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ABSTRACT

We present an objective reduced-reference image quality assess-
ment method based on harmonic gain/loss information through
a discriminative analysis of local harmonic strength (LHS). The
LHS is computed from the gradient of images, and its value rep-
resents a relative degree of the appearance of blockiness on im-
ages when it is related to energy gain within an image. Further-
more, comparison between local harmonic strength values from
an original, distortion-free image and a degraded, processed, or
compressed version of the image shows that the LHS can also be
used to indicate other types of degradations, such as blurriness that
corresponds with energy loss. Our simulations show that we can
develop a single metric based on this gain/loss information and use
it to rate the quality of images encoded by various encoders such as
DCT-based JPEG, wavelet-based JPEG 2000, or various processed
images. We show that our method can overcome some limitations
of the traditional PSNR.

1. INTRODUCTION

The perceived quality of digital images and video has become an
important issue in the rapid growth of multimedia applications.
Although it is believed that a reliable method to judge the qual-
ity of such applications relies on the user through subjective tests,
the results of such tests may not be tractable. In addition, sub-
jective evaluation is time-consuming, laborious, expensive, and
non-repeatable. Therefore, an objective automatic prediction of
the perceived quality is in great demand. Research on the objec-
tive methodology has usually been aimed at replacing the widely
used metrics such as peak signal-to-noise ratio (PSNR) or mean
squared error (MSE) with a more realistic quality measure.

This paper concentrates on the reduced-reference (RR) image
quality assessment. In RR framework, a set of side information
is utilised to help the assessment. This extra information usu-
ally comprises some of the important features which have been
extracted from the original/reference image.

In this work, we have developed a method based on a discrim-
inative harmonics analysis of the spatial gradient computed from
the image. A non-discriminative version of harmonics analysis has
been used in a full-reference (FR) framework [1, 2] to measure the
amount of blockiness distortions typically found in block-based
encoded images. However, since the harmonics analysis method
in the FR model was optimised for measuring blocking artefacts
only, it may not be suitable for other types of distortions and con-
sequently for the quality assessment of images encoded by other
than the block-based and DCT-based codecs. Our proposed me-
thod is able to mitigate these limitations.

The contribution of our work in this paper is manifold: 1) the
use of a single tool to quantify different types of distortions; 2) de-
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sign simplicity without having to resort to complex model such as
the human visual systems (HVS); 3) improved capability of har-
monic analysis based quality assessment method such that it works
not only on block-based DCT coded images for which it was orig-
inally designed, but also on wavelet-based coded images. We have
evaluated the performance of our quality meter with images en-
coded by the two standard codecs: JPEG (which is based on DCT)
and JPEG 2000 (based on wavelet). In addition, we have found
that the proposed method in this paper is also useful for quality
assessment of pictures contaminated by various types of distor-
tions, such as additive, multiplicative, and impulsive noise, as well
as low pass filtered images. More importantly, our method out-
performs the shortcomings of the traditional, widely-used PSNR
measure.

This paper is organized as follows. Section 2 gives the descrip-
tion of our proposed technique. Experimental results are given in
Section 3. Finally, we conclude this paper in Section 4.

2. METHOD

We follow the downstream model [3] of the reduced-reference me-
thod. We also focus on the two most known compression artefacts
namely blocking and blurring [4]. Both feature extraction stages
of the original and the processed images use the same algorithm
(Fig. 1).

Firstly, an image has to go through an edge-detection stage.
At this stage, we calculate the gradient of image by applying a
3 % 3 Sobel operator. The gradient image is then subjected to a
non-overlap block segmentation, with a sufficiently large enough
blocksize to account for any vertical and horizontal activity within
each block. Optionally, we would like to have a perfect alignment
between these blocks with the DCT block boundary; hence inclu-
sion of the DCT block boundary detection is useful. However,
even when such perfection can not be achieved (for example, in a
non-DCT coded images), the subsequent process in the model is
not affected too much owing to the frequency domain operation
which is insensitive to spatial shift.

Harmonics analysis is then applied to each segmented block
in the intended parts of the gradient picture. The analysis is orig-
inally devised to detect the presence of blockiness on DCT-based
compressed images [1]. It is based on detecting the appearance
of blockiness tiling pattern that creates a pseudo-periodic signal
on the gradient image and generates outstanding harmonics in the
frequency-domain. Transformation to the frequency domain is
done via 2-D Fast Fourier Transform (FFT) to each block. The
harmonic analysis isolates and accumulates the harmonics compo-
nents of the resulting FFT spectrum. The accumulated magnitudes
of these harmonics components within each FFT block are cho-
sen as the local harmonic strength (LHS) feature for the reduced-
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Fig. 1. Feature extraction stage of the proposed reduced-referen-
ce image quality model. Dotted lines imply optional.

reference information.

