An Event Service Supporting Autonomic
Management of Ubiquitous Systems for e-Health

Stephen Strowes*, Nagwa Badr*, Naranker Dulay!, Steven Heeps*, Emil Lupu', Morris Sloman' and Joe Sventek*
*Department of Computing Science, University of Glasgow
{sds,nagwa,heeps,joe} @dcs.gla.ac.uk
TDepartment of Computing, Imperial College London
{n.dulay,e.c.lupu,m.sloman} @doc.ic.ac.uk
http://www.dcs.gla.ac.uk/amuse/

Abstract— An event system suitable for very simple devices
corresponding to a body area network for monitoring patients is
presented. Event systems can be used both for self-management
of the components as well as indicating alarms relating to patient
health state. Traditional event systems emphasise scalability
and complex event dissemination for internet based systems,
whereas we are considering ubiquitous systems with wireless
communication and mobile nodes which may join or leave the
system over time intervals of minutes. Issues such as persistent
delivery are also important. We describe the design, prototype
implementation, and performance characteristics of an event
system architecture targeted at this application domain.

I. INTRODUCTION

Monitoring chronically ill patients as they go about their
normal activity enables early release from hospitals and im-
proves the patients’ quality of life. Analysis and data mining
of the monitored information can be used to predict potential
problems (such as a possible heart attack for a specific patient
being monitored) and to generate a warning to the patient or
medical staff; the information can also be used by medical
researchers to understand body changes that take place prior
to a specific problem. On-body and environmental sensors
may also be used in the home for monitoring elderly patients
to determine problem situations or deterioration of well-
being over time [1]. However, configuration of the multiple
sensors and software components that form an adaptive body-
area network or a home monitoring network is not currently
feasible for non-technical patients or medical staff.

Existing network and systems management frameworks
do not cater for ubiquitous environments, although specific
techniques for monitoring and event correlation, service dis-
covery, quality of service and policy-based management can
be used to some degree. Current frameworks are aimed at
large-scale corporate environments, telecommunications net-
works and internet service providers. For self-management
in ubiquitous systems to become a reality, it is necessary
to define and implement architectures which can scale down
to small lightweight structures with local decision making
capabilities. The management functionality must be auto-
matically integrated and adapted to the specific application
requirements without human intervention. Autonomous, self-
managed cells must be composable to form larger cells but

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

also need to collaborate and integrate with each other in
peer-to-peer relationships as well as across multiple levels of
abstraction relating to hierarchical service relationships.

We are developing autonomic management techniques for
self-configuring and self-managing such systems [2]. Such an
autonomic monitoring system is termed a self-managed cell
(SMC). At the heart of an SMC is an event bus, over which
all management communication between devices or services
is carried. The bus can also be used to carry application events
relating to alarms indicating sensor thresholds have been ex-
ceeded e.g. for heart rate, blood pressure, blood oxygen level,
body temperature. Actuator devices such as heart defibrillators,
insulin and other drug pumps are being developed that could
be triggered by these events. However, we do not consider
that all communication within an SMC is routed via the event
bus. We assume there may be remote invocations or monitored
data, such as from a heart ECG monitor that could be sent to
a remote station for viewing and analysis.

The SMC also has to cater for a variety of different
communication protocols such as WiFi and ZigBee, as well
as GPRS or 3G for remote reporting.

In this paper, we present relevant background and related
work (Section II), outline the requirements and architecture of
the event bus for an SMC (Section III), describe a prototype
implementation and initial performance results (Sections IV
and V), and discuss intended future work (Section VI).

II. BACKGROUND AND RELATED WORK

As with most management systems, an SMC must concern
itself with the five traditional aspects of system management
(fault, configuration, accounting, performance, and security) to
varying degrees [3]. Figure 1 shows that an SMC constructed
as a body-area network consists of a collection of wireless
sensors. These sensors can both send and receive data. Each
sensor can also receive control commands from management
components, such as the Policy Service, to change thresholds
or monitoring strategy. Many management systems perform
control actions as a result of receiving events that an error
threshold has been exceeded, a new service has been requested

or a component has failed.
IF]‘,F.

