

Crease, M. and Brewster, S.A. and Gray, P. (2000) Caring, sharing
widgets: a toolkit of sensitive widgets. In, 14th Annual Conference of the
British HCI Group, 5-8 September 2000 British Computer Society
conference series, pages pp. 257-270, Sunderland, England.

http://eprints.gla.ac.uk/3211/

Glasgow ePrints Service
http://eprints.gla.ac.uk

Caring, Sharing Widgets: A Toolkit of Sensitive
Widgets

Murray Crease, Stephen Brewster & Philip Gray
Department of Computing Science
University of Glasgow
Glasgow, UK, G12 8QQ
Tel : +44 (0)141 339 8855, +44 (0)141 330 4966
Fax : +44 (0) 141 330 4913
Email : <murray,stephen,pdg>@dcs.gla.ac.uk
Web : http://www.dcs.gla.ac.uk/<~murray,~stephen,~pdg>

Although most of us communicate using multiple sensory modalities in our
lives, and many of our computers are similarly capable of multi-modal
interaction, most human-computer interaction is predominantly in the
visual mode. This paper describes a toolkit of widgets that are capable of
presenting themselves in multiple modalities, but further are capable of
adapting their presentation to suit the contexts and environments in which
they are used. This is of increasing importance as the use of mobile devices
becomes ubiquitous.

Keywords: audio, multi-modal, resource-sensitive, sonically enhanced widgets,
toolkit

1 Introduction

Many modern applications are designed to run on powerful workstations with large
monitors and powerful graphical capabilities. Whilst this is often the case, perhaps
the user wishes to run the application on a less powerful laptop, or perhaps even on
a hand-held device. In these cases, the application will not have access to the same
amount of visual output resource available to display its interface. Even if it is the
case that the application is running on a powerful workstation with a large monitor,
the feedback provided by the graphical interface may be better provided by a
different sensory modality or a combination of several modalities. Or perhaps the
application is running on a mobile telephone where graphical feedback is only
suitable when the user is not making a call. These examples highlight the need for
interface objects, or widgets, which are capable of adapting their presentation
according to different requirements: the suitability of different presentation
resources, e.g. in a loud environment the use of audio feedback may be unsuitable
and the availability of different presentation resources, e.g. the resolution of the
screen being used or the number of MIDI channels available. For the widgets to be

2 Murray Crease, Stephen Brewster & Philip Gray

able to cope with these different demands, they need to be able produce many
different forms of output. Whilst it would be possible to build the widgets with built
in output in many different output modalities, this would limit the possibilities. It
would be better to be able to easily change the widget’s output to allow the
evaluation and inclusion of new forms. This paper describes a toolkit of such
widgets and goes on to discuss some of the issues which arise from the
implementation of the toolkit.

2 The Aims Of The Toolkit Of Resource Sensitive
Widgets

The toolkit described in this paper has several aims. Its widgets should be multi-
modal, with no one modality assumed to be of any greater importance than any
other. We use the phrase modality to refer to a sensory modality so, for example, all
auditory output is one sensory modality and all visual output is another modality.
The widgets should be sensitive to their environment, adjusting their feedback
accordingly. It should easy for other user interface designers to change the
feedback, either personalising the existing feedback or replacing it with a
completely new design. Finally, at all times the feedback given to the user should be
consistent, regardless of the modality used. That is, regardless of modality, the
information given to the user by a widget should be the same.

Most modern human computer interfaces are based around graphical widgets. This
is despite the fact that most of us in our everyday lives use all our different senses to
interact with the rest of the world and that many modern computers are capable of
generating feedback in modalities other than vision (most notably sound, but in
some instances, touch). To rectify this situation, the toolkit’s widgets are designed
to be multi-modal, with every modality treated equally. Our previous work
(Brewster, 1998) has shown that the addition of audio feedback can improve the
usability of an interface as has work done by (Gaver, 1989) whilst haptic feedback
has also been shown to be effective(Akamatsu & Sato, 1994, Oakley et al., 2000).
In these cases, however, the additional feedback was supplemental to the graphical
feedback as opposed to being an equal partner. Our toolkit’s widgets avoid the
assumption that visual feedback is of greater importance than others, allowing for
the possibility of widgets which are, for example, audio or haptic only. This is
important in situations where the use of visual feedback is limited, e.g. on a mobile
device where screen space is limited; impossible, e.g. on a mobile phone when the
user has the phone to his/her ear; or unsuitable, e.g. if the user is visually impaired.
If the widget is capable of utilising many modalities and makes no assumptions
about what modality is best, these situations can be dealt with.

