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Abstract— An approach is described that investigates the 
potential of probabilistic “neural” architectures for 
computation with Deep Sub-Micrometer (DSM) MOSFETs. 
Initially, noisy MOSFET models are based upon those for a 
0.35µm MOS technology with an exaggerated 1/f 
characteristic. We explore the manifestation of the 1/f 
characteristic at the output of 2-quadrant multiplier when the 
key n-channel MOSFETs are replaced by “noisy” MOSFETs. 
The stochastic behavior of this noisy multiplier has been 
mapped on to a software (Matlab) model of a Continuous 
Restricted Boltzmann Machine (CRBM) – an analogue-input 
stochastic computing structure. Simulation of this DSM CRBM 
implementation shows little degradation from that of a 
“perfect” CRBM.  This paper thus introduces a methodology 
for a form of “technology-downstreaming” and highlights the 
potential of probabilistic architectures for DSM computation. 

1. INTRODUCTION  
Intrinsic MOSFET noise is an increasing problem with 

no obvious, single solution. As MOSFET dimensions 
continue to shrink, the effect of noise on the device’s 
reliability and performance becomes more pronounced [1]. 
The most obvious approaches to a solution are either, to 
adopt a noise tolerant design approach or more expensively, 
to try to alleviate the problem through enhanced processing.  
A more radical approach, hinted at in the technology 
“roadmap” [2] is to develop architectures that actually 
exploit the vagaries of Deep Sub-Micrometer (DSM) devices 
to perform useful computation. 

In this paper, we present a systematic simulation study of 
a probabilistic neural computation architecture using “noisy” 
MOSFETs. We explore the exploitation of intrinsic 
MOSFET noise to create useful “stochastic neural” behavior 
in the context of an intrinsically-interesting probabilistic 
model developed specifically for hardware-amenability, the 
Continuous Restricted Boltzmann Machine (CRBM) [3].  
The CRBM is based on Hinton’s Product of Expert in 
Restricted Boltzmann Machine form (PoE/RBM) [4], 
adapted to draw upon the training approach of the diffusion 
network [5]. We adopt a hierarchical modeling strategy, 

whereby we first (Section 3.1) build SPICE-based behavioral 
models of noisy DSM MOSFETs based upon “atomistic” 
simulation of the underlying noise mechanisms [6]. We then 
design the key component of the CRBM, an analog 
multiplier, using noisy-MOSFET models (Section 3.2). 
Finally, we embed the noisy behavior of the “noisy-
multiplier” in a behavioral model of the CRBM, an example 
of a probabilistic neural computation architecture (Section 
3.3). 

2. MOTIVATION 

2.1.  MOSFET Technology 
As MOSFETs shrink and supply voltages reduce, the 

effect of noise on the devices performance becomes ever 
more significant [1]. Low frequency noise has been reported 
[6] of an amplitude comparable with 20-60% of the drain 
current. Current fluctuations on this scale become a serious 
performance and reliability issue. To highlight the 
seriousness of the issue, the Technology Roadmap [2] has 
suggested some alternative solutions based on emerging 
research technologies, many of which require either major 
changes in design discipline or expensive changes in process 
technology.  An alternative suggestion [2] is to use noisy, 
DSM MOSFETs in an architecture that actually requires 
them. It is therefore attractive to study computing structures 
that exploit the unreliable (noisy) behavior of future 
MOSFETs directly, to implement reliable systems. 

2.2. Probabilistic Systems 
One possible approach is to use the probabilistic behavior 

of the MOSFET explicitly, to determine the probability 
distribution of a circuit output, rather than trying to extract a 
“deterministic” output. A candidate architecture has been 
identified in [3], the CRBM. In this architecture, stochastic 
behavior is introduced through injection of Gaussian noise 
from an external source [7]. In a hardware implementation, 
this requires additional circuitry [8] and thus more silicon 
area. This study asks whether noisy, DSM MOSFETs alone 
can generate the required stochastic behavior.  
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3. METHODOLOGY 
In this section, we present a systematic approach that 

embeds noisy, DSM MOSFET models in a probabilistic 
neural computation architecture. The CRBM is used here 
primarily as an interesting example of this the form of 
architecture. The CRBM was chosen for its simple and 
hardware-amenable algorithm [8].  

3.1. Modelling Noisy MOSFETs 
 A good, computationally-simple, noisy MOSFET model 

is critical to this work. The model must represent the 
predicted behavior of a noisy DSM MOSFET. At this 
concept-proving stage, however, simplicity is more 
important than detailed accuracy.  It is not, therefore, our 
objective in this study to develop a complex, arbitrarily-
accurate noisy DSM MOSFET model. Rather, we have 
developed a model that produces the correct form of noise 
behavior, valid in all operating regimes, and easy to 
implement in circuit simulator. 