COMPUTER
SOCIETY

e ——————

~.
-
. ~.
> @ \
./ EVENT BUS)
\- "
ST,

N R
'.\. “/.

e —— e ————

Fig. 1. High level view of an SMC).

Given the wireless nature of the networks to be constructed
and the potentially sensitive nature of the data to be carried
by them, mechanisms must be employed to guarantee delivery
of events between components.

The core of an SMC consists of three components largely
independent of each other, each fulfilling part of the function-
ality required. These, the policy service, the discovery service
and the event bus, are discussed below.

A. Policy-based Management

Policies provide the means of specifying the adaptation
strategy for autonomic management [4]. Authorisation policies
specify what resources the components assigned to a role can
access, and obligation policies (event-condition-action rules)
specify how components/services react to events and interact
with other components/services. When a device is discovered
and granted membership of an SMC, the appropriate policies,
based on device type, are deployed to it. This is triggered by a
discovery event. Policies can be added, removed, enabled and
disabled to change the behaviour of cell components without
reprogramming them. Policies also govern the behaviour of
the discovery service and the policy service itself, enabling
these to be tailored to specific situations.

B. Device Discovery

An SMC includes a discovery service, which implements
a protocol to search for new devices to integrate into the
cell, and maintains connectivity to those devices while they
are within range. The discovery service is responsible for
managing group membership. It handles the detection and
admission of new services to the SMC when they enter
communication range (employing authentication specific to the
application) and the removal of services which have left the
SMC (through being physically removed or battery failure).
The protocol is designed to mask transient disconnections
between components, e.g. a nurse leaves the room for a short
period of time before returning.

The discovery protocol does not use the event bus for
monitoring group membership. Instead, the discovery protocol
works with the event bus to separate the concern of group
membership from the concern of passing events between
services. However, the discovery service informs the SMC of
the arrival or departure of devices via “New Member” and
“Purge Member” events, respectively.

C. Event Bus, Behaviour and Semantics

The event bus is required to forward events from services
in an SMC onto any interested parties within the SMC which
have subscribed to receive the event. Other services, such as
the discovery service, use the event bus to generate manage-
ment or application specific events, but as stated previously,
not all communication is via the event bus.

It is essential that the communication of management events
satisfy at most once semantics - i.e. all events are delivered
to each interested component exactly once as long as the
component remains a member of the SMC. Since there may
be causal relationships between pairs of events from the same
sending component, the event bus must also guarantee that all
events from a particular sender are delivered to each interested
receiver in the order sent. Note that this does not say anything
about delivery order between events from different sending
components, as this would require a model of causality for
the entire SMC.

It is not expected that the event bus will have to deal with
high volumes of events since it is devoted to management
traffic related to a small set of sensors over a patient’s body.
Indeed, given that the target platform for the event bus is to
be a PDA or similar device, we have to constrain the memory
footprint and computational load that the event bus requires.

D. Related Work

Many existing content-based publish/subscribe systems are
designed to allow the service to scale to many more subscribers
than we need within an SMC, often employing some sort of
method of distributing servers to spread the expected work-
load (for example, Elvin [5], Siena [6], JMS [7]). Of these,
some have processing requirements too high for the intended
platform of a PDA (JMS, which requires J2EE), and some
carry potential licensing issues in the future (Elvin is being
marketed as a saleable product by Mantara Software). Testing
has confirmed that the Siena codebase is capable of being
compiled to run under both a restricted J2ME CDC Personal
Profile virtual machine, as well as Blackdown’s JVM version
1.3.1, which has been ported to run on various iPAQ models
under Familiar Linux. Some systems, such as iBus//Mobile [8]
and Elvin, are designed to offer delivery of events to mobile
agents, but don’t offer an event forwarding service on mobile
devices. None of the systems support the required delivery
semantics outlined in Section II-C.

In light of these restrictions, Siena was chosen as the
pub/sub mechanism for rapid prototyping of an event bus
which provided the required semantics. Siena is open source,
and so is easy to modify. This allowed us to build an event bus
quickly. We have since followed this with the development of
a dedicated pub/sub mechanism written in C to replace Siena.

