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data with the results of molecular biology in an attempt to suggest potential metabolic routes at 1 

different operational conditions.  2 

In the presence of sulfate, sulfite or thiosulphate, sulfate-reducing bacteria (SRB) can grow 3 

heterotrophically or lithotrophically on different substrates. SRB are important members of the 4 

microflora of a typical anaerobic digester [8]. The electron donors for sulfate-reducing 5 

microorganisms in anaerobic reactors include a variety of low-molecular mass organic compounds, 6 

such as mono- and dicarboxylic aliphatic acids, alcohols, polar aromatic compounds and even 7 

hydrocarbons. Oxidation of organic compounds may be incomplete, with acetate (often 8 

simultaneously with CO2) as a potential by-product; or it is a complete oxidation, leading to the 9 

final production of CO2. Dissimilatory biological sulfate reduction is a process carried out by many 10 

bacteria and some archaea [9]. In such environment, simple compounds (ethanol, methanol, acetate 11 

and H2/CO2) seem to be preferred over complex substances [10]. Ethanol was found to be a suitable 12 

carbon and energy source for sustaining sulfate reduction in such anaerobic reactors.  The use of 13 

ethanol in sulfate–reducing systems has already been applied in full-scale plants [11, 4] in lab-scale 14 

UASB [12] and in a fluidized bed reactor [13].  15 

The aim of this study was to characterize the microbial biofilm community colonizing a mineral 16 

coal substrate inside an ASBBR pilot-plant treating a sulfate-rich wastewater from an industrial 17 

sulfonation process. In addition, the microbial characterization was further associated to a 18 

simplified mathematical model analysis contextualizing the experimental data in order to suggest 19 

potential metabolic pathways under different conditions of COD/Sulfate ratios. 20 

  21 

2. Materials and Methods 22 

Influent Wastewater 23 

 Sulfonated oils are produced from the reaction of vegetal oils with sulphuric acid and liquid 24 

ammonia in a batch reactor operated under controlled temperature. The industrial wastewater (Table 25 
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1) containing high sulphate concentration, which originated from washing the products of this 1 

process, was collected in plastic vessels and transported to the laboratory for feeding the rector. 2 

 3 
ASBBR reactor  4 

 5 

The 1.2 m
3
 ASBBR reactor was constructed in “Fiberglass” and it was filled with 500 kg of 6 

irregular pieces of mineral coal (40 to 80 mm of diameter) occupying a volume of 1.0 m
3
 (porosity  7 

= 0.5). The treatment volume available by cycle or batch mode was 0.6 m
3 

.The outlet biogas tube 8 

from head-space (0.2 m
3
) was immersed in a hydraulic seal (100 l) containing an alkaline solution 9 

(NaOH) for H2S removal.  10 

The influent wastewater was pumped from a storage tank (0.6 m
3
) to a circular perforated tube 11 

located at the reactor‟s bottom for achieving a better liquid distribution. Mixing was provided by 12 

liquid recirculation (up-flow) by means of a centrifuged pump (Jacuzzi-model 5JL15) connected to 13 

the inflow distribution system. The cycle time was of 48 h, including the steps of feeding (1 h), 14 

reaction with liquid recirculation (46 h) and discharge (1 h). The reactor was operated at ambient 15 

temperature (31±2
0
C) in the Laboratory of Biological Processes (Universidade de São Paulo, São 16 

Carlos-Brasil). A scheme of the experimental set-up is presented in Figure 1. 17 

 18 

Operational conditions (ASBBR) 19 

Initially, the ASBBR was inoculated with 0.2 m
3
 of anaerobic sludge taken from a full-scale 20 

UASB treating domestic sewage. The reactor was operated during 30 batch cycles under increasing 21 

influent sulfate concentrations of 0.25 and 0.5 gSO4
-2

 l
-1

 for inoculum acclimatization. Domestic 22 

sewage (Table 2) at different volumes depending on the desired influent sulfate concentration was 23 

used to dilute the sulfate-rich industrial wastewater. In this phase, domestic sewage was the only 24 

electron donor used for sulfate reduction and the COD/sulfate ratio were 2.13±0.35 and 1.89±0.65, 25 

respectively. 26 

Afterwards the reactor was fed with 1.0 (20 cycles), 2.0 (8 cycles) and 3.0 gSO4
-2

 l
-1

 (12 cycles) 27 

corresponding to sulfate loading rates of 0.65 to 1.90 kgSO4
-2

/cycle during 40 cycles. Recirculation 28 

was provided by a centrifugal pump with capacity for 3.5 m
3
 h

-1
.Ethanol was used as the main 29 
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electron donor for sulfate reduction. The added volume varied according to the sulfate removal 1 

efficiencies obtained for the different COD/sulfate ratios applied aiming at maximizing the sulfate 2 