3.1.1. Noise Model 
Probabilistic neural computation is generally aimed at 

dealing with real-time data.  In embedded systems, one area 
where DSM technology may be highly desirable for reasons 
of size, data often encodes biological or even audio 
information, of relatively low bandwidth [2]. We therefore 
focus for now on low frequency noise models, i.e. flicker 
noise and Random Telegraph Signal (RTS) noise. In this 
paper, we focus on flicker noise, for which we have good 
results.  RTS will be discussed in a later paper, when 
statistically-significant results are available. 

Flicker noise, or 1/f noise, is conveniently described by 
its’ drain current Power Spectral Density (PSD) [9]: 

  (1) 

where Kf, and af, are process-dependent constant parameters. 
Cox is the oxide capacitance and Leff is the effective channel 
length. Flicker noise frequency exponent ef dependence on 
gate bias has been reported in [10]. From (1), we can predict 
the behavior of flicker noise with varying bias conditions, 
frequencies, and physical dimensions. 

3.1.2. Modeling Methodology 
The noisy MOSFET was modeled in a conceptually 

simple manner, by augmenting a conventional MOSFET 
model with a noise source, n(t) as shown in Fig. 1a. The 
noise source n(t) thus represents time domain flicker noise. 
This flicker noise was generated from the PSD described by 
(1) using a Sum-of-Sinusoids technique adapted from that in 
[11]. Some limitations of this technique are discussed in 
[12], but it is good enough for our purpose – to provide a 
computationally-tractable noise model that can  be used in 
transient analysis to provide a reasonably accurate 
representation of noise behavior and response. The 
development and implementation of a fast, efficient, and 

highly-accurate noisy MOSFET is beyond the scope of this 
study.  

3.1.3. Noisy MOSFETs: Result and Discussion 
The noisy MOSFET model is based upon that for a 

0.35µm AMS technology n-channel MOSFET. For 0.35µm 
technology, the actual noise generated according to (1) is  
too low in amplitude to be interesting. To enhance the noise 
source n(t) effect, we simply multiplied the flicker noise co-
efficient Kf by 105, to emulate the effect of the changes 
introduced by DSM device shrinkage and to produce a noise 
level that is significant in this context. Fig. 1b shows the 
drain current transient characteristic (drain voltage swept 
from 0 to 3.5 Volts) of a noisy n-channel MOSFET with a 
fixed gate voltage of 2 Volts. The underlying I-V 
characteristic of the noisy MOSFET is overlaid upon that of 
a “noiseless” n-channel MOSFET. We have verified the 
generated noise PSDs and confirmed that the noise generated 
has, indeed, true 1/f characteristics. 

3.2. A Noisy, 2-Quadrant Analog Multiplier 
Multipliers are used extensively in almost all forms of 

neural architecture, representing, primarily, the effects of 
synaptic gating. Potentially, therefore, an intrinsically noisy 
analogue multiplier could replace the external noise injection 
in a CRBM neuron. 

A 2-quadrant Chible multiplier (Fig. 2) was chosen for its 
simple architecture [13] and for the wide range of values of 
Vw (0 to VDD) over which the output remains linearly 
proportional to the input. For the noisy multiplier 
implementation in this paper, we replaced MOSFETs M1, 
M4 and M5 with noisy MOSFETs, to introduce noise to the 
signal path without, at this stage, compromising the 
performance of the current mirrors. 

Using time-domain transient analysis, we simulated the 
noisy 2-quadrant multiplier (Fig. 3).  

 

Figure 1.  (a) Noisy n-channel MOSFET. (b) Noisy drain current for 
Vgs=2.0V and Vds=0-3.5V simulated for 1ms. 
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Figure 2.  2-Quadrant Chible Multiplier 

 

Figure 3.  Noisy 2-quadrant Chible  multiplier implemented by replacing 
M1, M4, and M5 with noisy n-channel MOSFETs.  

The PSD of the output current was analyzed by 
simulating the noisy multiplier for several combinations of  
input voltages, Vw (0V, 0.5V, 3.5V) and Vin (2.0V, 0.1V, 
2.5V). The noise at the output of the multiplier also exhibits 
a 1/f characteristic. A PSD was then generated for each bias 
combination (Vw and Vin). The relation between bias 
combinations and PSDs was then interpolated using the 
heuristic power-law function: 

  (2) 

where a and b are both fitting parameters. Comparing (2) 
with (1), “a” can be correlated to KfIds

af/CoxLeff
2 and “b” the 

flicker noise frequency exponent ef. 

It can thus be seen that the output of the noisy multiplier 
exhibits 1/f characteristic. The fitting parameters of the noisy 
multiplier PSD were correlated to physical/process 
parameters and drain current found in (1). The power-law 
function (2) gave a good generalized relationship between 
input voltages and PSDs, and is thus usable as an empirical 
model of the noise characteristics of the same multiplier 
across its operating range. 