III. EVENT BUS ARCHITECTURE

The event bus relies on a number of distinct software
components to offer the functionality we require: a content-
based publish/subscribe mechanism to match events against
subscriptions; proxy objects to mask heterogeneity of the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

(SMC Core \

Policy Service

Wireless data transfer

—— =
Proxy Bootstrap
Internal data transfer
i —_—
Discovery Service

Discovery Service traffic

Input Handler

Transport

Fig. 2. High level view of objects within an SMC, and illustration of event
flow through the core (minus acknowledgement packets).

various transport mechanisms used by both publishers and
subscribers; a bootstrap mechanism to instantiate the proxies
as required; and a generic transport layer to carry packets
across the network transport being used. By masking network
details within the transport layer, we retain flexibility across
different types of network transports while testing. In this
section we provide an overview of these components. The
relationships between these components is shown in Figure
2, with an example of the movement of an event between
Sensors.

A. The Publish/Subscribe Mechanism

In order to produce a system quickly for experimentation,
we used Siena with an appropriate interface to allow transla-
tion of Siena subscription/notification types to or from our
own. Additional code, in the form of proxies, surrounding
the publish/subscribe mechanism is then responsible for both
providing the semantics we require of the event bus as
described in Section II-C), and for presenting an interface
to the event bus for external services to use. Thus, we do
not expect our semantics to be implemented by the basic
publish/subscribe mechanism itself, and so present a clear
separation of concerns.

The “EventBus” interface which we place around the pub-
lish/subscribe mechanism has allowed us to replace Siena with
a more lightweight mechanism, thus reducing dependencies
on other codebases given the unique nature of our target
application.

B. Proxies

To ease the development of the architecture for various types
of service or device, and to provide the data delivery semantics
we require, each core component of the SMC (including
the event bus) communicates with member services via a
dedicated proxy. The proxy deals with data translation to and
from a format the device will understand, and also ensures
delivery of events and subscriptions in both directions. Each
service granted membership of the SMC is represented by

Filter

PDA

Proxy S1

pub/sub l/

Proxy P1 Sl:l

O Sensor
O Sensor

Fig. 3. High-level block diagram of basic interactions between components
outwith the event bus, and the event bus itself; solid-lined arrows here indicate
synchronous procedure-call semantics, and the direction of the ‘jump’ of that
call; dashed-line arrows indicate asynchronous calls.

S

a proxy object, which provides a standard interface to that
service.

On receiving notification of a new member from the dis-
covery service, the event bus creates a proxy for that new
member. This mechanism is covered in Section III-C. The
proxy immediately subscribes to incoming “Purge Member”
events generated by the discovery service, such that it can
destroy itself, and any outbound data awaiting delivery, when
required (i.e. when the service permanently leaves the SMC).

A proxy is modelled as an abstract class containing generic
code applicable to all SMC services, completed by a con-
crete class containing implementation details specific to the
device/service type. With this design, we can build complex
proxies for simple sensors (capable of performing translation
between the device protocol and higher level event types)
or simple proxies for complex sensors (resembling a mere
forwarding mechanism between the services). Note that while
Figure 2 indicates the use of one transport layer, a proxy would
be able to generate its own transport layer to facilitate com-
munication over a different network transport; for example, a
proxy might be kept in place to facilitate communication with
a diagnostic device, connected to the SMC via an Ethernet
connection.

All calls between services in this model are synchronous;
events are always acknowledged when passing from publisher
(sensor) to event bus, and from the event bus to each sub-
scriber, so that events cannot be lost in transit. This model
is shown in Fig. 3. While the core event bus semantics
require that the event bus acknowledge receipt of events and
subscriptions, it is the design choice of the proxy as to whether
it should forward this acknowledgement to the device itself
(for example, a temperature sensor may periodically transmit
data and not require any acknowledgement prior to the next
reading).

Subscribers register to receive events which match the
content descriptions to which they have subscribed (Fig. 3,
Arrow 1). In the case of simpler devices, the proxy itself might
carry enough knowledge to register for appropriate events on
behalf of the device upon its creation, after the device is
granted SMC membership. Otherwise the device/service might
register itself via its proxy.