reduction efficiency. The COD/sulfate ratios applied in the ASBBR reactor were 1.77±0.26 (1 3 

gSO4
-2

 l
-1

), 1.64±0.40 (2gSO4
-2

 l
-1

) and 1.50±0.25 (3gSO4
-2

 l
-1

).  4 

 5 

Reactor monitoring 6 

 Sulfate and COD removal efficiency were monitored during 40 cycles. Temporal profiles for 7 

the three different operational conditions (1.0, 2.0 and 3.0 gSO4
-2

 l
-1

) were carried out after the 8 

ASBBR reactor had achieved stability, keeping the high sulfate reduction efficiency of 9 

approximately 99%. Samples for analyses were taken from the suction pipe of the recirculation 10 

pump during 48 h (cycle time).  11 

Analysis of sulfate, COD (total), pH, total dissolved sulfide (TDS) were performed according to 12 

the Standard Methods [14] during temporal profiles. Volatile fatty acids (VFA) as acetic acid and 13 

ethanol concentrations were determined by gas chromatography in equipment HP 6890, with a HP-14 

INNOVAX (30m x 0.25mm x 0.25µm) column and H2 as the carrier gas [15] to get the temporal 15 

profile data.  16 

 17 

Mathematical model  18 

The generation of simplified mathematical model (Figure 2) involved five reactions (1, 2, 3, 4 19 

and 5) representing the main metabolic pathways for acidogenesis, methanogenesis and 20 

sulphidogenesis in presence of ethanol as organic source.  21 

 )(2

1 isacidogenesHAcetatekEthanol A        (1) 22 

)(24

1 esismethanogenCOCHkAcetate M        (2) 23 

)(2

1 nesissulphidogeSHAcetatekEthanolSulfate S      (3) 24 

)(22

2 nesissulphidogeCOSHkEthanolSulfate S      (4) 25 

)(22

3 nesissulphidogeCOSHkAcetateSulfate S      (5)26 

  27 

 28 

Differential equations (6, 7 and 8) were proposed to represent first order kinetic model of these 29 

metabolic pathways based in the simplified mathematical model. The differential equations were 30 
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solved by applying the Method of Runge-Kutta (4
th 

order) using the program developed in 1 

Microsoft Excel  [16]. The first order kinetic parameters were obtained by minimizing the 2 

differences between the theoretical and experimental data (sulfate, ethanol and acetic acid).  3 

SulfatekSulfatekSulfatek
dt

Sulfated
SSS ... 321                              (6) 4 

SulfatekSulfatekEthanolk
dt

Ethanold
SSA ... 211         (7) 5 

SulfatekSulfatekAcetickEthanolk
dt

Aceticd
SSMA .... 1311             (8)  6 

The theoretical data were used to adjust in experimental profiles of sulfate, ethanol and acetic 7 

acid obtained from the operational conditions in the ASBBR (1.0, 2.0 and 3.0 gSO4
2- 

l
-1

). The 8 

kinetic parameter obtained from the mathematical model can predict the metabolic routes developed 9 

by sulfate-reducing bacteria (SRB), acidogenic bacteria (AB) and methanogenic archaea (MA) in 10 

the several sulfate concentration applied. If any kinetic parameter value was equal to zero, the 11 

corresponded metabolic route was disconsidered. 12 

 13 

Molecular analysis 14 

Microbial diversity was assessed using 16S rRNA clone library obtained from biofilm samples 15 

collected inside the reactor subjected to influent sulfate concentrations of 1.0, 2.0 e 3.0 gSO4
2-

 l
-1

 at 16 

the end of the respective trial. Microbial biomass was obtained by washing the mineral coal 17 

matrices with PBS-buffer and total bacterial DNA was then extracted as described elsewhere [17]. 18 

PCR amplification were carried out using the universal bacterial primes 27 f ( 5`AGA GTT TGA 19 

TCC TGG CTC AG 3`) and 907r (5`CCG TCA ATT CCT TTG AGT TT 3`) [18] and archaeal 20 

primers 1100f  (5´ AAC CGT CGA CAG TCA GGY AAC GAG CGAG 3`) and 1400R (5`CGG 21 

CGA ATT CGT GCA AGG AGC AGG GAC 3`) [19]. The 16S rRNA fragments were cloned into 22 

the plasmid pCR 2.1 TOPO-TA easy vector system, and transformed into E. coli DHα5 as 23 

suggested by the manufacturer (Invitrogen®). Clones were randomly selected from original 300 24 

colonies for bacteria and archaea and they were screened for positive inserts with M13 primers 25 
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according to the manufacturer instructions. A total of 100 randomly chosen positive clones, for each 1 

operational condition, were sequenced in ABI 377 DNA Sequencer (Perkin-Elmer) using M13 2 

primers (forward and reverse, separately). The resultant nucleotide sequences were assembled, 3 

checked for potential chimerical sequences and compared with the electronic database in order to 4 

identify the closest matches (Ribosomal Database Project) [20]. The ribossomal 16S DNA 5 

fragments were grouped to produce a phylogenetic tree for the domain bacteria showing the 6 

evolutionary distance between the cloned sequences and sequences of type category downloaded 7 

from the Ribosomal Database Project (RDP). The tree was constructed using PAUP and Kimura 2- 8 

parameter algorithm. Bootstraps values higher than 90 were not displayed in the tree. Shannon and 9 

evenness indexes were calculated using observed frequencies within the clone library [21].  10 

