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Symmetry in temporal logic model checking

ALICE MILLER, ALASTAIR DONALDSON and MUFFY CALDER
University of Glasgow

Temporal logic model checking involves checking the state-space of a model of a system to deter-
mine whether errors can occur in the system. Often this involves checking symmetrically equivalent
areas of the state space. The use of symmetry reduction to increase the efficiency of model check-
ing has inspired a wealth of activity in the area of model checking research. We provide a survey
of the associated literature.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification—
Correctness proofs; Validation

General Terms: Theory, Verification

Additional Key Words and Phrases: Model checking, symmetry, quotient graph

1. INTRODUCTION

As software controlled systems expand and become more complex, the importance
of error detection at design time increases. It is estimated [Schneider 2003] that
70% of design time is spent on simulation, to minimize the risk that errors are
exposed at a later stage in production, involving costly redesign.

Temporal logic model checking [Clarke et al. 1999; Merz 2000; Miiller-Olm et al.
1999] is a technique whereby properties of a system can be checked by building
a model of the system and checking whether the model satisfies the properties.
The model is constructed using a specification language, and checked using an
automatic model checker. Failure of the model to satisfy a desired property of the
system indicates either that the model does not accurately reflect the behaviour
of the system, or that there is an error (bug) in the original system. Examination
of counter-examples provided by the model checker enable the user to either refine
the model or, more importantly, to debug the original system.

Any search technique used in model checking involves the exploration of the state-
space associated with the model. Inherent symmetry of the original system will be
reflected in the state-space. Therefore, knowledge of the symmetry of the system
can be used to avoid searching areas of the state-space which are symmetrically
equivalent to areas that have been searched previously.

Several different approaches and techniques have been proposed for using sym-
metry to reduce the size of the state-space to be explored. Some of these have been
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2 . A. Miller et al.

implemented within widely used model checkers [Bosnacki et al. 2002; Hendriks
et al. 2003; Ip and Dill 1996; McMillan 1993; Wang and Schmidt 2002]. Indeed,
there is even a model checker designed primarily for the verification of highly sym-
metric systems [Sistla et al. 2000]. In this paper we survey and classify the existing
research in this area.

Note that some of the methods discussed in this paper have recently been sur-
veyed in some detail [Sistla 2004]. Specifically, that paper describes methods based
on annotated quotient structures (AQSs) and the related guarded quotient struc-
tures (GQSs). We discuss these approaches in Sections 4.2, 4.6 and 4.7, and describe
how they are implemented using the SMC model checker in Section 5.1. Our survey
has a much broader scope than [Sistla 2004]. We include the methods described
above within the wider context of symmetry reduction methods for model check-
ing in general, and we describe a greater range of systems that employ symmetry
reduction methods.

2. MODEL CHECKING

Temporal logic model checking [Clarke et al. 1999; Merz 2000; Miiller-Olm et al.
1999] is an automatic technique for verifying finite state concurrent systems. The
type of systems that we are concerned with maintain a continuing interaction with
their environment, and are referred to as reactive systems. Model checking involves
the construction of a model of a system, usually in the form of a Kripke structure,
and the verification of temporal logic properties of this model.

Let V' denote a set of variables and, for each v € V, let D(v) be the domain of
v. The set of atomic propositions over V' is given by

AP = {(v=wal) : v € V and val € D(v)}.
For a given set of variables V' a Kripke structure is defined in terms of AP thus:

DEFINITION 1. A Kripke structure M over AP is a tuple M = (S,R,L,So)
where:

(1) S is a non-empty, finite set of states

(2) R C S xS is a total transition relation, that is for each s € S 3t € S such
that (s,t) € R

(3) L:S — 247 is a mapping that labels each state in S with the set of atomic
propositions true in that state

(4) So C S is a set of initial states.

A path in M is an infinite sequence of states m = sg, s1, S2,... such that sqg € Sy
and, for all 7 > 0, (s;—1,s;) € R. Similarly, a transition sequence is an infinite
sequence of transitions. For states s and t it is common to denote the transition
from s to ¢t by s — t.

We often refer to the state-space associated with a system. By this we mean
the Kripke structure of the associated transition system. Because of the graphical
nature of the state-space, it is sometimes referred to as the state graph associated
with the system.

In practice, reactive systems are described using modelling languages, including
(pseudo) programming languages such as PROMELA [Holzmann 2003] or the SMV
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language [McMillan 1993], Petri nets [Girault and Valk 2003], or process algebras
such as PBC (Petri Box Calculus) [Best and Koutny 1995], or LOTOS (Language
of Temporal Ordering Specification) [Bolognesi and Brinksma 1987].

Model checking involves checking the truth of a set of specifications defined using
a temporal logic. Generally the temporal logic that is used is either CT L*, or one
of its sublogics CTL (computation tree logic) [Clarke et al. 1986], or LT L (linear
temporal logic) [Pnuelli 1981].

2.1 Syntax and Semantics of CTL*, CTL and LTL

The logic CTL* is defined as a set of state formulas, where the C'T'L* state and
path formulas are defined inductively below. The quantifiers A and E are used
to denote for all paths, and for some path respectively (where E¢ = —A-¢). In
addition, X, U, () and [] represent the standard nezttime, strong until, eventually
and always operators (where ()¢ = trueU¢ and [|¢ = =()—¢ respectively). Let AP
be a finite set of propositions. Then

—for all p € AP, p is a state formula

—if ¢ and 1 are state formulas, then so are —=¢, » A1) and ¢V ¢

—if ¢ is a path formula, then A¢ and E¢ are state formulas

—any state formula ¢ is also a path formula

—if ¢ and ¢ are path formulas, then so are —¢, ¢ A and ¢ V ¢, X¢, pUp, ()¢
and [|f.

The logic CTL is the sublogic of CTL* in which the temporal operators X, U,
() and [] must be immediately preceded by a path quantifier. The logic LTL is
obtained by restricting the set of (CTL*) formulas to those of the form A¢, where
¢ does not contain A or E. When referring to an LT L formula, one generally omits
the A operator and instead interprets the formula ¢ as “for all paths ¢”.

For a model M, if the CTL* formula ¢ holds at a state s € S then we write
M, s |= ¢ (or simply s = ¢ when the identity of the model is clear from the context).
The relation [= is defined inductively below. Note that for a path = = sg, s1,...,
starting at so, first(w) = so and, for all 4 > 0, 7; is the suffix of 7 starting from
state s;.

—s = p, for p € AP if and ouly if p € L(s)

—s = —¢ if and only if s £ ¢

—sE¢ANyYifandonlyif s |E ¢ and s =9
—sE¢Vyifandonlyif sE¢orskEy

—s |= A¢ if and only if 7 = ¢ for every path 7 starting at s
— = ¢, for any state formula ¢, if and only if first(7) = ¢
—7 = —¢ if and only if 7 [~ ¢

—7 = ¢ A if and only if 7 |= ¢ and ¢ = ¢
—nmE¢Vyifandonlyif n | E¢or =

— |= ¢Uy if and only if, for some s > 0, m; =9 and 7; @ forall 0 < j < id
—7 = X¢ if and only if 71 |E ¢

— = ()¢ if and only if m; |= ¢, for some i >0
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— = []¢ if and only if m; = ¢, for all i >0 .

2.2 Biichi automata and LTL

One of the most efficient algorithms for model checking LT L properties is the
automata-theoretic approach (see Section 2.3.2). Although we will not describe the
algorithms in detail, we provide a little background theory here.

DEFINITION 2. A finite state automaton (FSA) A is a tuple A = (S, so, L, T, F)
where:

(1) S is a non-empty, finite set of states
(2) so € S is an initial state
(83) L is a finite set of labels
(4) T CSxLxS is a set of transitions, and
(

F C S is a set of final states.

)
)
4)
5)

A run of A is an ordered, possibly infinite, sequence of transitions

(807l0781)’ (81711782)7 .

where s; € S and [; € L for all i > 0. An accepting run of A4 is a finite run in which
the final transition (s,—_1,ln,—1, Sn) has the property that s, € F.

In order to reason about infinite runs of an automaton, alternative notions of
acceptance, e.g. Blichi acceptance, are required. We say that an infinite run (of a
FSA) is an accepting w-run (i.e. it satisfies Biichi acceptance) if and only if some
state in F' is visited infinitely often in the run. A Biichi automaton is a FSA defined
over infinite runs (together with the associated notion of Biichi acceptance).

Every LTL formula can be represented as a Biichi automaton (see, for example
[Vardi and Wolper 1994] and references therein). For more details of automata and
logic see, for example, [Holzmann 2003].

2.3 Model checking algorithms

The model checking problem can be stated as follows:

Given a Kripke structure M and a temporal logic formula ¢, determine
the set of initial states in M that satisfy ¢.

Generally we say that the model M satisfies the specification ¢ if all of the initial
states of M satisfy ¢.

In this section we give a brief overview of the basic model checking algorithms
for checking C'TL and LT L formulas respectively, and describe techniques that are
used to combat the state-space explosion problem for each. Note that a method
for checking CTL* properties [Emerson and Lei 1987] involves the use of an LTL
model checker on the subformulas of the property to be checked. However, most
model checkers are used to verify either CTL or LT L properties, but not both.

2.3.1 CTL model checking. The model checking algorithm for CTL [Clarke
et al. 1986; Clarke et al. 1994; Quielle and Sifakis 1982] works by successively
marking states which satisfy subformulas of the formula to be checked. The par-
ticular form of the algorithm used depends on the formula. For illustration, we
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Symmetry in temporal logic model checking . 5

give here an example of how the algorithm proceeds to check formula ¢, where ¢ is
A($1Uga).

For a state s, s | ¢ if and only if either s satisfies ¢2 or s has at least one
successor, s satisfies ¢ and all successors of s satisfy ¢. Initially all states are
marked to indicate whether they satisfy ¢; and/or ¢» and/or ¢, and also with a
number (nb say), denoting how many successors have yet to be marked as satisfying
¢. Initially for each state s, nb is set to 0 if s = ¢, or to the number of successors
of s otherwise. In the latter case, each time a successor of s is marked as satisfying
¢, nb is decremented by one. When nb = 0 for s, clearly s = ¢. When no states
can be remarked, the algorithm terminates. If, at this point, all initial states are
marked as satisfying ¢, then M = ¢.

2.3.2 LTL model checking. The model checking problem for LTL can be re-
stated as: “given M and ¢, does there exist a path of M that does not satisfy ¢?”
One approach to LT L model checking is the tableau approach described in [Miiller-
Olm et al. 1999]. However, we concentrate here on the more efficient automata-
theoretic approach [Lichtenstein and Pnueli 1985; Vardi and Wolper 1986].

