest free sub-mesh whose side lengths do not exceed 
the corresponding side lengths of the previous allocated 
sub-mesh is searched for and allocated if this does not 
result in allocating more processors than ba × . This last 
step is repeated until ba ×  processors are allocated. 
Allocated sub-meshes are kept in a busy list. Each 
element in this list includes id  of the job the sub-mesh is 
allocated to. When a job departs the sub-meshes it is 
allocated are removed from the busy list and the number 
of free processors is updated. 

This allocation process is implemented by the 
algorithm bellow, illustrated in Fig. 2. Note that allocation 
always succeeds if the number of free processors ba×≥ , 
and scanning for free sub-meshes uses the RBS 
contiguous allocation strategy [5]. 

Procedure Greedy-Available-Busy-List (a, b): 
Begin 
{ 

Total_Allocated = 0 

Job_Size = ba ×  

Step1. If (number of free processors < Job_Size) 
return failure 

Step2.  If (there is a free S(x, y) suitable for S(a, b))  
allocate it using RBS contiguous allocation 
algorithm and return success. 

Step3. α = a and β = b 
Step4. Subtract 1 from max (α, β) if max > 1 
Step5. If (Total _allocated + α × β > Job_Size) 
   go to step 4 
Step6. If there is a free S (x, y) suitable for S(α, β) 
  { 
          allocate it using RBS algorithm. 
         Total_allocated = Total_allocated + α × β. 
} 
Step7. If (Total_allocated = Job_Size)  

return success.  
         else  

go to Step 5. 

} 
End. 

Fig. 2: Outline of the GABL algorithm 
 

4. Performance Evaluation 
 
In this section, the time and space complexities of the 

proposed allocation strategy are presented first. Then, the 
results of detailed simulations that have been carried out 
to evaluate the performance of the proposed algorithm 
and compare it to Paging(0) and MBS are presented; 
These two strategies have been selected because they 
have been shown to perform well when compared to 
existing strategies in [15]. 

 
4.1 Allocation and Deallocation Complexities 

 
When a sub-mesh is allocated, the busy list can be 

accessed using the algorithm proposed in [5] in )( 2mO  
time, where m  is the number of allocated sub-meshes in 
the system (i.e., for all jobs). In the worst case, the new 
proposed algorithm allocates 2bm  to a job, where b  is 
the number of allocated sub-meshes for an incoming job. 
Therefore, the time complexity of allocation in GABL 
algorithm is in )( 2bmO . When a job departs, the busy list 
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is accessed for each released sub-mesh. The number of 
released sub-meshes is in )(mO , where m  is the number 
of allocated sub-meshes. Consequently the time 
complexity of the deallocation algorithm is in )(mO . 

The proposed algorithm maintains a busy list. As a 
result, its space complexity is in )(mO . Such space 
incurred by this strategy is small compared to the 
improvement in performance (i.e., low turnaround times 
and low finish times compared to the previous non-
contiguous allocation strategies as can be seen in the next 
subsection). 

 
4.2 Simulation Results 

 
In addition to simulation results for GABL, Paging(0), 

and MBS, we also show the results for the contiguous 
First Fit allocation strategy in this subsection. This 
strategy was chosen because it is a good representative of 
traditional contiguous allocation strategies (First Fit, Best 
Fit, and Worst Fit) [5, 15, 16]. This strategy allocates an 
incoming job to the first available sub-mesh that is found 
[16].  

We have implemented the proposed allocation and 
deallocation algorithms, including the busy list routines, 
in C language, and integrated the software into the 
ProcSimity simulation tool for processor allocation and 
job scheduling in highly parallel systems [14]. 

The target mesh modelled in the simulation 
experiments discussed bellow is square with side lengths 
L . Jobs are assumed to have exponential inter-arrival 
times. They are served on First-Come-First-Served 
(FCFS) basis. The execution times of jobs are assumed to 
be exponentially distributed with a mean of one time unit. 
We have used uniform distribution to generate the lengths 
and widths of requests. The uniform distribution is used 
over [1, L ], where the width and length of a request are 
generated independently. This distribution has often been 
used in the literature [5, 7, 15, 16]. Each simulation run 
consists of one thousands completed jobs. Simulation 
results are averaged over enough independent runs so that 
the confidence level is 95% and the relative errors do not 
exceed 5%.  