Each of the LHS values corresponds with their respective FFT
blocks and can be identified by the location of the block within an
image. Therefore, all the local harmonic strengths in a picture can
be collected as a matrix,
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with its element, f;;, represents the local harmonic strength value
withl <i¢<m = |H/B|,1 < j<n=|W/B]J,and (i, )
represents the coordinate of each FFT block, while W, H, and B
are the picture width, height, and the size of the FFT window, re-
spectively. For the reference and the decoded picture we have F)
and F9. We may not need all the elements of each of these matri-
ces, because we can restrict our attention to some important parts
or regions of the image. If R represents a set of FFT blocks coordi-
nates of these regions, one may use a more compact representation
of the reduced reference information as

F={(i,4, fi})|(i, ) € R}. @)

The discriminative analysis (evaluation stage) is performed
once all the features from the reference and the degraded pictures,
() and f‘(d), are collected. First, we calculate a local difference
as Ayj = i(;-i) - fi(;'). Using A;;, one can define the local har-
monic gain, e;rj, and the local harmonic loss, e;j, of the 7j-th block
in a frame/image as:

Ay hen A;; > on,
efy = q S WIS Big = O 3)
0 otherwise
Ajj hen A;; < 0and |A;; On,
and e, = |Aij] Wen.]< and |Agj| > 6n 4)
0 otherwise

respectively. In these equations, Jj, is the harmonic threshold value
below which the perceived harmonic differences is considered in-
significant. In the areas where A;; > Jj, spatial ‘activity gain’
is indicated, and it is likely that this gain is proportional to the

appearance of the blocking artifacts. On the other hand, regions
with A;; < —§j, signify spatial ‘activity loss’ that correspond to
blurring and/or disappearance of the contextual details.

The local harmonics gain/loss values give insight on how degra-
dations are distributed across the picture frame. To produce a sin-
gle quality index for an image from these localised information,
a spatial collapsing functions can be used. For example, in this
work a simple arithmetic average produces good results (although
different spatial pooling method is also possible). If n} and n_
denote the number of blocks identified as gain and loss, respec-
tively, then the mean harmonic gain, e, and the mean harmonic
loss, e, can be expressed as

et = n1+ ZZe?} and e~ = nl_ ZZe; (&)
e i j e i j

To take into account the non-linearity behaviour of the objective
metric, or saturation effect in the vicinity of extreme values, we
may use the logarithmic of the mean harmonic gain, G, and loss,
L, as follows:

G=log,,(1+et) and L =1log,,(14+¢7) 6)

where an offset of unity is added to ensure that the resulting values
are always positive. The intermediate quality metric LHS based
on the discriminative analysis of the local harmonic strength is de-
fined as

LHS = |aG+BL -0 (7

where « and 3 are the weighting coefficients for each quality fac-
tor, and 6 is an offset value. According to [3], there is a potential to
use non-linear mapping of the objective output defined in Eq. (7)
to a subjective rating by using a non-linear logistic function, with
the constraint that the function remains monotonic over the full
range of data. The function to transform the set of model outputs
of Eq. (7) to a set of predicted mean opinion scores (MOSp) is
defined as

b1 — b2

bs — LHS
1—|—exp{ 3 1| }

LHS" = + b2 ®)

where b1 — b4 are the coefficients of the 4-parameter logistic curve.
A calibration process is then applied to the Eq. (8) to map its output
to the subjective data. Note that lower L H S™ values correspond to
lower picture quality that may be due to the appearance of block-
iness/tiling degradations on the picture, the information loss as a
result of blurring/smearing, or both. On the other hand, higher
LHS™ implies that the picture in question is of higher quality be-
cause it contains a relatively small amount of degradations.

3. RESULTS

3.1. Test on compressed images

We tested the model against various images after calibrating the
model to some subjective data. Calibration is conducted by train-
ing the model on a set of images annotated with subjective quality
ratings. Subsequently, the validation of the model is conducted on
a different set of annotated images not used in the training. The co-
efficients of Eq. (7) and Eq. (8) can be determined by training the
model with any libraries of images. In this paper, we have used
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Fig. 2. Scatter plot between subjective MOS and the model’s
MOSp for JPEG and JPEG 2000 images from LIVE image quality
database [5].