In order to verify an LT L property ¢, a model checker must show that all paths
of a model M satisfy ¢ (alternatively, find a counterexample, namely a path which
does not satisty ¢). To do this, an automaton A representing M is constructed,
together with an automaton B-4 which accepts all paths for which —¢ holds. The
two automata are synchronised (in practice this usually means taking alternate
steps). Any run of A that violates ¢ is accepted by B-g, signifying an error. If
there are no accepting runs, M = ¢. Generally to prove LT L properties, a depth-
first search is used. As the search progresses, all states visited are stored (in a
reduced form) in a hash array (or heap), and states along the current path are
pushed on to the stack.

If the property ¢ to be verified is a safety property, say ¢ = [, where ¢ does not
contain the until operator U, then a depth-first search is used to search the entire
search space. If a state is encountered at which ¢ is false, then ¢ is false and the
current path (the current contents of the stack) provides a counter-example. If, on
the other hand, ¢ is a liveness property, then determining the truth, or otherwise,
of ¢ relies on the ability to detect the presence of infinite accepting runs in the
state state-space. This is achieved either by using the classic approach of Tarjan
[Tarjan 1972] in which the strongly connected components of the state graph are
constructed and analysed separately for acceptance runs, or via a nested depth-first
search [Courcoubetis et al. 1992]. A nested depth-first search is more efficient than
the classic approach in that it is not necessary to produce all acceptance runs, just
a single acceptance cycle (if one exists). Suppose, for example ¢ is [|()p, for some
proposition p. From any state s reached during an initial search at which —p holds,
a second search is initiated to check for paths leading back to s, during which p
remains false. If no such path exists, the original search resumes from s.

2.3.3 The state-space explosion problem. One of the main problems associated
with model checking is that of state-space explosion. The model checking algorithms
described above both rely upon the explicit construction of a model representing
all of the possible system states. The number of states for a system with associated
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model M is potentially exponential with respect to the number of processes in
the system. As a result, full verification is often impossible. Therefore techniques
are used to try to reduce the memory required to store each state (e.g. symbolic
state representation, see below) or the number of states or paths explored (e.g.
on-the-fly methods and partial order reduction, see below). Another method used
to reduce the number of states is symmetry reduction, in which subsets of symmet-
rically equivalent states are collapsed into a single representative state. Symmetry
reduction is described in full in Section 4.

2.3.4  Symbolic model checking. Symbolic model checking [Burch et al. 1992] is
a method by which states and transitions of a model are represented symbolically
(as opposed to explicitly) in order to save space. A particular symbolic approach
(namely BD D-based encoding) has proved especially successful for the verification
of CTL properties for very large systems [McMillan 1993].

A binary decision tree is a structure that is used to represent a boolean formula.
Any assignment of truth values to the variables of the formula corresponds to a
path down the tree from the root node to a terminal node, which is labelled either
true or false. The value of this label determines the value of the function for this
assignment of variables. A binary decision diagram (BDD) is obtained from a
binary decision tree by merging isomorphic subtrees and identical terminals. Any
set of states can be encoded as a BDD. Indeed, if S is a set of states encoded as
a set of boolean tuples (on a set X), then for any fixed ordering of the elements of
X, there is a unique BDD representing S [Bryant 1992].

An ordered binary decision diagram (OBDD) is a BDD which has a total or-
dering applied to the variables labelling the vertices of the diagram. The size of
the OBDD can vary greatly depending on the ordering used. Heuristics have been
developed to find efficient orderings for a given formula (when such an ordering
exists). However, finding the optimal ordering is NP-complete [Bollig and Wegener
1996].

For a Kripke structure, both the set of states and the set of transitions can be
represented by BDDs. All possible states are encoded, as opposed to all reachable
states. As the superfluous states are unreachable, they do not affect the result
of model checking. Indeed, their presence may lead to a simplification of certain
BDDs. In addition, it is possible to first compute the reachable states, R say, and
then restrict the CTL model checking algorithm to R.

2.3.5  On-the-fly model checking. It is not always necessary to build the entire
state-space in order to determine whether or not a system satisfies a given property.

If the property to be checked is false, only part of the state-space needs to be
constructed, up to the point at which an error state (safety property) or a violating
cycle (liveness property) is discovered. However, if there are no errors, the entire
state-space must be constructed. This means that although debugging can be
performed relatively easily, property verification very quickly becomes prohibitive.

On-the-fly methods are most suitable for model checking algorithms based on a
depth-first traversal of the state-space (i.e. explicit state methods) and have been
developed to check specifications in LT L, CTL and CT L* [Vardi and Wolper 1986;
Vergauwen and Lewi 1993; Bhat et al. 1995].
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Some approaches for combining on-the-fly techniques with symbolic model check-
ing exist [Ben-David and Heyman 2000], but are restricted to the checking of safety
properties.

2.3.6  Partial order reduction. The explosion of states and transitions in a model
results from the interleaving of actions of distinct processes in all possible orders.
In general, the consideration of all such interleavings is crucial — bugs in concurrent
systems often correspond to unexpected ordering of actions. However, if a set of
transitions are entirely independent and are invisible with respect to the property
being verified, the order in which they are executed does not affect the overall
behaviour of the system. (A transition is invisible with respect to a property ¢ if
the truth of ¢ is unaffected by the transition.) Partial order reduction [Emerson
et al. 1997; Godefroid 1996b; Peled 1996a] exploits this fact, and considers only one
representative ordering for any set of concurrently enabled, independent, invisible
transitions.

Partial order reduction methods rely on determining a suitable subset of transi-
tions to be considered at every state. As a result, rather than exploring a structure
M an equivalent (usually smaller) structure M’ is explored, with fewer transitions
and fewer states.

The particular subset (and, correspondingly, equivalence relation) depends upon
the strategy being used. A common strategy, for example, is the ample sets method
[Peled 1996b]. This is the method chosen for the partial order reduction implemen-
tation in SPIN [Holzmann 2003; Holzmann and Peled 1994]. In this case, suppose
that a property ¢ is to be verified. For any state s, reached along a search path,
rather than considering all of the transitions enabled at s, (enabled(s)), an ample
set (ample(s)) of transitions is chosen in such a way to ensure that

—any transition ¢t € enabled(s) which is not in ample(s) is independent of all
transitions in ample(s). That is, the execution of ¢ does not affect the enabledness
of any of the transitions in ample(s), and vice versa.

—All transitions in ample(s) are invisible.

—If a € ample(s), then the state resulting from taking transition a from s has not
been reached along the current search path.

The equivalence relation in this case is trace equivalence. Two transition se-
quences are said to be trace equivalent if one can be obtained from the other by
repeatedly commuting the order of adjacent, independent transitions. Using the
ample sets method, every transition sequence in the original structure M is trace
equivalent to a transition sequence in the reduced structure M'. It follows that, for
any stuttering-closed [Peled 1996b] LT'L formula ¢, ¢ = M if and only if ¢ = M'.

Other strategies for determining suitable subsets of transitions include the stub-
born sets method [Valmari 1992], or the sleep sets and persistent sets method
[Godefroid 1996b] which is implemented in VeriSoft [Godefroid 1997].

For some systems, where all actions are dependent on one another, partial order
reduction cannot offer any improvement in verification space or time. In many
realistic cases however, partial order reduction can be extremely effective. For
example, for some systems the growth of the state-space as the number of processes
increases is reduced from exponential to polynomial when partial order methods are
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used. In others the global state-space may increase with the growth of a parameter
whereas the size of the reduced state-space remains unchanged [Godefroid 1996a).

2.4 Example model checkers

2.4.1 Explicit state-based model checkers. Two of the most popular on-the-fly,
explicit-state based model checkers are SPIN [Holzmann 2003] and Mur¢ [Dill et al.
1992; Dill 1996].

SPIN is used for efficient software verification. Specifications are described using
the high level state-based description language PROMELA (PROcess MEta LAn-
guage), which is loosely based on Dijkstra’s guarded command language [Dijkstra
1976]. PROMELA allows for the expression of non-determinism, asynchronous and
synchronous communication, dynamic process creation and mobile communications
(communication channels can contain references to other communication channels).
SPIN uses a depth-first search algorithm (breadth-first search is also possible) and
can be used as a full LT L model checking system, supporting all correctness re-
quirements expressible in linear time temporal logic (or Biichi automata directly).
It can also be used as an efficient on-the-fly verifier for more basic safety and live-
ness properties (e.g. progress and lack of deadlock) which can often be expressed,
and verified, without the use of LT L.

SPIN has been used to trace logical errors in distributed systems designs, such as
operating systems [Cattel 1994; Kumar and Li 2002], computer networks [Yuen and
Tjioe 2001], and railway signalling systems [Cimatti et al. 1997], and for feature
interaction analysis of telecommunications and email systems [Calder and Miller
2001; 2003; Holzmann and Smith 1999b].

To optimise verification runs, SPIN uses efficient partial order reduction tech-
niques, and also employs statement merging [Holzmann 1999], a special case of par-
tial order reduction which merges internal, invisible process statements to reduce
the number of reachable system states. For efficient state-storage, SPIN offers state
compression (a form of byte-sharing) or, alternatively, BDD-like storage techniques
based on minimised automata [Visser and Barringer 1996]. In addition, approxi-
mate hashing methods are available, namely hash-compact methods [Wolper and
Leroy 1993] and bitstate hashing [Holzmann 1998].

The Mur¢ description language is based on a collection of guarded commands
(condition/action rules), which are executed repeatedly in an infinite loop. The
data structures and guarded commands are written in an imperative style language
together with new data types which include “multiset”, for describing a bounded
set. of values whose order is irrelevant to the behaviour of the description, and
“scalarset” for describing a subrange whose elements can be freely permuted. The
Mur¢ verifier performs depth- or breadth-first search over the state state-space to
check for deadlock or for assertion or invariance violations. Assertion violations
are trapped using an Assert statement (a conditional error statement) within the
program description. Invariants, on the other hand, are defined in a separate part
of the Mur¢ description. More complex temporal properties can not be verified.