If a widget is capable of utilising multiple modalities equally, it becomes easy to
imagine situations where it would be desirable for the widget to switch between
modalities. For example, it has been shown that audio feedback can be just as
effective as visual feedback in conveying information about the progress of a

Caring, Sharing Widgets 3

background task (Crease & Brewster, 1999), and that audio feedback can
compensate for a reduction in the size of graphical buttons (Brewster, 1999). This
switch may be made by the user to personalise the widget’s feedback, or by the
system, either to reduce the load on an over-stretched resource or to utilise a more
suitable modality for the given context of use. A user may wish to alter the usage of
a modality through preference, he/she thinks the sounds are too loud and would like
to make them quieter; or through necessity, e.g. an hearing-impaired user has no
need for audio feedback. These changes may merely alter the balance of usage for
the different modalities, e.g. a little more audio feedback and a little less visual
feedback, or may remove a modality all together. The system may change the
modalities used by a widget for two reasons. If, for example, there are insufficient
resources to meet the demands of a widget in a particular modality the system will
reduce the amount of resource required by that modality and may attempt to
compensate by increasing the utilisation of a different modality. The other scenario
is that the system recognises that the current utilisation of a particular modality is
inappropriate in the particular context and will amend the usage appropriately. For
example, if the ambient volume in the environment increases, the system may
increase the level of the audio feedback given to compensate, or if that is
inappropriate, it may switch to a different modality entirely.

When widgets are capable of utilising multiple modalities, the job of designing the
widget’s feedback becomes harder. Standard graphical widgets are well established
and, rightly or wrongly, are almost a de facto standard. Audio feedback, for
example, is less well established and there are many conflicting designs for the
feedback. For this reason it is important that new designs for the presentation of
widgets can be easily included. These designs may replace the existing designs in a
particular modality or may supplement the presentation by using other modalities.
Modifying or replacing the design of feedback in one modality should not affect the
feedback in a different modality if the feedback produced in each modality is
independent. For example, if the toolkit currently used audio feedback based around
structured, non speech sounds called earcons (Blattner et al., 1989, Brewster et al.,
1993) but a designer wished to include an alternative design for audio feedback
using everyday sounds representing the events taking place called auditory icons
(Gaver, 1986), it should be easy it replace the earcons with auditory icons without
affecting the existing visual feedback of the widgets. Additionally, making the
introduction of new designs easy, enables designers to incorporate their designs into
existing applications decreasing the overhead of evaluating new designs.

Regardless of which modalities are used, it is important that the feedback generated
is consistent, both between widgets and within a widget between modalities. If a
widget switches between modalities, the overall feedback must give consistent
information. If a widget utilises two or more modalities the information given in
each must be consistent. For example, if a progress indicator is visible on the
screen, but is then covered by a different window, the audio feedback must give
information that is consistent with the graphical feedback given previously.
Similarly, different widgets must be presented consistently throughout the system.
For example, two different buttons may have different audio styles, e.g. one may
use a pop style and one may use a jazz style, but they both must present their
information in a way that the user recognises as having the same meaning. To this
end, they may use different timbres to achieve their styles, but the same rhythm to

4 Murray Crease, Stephen Brewster & Philip Gray

maintain consistency. Additionally, clashes between the feedback given by different
widgets must be avoided. This issue is usually resolved for graphical feedback by
assigning different graphical widgets to different areas in the 2D region which
makes up the visual display on a screen. Further, this 2D area simulates a third
dimension by allowing the areas occupied by widgets to overlap. For other forms of
feedback, the problem is harder to resolve. Two pieces of feedback presented at the
same time will attempt to occupy the same “space” in the output region, potentially
causing a clash. It is up to the system to avoid such clashes by limiting the amount
of feedback given in such a modality or by somehow modifying the feedback so it
no longer clashes, e.g. by ensuring two sounds employ different timbres to aid their
distinction, or perhaps using a different modality for one of the pieces of feedback.