JPEG and JPEG-2000 images from LIVE image quality assess-
ment database [5] for testing the model. In the test, the database
which consists of 460 images is divided into two subsets: one
for training, and the other for validation. For the given subjective
scores in the database, we found that the set of coefficients suitable
for assessment in this work are o = 0.968, 3 = 2.601, 0 = 0.838
for Eq. (7) and b1 = 0.853, b2 = 0.219, b3 = 2.538, and b4 =
0.534 for Eq. (8). We also used a window size of 32 x 32 pix-
els for the 2-D FFT computation and §;, = 2.00 for the harmonic
threshold in Eq. (3) and (4).

The results from using these parameters on LIVE database are
shown in Fig. 2. The model performs remarkably well, both on
the training and the validation sets. The apparent vertical lines on
the right end of the graph are the scatter plot of the lossless ver-
sions of the original images; it shows that even for the exact copy
of the original image, human judgement varies. The prediction
performance of the proposed model, as well as the contribution of
the two quality factors (harmonics gain and loss) is summarised
in Table 1. Along with our own metric, we have also included
the assessment by the traditional PSNR and the scaled-version of
full-reference blockiness detector output [1] for comparison.

From Table 1 we would like to emphasize the important role
of combining gatn and loss factor to increase the performance of
the proposed technique. When using only gain without [oss fac-
tor (or vice versa) the performance is far from remarkable; even
the PSNR can outperform the gain factor. On the other hand the
loss parameter demonstrates a better performance than gain for
all types of images; it even outperforms the FR blockiness detec-
tor. This means in image quality assessment, the loss could play
more important role than the gain. However, taking into account
both the gain and loss factors gives the objective model LH S™
even better performance and better ability to differentiate the vi-
sual quality. Overall, our model outperforms the PSNR measure,
despite the surprisingly well performance of the PSNR on LIVE
dataset. In addition, later in the subsequent section of this paper
we will show an example of the shortfall of the PSNR in discrim-
inating the subjective quality. In contrast, throughout the datasets
used in this work we can observe that the LHS method has given
more stable performance than the PSNR.

Model  JPEG(A)  JPEG2000 (B)  All (A+B)

PC SC PC SC PC SC

LHS* 0975 0968 0961 0935 0965 0.948
Gain 0.851 0934 0.886 0.894 0.668 0.889
Loss 0925 0933 0932 0937 0924 0.933
FR 0911 0902 0.602 0.598 0.737 0.739
PSNR 0.877 0.890 0.887 0904 0.877 0.896

Table 1. Prediction performance in terms of Pearson correlation
(PC) and Spearman rank correlation (SC) for LIVE image qual-
ity database [5]. LHS™ = the proposed reduced-reference model
using local harmonic strength; Gain/Loss = using only one factor
(either gain or loss from Eq. (5), but not both); FR = full-referen-
ce blockiness detector of [1]; PSNR = using PSNR in dB.

Table 1 also shows a significant improvement our proposed
model has over the FR blockiness detector. Although it is true that
the FR model performs generally well on the JPEG coded images,
this may not be the case for the JPEG 2000 image dataset. This
is understandable since the FR model of [1] was designed primar-
ily to detect blockiness on images. Unfortunately, this means that
other types of distortions may still have gone unnoticed by the FR
model. This is illustrated in Table 1 by the lowest performance of
the FR model for JPEG 2000 images, where it fails to capture the
degradation caused by the JPEG 2000 encoder.

So far, the benchmarks for our reduced-reference model have
been the full-reference metric; i.e., the PSNR and FR blockiness
detector. Although this may seem unfair, these comparisons are
necessary to show that even with the reduced number of support-
ing information our model can still outperform them. For compar-
ison with other reduced-reference model, we found that our model
has better correlation coefficients than an HVS-based reduced-ref-
erence model in [6]; against the JPEG subset, for example, our
LHS™ model can achieve a correlation of 0.975 (Table 1) while
the model in [6] is reported to have a correlation of 0.961. It is also
worth to note that the number of data in the reduced-reference used
for our model (typically around 330 real number) is considerably
less than those required in [6] (= 1056 real numbers). A typi-
cal size of LHS™ reduced-reference data file per image is about
3.0 kilobytes (and this can be reduced further by using data com-
pression), while the HVS-based model in [6] requires around 18.0
kilobytes (with no compression). This shows the advantage of the
LHS model which —despite its simple design— can still compete
with more complex model such as those based on HVS.