 11 

3. Results and discussion 12 

During start-up, which consisted of an acclimation period of 30 cycles, ASBBR showed 13 

averages of sulfate reduction efficiencies of 97 and 99% at the initial concentrations of 0.25 and 14 

0.50 gSO4
-2

.l
-1

, respectively. After this period, the reactor was monitored during 40 cycles under 15 

influent sulfate concentration of 1.0, 2.0 and 3.0 gSO4
-2

 l
-1

. The maximum sulfate removal rate 16 

(SRR) was of 1.6 kgSO4
2-

/cycle at the sulfate loading rate (SLR) of 1.9 kgSO4
2-

/cycle (Figure 3). 17 

Sulfate reduction efficiencies were very high (about 99%) for the concentrations of 1.0, 2.0 and 3.0 18 

gSO4
-2

 l
-1

, respectively. Effluent sulfate concentrations were never recorded exciding the value of 5 19 

mgSO4
-2

 l
-1

. On the other hand, a gradual decrease of COD removal efficiencies was observed along 20 

the experiments. The mean of removal efficiencies decreased from 70% to 41% for organic loading 21 

rates (OLR) ranging from 1.4 to 3.0 kgCOD/cycle (Figure 3). The mean values of COD 22 

concentrations were 0.72 g l
-1

 (1.0 gSO4
-2

 l
-1

), 1.45 g l
-1

 (2.0 gSO4
-2

 l
-1

) and 3.01 g.l
-1

 (3.0 gSO4
-2

 l
-1

) 23 

for sulfate concentration of 1.0, 2.0 and 3.0 gSO4
-2

 l
-1

, respectively. In average, and with a different 24 

tendency than efficiency, organic removal rates (ORR) increased from 0.95 to 1.75 kgCOD/cycle in 25 

the trial with 1.0 and 2.0 gSO4
-2

. However, ORR decreased to 1.20 kgCOD/cycle in the trial with 26 
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3.0 gSO4
-2

. The mean value of the effluent pH also decreased from the beginning (7.1) to the end 1 

(6.7) of the period the reactor was subjected to 3.0 gSO4
2-

 l
-1

.  2 

A first order kinetic model was adjusted to the temporal profiles of sulfate, ethanol and acetic 3 

acid at the operating conditions of 1.0; 2.0 and 3.0 gSO4
2
 l

-1
, respectively (Figure 4). Figure 2 shows 4 

a schematic map of potential metabolic routes within the ASBBR and Table 3 summarizes the first-5 

order kinetic parameters which were used as input data to describe such idealized model. A direct 6 

comparison of the schematic pathways shown in Figure 2 with the kinetic parameters of Table 3 7 

formed the basic rationale used to predict the preferential pathways. For instance, at high sulfate 8 

concentration the mathematical model suggested that acidogenesis and methanogenesis (k1A and 9 

k1M = zero, Table 2) were inhibited by sulfate concentrations and that sulfate reduction was mainly 10 

performed by incomplete sulfate-reducing activity (k1S = 0.0594 h
-1

). According to such rational, 11 

the results obtained with the kinetic model suggested that ASBBR operated exclusively under 12 

sulphidogenic condition and, therefore, the effluent showed high concentrations of acetic acid 13 

(equation 3). On the other hand, values of non ionized sulfide concentration were below the 14 

reported inhibitory values of 50-250 mg/L, for methanogens and 50-550 mg/L for SRB [22]. 15 

Additionally, Celis-García et al. [23] reported that a sulfidogenic biofilm could operate under total 16 

sulfide concentrations as high as 1,200 mg/L and any toxic effect due to sulfide concentrations at 17 

the prevailing pH values obtained seemed to be unlikely for SRB or methanogens. On the other 18 

hand, the former authors report experiments carried out in continuous-flow reactors without coal as 19 

support material. In this work, the operating system using batch reactor with recirculation may be 20 

the cause of inhibitory effect at lower sulfide concentration. Recirculation in batch systems 21 

increases the risk of sulfide toxicity, particularly at the adopted high up-flow velocity of 22 m h
-1