2.1 Two Examples
Here are two possible scenarios that illustrate the need for our toolkit:

Murray is running an application on a mobile device. He is sitting on a train in a
quiet carriage. The application’s widgets can only use a limited amount of
screen space due to the limited size of the device’s screen. To compensate for
this, the system utilises audio feedback to supplement the visual feedback.
Because the carriage is quiet, the audio feedback is at a low level. At the next
station, a family with young children enters the carriage, increasing the ambient
volume level. To compensate for this, the system increases the level of the audio
feedback. At the next station, Murray gets out and walks along a quiet street in
bright sunlight. To compensate for the walking motion, the system increases the
level of the audio feedback as it is unable to increase the size of the widgets due
to the limited screen size. To compensate for the sun shining on the screen, the
system increases the contrast of the screen.

When Murray gets home, he switches to using his desktop machine which
boasts a large monitor and is attached to an external sound synthesiser. The
system is able to utilise a lot of visual feedback because of the large screen, but
still uses audio feedback because Murray likes it as a supplement to the visual
feedback and the system is capable of producing high quality audio output. The
audio feedback is generated using the synthesiser. Murray runs a MIDI
sequencer application and starts to compose a tune. When the tune is played, this
increases the ambient volume in the room so the system attempts to increase the
level of audio feedback to compensate. However, because most of the MIDI
channels are used playing the tune, the system is unable to meet this demand. To
handle this lack of resource the level of audio feedback generated by the
application is decreased and to compensate the graphical feedback is increased.

Caring, Sharing Widgets 5

3 The Toolkit Design

The previous section described the four main requirements to be met by the toolkit.
Each widget should be capable of producing feedback in multiple modalities with
no preference given to any particular modality. The widgets should be capable of
using the modality most suitable or limiting the use of a modality which has limited
resources. It should be easy to change the feedback a widget produces in one or
more modality with no effect on any other modalities. The feedback given should be
consistent, both between widgets and between modalities. This section describes
how the design of the toolkit meets these four aims.

3.1 The Toolkit Architecture
Figure 1 shows the architecture of the toolkit. The widget behaviour accepts
external events and translates them into requests for feedback. These requests do not
specify the modality to be used for the feedback, but rather just the meaning of the
feedback, e.g. the mouse is over the widget. By accepting only the events that are
relevant to the widget in its current state, the behaviour of the widget is defined.

Modality
Mappe r

W idget
Behaviour

Feedback
Controller

Modality
Mapper

Modality
Mappe r

Modality
Mapper

Widget
Behaviour

Feedback
Controller

Modality
Mapper

Modality
Mapper

External Events

Resource
Manager

Control
Panel

Modality
Mapper

W idget
Behaviour

Feedback
Controller

Modality
Mappe r

Modality
Mapper

Rendering Manager

Output
Module

Output
Module

Output
Module

Output
Module

Output
Module

Output
Device

One of potentially
many widgets

One of potentially many
output modules. Each has a
corresponding modality
mapper in every widget
and an output device.

A P I

A P I

Figure 1 – Toolkit architecture.

6 Murray Crease, Stephen Brewster & Philip Gray

The requirement that the widgets are multi-modal and treat each modality equally is
met by the feedback controller. Because the widget only requests the feedback in
terms of semantics, i.e. the mouse is over the widget, the requests can be translated
into multiple forms of feedback in different modalities. This is done by the feedback
controller which splits the request made by the widget behaviour into suitable
requests for feedback in potentially multiple modalities. These requests are given a
weight specifying the level or importance for that particular modality. This weight
could map to the volume of audio feedback or size in visual feedback, for example.
These requests are then passed on to the rest of the toolkit and ultimately result in
appropriate feedback being produced.