As part of the subscription process, a filter is placed in the
publish/subscribe server, representing this subscription, and

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

the ID of the proxy registered. This information is used first to
determine whether an event is applicable to a given subscriber,
and to subsequently push matching events to the subscriber
(Fig. 3, Arrow 2).

Outgoing events are delivered to a subscriber’s proxy by
the event bus, where they are queued prior to processing and
sending to the device, thus maintaining the ordering constraint
on events. This also allows for events unacknowledged by the
device to be resent by the proxy.

Incoming data from devices are also sent to the proxy, to
perform pre-processing of that data into fully fledged data ob-
jects before forwarding to other internal services (for example,
the temperature sensor mentioned above may periodically send
a series of bytes representing a temperature reading, which the
proxy converts into an object representing an event carrying
that temperature, which can be sent to the event bus to be
forwarded to recipients).

The publisher of an event notifies the core of the SMC of a
new event without any knowledge of the number of subscribers
listening for that event or the existence of proxies themselves.
The proxy then deals with internal communication of the event
to the event bus, acknowledging to the publisher events which
have been accepted.

C. Proxy Bootstrap Mechanism

By specifying that all communication between the event bus
and the SMC services takes place via a proxy, there must be
a mechanism for creating a proxy when a new service joins
the SMC.

The most straightforward method of achieving this is to
register a service responsible for the creation of proxies
with the publish/subscribe server which will react to “New
Member” events generated by the discovery service; these
events must carry enough information for the proxy-creation
process to be able to generate the appropriate proxy type for
the new service. The bootstrap mechanism must therefore be
initialised on the creation of the event bus.

D. Transport Layer

Components within the core of the SMC use a generic
transport layer to communicate with each other, which de-
couples higher level components from the actual network layer
beneath. This is modelled as an abstract class (forming the
generic interface required), extended to complete the details
of the actual network transport to be used.

This transport layer presents recv () and send () calls
to objects which make use of it. Respectively, the layer
returns and accepts arrays of bytes, which can be bundled into
further packet structures if required for transmission across the
underlying transport mechanism. Much of the complexity of
the underlying transport can be hidden within the constructor
of a concrete transport class.

The choice of using byte arrays as input and output of
the transport layer not only simplifies the functionality of the
layer, but avoids unnecessary class hierarchies in other parts
of the codebase. Further, handling data transfer in this manner

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

removes the reliance on Java’s serialisation process, allowing
for coding SMC services external to the core of the SMC (e.g.
sensors), in languages other than Java. Thus, we do not enforce
the use of Java as part of the SMC, and do not preclude the
possibility of the core SMC services being rewritten in C or
C++ in the future.

IV. PROTOTYPE IMPLEMENTATION

Initial work involved building the architecture we describe
in Section III with Siena performing matching of events to
subscriptions. We have since replaced this mechanism with
our own C-based matching mechanism, interfacing with the
existing Java codebase via JNI [9]. Our own matching mech-
anism is based on the basic Siena fast forwarding algorithm
[10].

Initial development has taken place largely on desktop
systems sharing the same local area network, passing UDP
datagram packets between machines. This allows for packets
to be sent between hosts without the need to set up TCP
connections and without guarantee of delivery, and so can be
seen to mimic the wireless environment over which our SMC
will run.

The current prototype uses a transport layer which makes
use of datagram sockets. Sockets are opened within the “Trans-
port” constructor, and subsequent send () and recv () calls
are wrappers around send and receive calls over these sockets.

In this prototype, a 48 bit ID for each service is generated
from the transport layer’s unicast socket and the port number
that socket is attached to — by simply opening a socket and
not binding to a specific port, the operating system is free
to choose the port number for the socket request, and so the
prototype is not hardwired to use a specific port for unicast
traffic. Broadcast traffic, generated by the discovery service,
is delivered on an arbitrarily chosen port number known by
services, to allow new services to listen for nearby discovery
services.