Other state-based verifiers include PROD [Varpaaniemi et al. 1995] and PEP
[Best and Grahlmann 1996] in which systems are specified using Petri nets. On-the-
fly verification of various temporal or u-calculus properties of LOTOS specifications
is achieved by translation into to state-spaces using CESAR [Garavel and Sifakis
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1990] which are then checked using model checkers XTL [Mateescu and Garavel
1998] or EVALUATOR [Mateescu 2003] respectively. The tool COSPAN [Kurshan
1995] uses an automata theoretic approach. The system to be verified is modelled
as a collection of coordinating processes described in the S/R (selection/resolution)
modelling language. The verifier supports both on-the-fly enumerative search and
symbolic search using BDDs.

2.4.2  Symbolic model checkers. The most successful (OBDD-based) symbolic
model checker is the branching time CT'L model checker SMV [McMillan 1993].
Systems are described using the SMV language which has been developed with a
precise semantics relating programs to their expression as boolean formulas. SMV
supports both synchronous and asynchronous communication, and provides for
modular hierarchical descriptions, and for the definition of reusable components.
SMYV has been used to verify various hardware systems, including an avionics triple
sensor voter [Danjani-Brown et al. 2003], the Gigamax cache coherence protocol
[McMillan and Schwalbe 1992] and the #9000 virtual channel processor [Barrett
1995]. NuSMV [Cimatti et al. 1999; Cimatti et al. 2002] is a reimplemented and
extended version of SMV. The additional features included with NuSMV include a
textual interaction shell and graphical interface, extended model partitioning tech-
niques, and facilities for LT L model checking.

An enhanced version of SMV, RuleBase [Beer et al. 1996] is an industry oriented
tool for the verification of hardware designs. In an effort to make the specification
of C'TL properties easier for the non-expert, RuleBase supports its own language,
Sugar. In addition, RuleBase supports standard hardware description languages
such as VHDL and Verilog.

2.4.3 Real time model checkers. When modelling certain critical systems it is
essential to include some notion of time. If time is considered to increase in discrete
steps (discrete-time) then existing model checkers can be readily extended [Alur
and Henzinger 1992; Emerson 1992]. The most widely used dense real time model
checker (in which time is viewed as increasing continuously) is UPPAAL [Larson
et al. 1997]. Models are expressed as timed automata [Alur and Dill 1993] and
properties defined in UPPAAL logic, a subset of timed computational tree logic
TCTL [Alur et al. 1990]. UPPAAL uses a combination of on-the-fly and symbolic
techniques [Larson et al. 1995; Yi et al. 1994] to reduce verification problems to that
of manipulating and solving simple constraints. Another real time model checker
is KroNOs [Yovine 1997], which is used to analyse real-time systems modelled
in several timed process description formalisms such as ATP [Nicollin and Sifakis
1994] and ET-LOTOS [Léonard and Leduc 1997; 1998]. A real-time extension to
COSPAN [Alur and Kurshan 1995] allows real-time constraints to be expressed by
associating lower and upper bounds on the time spent by a process in a local state.
An execution is said to be timing-consistent if its steps can be assigned real-valued
time-stamps that satisfy all the specified bounds.

The probabilistic model checker Prism [Kwiatkowska et al. 2002; Rutten et al.
2004] allows time to be considered as increasing either in discrete steps or contin-
uously. Models are expressed in the PrisMm language and converted to a variant
of a Markov chain (either discrete or continuous time). Properties are written in
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terms of probabilistic Computation Tree Logic (PCTL) or continuous stochastic
logic (CSL) respectively. Models can also be expressed using PEPA (performance
evaluation process algebra) [Hillston 1996] and converted to PRISM.

The hybrid model checker HYTECH [Henzinger et al. 1997] is used to analyse
dynamical systems whose behaviour exhibits both discrete and continuous change.
Linear hybrid automata (extensions to timed automata including access to dynamic
variables) are used to incorporate the discrete behaviour of computer programs with
the continuous behaviour of environment variables, such as time.

2.4.4  Direct model checking of programs. Finite state model checking tradition-
ally requires the manual construction of a model, via a modelling language, which is
then converted to a Kripke structure (or finite state automaton) for model checking.

Recently there has been much interest in applying model checking directly to pro-
gram source code written in languages such as Java or C. Early approaches to model
checking Java software, like JCAT [Demartini et al. 1999] and Java PathFinder
(JPF1) [Havelund and Pressburger 2000], involved the direct translation of Java
code into Promela, and subsequent verification via SPIN. Although both of these
systems were successful, direct translation meant that programs were only able to
contain features that were supported by both Java and Promela. (This is not true
of floating point numbers, for example.)

The BANDERA tool [Corbett et al. 2000] avoids direct translation by instead
extracting an abstracted finite state model from Java source code. This model is
then translated into a suitable modelling language (Promela or SMV) and model
checked accordingly. Meanwhile a second generation Java PathFinder tool (JPF2)
[Visser et al. 2000], which makes extensive use of the BANDERA abstraction tools,
has been developed to model check Java bytecode directly.

The dSPIN tool [Iosif and Sisto 1999] is an extension of SPIN which has been
designed for the modelling and verification of object oriented software (Java pro-
grams in particular). In addition to the usual features available with SPIN, the
dSpiN model checker allows for the dynamic creation of heap objects and the rep-
resentation of garbage collection.

The Bogor model checking framework [Robby et al. 2003] is used to check se-
quential and concurrent programs. The behavioural aspects of the program are
first specified in JML (Java modelling language) which, together with the original
Java program, is then translated into a lower level specification for verification.
Bogor exploits the canonical heap representation of dSPIN and is implemented as
an Eclipse [Clayberg and Rubel 2004] plug-in.

Various tools address the problem of direct model checking of C code. For ex-
ample BLAST (Berkeley Lazy Abstraction Software verification Tool) [Henzinger
et al. 2003] uses an iterative process of abstraction, verification and counterexample-
driven refinement for proving correctness of software. The FeaVer (FEAture VER-
ification system) tool [Holzmann and Smith 1999a] allows models to be extracted
mechanically from the source of software applications and checked using SPIN. In-
deed, a new feature of SPIN is to allow C code to be embedded directly within
a PROMELA specification. Microsoft’s SDV (Static Driver Verifier) tool uses the
SLAM [Ball et al. 2004] analysis engine to analyse the source code of Windows
device drivers. SDV involves a similar abstraction, verification and refinement loop
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to that of BLAST and exploits the BEBOP model checker during the verification
stage.

The VeriSoft model checker [Godefroid 1997] is used to verify concurrent processes
executing C code. Unlike traditional model checking techniques, the use of VeriSoft
does not rely on states being expressed as sequences of bits. Systematic search
of the state-space allows one to check for deadlock and assertion violations, as
well as for timeouts and livelocks. A stateless search is used whereby only states
along the current path are stored, together with as many states as possible in the
remaining available memory. As a result, state-space explosion is not a problem —
it is theoretically possible to verify systems of any size. However, as as result, the
same path may be explored many times, and so the search can be very slow.

Note that we have not attempted to provide an exhaustive description of avail-
able model checkers, merely to provide sufficient coverage for the purposes of our
symmetry survey. We do not, for example, consider conformance checkers or com-
bination checkers. For an overview of these types of checkers, refer to [Clarke and
Wing 1996].

3. BASIC GROUP THEORY

In this section we summarise some definitions from group theory which will be
useful throughout.

DEFINITION 3. Let G be a non-empty set, and let o : G x G — G be a binary
operation. We say that (G,0) is a group if:

—@G is closed under o
—o s associative

—CG has an identity element 1 and

—for each element o € G there is an inverse element a=' € G such that aoa™! =

aloa=1g.
We call the operation o multiplication in G. When it is clear what the binary oper-
ation is, we simply refer to a group as G rather than (G, o), and use concatenation
to denote multiplication. Let H be a non-empty subset of a group G. If H is a
group in its own right under the binary operation of G, i.e. it satisfies Definition 3,

then we call H a subgroup of G and write H < G. For elements ay,as, ..., a, of
a group G, the set (a1, o, ..., a,) denotes the smallest subgroup of G' containing
Q1,Qs,...,Qy, and is called the subgroup generated by a1, as, ..., ay.

Let X be a finite set. A permutation of X is a bijection from X to X. The set
of all permutations of X, Sym X, forms a group under composition of mappings.
Any subgroup of this group is called a permutation group acting on the set X. If
G is a permutation group acting on X and «; and as elements of GG, then, for any
x € X, ay(z) denotes the result of applying a; to z, and ajaz(z) = a1 (as(z)) the
result of applying a; to az(z). Consider the set [n] = {1,2,...,n}. The group of
all permutations acting on [n] is called the symmetric group on n points, and is
denoted Sy, or equivalently Sg1 2 ,}-
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If G is a permutation group acting on a finite set X, then for z € X the set
{a(z) : a € G} is called the orbit of x under G, denoted [z]g. For z and y € X,
we use ¢ ~g y to denote that  and y are in the same orbit. The relation ~q is
an equivalence relation on X, and hence partitions X into disjoint subsets, which
are the orbits of X under G. Sometimes it is useful to identify the orbits of a set
X under a group G as a set of representative elements (one chosen for each orbit).
We use the notation rep([s]¢) to denote the representative element of the orbit
containing the element s.

4. SYMMETRY REDUCTION METHODS IN MODEL CHECKING
4.1 Symmetry reduction in automatic verification

The earliest use of symmetry reduction in automatic verification was in the context
of high-level (coloured) Petri nets [Huber et al. 1984] where reduction by equiv-
alent markings was used to construct finite reachability trees. These ideas were
later extended for deadlock detection and the checking of liveness properties in
place/transition nets [Starke 1991].

Concurrent systems often contain many replicated components and, as a con-
sequence, model checking may involve making a redundant search over equivalent
areas of the state-space. For example, Figure 1 shows a Kripke structure for a
model of two process mutual exclusion. The model consists of two processes, each
with three local states N, T and C'. For process i, the proposition N; denotes that
process i is in the neutral state. Similarly, the propositions T; and C; denote that
process ¢ is in the trying and critical state respectively. There is a global variable,
tok, which takes the value 1 or 2 depending which process holds the token. Only
if process i is in the trying state (i.e. T; holds) and tok = i also holds can process
1 can move into the critical state. When a process leaves the critical state, the
token is non-deterministically assigned the value 1 or 2. Thus in the model it is not
possible for both processes to be in the critical state. That is, the mutual exclusion
property holds. Note that there are two initial states (indicated with a bold outline
in Figure 1). In each of the initial states both processes are in the neutral state
and one of the processes has the token.