3.3. DSM noise and Probabilistic Computation 
The principle objective of this study is to explore whether 

noisy DSM MOSFETs have the potential to provide the 
stochastic behavior needed by a probabilistic architecture 
such as the CRBM.   

3.3.1. The CRBM : Overview 
The CRBM is a probabilistic neural computation model 

capable of modeling analog data, and adapted (“trained”) 
according to a simple, unsupervised training algorithm [3,7]. 
It has been shown that the CRBM is amenable to VLSI 
implementation and potentially useful as both a robust 
classifier and as a “novelty detector” [7,8]. Reference [3] and 
[7] provide a full description of CRBM architecture, 
algorithm, and training procedure.  

The basic building block of CRBM is the continuous 
stochastic neuron [8], shown in Fig. 4. The external Gaussian 
noise injection provides the stochastic behavior of the neuron 
[7]. Adapting the detailed injection of noise allows CRBM 
neurons to adapt during training to become binary-stochastic, 
deterministic, or continuous-stochastic [3].  This is one of the 
most interesting features of the CRBM and enhances its 
modeling ability significantly [3].  In this work, we aim to 
eliminate the need for external Gaussian noise injection by 
introducing intrinsic DSM-style fluctuations, initially in the 
multiplier blocks of CRBM. 

3.3.2. A  CRBM with injected DSM noise 
The stochastic behavior of the neurons was introduced by 

replacing the normal multiplication process by the noisy 
multiplication developed in the last section, removing the 
explicit injection of Gaussian noise in the underlying CRBM 
model. As the noisy multiplier was implemented in 
hardware, we must map the input parameter and output 
characteristics carefully to match that of the software CRBM 
on which this study draws.  

For each combination of inputs (Si and ωi), a 
corresponding PSD is generated using the partly-empirical 
fitting function (2) and fitting parameters a and b. Using this 
PSD, a noise datum was then generated using the sum-of-
sinusoid technique [11]. The noise datum was then added to 
the multiplier output in what was now a software (Matlab) 
simulation of a hardware CRBM. 

 

Figure 4.  CRBM neuron with external Gaussian noise n(t).  
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3.3.3. Results and Discussion 
To begin to explore the effects of DSM noise on 

probabilistic architectures, the original “perfect” software 
CRBM and the model of a hardware CRBM with DSM noise 
injected were both trained to model the same two, initially 
well-separated, clusters of 2-dimensional data shown in Fig. 
5a.  Then, the trained CRBMs were presented with a random 
data. After 20-steps of data reconstruction, both CRBMs 
showed a good reconstruction of the original cluster (see Fig. 
5b and Fig. 5c). 

This initial, preliminary result shows that stochastic 
neuron behavior introduced through noisy MOSFET can 
produce CRBM performance comparable with that of a 
“perfect” CRBM with explicit noise injection.  Future studies 
will explore more complex, higher-dimensional data to probe 
the limitations of this DSM-noise-induced modeling ability. 

4. CONCLUSION AND FUTURE WORK 
We have presented a principled, but pragmatic approach 

that including the effect of noise in MOSFETs that do not yet 
exist into circuit models for probabilistic   architectures.  The 
approach is based upon detailed atomistic (physical) models 
of DSM devices, abstracted into a form that is suitable for 
inclusion in both circuit-level and architecture-level 
simulation.  Although we have chosen to study a 
probabilistic architecture, the approach is perfectly generic 
and could be used to explore the effects of DSM noise on 
conventional computational paradigms, significantly in 
advance of the availability of ICs with true DSM devices.  
We have also presented the first study of a probabilistic 
architecture that actually uses the intrinsic noise in DSM 
devices directly as part of its probabilistic functionality.  
Early results suggest that, while noise levels in current  
commercially-available MOS technology neither present a 
serious problem nor offer a route to efficient probabilistic 
computation, those in DSM devices will do both.  We do not 
claim to have proved that DSM MOSFET noise can be 
exploited in all contexts and with all data, for probabilistic 
computation. We have, however, shown for the first time 
that DSM MOSFET noise has the potential to be exploited 
for probabilistic neural computation architecture hardware 
implementation. 

When MOSFET dimensions fall beyond 50nm [6], 
Random Telegraph Signal (RTS) noise becomes dominant at 
low frequency. In ongoing future work, we model noisy 
MOSFETs with intrinsic RTS noise and implement them in 
CRBM using the same approach reported in this paper.  
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Figure 5.  (a) Training data cluster for both CRBMs. (b) 20 step 
reconstruction of CRBM injected external gaussian noise. (c) 20-steps 

reconstruction of CRBM implemented with noisy multiplier model. 
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