The requirement that the widgets are sensitive to the available resources and their
suitability for the current environment is met by the resource manager. The resource
manager receives input from three sources, a control panel, the output modules and
from applications that use the toolkit via its API. The control panel allows the users
of the system to set the weight for a particular modality. The weight of a modality
encompasses two concepts: the level of user preference for a modality, and the level
of system resource required to meet requests in a modality. This way, users can set
their preference for a particular modality. The output modules can indicate that they
have insufficient resource to meet feedback requests to the resource manager,
allowing the widgets to be sensitive to the availability of resources. External
applications can use the resource manager’s API to influence the weight of different
modalities. Such applications could monitor the environment allowing the widgets
to be sensitive to resource suitability. One such example of this would be an
application that monitored the ambient volume level of the environment, changing
the weight of the audio feedback so that it can be heard without being too loud..
The resource manager takes the information from these three sources and passes on
a weight to the feedback controller for each of the modalities.

The requirement that the widget’s feedback is easy to change is met by the output
modules and the control panel. Because the widget behaviour does not encapsulate
the feedback given by the widget, but merely requests that feedback be given, it is a
simple matter to change the feedback of the widgets. To replace one form of
auditory feedback with another, for example, it is simply a case of replacing the
existing output module with a new one. To supplement the existing feedback with
feedback in a different modality, simply add a new output module to the toolkit. The
control panel enables the changing of the output of a widget according to user
preference. Any options set in the control panel for a widget are added to the request
made for feedback in the modality mapper. There is a modality mapper for each
output module the widget uses. The parameters that can be set for each output
module are supplied by that output module. For example, a visual output module
may supply parameters like colour, shape, 3D and an audio module may supply
parameters like pitch, jazz, rock, pop.

The requirement that all the feedback for the widgets is consistent both between
modalities and between widgets is met by the rendering manager. Again, because
the widget’s feedback is not encapsulated within the widget, it is possible to alter a
widget’s feedback so it does not clash with the feedback from other widgets. An
example of feedback clashing would be two similar, sounds being played at the

Caring, Sharing Widgets 7

same time. The two sounds could interfere with each other, rendering the
information they are conveying unintelligible. Because the rendering manager has a
global perspective on what feedback is being requested at any given time, it can
avoid such clashes by, in this case, perhaps changing the timbres of one of the
sounds being played to make them more distinguishable. Another potential
inconsistency is the use of two modalities which do not make sense when used
together. For example, a button could be presented visually as being wooden, but
the audio feedback may present the button in a metallic way. The rendering
manager could detect this clash and suggest a change in the feedback. The model of
what combinations are acceptable and what are not would have to be built up using
information from both the user and the output modules. For example, a user could
specify the maximum number of sounds to be played at any one time or an output
module could specify preferred output in a different modality.

3.2 An Example
Figure 2 shows a concrete example of how the toolkit works, using a standard
button.

An audio/visual button is in its default state. The
button is drawn as shown, with the cursor outside
the area of the button. No sounds are played. BUTTON

The mouse enters the button. This event is passed to
the widget behaviour, which is in a state such that it
can accept this event. The event is translated into a
request for feedback.

BUTTON

Widget
Behaviour

Mouse Enter

The request is passed to the feedback controller.
This widget has a weight of 30 for audio feedback,
50 for visual feedback and 0 for haptic feedback.
Two requests are generated with appropriate
weights, one for audio feedback and one for visual
feedback. No request is generated for haptic
feedback. Each request is passed onto the
appropriate modality mapper.

Feedback
Controller

Mouse Over

Modality
Mapper
(Visual)

Modality
Mapper
(audio)

8 Murray Crease, Stephen Brewster & Philip Gray

Each modality mapper modifies the event in
accordance with user preferences set in the control
panel. In this case, the style Java Swing Toolkit is
applied to the graphical request and Jazz is applied
to the audio request. Each request is passed onto the
rendering manager.

Mouse Over
Jazz

Mouse Over
Swing

The rendering manager checks for potential clashes
with these requests. In this case there are no clashes
so the requests are passed onto the appropriate
output modules.