Though simple, this example clearly demonstrates the existence of symmetry
within a Kripke structure. In terms of the mutual exclusion property, any pair
of states (A1 Bs, token = i) and (B1As, token = j), where A and B belong to
{N,T,C} and i # j, are equivalent (state (A Ba, token = i) will satisfy the mutual
exclusion property if and only if (B; As, token = j) does). Most symmetry reduc-
tion techniques exploit this type of symmetry by restricting state-space search to
equivalence class representatives, and often result in significant savings in memory
and verification time [Bosnacki et al. 2002; Clarke et al. 1996; Emerson and Sistla
1996; Ip and Dill 1996].

4.2 Symmetry reduction using quotient structures

Let M = (S,R, L,Sy) be a Kripke structure over a set of atomic propositions AP.
An automorphism of M is a permutation a : S — S which preserves the transition
relation. That is « satisfies the following condition:

Vs,t €S, (s,t) € R = (a(s),a(t)) € R.
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Fig. 1. Kripke structure for 2 process mutual exclusion

In a model of a concurrent system with many replicated processes, Kripke structure
automorphisms may involve the permutation of process identifiers or data values
throughout all states of the model. On the other hand, a model may include a data
structure which has geometrical symmetry [Holzmann and Joshi 2004]. In this
case Kripke structure automorphisms involve applying the geometrical symmetries
throughout all states of the model.

The set of all automorphisms of the Kripke structure M forms a group un-
der composition of mappings. This group is denoted Aut(M). A subgroup G of
Aut(M) partitions the set S of states into disjoint orbits, as described in Section 3,
which can be used to define a quotient Kripke structure Mg:

DEFINITION 4. The quotient Kripke structure Mg of M with respect to G is a
tuple Mg = (S, Rg, La, S&) where:

—Sa ={[s]lg : s € S} (the set of orbits of S under the action of G),

—Ra ={([5]a,[tle) : (s,1) € R},

—La([s]a) = L(rep([s]a)) (where rep([s]a) is a unique representative of [s]a),
—S2 ={[s]lc : s € So} (the orbits of the initial states Sy under the action of G).

If G is non-trivial then the quotient structure Mg is smaller than M. For any
s, the size of [s]g is bounded by |G|, and so the theoretical minimum size of Sg
is |S|/|G|. Since for highly symmetric systems we may have |G| = n!, where n is
the number of components, symmetry reduction potentially offers a considerable
reduction in memory requirements.

In practice the set of states S is taken to be the set of orbit representatives
rather than the orbits themselves. To give an example of a quotient structure, for
the mutual exclusion example shown in Figure 1, observe that swapping the process
indices 1 and 2 throughout all states is an automorphism of the structure. Let «
denote this automorphism. Then for this example, Aut(M) = {a, 1}, where 1 is
the identity mapping. Choosing a unique representative from each orbit we obtain
a quotient Kripke structure M 4,4(arq) as illustrated by Figure 2.
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Fig. 2. Quotient Kripke structure for 2 process mutual exclusion

It can be shown [Clarke et al. 1996; Emerson and Sistla 1996] (see Theorem 1
below) that a model and its quotient structure satisfy the same symmetric CT L*
formulas. A CTL* formula ¢ is symmetric, or invariant, with respect to G if for
every maximal propositional sub formula f appearing in ¢, and for every a € G,

M,sl=f & M, a(s) = f.

THEOREM 1. if M and M denote a model and its quotient model with respect
to a group G respectively, then Mg is bisimulation equivalent to M, and therefore
M, s = ¢ < Mg,[sla E ¢, for every symmetric CTL* formula ¢.

As an example, consider the 2 process mutual exclusion property “it is not possible
for both processes to be in the critical section at the same time”. In terms of
the propositions used to label the structures represented by Figures 1 and 2, this
property is expressed in CTL* as A[|(—=(C1 A C2)). Let us call this property ¢;.
Clearly ¢; is symmetric with respect to the automorphism group {a, 1}, where « is
defined as above. Thus the Kripke structure represented by Figure 1 satisfies ¢; if
and only if the quotient structure represented by Figure 2 does. Therefore, to check
the mutual exclusion property, it is sufficient to check the quotient model only. Note
that the quotient model also satisfies the property ¢o defined as A[](—=C>). However,
as ¢ is not symmetric with respect to the automorphism group, we cannot infer the
truth (or otherwise) of ¢, for the original Kripke structure. (Indeed, ¢ is clearly
not true for the original structure.)

The algorithm of Figure 3 (adapted from) [Ip and Dill 1996], shows how a quotient
structure can be explored incrementally if symmetries of the Kripke structure can
be identified before search. In this case it may be possible to build the quotient
structure even though the original structure is intractably large.

An approach that is suggested for symmetry reduction during automata-based
model checking involves the construction of an annotated quotient structure (AQS)
[Emerson and Sistla 1996; Sistla 2004]. In this case there is a labelled edge between
representative states [s]g and [t]¢ for every edge that exists (in M) from rep([s]q)
to an element of [t|g. If (rep([s]g),t') were such an edge (in M), and 7 the
permutation such that 7(rep([t]g)) = t, then the edge (in the annotated quotient
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reached := {rep(s) : s € Sp};
unexplored := {rep(s) : s € So};
while unexplored # () do
remove a state s from unexplored,
for all successor states g of s do
if rep(q) is not in reached then
append rep(q) to reached;
append rep(q) to unexplored;
end if
end for
end while

Fig. 3. Algorithm to explore a quotient Kripke structure

structure) would be labelled with 7. Not only is it possible to unwind the original
structure M from the (annotated) quotient structure, but it is also possible to check
properties expressed in indexed CT L* — an extension to C'T'L* in which properties
include the indexed quantifiers for all processes or for some process. In addition,
properties to be checked are not required to be symmetric with respect to the group
G. We discuss the use of AQSs to verify properties under fairness assumptions in
Section 4.6.2.

4.3 ldentifying symmetry

The first step which must be accomplished by any method which exploits symmetry
is the identification of symmetries in a model. Let M be a Kripke structure. An
obvious approach to solving this problem would be to construct M, and then to
find a symmetry group G of M using a standard algorithm (e.g. nauty [McKay
1981]). These symmetries could be used to reduce M to a quotient model, M.

This approach is flawed in two ways. First, finding automorphisms of a Kripke
structure is equivalent to checking for state-space isomorphism, which for large
state-spaces is a hard problem (no polynomial time algorithm is known [McKay
1981]). Secondly, if enough resources were available to construct M then sym-
metry reduction would be unlikely to be of much benefit. Indeed, the power of
reduction techniques is that they allow a reduced model to be checked even when
the unreduced model is intractable.

Thus the problem is to find symmetries of M without building M explicitly. For
simple concurrent programs consisting of a finite number of isomorphic (identical
up to renaming) processes executing in parallel, communicating via shared vari-
ables, a subgroup of the automorphism group of M can be determined from the
communication relation of the program [Emerson and Sistla 1996]. The communi-
cation relation CR of the program P = ||7_; p; is defined as the undirected graph
CR = ([n], E), where {i,j} € E iff processes p; and p; share a variable.

THEOREM 2. If M is the global state transition state-space of P = ||, p; where
all p; are normal and isomorphic then Aut(CR) < AutM.

The group Aut(CR) may be automatically computed since CR is typically small
compared to M, or may simply be known in advance.

Theorem 2 applies to systems in which all variables are shared between at most
two processes, and all processes are of the same type. This result is generalised

ACM Journal Name, Vol. V, No. N, Month 20YY.



16 . A. Miller et al.

[Clarke et al. 1998] to remove this restriction via the introduction of the coloured
hypergraph HG(P) of a shared variable program P. The node set of the hypergraph
HG(P) is [n] and there is a hyper edge w C [n] if the program P has a variable
shared by all process p;, ¢ € w. Each node is assigned a colour, so that two processes
p; and p; are isomorphic iff nodes ¢ and j have the same colour in the coloured
hypergraph. Two processes are isomorphic in this case if they are of the same
process type, and have equivalent sets of transitions.

THEOREM 3. Let HG(P) be the hypergraph corresponding to the program P =
[l pi- Let M be the Kripke structure corresponding to P. Given these conditions,
Aut(HG(P)) < Aut(M).

Another approach to symmetry detection involves the detection of symmetries
in the state-space by annotation of the system description via a purpose-built data
type [Ip and Dill 1993]. The data type is called a scalarset which acts as docu-
mentation that certain symmetries hold in a specification expressed in the Mur¢
description language [Dill et al. 1992]. A scalarset is an integer subrange with
restricted operations as follows:

—An array with a scalarset index type can only be indexed by a scalarset variable
of exactly the same type.

—A term of scalarset type must be a variable reference. (A scalarset may not
appear as an operand to + or any other operator in a term.)

—Scalarset variables may only be compared using =, and in such cases, must be of
exactly the same type.

—For all assignments d := t, if d is a scalarset variable, ¢ must be a term of exactly
the same scalarset type.

—If a scalarset variable is used as an index of a for statement, the body of the
statement is restricted so that the result of the execution is independent of the
order of the iterations.

The restrictions are sufficient to ensure that consistent permutation of scalarset
variables in all states corresponds to an automorphism of the state-space. Further-
more, violations of the restrictions can be detected in polynomial time [Ip and Dill
1996]. In the following theorem, a permutation a; is a permutation on the elements
of scalarset s which acts on the states of M by permuting state components.

THEOREM 4. Given a source program containing a scalarset s, every permuta-
tion as on the states of the state-space M derived from the program is an automor-

phism of M.

COROLLARY 1. If a program P has scalarsets s1, Sa, . .., Sy, there are symmetries
in the state graph M and we can use the symmetry-reduced state graph Mg to
perform verification, where G is the set of all permutations of the states with respect
to $1,82,...,8n.

An example of the use of scalarsets is in the verification of the Needham-Shroeder
public key protocol [Mitchell et al. 1997]. The protocol involves a set of Initiator
processes and a set of Receptor processes. Each Initiator process is identified by
the variable Initiatorid which is used to index an array ini storing the state of each
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Initiator process. The Initiatorid variable is also used as an index within a for
loop containing the rules determining the behaviour of each Initiator process. As
the I'nitiator processes behave symmetrically, by declaring the Initiatorid variable
as a scalarset, symmetry reduction can be automatically performed. Similarly,
a scalarset (Receptorid) can be used to identify symmetry between the Receptor
processes.

The use of scalarsets described above exploits structural symmetry (symmetry
between the processes themselves). The scalarset approach can also be used to
exploit data symmetry. A scalarset that is used to denote data symmetry is referred
to as a data scalarset.

DEFINITION 5. A scalarset s is a data scalarset in a source program P if s is
not used as an array index or for statement index.

