
 
 
 
 
 
 
Laing, E W and Diver, D A (2005) On damped Bernstein modes in a 
weakly relativistic pair plasma. Physical Review E 72(3):036409.

 
 
 
 
 
 
 
http://eprints.gla.ac.uk/3154/ 
 
 
 
 

Glasgow ePrints Service 
http://eprints.gla.ac.uk 



On damped Bernstein modes in a weakly relativistic pair plasma

E W Laing and D A Diver
Dept of Physics and Astronomy, Kelvin Building,

University of Glasgow, Glasgow G12 8QQ, Scotland UK.∗

(Dated: July 12, 2005)

Relativistic Bernstein modes are not totally undamped, but have a small, negative definite imagi-
nary frequency component which peaks where the frequency is closest to the rest cyclotron harmonic.
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I. INTRODUCTION

In our previous paper on Bernstein modes in a weakly
relativistic treatment based on Maxwellian distributions
[1] we claimed that contributions due to the singularities
which occurred at the resonances γ2 = n2/ω̂2 exactly
cancelled, leaving the modes undamped. However it has
since been pointed out [2] that the path of integration
proposed in [1] to avoid the singularities was incorrect.
The correct path should have been below the singularity
on the negative p̂‖-axis, and above it on the positive p̂‖-
axis. As a result, the contributions add, and the modes
are damped.

In this brief article we calculate the damping of the
relativistic Bernstein modes, assuming that the damp-
ing is weak. More precisely, given that the frequency
of a Bernstein wave of normalised wave-number κ =
(2/a)1/2k⊥c/Ω0 is ω̂ = ω/Ω0, we now write ω̂ = ω̂r + iω̂i,
and assume that |ω̂i/ω̂r| � 1. We will use the same no-
tation throughout as in [1], so that a = mec

2/(kBT ) is
the relativistic parameter, and Ω0 = eB0/me is the rest
cyclotron frequency for an electron or positron.

The full dispersion relation obtained in [1] is
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where ω̂p = ωp/Ω0 is the normalised plasma frequency,
p̂‖ = p‖/(mec) and p̂⊥ = p⊥/(mec).

Consider the properties of the second integral in
Eq. (1). In the limit |ω̂i/ω̂r| � 1,
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FIG. 1: Definition of the contour for the integral in Eq. (9).

Hence the integral becomes
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For convenience, define

b2
n = n2/ω̂2

r − 1 (4)

so that it is apparent that a different treatment of the
integral I is required depending on the sign of b2

n, and
the relative sizes of b2

n and p̂2
⊥.

We will use throughout the notation
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Case (i) b2
n > 0, b2

n > p̂2
⊥

The integral terms in Eq. (1) can be written in the
simpler form
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in which Γ is the Landau contour given in Fig. 1. The
poles are at ±v0, where v0 =

√
x2 − iyn.

For the singular integral in (9), the contribution from
the poles is given by

−2πi
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using the Residue theorem. The integration along the
real line then yields
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with all other contributions cancelling. Note that the
integrals above are both real.

Case (ii) b2
n > 0, b2
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Here the p̂‖ integral takes the form
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and is non-singular. This integral can be expressed in
terms of real and imaginary parts as
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When yn = 0, the second integral vanishes, as expected.

Case (iii) n < ω̂r

This is similar to case (ii), but now b2
n < 0; the p̂⊥

integral is as before, subject to this proviso.

The dispersion relation for frequency m− 1 < ω̂r < m
where m ≥ 2 is an integer and C = 8
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and where the following additional function definitions
have been used:
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Note that in the limit yn → 0, p1 → ex2
erfc(x), q1 →

ie−x2
erf(ix) and AII

n and AIII
n become purely real; these

then agree with the definitions given in Eqs. (48-49) of
[1]. The real part of AI

n similarly agrees with Eq. (47)
of [1], but there is an imaginary contribution from the
changed contour.