Mouse Over
Jazz

Mouse Over
Swing

Rendering
Manager

Each output module receives the request and
translates the request into concrete output. The
visual module draws the button yellow and the
audio module plays a persistent tone at a low
volume in a Jazz style.

BUTTON

Visual
Module

Audio
Module

Figure 2 – An example interaction using the toolkit.

4 Related Work

The Seeheim model (Pfaff, 1985) was one of the first user interface models to
separate the user interface architecture into monolithic functional blocks. Three
functional blocks were defined: the presentation system which handled user input
and feedback; the application interface model which defined the application from a
users point of view and the dialogue control system which defined the
communication between the presentation system and the application interface
model. Like Seeheim, our toolkit has a monolithic presentation component (albeit
only for output), although the dialogue control system is distributed through out the
widgets. The toolkit does not deal with application models because it is solely
concerned with the output generated by individual widgets.

Caring, Sharing Widgets 9

MVC (Model View Controller) and PAC (Presentation, Abstraction, Control)
(Coutaz, 1987) are both agent based models, where an agent is defined to have
“state, possess an expertise, and is capable of initiating and reacting to events.”
(Coutaz et al., 1995). An interface is built using hierarchies of agents. These agents
represent an object in the application. In MVC, the model describes the semantics of
the object, the view provides the (normally visual) representation of the object and
the controllers handles user input. In PAC, the abstraction describes the functional
semantics of the object, the presentation handles the users interaction with the
object, both input and output and the control handles communication between the
presentation and the abstraction as well as between different PAC agents. The
toolkit is object-oriented like both MVC and PAC, with each widget (or agent)
encapsulated into different objects. The toolkit, however, does not define the whole
user interface in terms of a hierarchy of agents, but rather defines the individual
widgets without specifying their organisation. Like the MVC model the toolkit
separates input and output, although unlike MVC, the toolkit’s widgets do not have
a controller type object. It would be possible, however, to build an MVC type
architecture around the toolkit. The toolkit’s architecture has been compared to PAC
in the following way: The modality mappers and output modules are abstract and
concrete presentation modules, although unlike PAC only handling output. The
feedback controller and rendering manager are controllers and the widget behaviour
is the abstraction (Calgary, 1999). Unlike PAC, however, the toolkit’s abstraction is
only aware of the widget’s state, but is not aware of the underlying application
semantics. This is because the toolkit is designed as an extension of the Java Swing
toolkit, allowing it to be easily incorporated into existing Java applications.

The Garnet system (Myers et al., 1990) is a set of tools which allow the creation of
highly interactive graphical user interfaces, providing high level tools to generate
interfaces using programming by demonstration and a constraints system to
maintain consistency. The Garnet toolkit allows the graphical presentation of the
toolkit’s widgets to be easily modified by changing the prototype upon which the
widget is based. Doing this will update all dependent widgets. This is analogous to
changing the design of output for a widget in an output module of our toolkit.

The HOMER system (Savidis & Stephanidis, 1995) allowed the development of
user interfaces that were accessible to both sighted and non-sighted users
concurrently. By employing abstract objects to specify the user interface design
independently of any concrete presentation objects, the system was capable of
generating two user interfaces which could run concurrently for the same
application. This allows sighted and non-sighted users to co-operate using the same
application. Unlike our toolkit, the HOMER system developed two interfaces, using
two separate modalities rather than have one interface which can switch between
multiple modalities as and when required, using several concurrently if appropriate.

Alty & McCartney, (1991) created a multimedia process control system that would
choose the appropriate modality to present information to a user. This would allow
more information to be presented by increasing the bandwidth the interface could
use. Additionally, if the preferred modality is unavailable if, for example, it is
already being used for output, the system would attempt to present the information
using an alternative. It was found, however, to be almost impossible to specify how

10 Murray Crease, Stephen Brewster & Philip Gray

these switches should be made. To limit the complexity of the system, a user-
interface designer would supply it with valid options for output modalities.