If a protocol uses a data scalarset, then it is said to be data independent [Wolper
1986]. In this case, symmetry reduction can be used to reduce an infinite state
space (in which data is unbounded) to a finite state space (with bounded data)
thus:

THEOREM 5. If P is a source program, s is the name of a data scalarset in P
and Py and Po are programs identical to P except that s is declared to be of size
N1 in P1 and N» in Ps, then there exists Ng > 0 such that the symmetry-reduced
state graphs of P1 and P> are isomorphic whenever Ny > Ng and Ny > Ng.

However this application of scalarsets is seldom required as abstraction can be
used to eliminate redundant data values [Clarke et al. 1994]. Data symmetry re-
duction will be discussed again in Section 4.8.

The original scalarset approach [Ip and Dill 1996] only considered the verification
of simple safety properties of the form AG(—error). However, scalarsets have been
successfully used to exploit symmetry during the verification of more general LT L
formulas [Bosnacki et al. 2002]. A major drawback to scalarsets is that they only
allow the specification of total (or full) symmetries (where all of the processes of a
given type can be permuted among themselves), so could be applied to a system of
processes connected as a clique, say, but not, for example, as a ring. An alternative
data type, called circularset [Ip 1996] and additional extensions to the scalarset
data type [Donaldson et al. 2005b] have been proposed to handle systems with ring
structure and more general systems respectively. However, these alternatives share
with the scalarset approach the problem that the modeller must identify symmetry
in the model and use the appropriate data type to specify the presence of this
symmetry. This means that symmetry reduction using scalarsets is not a “push
button” reduction technique.

In the message-passing paradigm (in which processes communicate by sending
messages on buffered channels), structural symmetries of a model can be automat-
ically extracted from the program text of a model by using a graph automorphism
package such as nauty [McKay 1981] or saucy [Darga et al. 2004] to analyse the
static channel diagram (a graphical representation of the communication structure)
of the original system [Donaldson et al. 2005a]. This approach is not limited to
total symmetries, and has been applied to detect symmetry in PROMELA models
[Donaldson and Miller 2005]. A similar approach [Manku et al. 1998] uses GAP
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[Gap Group 1999] for identifying symmetries in structural descriptions of digital
circuits.

4.4  The orbit problem

The crux of exploiting symmetry when model checking is that during search, when a
state s is reached, we must test whether an element ¢ has already been reached such
that s = «a(t) for some a € G (i.e. [s]¢ = [t]¢). This is known as the orbit problem,
and is central to all model checking methods that exploit symmetry. Techniques
must be used to either solve the orbit problem efficiently, or to somehow avoid it

altogether.
In the design of protocols and sequential circuits it is common to model a system
using a set of boolean state variables z1,x2,...,T,. In such cases the symmetry

group G is also given in terms of state variables, so that a permutation « acting on
{1,2,...,n} acts on a state vector s € B™ as follows [Clarke et al. 1996]:

a(($1,1'2, .- 7mn)) = (ma(l)axa@): s )xa(n))

DEFINITION 6. The orbit problem [Clarke et al. 1996] Let G be a group acting
on the set {1,2,...,n}. Given two vectors x € B™ and y € B", the orbit problem
is thus: does there exist a permutation o € G such that y = a(zx)?

The orbit problem is related to the graph isomorphism problem:

DEFINITION 7. Two graphs G1 = (V1,Ey) and Go = (Va, Es) are isomorphic if
there is a bijection f : Vi — V such that (f(z), f(y)) € Es if and only if (x,y) € E;.
The mapping f is said to be an isomorphism between G1 and Gs.

The problem of determining if two graphs are isomorphic is known as the graph
isomorphism problem and is very difficult to solve (although not widely believed to
be N P-complete). In some cases (for example, when the maximum degree of the
two associated graphs is known to be bounded by a given constant) isomorphism
can be determined in polynomial time. However, in general, the graph isomorphism
problem is upheld as being highly combinatorially expensive.

THEOREM 6. [Clarke et al. 1996] The orbit problem is as hard as the graph iso-
morphism problem.

In fact, the orbit problem has been shown to be equivalent to a well known problem
in computational group theory, the set stabiliser in a coset (SSC) problem:

DEFINITION 8. Given a set X C [n], a group G C S,, and a group element
a € Sy, is there an element o in the coset Ga = {fa : f € G} which stabilises the
set X, ie. o(X)=2X.

THEOREM 7. [Clarke et al. 1998; Jha 1996] The orbit problem and the SSC prob-
lem are polynomially equivalent.

The SSC problem is known [Hoffman 1982; Luks 1991] to be equivalent to sev-
eral computational group theory problems in NP which are harder than graph
isomorphism, but not known to be N P-complete.

If BDDs are used to represent the state-space of a model then exploiting symme-
try becomes more complex, as the orbit relation of a symmetry group must be repre-
sented as a BDD. The orbit relation of a group G is the set of pairs {(s,t) : ¢ € [s]}.
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The BDD of the orbit relation induced by a transitive group (a group acting on
a set such that every element of the set is moved by some element of the group)
is exponential in the minimum of the number of components in a system and the
number of states in one component [Clarke et al. 1996]. Since transitive groups
occur commonly in models of concurrent systems, the combination of standard
symmetry reduction techniques with symbolic model checking is limited. We dis-
cuss some methods which avoid the construction of the orbit relation for symbolic
model checking in Section 4.5.

For concurrent programs, modelling using boolean variables is cumbersome, and
it is usual instead to model a state as a vector in [k]", where k is the size of the set
of possible process locations. The action of a symmetry group G C S,, on a vector
(x1,2,...,2,) € [k]™ is analogous to that for a vector in B™ as described above
[Clarke et al. 1996].

When attempting to exploit symmetry a representative function rep is often re-
quired which maps a state s to the unique representative of its orbit (see Definition 4
and Figure 3). In practice it is convenient to use the lexicographically least element
in the orbit as a representative.

DEFINITION 9. The constructive orbit problem (COP) [Clarke et al. 1998;
Jha 1996] Given a group acting on [n] and a vector © = (x1,...,%y) € [k]™ find the
lexicographically least element in the orbit of x.

THEOREM 8. [Clarke et al. 1998; Jha 1996] The COP is N P-hard.

In Section 4.5.5 we discuss certain classes of symmetry group for which the COP
can be solved in polynomial time.

4.5 Simplifying the orbit problem

4.5.1 Multiple representatives. As discussed in the previous section, combining
symmetry reduction with symbolic model checking may not be effective due to the
exponentially large BDDs which are required to represent the orbit relation. By
using multiple representatives from each orbit, this problem can be avoided to some
extent [Clarke et al. 1996; Clarke et al. 1998]. If G is a set of automorphisms, a
subset C' of G is chosen which is closed under inverses and contains the identity
element. The set of representatives Rep is selected so that each orbit (of the set of
states S under GG) has at least one element in Rep and, for every s € S, there is
some « € C such that a(s) € Rep. The size of Rep (and consequently the size of
the resulting quotient model) depends heavily on the choice of C, hence C' must be
chosen carefully. The state-space of the quotient model is not reduced (with respect
to the original model) as much as with unique representatives. However, multiple
representatives reduce the size of the BDDs required to store the state-space, and
thus are more effective when symbolic representation of states is used.

In practice, BDDs reduced through multiple representatives may still be in-
tractably large. Approaches using generic representatives or computing representa-
tives dynamically, which we discuss below in Sections 4.5.2 and 4.5.3 respectively,
have been shown to outperform the multiple representatives approach [Emerson
and Wahl 2003; 2005a].
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4.5.2 Generic representatives. For symbolic model checking of fully symmetric
systems using BDDs, a method which uses generic representatives avoids both
the orbit problem and construction of the orbit relation [Emerson and Trefler
1999]. This method involves translating the source program for a model into a re-
duced program, which can be explored using standard model checking algorithms.
The idea of generic representatives is best explained using an example. For a
basic model of mutual exclusion with three processes (and no token), the states
(N1, N2, T3),(T1, Noy N3) and (N1,T5, N3) are all equivalent. This is because there
are two processes in the neutral local state and one in the ¢rying local state in each
of the three global states. The generic representative of these states is (2N, 17T).
A generic representative indicates how many processes are in each local state, but
does not refer to individual processes. Thus the reduced program abstracts from
processes to counters, with one counter for each local state, indicating the number
of processes currently in that state.

This approach is extended [Emerson and Wahl 2003] to include systems with
global shared variables. The translation of a program into reduced form is poly-
nomial in the length of the program and the approach compares well to those
using unique or multiple representatives. However, benefits of this approach can
be negated due to the local state explosion problem, where the number of potential
local states of a process is exponential in the number of local variables. Since the
reduced program requires one counter per local state, BDD representations which
require bits to be reserved for each counter become infeasible. Techniques have
been proposed to limit local state explosion based on live variable analysis (similar
to the data flow optimisations provided by SPIN [Holzmann 2003]) and local reach-
ability analysis [Emerson and Wahl 2005b]. The generic representatives approach
is also very limited as it only applies to fully symmetric systems which are simple
enough to be amenable to counter abstraction [Emerson and Wahl 2005a].

4.5.3 Dynamic computation of representatives. Another approach to combin-
ing symmetry reduction techniques with symbolic representation, for CTL model
checking, involves determining orbit representatives dynamically during fixpoint
iterations [Emerson and Wahl 2005a]. Instead of building a representation of the
quotient structure for a model, this approach works by computing transition images
with respect to the unreduced structure, then mapping the new states to their re-
spective representatives. This approach is not restricted to fully symmetric systems,
and can handle data symmetry (see Section 4.8) as well as process symmetry. A po-
tential bottleneck here is the operation of swapping bits in the BDD representation
of the model, which must be performed repeatedly during representative computa-
tion. The complexity of such swaps depends exponentially on the distance, in the
BDD variable ordering, between the variables to be swapped. To avoid this prob-
lem, permutations are expressed as a product of transpositions of adjacent elements.
Experimental results show that this approach outperforms the use of multiple and
generic representatives (see Sections 4.5.1 and 4.5.2 respectively) when applied to
a queueing lock algorithm and a buggy version of a cache coherence protocol.

4.5.4 On-the-fly representative selection. Model checking algorithms that use
depth-first search (DFS) can be adapted so that the first element of an orbit en-
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countered during the search is chosen as the orbit representative [Gyuris and Sistla
1999]. However, this approach is not suitable for symbolic model checking tech-
niques as DFS is very inefficient in the context of BDD state representation. On-
the-fly orbit representative selection is possible during breadth-first search (BFS)
when the choice of representative is guided using BDD-specific criteria [Barner and
Grumberg 2002].