The interconnection network uses wormhole routing. 
Flits are assumed to take one time unit to move between 
two adjacent nodes, and st  time units to be routed 
through a node. Message sizes are represented by lenP . 
Processors allocated to a job communicate with each 
other using all-to-all communication pattern [11, 12, 15]. 
In all-to-all communication pattern, each processor 
allocated to a job sends a packet to all other processors 
allocated to the same job. The number of messages that 
are actually sent is exponentially distributed with a mean 
num-mes. 

Unless specified otherwise, the performance figures 
shown bellow are for a 16 ×16 mesh, st = 3 time units, 

lenP = 8 flits and num_mes = 5 messages. The main 
performance parameters used are the average turnaround 
time of jobs, the finish time for all jobs and the system 
utilization. The turnaround time of a job is the time that 
the job spends in the mesh from arrival to departure. The 
finish time is the time required for completion of all the 
jobs. The utilization is the percentage of processors that 
are utilized over time. The independent variable in the 
simulation is the system load. The system load is defined 
as the inverse of the mean inter-arrival time of jobs.  

In Fig. 3, the finish times of all jobs are plotted against 
the system load for the all-to-all communication pattern. 
It can be seen in the figure that all strategies have the 
same finish times for the low loads because it is highly 
likely that a suitable contiguous sub-mesh is available for 
allocation to a job when it arrives to the mesh. However, 
there is a difference in finish times between the strategies 
for medium and high loads. The GABL could show better 
performance than all other strategies when the load is 
increased. Moreover, GABL is substantially superior to 
all other strategies for high loads. 

In Fig. 4, the average turnaround times of jobs are 
plotted against the system load for the all-to-all 
communication pattern. This figure reveals that GABL 
performs much better than all other strategies. Also, 
GABL is substantially superior to the First Fit contiguous 
allocation strategy. Experiments that use larger messages 
sizes (16, 32, and 64 flits) have been also conducted. 
Their results lead to the same conclusion on the relative 
performance of the strategies. Moreover, the results 
indicate that the relative advantage of GABL over the 
remaining strategies increases with the message length. 

In Fig. 5, the system utilization is plotted against the 
system load for the all-to-all communication pattern. It 
can be seen in the figure that all non-contiguous 
allocation strategies are better than First Fit for all the 
system loads. This is due to the fact that contiguous 
strategies, represented by First Fit, produce high external 
fragmentation under such loads. It can also be noticed that 
the system utilization for GABL strategy is slightly better 
than all other non-contiguous allocation strategies. 

Overall, using the busy list approach enables the 
GABL to be the most flexible allocation strategy. 
Moreover, when the contention is increased using all-to-
all communication pattern the GABL is superior to the 
other strategies as is depicted in Figs. 3 and 4. 

 
5. Conclusions 

 
This study has investigated the performance merits of 

non-contiguous allocation in the 2D mesh. To this end, 
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we have proposed a new non-contiguous allocation 
strategy, notably Greedy-Available-Busy-List, the GABL 
strategy decompose the allocation request based on the 
sub-meshes available for allocation. The major goal of 
partitioning process is maintaining a high degree of 
contiguity among processors allocated to a job. Therefore, 
the number of sub-meshes allocated to a job is reduced 
and hence the distance traversed by the messages is 
reduced. The performance of GABL strategy has been 
compared against the existing non-contiguous as well as 
contiguous allocation strategies. Simulation results have 
revealed that non-contiguous allocation greatly improves 
performance despite the additional message contention 
inside the network that results from the interference 
among the messages of different jobs and it produces 
superior utilization than its contiguous allocation 
counterpart. Results have also shown that the GABL 
strategy is substantially superior to the previous 
promising non-contiguous allocation strategies MBS and 
Paging(0). Moreover, GABL can be efficient because it is 
implemented using a busy list approach. This approach 
can be expected to be efficient in practice because job 
sizes typically grow with the size of the mesh. 
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