This development environment has been migrated to an
iPAQ hx4700 PDA running Familiar Linux with Blackdown
Java 1.3.1, communicating with a laptop (1.2GHz Pentium 3
with 256MB RAM) via an IP connection over a USB cable;
this allows for the same UDP Transport layer to be used in
testing the suitability of the software for a more restricted
environment.

Support for 802.11b under Linux on this PDA is not
yet available, so development is progressing on a wireless
implementation using the built-in Bluetooth [11] capabilities
of the device; Bluetooth dongles will allow the use of other
devices, and allow testing of devices moving in and out of
range of the SMC. The testing of these environments should
allow for an easy migration to Zigbee [12] hardware in the
future.

Currently, prototype versions of the event bus, discovery
service, and policy service have all been trialled largely
independently of each other. Work is underway to integrate
the various core components of the SMC to enable further
development, testing, and experimentation. Testing of the

YF]',F.

COMPUTER
SOCIETY

proxy architecture has consisted of building test sensors in
Java and C, allowing the proxies to translate/acknowledge data
as required.

V. INITIAL PERFORMANCE RESULTS

The performance of the event bus is key to the success of
the SMC architecture, given the constrained environment in
which it is intended to run. Using the testing environment of
the PDA and the laptop as described in Section IV, and the
two event buses we have developed, we tested the elapsed
response time of the event bus against message size (Figure
4(a)) and the throughput of the event bus against message size
(Figure 4(b)).

The response time of the event bus is dependent on the
latency of the link, scheduling decisions made by the Linux
kernel at both ends of the link, the time taken to transfer data
on a socket to the JVM, and the behaviour of the JVM itself.
The latency on the link is 1.5ms on average (0.6ms minimum,
2.3ms maximum taken over the link for 1 minute), so most
of the latency observed in Figure 4(a) is dependent on the
behaviour of the operating system at each host, and also of the
JVM at each host. The average rise in response time over the
course of the experiment is generated by copying of packet
data, which we have attempted to minimise in the C-based
publish/subscribe mechanism.

As mentioned in Section II-C, the event bus is targeted
solely at the needs of management control and limited ap-
plication event traffic; we do not expect the throughput re-
quirements for such traffic to be onerous. Considering that
the link can sustain a throughput of approximately 575KB/s
when simply transferring data from one host to another, the
results in Figure 4(b) indicate a considerably lower data
throughput via both our event buses. However, by building a
minimal publish/subscribe matching mechanism in C designed
for our system, we do improve the throughput which the
architecture can sustain. This gain in throughput may be
attributed to the much simpler codebase not requiring the same
data translations Siena required, including translation to or
from our own data types. Obviously, the payload throughput
we observe does not take into account application headers,
datagram packet headers, the overhead of dealing with each
packet through the OS to the JVM and back, and copying
data, and hence some loss of data throughput can be attributed
to these factors. There is certainly scope for improving the
performance and throughput this software can provide as
development continues.

VI. FUTURE WORK

The wireless nature of the devices we expect an SMC
to use in an e-Health environment are driving development
toward wireless technologies. Currently, we are developing
a prototype using Bluetooth. Soon, we will test the SMC
architecture using devices which communicate via the ZigBee
wireless protocol, using a number of scenarios to test various
aspects of the system (such as maximum timeouts for the
discovery service to allow silence from a device until a “Purge

550

Siena-bésed event‘ bus % i
C-based event bus ——
500 -]
450]
400]
% 350 [. llgi—
s . li
o o : l :
0]y HE]
3 Tl 1 Iz
3 | l*
£ 250 | . 1 Iii b]
3 T «4%
8 il .
@ 200 (- . ;]
B
Jest
150 |- B Lz |
Lt
S
100 - l li |
f 3
1 * i * £
50]
0 L L I I L \)))
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Payload Size (bytes)

(a) Variation in end-to-end delay against data sizes.

Siena—l‘:ased e\)eni bus '
20 C-based event bus

T 16 - 4
5 xx7

+
g f$
3 14t L3 p
1 *
2 .
o *
o 12| x b
z E
3 f; . wx X XXX
g 10t : XXX p
4 XX
3 ,f XX
g gl]
4 z x%
2 * x
S - x d

.
0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Payload Size (bytes)

(b) Variation in throughput against data sizes.