4.5.5 “Fasy” classes of groups. For the following classes of automorphism group
G (acting on a model of a system of n processes), the constructive orbit problem
(COP) can be solved in polynomial time [Clarke et al. 1998; Jha 1996]:

—CG has order polynomial in n, for example a cyclic or dihedral group, or the group
associated with an n x n torus

—( is the full symmetric group S,

—G@G is a disjoint product or wreath product of groups for which the COP is poly-
nomial time solvable

— is generated by transpositions

Note that, when G is the full symmetric group S,, the lexicographically least
(lex-least) element of the orbit of a state can be obtained by sorting the state-
vector. When G has order polynomial in n the COP can be solved by enumerating
the orbit of a state. In the other cases, the lex-least element is found by sorting
segments of the state-vector individually.

4.5.6  Using orbit representatives in practice. The scalarset method [Ip and Dill
1996] assumes the existence of a canonicalisation function (in which states are re-
placed by a unique equivalence class representative) or a normalisation function (in
which a subset of states are used as multiple representative states). For symmetry
reduction in Mur¢ a suitable canonicalisation function [Ip and Dill 1993] applies
all permutations to a state s and returns the lexicographically smallest image. An
approach using a normalisation function is also suggested, in which the state-vector
is split into two parts. For a given state, a permutation ¢ is selected that produces
the lexicographically smallest image of the first (most significant) part of the as-
sociated state vector. The representative state chosen is the concatenation of the
image of the two parts of the state vector (under ¢).

The use of normalisation and canonicalisation functions with scalarsets is ex-
tended [Bosnacki et al. 2001] using heuristics to choose the order in which variables
are positioned in the state-vector. This ordering determines, for example, which
variables are most significant and appear in the first (leftmost) part of the split
state-vector. One approach, the sorted strategy, involves the identification of an
array indexed by a scalarset type (the main array) and placing it in the leftmost
position of the state-vector. In another approach, the segmented strategy, the lexi-
cographically smallest image of the second part of the state-vector, with respect to
all of the permutations that canonicalise the first part, is used in the representative
state. There is trade off between reduction in memory requirements and faster
verification for the sorted and segmented strategies. The segmented strategy yields
canonical representatives, but is more computationally expensive than the sorted
strategy. On the other hand, use of the sorted strategy may result in several states
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from the same equivalence class being explored.

A further two approaches, pc-sorted and pc-segmented, are also suggested, for
systems in which no suitable main array exists but the process identities are of
type scalarset. In this case a main array is constructed, containing the program
counters. A prototype implementation of this approach is implemented in the
SymmSpin package [Bosnacki et al. 2000; 2002], which we discuss in Section 5.1.

A canonicalisation function is suggested, again within the context SPIN [Nalumasu
and Gopalakrishnan 1995], for systems with any (user-defined) symmetry. Though
less restrictive than the scalar-set approach (full symmetry is not required and more
general operations on permutable variables are permitted), a unique canonicalisa-
tion function must be constructed manually by the modeller for every individual
model, thereby limiting the applicability of the method.

4.6 Combining symmetry reduction with other techniques

Basic symmetry reduction does not take into account the more sophisticated tech-
niques associated with model checking. In this section we discuss how symmetry
reduction can be safely combined with partial order reduction, and modified to
successfully handle fairness.

4.6.1 Symmetry and partial order reduction. Partial order reduction (see Sec-
tion 2.3.6) and symmetry reduction are orthogonal reduction techniques. They can
therefore be successfully used in conjunction, resulting in larger savings in memory
and verification time.

The combination of the two techniques was first suggested in the context of Petri
nets [Valmari 1989]. This approach applies to the stubborn sets method of partial
order reduction and is restricted to deadlock detection.

The idea of combining two reductions simultaneously is extended to verifying
next-time free LT L properties via model checking [Emerson et al. 1997]. Indeed,
an algorithm is given combining partial-order reduction and any bisimulation pre-
serving equivalence. When the equivalence is the automorphism relation, the algo-
rithm proceeds as follows: from any state s an ample set of transitions is calculated.
The orbit representatives of any states reachable via these transitions are then ex-
plored. A similar algorithm, combining the persistent sets method of partial order
reduction with symmetry reduction is used within the stateless search technique
implemented in VeriSoft [Godefroid 1999].

4.6.2 Exploiting symmetry under fairness assumptions. Fairness is vital for prov-
ing liveness properties, as it reflects the basic requirement that processes are execut-
ing at an indefinite but positive speed [Emerson and Sistla 1997]. Two important
kinds of fairness are weak fairness and strong fairness. Given a Kripke structure
M, an infinite path 7 of M is strongly fair if each process that is enabled infinitely
often is executed infinitely often. A path 7 is weakly fair if any process that is
continuously enabled is executed infinitely often.

Fairness is generally incompatible with basic symmetry reduction methods be-
cause the progress of an individual process along a path of the quotient structure
cannot be tracked in the usual way. Each state of the quotient structure is labelled
according to the representative of an equivalence class of states in the original struc-
ture, and for a transition s — t in the original model, it may not be the case that
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transition rep([s]g) — rep([t]¢) also occurs in the quotient model.

These fundamental problems are overcome when the automata theoretic approach
using annotated quotient structures (see Section 4.2) is used, in the context of (in-
herently symmetric) fair indexed CT L* properties [Emerson and Sistla 1997; Sistla
2004]. An annotated quotient structure Mg is used together with an automaton
A which accepts only fair computations. An efficient algorithm, based on finding
maximal strongly connected components (MSCCs) [Tarjan 1972] (see Section 2.3.2)
is presented for model-checking fair indexed C'T'L* formulas under the assumption
of strong and (by implication) weak fairness. Correctness results (including liveness
properties) are verified for a resource controller example using a prototype (fair)
model checker. Comparison with an unreduced model indicates an exponential
reduction in the number of stored states.

This approach to symmetry reduced model checking has been extended to the
on-the-fly case [Gyuris and Sistla 1999] in which Mg x A is checked during con-
struction. The approach also exploits state symmetries [Emerson and Sistla 1996].
A state symmetry of a state s is a permutation o € Aut(M) on process indices
such that a(s) = s. If processes i and j have the same local state in global state
s, and if a(i) = j, then only the transitions made from state s by process i need
to be considered, saving space and computation time. The resulting algorithm is
exploited in the Symmetry Based Model Checker (SMC) [Sistla et al. 2000], which
we discuss in Section 5.1.

A parallel approach to model checking with symmetry reduction and weak fair-
ness [Bosnacki 2003] combines the weak fairness algorithm implemented in SPIN
[Holzmann 2003] (based on the Choeka flag algorithm [Choueka 1974]) with a sym-
metry reduction algorithm [Bosnacki 2002] based on the nested depth first search
(NDFS) approach to model checking [Holzmann et al. 1996]. As well as exploiting
the usual advantages over the MSCC algorithms, the NDFS approach is compat-
ible with approximate verification techniques, such as the hash-compact method
and bitstate hashing (see section 2.4.1).

4.7 Exploiting symmetry in less symmetric systems

Many systems which occur commonly in practice are comprised of several similar,
but not all identical processes. An example is the readers-writers problem [Emerson
and Trefler 1999], where m reader processes and n writer processes access a shared
resource, for some m,n > 0.

A writer always has priority over a reader when both are trying to access the
shared resource. If M is a model of this system, then M is not fully symmetric. In
fact Aut(M) = Sg12,...m} X Sfm+1,m+2,...m+n}—Teaders can be permuted, writers
can be permuted, but readers cannot be interchanged with writers.! However, the
state graph is symmetric in every sense except for transitions from a state where
two processes are attempting to access the shared resource.

It is possible to exploit this kind of almost symmetry during model checking.
Indeed, by defining different classes of “symmetry”, such as near or rough symmetry
[Emerson and Trefler 1999], or wvirtual symmetry [Emerson et al. 2000], it is still
possible to infer temporal logic properties of the system by model checking a suitable

L Assuming there are no symmetries other than those which permute process ids.
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quotient graph using the entire group Sy,+n as the automorphism group.

Suppose M is a model of a system, and Z the set of process identifiers associated
with M. Then a permutation a € Sym T is said to be a near automorphism of
M if, for every transition s — t of M, either a(s) — «(t) is a transition of M
or s is totally symmetric with respect to Aut(M). (That is, s is invariant under
Aut(M).) The model M is said to be nearly symmetric if it has a suitable group
of near automorphisms G,,.

If, on the other hand, G, is a subgroup of Sym Z, then M is roughly symmetric
with respect to G, if for every pair of states s and s’ where s ~¢,. ', any transition
from s is matched by a transition from s’ provided the associated local transition
(from s") would involve a process with the highest priority. If M is a nearly (roughly)
symmetric model with respect to group G,, (G,) then, despite the lack of complete
symmetry, the quotient model Mg, (Mg, ) is bisimilar to the original model M.
It follows that symmetry reduction preserves all symmetric CT L* properties.

Both near and rough symmetry are subsumed by the notions of virtual and strong
virtual symmetry [Emerson et al. 2000]. As well as systems with static priorities
(which can already be described via rough symmetry) virtual symmetry applies to
systems where resources are asymmetrically shared according to dynamic priorities.

The symmetrisation R” of a transition relation R by a group G is defined by

RY ={a(s) > a(t):a € G and s —» t € R}.

Intuitively, symmetrising a transition relation can be thought of as the process of
adding transitions which are missing due to asymmetry in the system.

A structure M is said to be virtually symmetric with respect to a group G, act-
ing on S if for any s — t € R, there exists & € G, such that s — «a(t) € R. In
addition, if for any s — ¢t € R%, there exists a in Fix(s,G,) (the largest subgroup
of G, which fixes s) such that s — «a(t) € R, then M is said to be strongly virtu-
ally symmetric with respect to G,. If a Kripke structure M is (strongly) virtually
symmetric with respect to a group G, then M is bisimilar to the quotient model
Mg, , and model checking of symmetric properties can be performed over Mg, . A
procedure is given to identify the case where a Kripke structure is strongly virtually
symmetric with respect to a group G,. This procedure involves local counting of
transitions which are present in R%> but absent in R. Virtual symmetry has been
successfully combined with the generic representatives approach (see Section 4.5.2)
for the case where processes are fully interchangeable with respect to virtual sym-
metry [Wei et al. 2005]. This allows symmetry-reduced symbolic model checking of
partially symmetric systems, using the NuSMV model checker [Cimatti et al. 2002]
(see Section 2.4.2).