The ENO system (Beaudouin-Lafon & Gaver, 1994) is an audio server which
allows audio applications to incorporate audio cues. ENO manages a shared
resource, audio hardware, handling requests from applications for audio feedback.
This shared resource is modelled as a sound space, with requests for sounds made in
terms of high level descriptions of the sound. Like ENO, our toolkit manages shared
resources, although the toolkit extends the concept by switching between resources
according to their suitability and availability. Similarly, the X Windows system
(Scheifler & Gettys, 1986) manages a shared resource, this time a graphics server.
Again, our toolkit extends this concept by managing resources in multiple
modalities and switching between them.

Plasticity (Thevenin & Coutaz, 1999) is the ability of a user interface to be re-used
on multiple platforms that have different capabilities. This would minimise the
development time of interfaces for different platforms. For example, an interface
could be specified once and then produced for both a workstation with a large
screen and a mobile device with limited screen space. This is achieved by
specifying the interface using an abstract model, and subsequently building the
interface for each platform using that platform’s available interactors and resources.
Like the toolkit, plasticity allows user interfaces to adapt to available resources,
although the toolkit does this at the level of individual widgets whilst plasticity does
this at the level of the interface. Additionally, the toolkit attempts to adapt the
interface across multiple modalities whereas plasticity is only aimed at visual
feedback.

5 Current Implementation

Using Java, the framework of the toolkit has been completely implemented,
allowing the widgets to have their presentation changed by both a user and the
system. The API to the toolkit is complete, allowing designers to incorporate new
forms of feedback into existing widgets, or to add new widgets to the existing set.
Currently, the toolkit has been implemented with two widgets, a button and a
progress bar; using two modalities, graphics and audio. Graphically, the buttons are
Java Swing buttons and the progress bars are drawn from first principles, illustrating
the flexibility of the toolkit. Swing buttons were used because this allowed us to
take advantage of Swing’s built in event handling system. Any changes in the
weight of the visual modality are mapped directly to size.

Because the progress bar does not require complex event handling, it could be
drawn from first principles. This allowed us to demonstrate the potential for more
complex representations for different visual weights. Figure 3 shows the different
ways visual weight has been mapped to different graphical representations in this
simple example. Figure 3 (a) shows the progress bar at a low visual weight, with the
progress bars in (b) and (c) having successively greater visual weights. Although

Caring, Sharing Widgets 11

this increases the work required by the designer of the widget, in this case three
visual designs are used rather than one, the work an interface designer is required to
do is reduced because it is possible to use the same widget on multiple platforms
taking advantage of the multiple designs encapsulated in the output module.

Figure 3 – Different visual representations of a progress bar for different visual
weights.

The sounds used to provide the audio feedback for both the button Brewster,
1998and the progress bar (Crease & Brewster, 1998) used earcons. Two audio
output modules were developed, both of which used similar sounds, but the
mappings for audio weight were different. One simply changed the volume of the
sounds in proportion to the audio weight, whilst the other varied the number of
sounds played. At low audio weights only the most important sounds were played
whilst at higher weights more sounds were played. For example, at a low audio
weight only the sound used to indicate a valid selection was played for a button,
whilst at higher weights a sound indicating the mouse was over an active button was
played and at even higher weights, sounds indicating that the button had been
pressed were played. Using the control panel, it is possible to change the output
module used dynamically.

To incorporate a resource sensitive widget into a standard Java program requires
minimal changes. Figure 4 shows the code necessary to declare a standard Java
Swing JButton (here called button) and add it to a JPanel (panel). Figure 5 shows
the code necessary to declare a resource sensitive MButton and add it to a JPanel.
As can be seen, the only changes to the code required are changing the type of
object from JButton to MButton and changing the object passed to the add method
of the panel. It is our intention to build a tool which will parse existing code,
automatically making these changes, making the transition from standard Swing
widgets even easier.

JButton button = new JButton("Progress");
panel.add(button);

Figure 4 – Adding a standard Swing button to a panel.

12 Murray Crease, Stephen Brewster & Philip Gray

MButton button = new MButton("Progress");
panel.add(button.getTheWidget());

Figure 5 – Adding a resource sensitive button to a panel.