The procedure now, as discussed earlier, is to extract
the real and imaginary parts of the dispersion relation,
and to make the assumption that the real part is rela-
tively unchanged from our earlier paper [1]. In this way,
we can use the imaginary part of the dispersion relation
to define an implicit relationship that will yield ω̂i as a
function of ω̂r and the plasma parameters. It will turn
out that we must retain the effects of yn beyond the linear
approximation in order to avoid singular integrals. This
is not the case when considering the real part, hence jus-
tifying the approximation of setting ω̂i = 0 there.

In order to separate the real and imaginary parts of the
dispersion relation, we introduce the following notation
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With this notation we can collect the imaginary terms in
the dispersion relation to get
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Now since we have assumed that |ω̂i/ω̂r| � 1, and there-
fore that the real part of the dispersion relation can be
calculated by ignoring ω̂i contributions, we have
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FIG. 2: Pluses (+) show the upper loop of the dispersion
curve ω̂r (left y-axis) versus κ (x-axis) for a = 10, and 1 <
ω̂r < 2. The crosses (×) show how −ω̂i (right y-axis) varies
as a function of κ along the dispersion curve.

This allows us to simplify the expression for ω̂i:
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Note that Eq. (34) defines ω̂i implicitly, since ω̂i appears
in functional dependencies on the right hand side. To
solve Eq. (34) for ω̂i requires an iterative scheme, con-
verging on the true value. The results of such a scheme
applied to the cases of a = 10 and a = 20, for frequencies
in the range 1 < ω̂r < 2 and 2 < ω̂r < 3 and for ω̂p = 3
are shown in the figures. As in [1], harmonics above the
sixth order could be neglected for these cases.

It is possible to derive a very simple approximation
for the right-hand side of Eq. (34). Noting that AI

m2 is
dominant among the terms in the denominator (by virtue
of its dependence on the function q2) , and similarly Bm1

is the largest contributor to the numerator, it is possible
to write

ω̂i ≈ − ω̂3
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am2AI
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(35)

if we retain only these dominant terms, and if we neglect
the term 4ω̂r(ω̂2

r − ω̂2
p) compared with aCn6AI

m2/ω̂3
r . Us-

ing the definition of yn from Eq. (6), we have eventually

ym ≈ −Bm1

AI
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(36)

which generally overestimates the value of |ω̂i| by up to
20% when compared with the result of retaining all the
relevant summation terms.
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FIG. 3: Caption as for Fig. 2, showing the real and imaginary
parts on the lower loop of the same dispersion curve.
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FIG. 4: Pluses (+) show the upper loop of the dispersion
curve ω̂r (left y-axis) versus κ (x-axis) for a = 20, and 1 <
ω̂r < 2. The crosses (×) show how −ω̂i (right y-axis) varies
as a function of κ along the dispersion curve.

II. SUMMARY

This short article updates our original calculations
[1] by showing that Bernstein modes in relativistic pair
plasmas are indeed damped, albeit very weakly. The
classical electron-ion picture suggests that this damping
should occur close to the classical cyclotron resonances
at ω ≈ nωc [3]. Our computed damping terms are largest
closest to the cyclotron harmonics on the upper loop of
each dispersion curve; ω̂i is comparatively smaller on the
lower branch mainly because xm is larger in that lower
frequency part of the curve, and so AI

m2 is more domi-
nant than Bm1, leading to a smaller ω̂i. This can readily
be seen from the simple approximation given in Eq. (36).

Note also that we have shown in earlier work [1] that

relativistic effects significantly change the shape and lo-
cation of the dispersion curves for pair-plasma Bernstein
modes such that they do not remain localised near a par-
ticular harmonic. In fact, most of the Bernstein mode
dispersion curves are free from significant damping, and
therefore the associated waves propagate largely without
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FIG. 5: Caption as for Fig. 4, showing the real and imaginary
parts on the lower loop of the same dispersion curve.
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FIG. 6: Pluses (+) show the upper loop of the dispersion
curve ω̂r (left y-axis) versus κ (x-axis) for a = 20, and 2 <
ω̂r < 3. The crosses (×) show how −ω̂i (right y-axis) varies
as a function of κ along the dispersion curve.

hindrance.
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