A method involving the symmetry reduction of models with little or no symmetry
uses guarded annotated quotient structures (GQSs) [Sistla 2004; Sistla and Gode-
froid 2004]. These structures are an extension to the annotated quotient structures
[Emerson and Sistla 1996; 1997; Gyuris and Sistla 1999], discussed in Section 4.2.
Suppose M is the Kripke structure of a system, and M’ O M is obtained from
M by adding transitions (in a similar manner to the process of symmetrisation
described above), so that M’ has more symmetry than M. A guarded annotated
quotient structure for M can be viewed as an annotated quotient structure for M’,
with edges labelled to indicate which processes can make the transition (in M).
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Thus the original edges of M can be recovered from the representation of M'. A
temporal formula ¢ can be checked over the guarded annotated quotient structure
by unwinding the structure, even if ¢ is not symmetric with respect to the auto-
morphisms used for reduction. This approach potentially allows large factors of
reduction to be obtained since a larger group of automorphisms is used than would
be possible using standard quotient structure reduction. Indeed, experimental re-
sults, using the SMC model checker [Sistla et al. 2000], show how the GQS method
is applied effectively to a system of prioritised processes.

A recent extension to the GQS approach [Sistla et al. 2004] involves (symmetry
reduced) model checking of extended CTL (CCTL) properties (which involve an
additional construct, COUNT, for specifying the number of components in a given
state). This extended logic is more expressive than indexed CTL (see Section 4.2).

Properties are again not restricted to being fully symmetric in an alternative
automata theoretic approach [Ajami et al. 1998], but must be partially symmetric.
For example consider the following property: “if some process is waiting for a
resource then it will get it, provided none of the processes with higher identity will
require the resource in the future”. To check the satisfaction of a formula ¢ for
a model M, with set of states S, a set of equivalence relations are first computed
between states of B, the Biichi automaton representing ¢. If G is a symmetry
group of M, one equivalence relation is defined for every element of G. Two states
b1,bo € B are equivalent with respect to a € G if and only if the predecessors
and successors of by are mapped to the predecessors of b, and the successors of by
respectively (and vice versa). The quotient graph is then constructed by applying
the equivalence relations to the pairs of states (s,b) € S x B. The approach is
extended [Haddad et al. 2000] to partially symmetric models by representing the
model itself as the synchronised product of a symmetric model and an asymmetric
Biichi automaton. The method is illustrated using well-formed Petri nets.

4.8 Exploiting data symmetry

Most of the symmetry reduction methods described in this paper relate to structural
symmetry. However, as discussed in Section 4.3, another form of symmetry, namely
data symmetry, can be exploited to increase the effectiveness of model checking. In
Section 4.3 we discussed the application of scalarsets to exploit data symmetries.

As software specifications often involve large data structures with vast numbers
of values, it may be impossible to check that properties hold for every feasible
assignment of values to the data set. That is, it may not be possible to check the
properties for every interpretation of the model. It is therefore desirable to only
check representative models for each equivalence class of interpretations.

This use of data equivalence is exploited for software analysis using the Nitpick
specification tool [Jackson et al. 1998].

5. IMPLEMENTATIONS OF SYMMETRY REDUCTION

In this section we list the major tools for which symmetry reduction has been im-
plemented. This is not intended as an exhaustive exposition, but as a selective
illustration.
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5.1 Explicit state methods

Mur¢ The Mur¢ description language is the first language to have been augmented
with the scalarset data type (see Section 4.3). As a result, the Mur¢ verification
system [Dill et al. 1992] (see Section 2.4) is the first to implement symmetry re-
duction using scalarsets [Ip and Dill 1996] and has inspired many of the other
implementations discussed in this section.

An automorphism group for the state-space is determined statically from the
Mur¢ description and consists of all permutations that permute scalarset variables.
The lexicographically smallest member of each orbit is used as the orbit represen-
tative and a suitable canonicalisation function (see Section 4.5.6) is used to map
every state to its orbit representative.

Mur¢ has been used to verify a number of highly symmetric algorithms (for
example Peterson’s n-process mutual exclusion algorithm [Peterson 1981]) and a
lock implementation for the Stanford DASH multiprocessor [Lenoski et al. 1992].

The Mur¢ tool has been extended with two alternative classes of algorithm for
representative computation [Juntilla 2004]. The first class of algorithms transforms
each state encountered during search to a characteristic graph, and derives a canon-
ical state representative from the canonical form of this graph. The nauty graph
isomorphism tool [McKay 1981] is used to perform canonicalisation operations. The
other class of algorithms uses ordered partitions on states, and during canonicali-
sation considers only permutations which are compatible with the partitioning of
a given state. This approach mimics the partitioning approach commonly used by
graph isomorphism algorithms [McKay 1981].

SMC The Symmetry based Model Checker (SMC) [Sistla 2004; Sistla et al. 2000]
is an explicit state model checker which has been specifically designed for the veri-
fication of highly symmetric systems. Exploiting both process symmetry and state
symmetry, in addition to proving safety properties, SMC is the only model checker
that can be used to effectively verify liveness properties under both strong and weak
fairness assumptions. Model checking is performed using a technique [Gyuris and
Sistla 1999] involving annotated quotient structures (AQSs) (see Sections 4.2 and
4.6.2). The AQS can be constructed either in advance or on-the-fly. For on-the-fly
construction, it is also possible to store the edges of the AQS during construc-
tion. If the edges are not stored considerable space savings can be made. However,
verification time is increased dramatically.

The input language of SMC uses a syntax similar to that of Mur¢ [Dill et al. 1992].
Processes are separated into modules such that all processes in a given module are
identical up to renaming. (Note that these modules are analogous to the scalar sets
used by Mur¢.) Symmetry can not be exploited in programs where there is not
total symmetry within each component type, e.g. in a token ring network.

The AQS is constructed incrementally, and the first state of an orbit encountered
during search is used as the representative for that orbit. State symmetries of a
state s are detected by partitioning processes within each module into equivalence
classes. A leader process is chosen from each equivalence class, and only transitions
from s made by one of the leader processes are explored. Reached states are stored
in a hash-table, and a hashing function is used which always hashes equivalent states
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to the same location, and desirably hashes inequivalent states to different locations.
For a state s, the hashing function returns Checksum(s) mod b, where b is the
hash-table size. The checksum for a state is computed from the values of variables
in that state. Each time a state is to be stored at a position in the hash-table, a
check is made to see if the state is equivalent to any other state in that position
in the table. Two states with differing checksums cannot be equivalent, so SMC
performs the pre-test of comparing checksums before checking the equivalence of
two states. In many cases this quickly shows the nonequivalence of states.

To check whether two states with equal checksums are equivalent, a polynomial
time bounded, randomised algorithm is used which runs in quadratic time. This
algorithm sometimes falsely reports that two equivalent states are not equivalent,
which may result in the construction of a larger-than-optimal AQS (but is not
unsafe).

SMC has been used to check the correctness of the link layer part of the IEEE
standard 1394 “Firewire” protocol [[EEE-1394 1995], and also a resource controller
example. The resource controller example shows that exploiting state symmetry
can speed up verification considerably when the number of processes is high. Recent
extensions of SMC [Sistla and Godefroid 2004; Sistla et al. 2004] enable partially
symmetric systems with priorities to be verified over a GQS, and properties to be
expressed in an extended form of CT L.

SymmSpin Symmetric SPIN (SymmSpin) [Bosnacki et al. 2002] is a symmetry
reduction package for the SPIN model checker [Holzmann 2003] (see Section 2.4.1).
To allow process symmetry of a system to be specified, the scalarset data type [Ip
and Dill 1996] is used. However, to avoid modifying the PROMELA parser, rather
than directly extending the PROMELA language with the scalarset data type, all of
the symmetry information is provided (by the user) in a separate file. This is called
the system description file and identifies which variables have the scalarset type.

For a given Promela model, SPIN generates a verifier for the model in the form
of a C program which is compiled and executed. SymmSpin modifies this program
to add symmetry reduction via a representative function which, for a given state,
computes an orbit representative for the state. For a given orbit the representative
is the least element with respect to a specified canonicalisation function or one of the
minimal elements computed via a normalisation function (see Section 4.5.6). During
search SymmSpin stores the original states on the stack and representative states
on the heap (see Section 2.3.2). This means that counterexample traces generated
by SymmSpin correspond to real counterexample traces through the model, rather
than the representatives of a counterexample trace.

Experiments using SymmSpin show that for certain models the factor of reduc-
tion gained is close to the theoretical limit [Bosnacki et al. 2002]. These experiments
also show that the combination of symmetry and partial order reduction can be ef-
fective. A prototype extension of SymmSpin for symmetry reduced model checking
under weak fairness [Bosnacki 2003] has recently been developed. This is discussed
in Section 4.6.2.

Other SpPiN-based implementations An extension to SPIN is proposed [Derepas
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and Gastin 2001] to allow symmetry reduction of models of systems of replicated
processes. The specification language PROMELA is augmented with two additional
keywords, ref and public which identify reference variables and local variables with
public scope respectively. Unlike scalarsets, these variables may hold the addresses
of other processes for communication purposes or represent process ids. Orbit repre-
sentatives are computed by a process called pseudo sorting in which the parts of the
state-vector corresponding to the individual processes are sorted lexicographically.
As the original state-vector ordering depends on the order in which variables are
declared, the efficiency of the sorting algorithm depends on the initial declaration
ordering. Only fully symmetric properties can be verified using this technique.

An on-the-fly state-space exploration algorithm exploiting both process and heap
object symmetry has been implemented in the dSPIN model checking tool [losif
2002] (see Section 2.4.4). For dynamic systems modelled using dSPIN, the number
of state components may grow along an execution path. Therefore, rather than
applying symmetry reduction with respect to a fixed permutation group, a family
of groups is considered. A suitable group is selected at each execution step. Orbit
representatives are calculated using a similar set of heuristics to those used by
SymmSpin.

The SymmExtractor tool [Donaldson and Miller 2005] can be used to detect
structural symmetries arising from the communication structure of a PROMELA
model (see Section 4.3).