A module was developed for the toolkit which communicated with the resource
manager. This module measured the ambient volume of the surrounding
environment and adjusted the weight of the audio feedback accordingly. The
addition of this module to the toolkit highlights its flexibility and demonstrates how
it can be made sensitive to whatever environmental factors are relevant to the user.

6 Discussion

At the moment, the toolkit has a framework to allow widgets to switch between
modalities as and when this is suitable. However, further work is required to help
understand whether it is possible to define how much feedback in one modality is
required to compensate for a reduction in feedback in a different modality. Indeed,
it seems unlikely that a generic solution which can automatically handle all possible
combinations of modalities and designs could be built. A more realistic target is a
semi-automatic system. This would work for specific situations, such as reducing
the size of a graphical button to on the display of a mobile computer and
compensating by the addition of sound. Brewster (1999) found that using sound in
addition to the standard graphical representation of a button on a hand-held device
allowed the buttons to be reduced in size. This demonstrates it is possible to set up
the toolkit to handle individual scenarios, enabling it to compensate for the
reduction in one modality by using another modality.

As can be seen from Figure 1, the toolkit’s architecture is heavily biased around
output, with no system controls on the input side. The widget’s output is
configurable, both by users and the system, whereas the input is fixed. To redress
this imbalance, the input should be treated in a similar way to the output. This
would entail not encapsulating the input behaviour in the widget, but rather
separating it out into a different module as has been done with the output. The role
of the widget behaviour would no longer include handling input events, but rather to
co-ordinate input and output, providing the base upon the widget is built. In this
way, new input mechanisms, for example speech or gesture input, could be
designed and added to the widget with the same ease as output mechanisms. As
with the output modules, this would reduce the overhead of incorporating and
evaluating new input mechanisms into existing widgets.

Another issue which arises from the toolkit design regards the widgets input and
output areas, e.g. the screen area used to accept input from a mouse for a widget and
to present graphical output for a widget. Because the output, and potentially the
input, mechanisms are no longer encapsulated within the widget it is important to

Caring, Sharing Widgets 13

avoid inconsistencies. Further, the output area may change over time, compounding
the situation. It is therefore important to ensure that the output modules
communicate with the input mechanisms to maintain consistency. This dialogue
would be controlled by the widget behaviour module described above. Different
output modules need to communicate with different input mechanisms. An audio
output module has no relevance to a mouse input mechanism. To resolve this, each
input mechanism and output module could be associated with an interaction areas.
For example, a mouse input mechanism and a graphical output module would be
associated with a screen interaction area. A spatialised sound output module and a
gesture input mechanism could be associated with a 3D space interaction area in
which the output is spatialised and the user then selects a target by gesturing at the
area the sound is played in. This is an extension of the concept of a window in X
(Scheifler & Gettys, 1986) or a sound space in ENO (Beaudouin-Lafon & Gaver,
1994), where rather than managing a single shared resource, the toolkit manages
several, switching between resources when appropriate.

7 Conclusions & Future Work

This paper describes a toolkit of multi-modal, resource sensitive widgets. The
toolkit’s widgets are capable of presenting themselves in multiple modalities, with
no preference for any one modality. If appropriate, the way a widget utilises the
different modalities can be varied according to the suitability of the modality for a
situation, perhaps substituting a different modality for an unsuitable one. Equally, it
is simple to include new designs of feedback in an existing widget without affecting
feedback in different modalities allowing the evaluation of new designs without the
overhead of building the complete widget and incorporating these new widgets into
an application.

Although the mechanism is in place for switching between modalities, more work
needs to be done to try and understand the rules, if any, which govern these
switches. With the framework it supplies, our toolkit could be useful tool in this
research.

Using the toolkit, it is now possible for designers to build interfaces that are suitable
for a range of different contexts and environments. This is of increasing importance
as the use of mobile devices that can be used in greatly varied environments grows.

8 Acknowledgements

This work was funded by EPSRC grant GR/L79212.