By using the coefficients from the calibration process, we can
even apply the proposed method to a wide range of corruptions on
images. This is explained in the next section.

3.2. Application to images with different types of distortions

We also tested the proposed method against images distorted by
various types of distortions such as those listed in Table 2. The
test images along with their subjective test scores were taken from
[7]. The subjective scores are expressed in terms of the mean sub-
jective rank (MSR), which is the average of visual quality differ-
ences between the original and the processed images, rated by a
group of subjects. Hence the low value of subjective rank indi-
cates higher visual quality, and lower visual quality is represented
by higher value of the subjective rank. Note that the data in Table 2
have been presented in a descending order of their MSR; i.e., from



Distortion Type MSR UQI PSNR FR Proposed
from [7] from[7] (dB) [1] LHS"
Mean Shift 1.59 0.9894 24.61  1.0000 0.8283
Contrast Stretching 1.64 0.9372 24.61 0.8371 0.8471
Salt-Pepper Noise 3.32 0.6494 24.60 0.3516 0.5397
Speckle Noise 4.18 0.4408 24.61  0.3811 0.5610
Gaussian Noise 4.27 0.3891 24.61  0.3707 0.4922
Blurring 6.32 0.3461 24.63  0.7380 0.3915
JPEG Compression 6.68 0.2876 24.80  0.1969 0.3778
Pearson Correlation -0.94 0.65 -0.61 -0.95
Spearman Correlation -1.00 0.73 -0.68 -0.92

Table 2. Assessment of “Lena” image [7] distorted by various corruptions. Note: MSR = Mean Subjective Rank. Correlations values are

calculated with respect to the subjective score of MSR

good quality picture to the worst one. The results of the assess-
ment for sample images (“Lena” images, not presented here due
to space limit) by the proposed method, as well as the output of
the full-reference model Universal Quality Index (UQI) given in
[7], are also tabulated in Table 2. All images are tuned to yield the
same PSNR relative to the original image.

In these samples, despite the differences in subjective quality
(in terms of the MSR), the table shows that the change in PSNR
values across pictures with different quality is insignificant; i.e.,
the discriminative ability of the PSNR is very poor. In contrast, the
LHS™ measure demonstrates a consistent ability to differentiate
the quality, far better than the PSNR does.

Table 2 shows that the LH S™ measure agrees relatively well
with the MSR compared with the other metrics; in fact, the Pear-
son correlation of the LHS™ is the highest amongst the others
presented here, and it outperforms that of the U@ I metrics which
has the advantage of being the full-reference model. The only
exception is the output of the LHS™ for the contrast-stretched
image, which is rated slightly better than the mean-shifted im-
age. This, however, is probably no surprise because many con-
sider contrast-stretching as an image enhancement process, which
increases the visual quality; actually, it was reported subjectively
that the contrast-stretched image is better than the original [7].

4. CONCLUSIONS

This paper has presented a framework to develop an objective im-
age quality assessment model using local harmonic strength as a
reduced-reference information. We have devised a method to ex-
tract the harmonic gain and loss information from a picture and
use them for quality assessment of images contaminated by vari-
ous types of degradations, including additive, multiplicative, and
impulsive noise as well as coding distortion in the block-based and
the wavelet-based coded images; e.g., JPEG and JPEG 2000 im-
ages. Although the concept of different treatment for gain and loss
distortions in our method may resemble those presented in [8], the
features being used in the model and also the definition of each
gain and loss are different. The model in [8] works in the spa-
tial domain, uses features based on the statistics of the output of
some edge enhancement filters, employs some relative measures
of these outputs, and defines the gain and loss as some normalized
ratios. Our method, on the other hand, uses some insights in the
frequency domain and defines the harmonics gain and loss based
on the actual differences between features in this domain. The re-
sults of our experiments indicate that the approach presented here

is promising and shows an advantage over the traditional PSNR.
Therefore, the proposed LHS™ method has a great potential to
replace the PSNR for image quality evaluation technique in the
absence of full original images. Due to the simple approach we
have taken in designing this quality model, a variety of services
and applications for image quality monitoring can benefit from the
method proposed in this paper.
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