5.2 Symbolic methods

SMYV As a symbolic model checker, SMV [McMillan 1993] does not lend itself to
symmetry reduction of the state-space. This is because the symbolic representation
of the orbit relation as a BDD is prohibitively large (see Section 4.4). However,
symmetry reduction on the cases associated with a property to be proved for a
system is achieved via the use of scalarsets [McMillan 2000]. In order to exploit
abstraction techniques available with SMV, a method called temporal case splitting
is used to break a given property down into a parameterised set of assertions. This
addresses state explosion, but may result in an unwanted side-effect, namely case
explosion. Declaring variables as scalarsets enables SMV to sort the assertions into
equivalence classes. Specifically, if we have two assertions ¢; and ¢, where ¢2 is
obtained from ¢; by some permutation of scalarset values, then ¢; holds if and only
if ¢ holds. Thus for a given parameterised set of assertions, it is only necessary to
check a representative subset of assertions. This representative subset is chosen in
such a way that every assertion in the original parameterised set can be mapped
to a representative assertion via permutation of scalarset values.

SYMM One (purpose-built) symbolic model checker that exploits symmetry re-
duction methods for the verification of CTL specifications is Symm [Clarke et al.
1998]. SyMM uses a simple input language based on a shared variable model of
computation, and allows the user to give symmetries of the system to be verified.
To combat the orbit problem, symmetry reduction is implemented using the
multiple orbit representatives approach (see Section 4.5.1). SymMm has been used
to verify the IEEE Futurebus arbiter protocol [IEEE-896.1 1992] which controls a
number of prioritised components competing for a resource. Each individual pro-
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cess is described via a module. Modules with the same priority can be permuted.

Other symbolic implementations The RuleBase model checker [Beer et al.
1996] (see Section 2.4.2) has been experimentally extended with symmetry reduc-
tion techniques for under-approzimation [Barner and Grumberg 2002]. Generators
for a symmetry group of the verified system are supplied by the user. The gener-
ators which are genuine symmetries of the system, and under which the checked
property is invariant, are retained by the model checker for exploitation during
search. Orbit representatives are selected on-the-fly (see Section 4.5.4). Experi-
mental results show that RuleBase performs significantly better for the checking of
liveness properties when symmetry reduction is applied. However, no improvement
in performance has been shown for safety properties.

An experimental model checking system, UTOOL [Emerson and Wahl 2005b],
has been developed for the investigation of techniques to combine symmetry reduc-
tion with symbolic representation. This tool uses the input language of Mur¢ and
performs symbolic verification, exploiting symmetry wherever possible. UTOOL
avoids constructing the orbit relation through the use of generic representatives,
or through dynamic representative computation (see Sections 4.5.2 and 4.5.3 re-
spectively). Though less efficient, for the purposes of comparison, UTOOL also
implements symmetry reduction using pre-computed multiple representatives (see
Section 4.5.1).

5.3 Real-time methods

UprPAAL The real time model checking tool, UPPAAL, has been extended to ex-
ploit symmetry [Hendriks et al. 2003], using scalarsets [Ip and Dill 1996]. As the
main purpose of UPPAAL is to perform reachability analysis, symmetry reduction
using scalarsets is an obvious choice—the original scalarset theory was developed
in the context of reachability analysis rather than the checking of temporal logic
properties. However, the soundness of symmetry reduction does not follow directly,
since the UPPAAL language is very different from that of Mur$. Hence soundness
is proved separately for UPPAAL.

The implementation of symmetry reduction in UPPAAL involves the development
of an efficient algorithm for the computation of a canonical representative for a state.
This is particularly challenging since UPPAAL represents sets of clock valuations
symbolically using a difference bounded matrix (DBM).

The scalarsets for a given model define a set of state swaps for the model. Each
state swap is an automorphism of the model, and the set of all state swaps can
be used to compute a canonical state representative. In order to simplify the
computation of representatives, two assumptions are made. The first is that an
array indexed by scalarsets does not contain elements of scalarset type. The second
is that a timed automaton in a UPPAAL model may only reset its clock to the value
zero. This assumption ensures that individual clocks can always be ordered using
the order in which they were reset—this is called the diagonal property and leads
to a total ordering on states. Note that the diagonal property is important as, for
a given total ordering, minimisation using state swaps of a general DBM is at least
as hard as testing isomorphism for strongly regular graphs [Hendriks et al. 2003].
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A state is minimised using the state swaps defined by scalarsets in the model,
together with this total ordering. This minimised state is a canonical representative
for the original state.

Experimental results for Fischer’s mutual exclusion protocol, presented in some
detail, show that exponential savings can be gained by exploiting symmetry. Fur-
ther experiments for an audio/video protocol, and for a distributed agreement al-
gorithm, are also encouraging. Since symmetry reduction in UPPAAL makes use of
scalarsets, only total symmetries can be exploited.

RED Another (symbolic) real time model checker to support symmetry reduc-
tion is RED [Wang and Schmidt 2002]. The symmetry reduction algorithm uses
relations between pointers to define an ordering among processes. This ordering
is then used to compute a representative by sorting the associated orbits. Every
permutation is constructed via successive composition of transpositions. This can
lead to an over approximation of the reachable state-space (the “anomaly of image
false reachability”). For this reason using RED with symmetry reduction is only
useful for checking that a state is not reachable. The performance of RED (with
symmetry reduction) is compared to that of Mur¢ [Dill et al. 1992] (with symme-
try reduction) and SMC [Sistla et al. 2000] for three benchmark systems [Wang
and Schmidt 2002]. Since it manages to successfully combine symbolic techniques
with symmetry reduction, as the number of processes increases, RED dramatically
outperforms the other model checkers.

5.4 Direct model checking

Bogor A symmetry reduction technique has been developed for the Bogor model
checking framework [Robby et al. 2003], which is used to model check Java programs
(see Section 2.4.4). The symmetry reduction methods used in Bogor [Robby et al.
2003] are based on those implemented in dSPIN [Tosif 2002] (see Section 5.1) but
use more efficient heuristics [Iosif 2004] for state-vector sorting.

States contain both thread and heap information. These different parts of the
state (the thread and the heap state) are sorted separately. Threads are sorted by
comparing associated program counters. This does not always produce a unique
ordering. However, heap states can be sorted in a canonical way. For every heap
state s, there is an associated set of memory locations, l; 5,0 s,. .., s say. It is
possible to sort the indices of the memory locations (for a given s) by ordering the
traces associated with each pair (s,l;5), 1 < i < r. The trace for pair (s,l; ;) is
the smallest of all of the incoming chains (pairs of thread identifiers and variable
sequences) which can themselves be ordered in a natural way. The sorting of the
location indices produces a strictly ordered list of integers. If G is a symmetry
group acting on the heap elements, then the ordered list associated with state s is
identical to the corresponding list for any s’ in the same orbit of G as s. Thus the
index sorting function is a canonicalisation function (see Section 4.5.6).

VeriSoft The VeriSoft model checker [Godefroid 1997] verifies C-code directly via
a stateless search (see Section 2.4.4). As such, the symmetry reduction methods
implemented in VeriSoft [Godefroid 1999] rely on equivalences between sequences
of transitions rather than between states. If M is a transition system and Mg a
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quotient transition system of M with respect to equivalence of transition sequences,
then M and Mg are bisimilar and satisfy the same (symmetric) temporal logic
formulas.

In order for equivalent transitions to be identified, labels are added to transitions,
so that the model is represented by a labelled transition system. Two transitions
are equivalent with respect to a given symmetry group G if their respective labels
are equivalent with respect to G. This concept can be easily extended to sequences
of transitions. Symmetry reduction is used to prune transitions on-the-fly. If, for
some « € G, transitions ¢ and «(t) are enabled and « fixes s, then only one of ¢
or a(t) need be explored. Given that s is not stored explicitly, it is not straight-
forward to check that « fixes s. However, assuming that « fixes the initial state
So, if w is the sequence of transitions leading from s¢ to s, then it can be shown
that a(s) = s if and only if w and a(w) are equivalent with respect to a partial
ordering of transitions. Thus, by combining symmetry reduction with partial order
reduction techniques (see Section 4.6.1) the problem of checking that a(s) = s is
overcome.

Other direct model checking implementations A limited form of symmetry
reduction is applied [Lerda and Visser 2001] within the second generation Java
PathFinder tool (JPF2) [Visser et al. 2000] (see Section 2.4.4) which model checks
Java bytecode directly. Like dSPIN, JPF2 is capable of handling dynamic structures
(although, unlike dSPIN, data is not allocated dynamically). States are composed
of a static area, a dynamic area and a thread area, each of which is represented as
an array. Two states are considered to be equivalent if a permutation applied to
the static and dynamic area arrays of the first state, gives the corresponding arrays
of the second. A canonicalisation function (see Section 4.5.6) is used which imposes
a simple ordering (calculated during model checking) on the static and dynamic
areas of the states.

6. CONCLUSION

Model checking algorithms rely upon the construction of a model representing all
system states. One of the major problems associated with model checking is state-
space explosion. The main approaches to overcoming state-space explosion involve a
reduction in state representation size (e.g. symbolic representations), or a reduction
in the number of states or paths explored (e.g. on-the-fly methods, partial order
reduction and symmetry reduction). Symmetry reduction involves avoiding areas
of the state-space which are symmetrically equivalent to those already visited. In
this paper we have given an overview of symmetry reduction, and how it relates to
other reduction approaches.

The identification of symmetries involves finding symmetries of a model without
building the model explicitly. Purpose built data types, such as scalarsets and cir-
cularsets, allow permutations to be identified which correspond to automorphisms.
However, they can only be used for systems where subsets of processes behave
identically, whereas many computer science applications naturally involve partial
symmetries, in which individual processes are distinguished in some way. Recent
results extend to partial symmetries, and automatic extraction of symmetry from
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source programs, in certain cases.

The crux of exploiting symmetry is the orbit problem — it must be solved ef-
ficiently, or avoided altogether. This makes symmetry reduction ineffective, in
general, for symbolic model checking. As a result, its implementation within the
most widely used symbolic model checker SMV is very limited. However, the use
of multiple representatives, generic representatives, or dynamic representative com-
putation, makes the combination of symmetry reduction and symbolic techniques
theoretically possible. Symmetry is amenable to combination with partial order
reduction and also to fairness when using automata theoretic approaches.

Most implementations of symmetry reduction using scalarsets are within the
mainstream on-the-fly checkers such as Mur¢ and SPIN, though scalarsets have
also been added to the real-time model checking tool UPPAAL. Other techniques
have been developed to implement symmetry within the specialist symbolic model
checker RED and within model checkers that are used to verify C or Java code
directly (e.g. VeriSoft, Bogor and Java PathFinder (JPF2)).

Open problems remain, including the development of improved techniques which
deal with partial symmetries [Emerson 2000], identification of (full or partial) sym-
metries from Java and C source programs, and the identification and exploitation
of symmetry in probabilistic model checking.
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