14 Murray Crease, Stephen Brewster & Philip Gray

References

Akamatsu, M. & Sato, S. (1994). A Multi-Modal Mouse with Tactile and Force
Feedback. International Journal of Human-Computer Studies, 40, 443-453.
Alty, J. & McCartney, C. Design Of A Multi-Media Presentation System For A
Process Control Environment In: Eurographics Multimedia Workshop, Session 8:
Systems, (eds.), (1991)
Beaudouin-Lafon, M. & Gaver, W.W. ENO: Synthesizing Structured Sound Spaces
In: Proceedings of the ACM Symposium on User Interface Software and
Technology, 1994, (eds.), ACM Press, Addison-Wesley, 49-57. (1994)
Blattner, M.M., Sumikawa, D.A. & Greenberg, R.M. (1989). Earcons and Icons:
Their Structure and Common Design Principles. Human-Computer Interaction, 4,
11-44.
Brewster, S. (1998). The Design Of Sonically-Enhanced Widgets. Interacting With
Computers, 11, 211-235.
Brewster, S. Sound In The Interface To A Mobile Computer In: Proceedings of HCI
International'99, (eds.), Lawrence Erlbaum Associates,NJ, 43-47. (1999)
Brewster, S.A., Wright, P.C. & Edwards, A.D.N. An Evaluation of Earcons for Use
in Auditory Human-Computer Interfaces In: Proceedings of ACM INTERCHI'93
Conference on Human Factors in Computing Systems, (eds.), 222-227. (1993)
Coutaz, J. (1987). PAC: An Object Oriented Model for Implementing User
Interfaces. ACM SIGCHI Bulletin, 19, 37-41.
Coutaz, J., Nigay, L. & Salber, D. (1995). Agent-Based Architecture Modelling for
Interactive Systems. Critical Issues In User Interface Engineering, 191-209.
Crease, M. & Brewster, S. Making Progress With Sounds - The Design And
Evaluation Of An Audio Progress Bar In: Proceedings Of ICAD'98, Edwards, A. &
Brewster, S. (eds.), British Computer Society, (1998)
Crease, M. & Brewster, S. Scope For Progress: Monitoring Background Tasks With
Sound In: Human-Computer Interaction, Interact'99, Brewster, S., Cawsey, A. &
Cockton, G. (eds.), IFIP, 19-20. (1999)
Gaver, W.W. (1986). Auditory Icons: Using Sound in Computer Interfaces. Human-
Computer Interaction, 2, 167-177.
Gaver, W.W. (1989). The Sonic Finder: An Interface that Uses Auditory Icons.
Human-Computer Interaction, 4, 67-94.
Myers, B., Giuse, D., Dannenberg, R., Zanden, B., Kosbie, D., Pervin, E., Mickish,
A. & Marchal, P. (1990). Garnet: Comprehensive Support for Graphical Highly
Interactive User Interfaces. IEEE Computer, 23, 71-85.
Oakley, I., McGee, M., Brewster, S. & Gray, P. Putting The Feel Into Look And
Feel In: Proceedings of ACM CHI'2000, (eds.), ACM Press, Addison-Wesley,
(2000)
Pfaff, G.E. (1985). User Interface Management Systems: Proceedings of the
Seeheim Workshop. Berlin: Springer-Verlag.
Savidis, A. & Stephanidis, C. Developing Dual Interfaces for Integrating Blind and
Sighted Users: The HOMER UIMS In: Proceedings of ACM CHI'95 Conference on
Human Factors in Computing Systems, (eds.), ACM Press, Addison-Wesley, 106-
113. (1995)
Scheifler, R.W. & Gettys, J. (1986). The X Window System. ACM Transactions on
Graphics, 5, 79-109.

Caring, Sharing Widgets 15

Thevenin, D. & Coutaz, J. Plasticity of User Interfaces: Framework and Research
Agenda In: Proceedings of Interact'99, Sasse, A. & Johnson, C. (eds.), IFIP, IOS
Press, 110-117. (1999)

	Citation.template.pdf
	http://eprints.gla.ac.uk/3211/