Fig. 4. Observed behaviour of the event bus running on the PDA at varying
data sizes.

Member” event is launched). In a similar vein, we will explore
the mechanism for queueing and repeating attempts to deliver
events to services which are unavailable, but have not yet
been declared to have left the SMC. Further investigation into
event bus performance (variation in delays incurred depending
on message size or number of recipients, for example), and
possible improvements will also be investigated.

Further, it is possible that we would see power-saving ben-
efits from quenching techniques such as those demonstrated
in the Elvin publish/subscribe system. We also intend to
replace the content-based publish/subscribe mechanism with a
type-based publish/subscribe [13] mechanism, to remove the
reliance on arbitrary tags as event identifiers.

Development of the existing event bus/discovery ser-
vice/policy service architecture will continue, while also ex-
panding our array of useful test scenarios to help verify the
validity of the system.

We also intend to look into using the JamVM virtual
machine with the output of the GNU Classpath project to
minimise the footprint of the Java virtual machine. We will
consider the performance of this JVM against the Blackdown

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)

0-7695-2541-5 /06 $20.00 © 2006 IEEE

YF]',F.

COMPUTER

SOCIETY

JVM.

ACKNOWLEDGEMENT

The authors wish to thank the UK Engineering and Physical
Sciences Research Council for their support of this research
through grants GR/S68040/01 and GR/S68033/01.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]

(11]

[12]
[13]

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)

REFERENCES

Care in the Community, A virtual research centre of the DTI
Next Wave Technologies and Markets Programme, http://www.
dticareinthecommunity.com/, accessed 6 March, 2006.

J. S. Sventek, N. Badr, N. Dulay, S. Heeps, E. Lupu, and M. Sloman,
“Self-managed cells and their federation.” in CAiSE Workshops (2),
2005, pp. 97-107.

M. Sloman, Ed., Network and Distributed Systems Management. Ad-
dison Wesley, May 1994, ISBN: 0201627450.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy
specification language,” in POLICY ’'01: Proceedings of the Interna-
tional Workshop on Policies for Distributed Systems and Networks.
London, UK: Springer-Verlag, 2001, pp. 18-38.

G. Fitzpatrick, T. Mansfield, S. Kaplan, D. Arnold, T. Phelps, and
B. Segall, “Augmenting the workaday world with elvin,” in Proceedings
of the Sixth European conference on Computer supported cooperative
work. Norwell, MA, USA: Kluwer Academic Publishers, 1999, pp.
431-450.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and
evaluation of a wide-area event notification service,” ACM Transactions
on Computer Systems, vol. 19, no. 3, pp. 332-383, Aug. 2001. [Online].
Available: http://serl.cs.colorado.edu/~carzanig/papers/

S. Grant, M. P. Kovacs, M. Kunnumpurath, S. Maffeis, K. S. Morrison,
G. S. Raj, and J. McGovern, Professional JMS, 1st ed., P. Giotta, Ed.
‘Wrox Press, March 2001, ISBN: 1861004931.

Softwired, “iBus//Mobile homepage,” http://www.softwired-inc.com/
products/mobile/mobile.html, accessed 17 January, 2006.

S. Liang, The Java Native Interface: Programming Guide and Reference.
Addison Wesley, July 1999, iSBN: 0201325772.

A. Carzaniga and A. L. Wolf, “Forwarding in a content-based network,”
in Proceedings of ACM SIGCOMM 2003, Karlsruhe, Germany, Aug.
2003, pp. 163-174.

Bluetooth SIG, Inc., “The official bluetooth membership site,” https:
/Iwww.bluetooth.org/, accessed 20 January 2006.

“Zigbee alliance,” http://www.zigbee.org/, accessed 20 January 2006.
P. Eugster, R. Guerraoui, and J. Sventek, “Type-Based Pub-
lish/Subscribe,” Swiss Federal Institute of Technology, Lausanne
(EPFL), Tech. Rep., 2000.

0-7695-2541-5 /06 $20.00 © 2006 IEEE

YF]',F.

COMPUTER

SOCIETY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