.       22 

Microbial analysis identified 32 distinct operating taxonomic units (OTUs) retrieved from a 23 

clone library containing 100 entries for each operating condition of sulfate loading rates (1.0, 2.0 24 

and 3.0 gSO4
2
 l

-1
, respectively) and only one recurrent clone of a methanogenic archaea was 25 

observed in the treatments with initial concentrations of 1.0 and 2.0 gSO4
2
 l

-1
. Figure 5 shows OTUs 26 
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phylogenetic associations and Figure 6 shows their frequencies in their respective clone libraries; 1 

which were obtained from the reactor‟s biomass sampled at the end of each trial separately (1.0, 2.0 2 

and 3.0 gSO4
-2

 l
-1

 respectively). The majority of the OTUs were either associated to the group I 3 

(non-acetate oxidizers) or group II (acetate oxidizers) of the sulfate-reducing bacteria.  4 

 The molecular inventory suggests a decrease of the microbial diversity with the increase of 5 

sulfate concentration. The values of Shannon and Evenness indexes were of 1.09 and 0.39; 1.20 and 6 

0.38, and 0.79 and 0.35 for the sulfate concentrations of 1.0, 2.0 and 3.0 gSO4
2
 l

-1
, respectively. 7 

Although sulfate removal efficiencies were high (about 99%) during the trials, variations in the 8 

OTUs frequencies suggested a significant shift in bacterial species.  9 

Considering the operational condition of 1.0 and 2.0 gSO4
2
 l

-1
, the predominant bacterial groups 10 

were affiliated with Beta-proteobacteria (Aminomonas spp. and Thermanaerovibrio spp.) and 11 

Delta-proteobacterias (Desulfovibrio spp. and Desulfomicrobium spp.). In such operational 12 

conditions, it was also observed the presence of methanogenic archaea (99% of similarity with 13 

Methanosaeta sp. NCBI AY 454768). Possible combinations between physiologies of these groups 14 

suggest a potential syntrophic interaction between some species of sulfate-reducing bacteria and 15 

methanogenic archaea in the trials at initial concentrations of 1.0 and 2.0 gSO4
2
 l

-1
. Such organisms 16 

are commonly associated to the group of "Synergists" [24]. The contribution of synergists in the 17 

performance of anaerobic reactors has not been fully explored [25]. Some species are capable of 18 

growing on amino acids (Aminomonas paucivorans [26], Thermanaerovibrio acidovorans [27], 19 

Aminobacterium mobile [28] and Aminobacterium colombiense [29]); and others 20 

(Thermanaerovibrio velox [30] and Anaerobaculum sp.) may show preferences for carbohydrates 21 

[31]. Despite the fact that those distinct species show different metabolic preferences at certain 22 

conditions, their presence and frequency in the sample (Figure 6) correlate with the degradation 23 

pathway suggested by coefficient k1a (0.206 h
-1

) which reflect the conversion of the ethanol to 24 

acetic acid at high rates in Period I by such type of acidogenic organisms (Table 3).  25 
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 Temporal profiling of acids during each batch cycle suggested a higher rate of acetate 1 

accumulation in the first hours of the cycle against their overall consumption rates (500 and 1200 2 

mg l
-1

) for the initial concentrations of 1.0 and 2.0 gSO4
2
 l

-1
, respectively, (Figure 4a and 4b). The 3 

kinetic coefficient k1M for the respective former initial sulfate concentrations (0.0637 and 0.0378 h
-

4 

1
, Table 3), may be associated to the activity of methanogenic species such as Methanosaeta spp.; 5 

which were organisms identified in the respective samples.  6 

It is known that syntrophic acidogenic bacteria benefit from the activity of SRB that oxidize 7 

hydrogen, once the former assist on the maintenance of low partial pressure of this gas within the 8 

reactor. Several of the observed OTUs matched organisms that are capable of hydrogen oxidation 9 

(Desulfovibrio spp. and Desulfomicrobium spp). Furthermore, syntrophic acidogenic bacteria may 10 

use ethanol as electron donors and such activity could result in the accumulation of acetate. The 11 

potential existence of such metabolic pathway in the trials was explored by the results obtained with 12 

coefficient k1S (Table 3 and Figure 2). For instance, the coefficient k1a of 0.2064 h
-1

 for 13 

concentration of 1.0 gSO4
2-

 l
-1 

may refer to H2 consumption by litotrophic bacteria [32]. 14 

Desulfomonile spp. OTUs were observed at initial concentration of 2.0 gSO4
2-

l
-1

. These types of 15 

organisms are acetate oxidizers and such metabolic pathway was described by coefficient k3S; 16 

which was significantly higher in the phase 1 (Table 3). In the same way, higher frequency of 17 

Desulforhabdus spp in clone library 2 may correlate to the complete oxidation of ethanol [9] which 18 

was at peak on Period II (coefficient k2S, Table 3).  19 

At initial concentrations of 3.0 gSO4
2
 l

-1
 the influent showed significant increase in TDS and in 20 

the concentration of volatile acids (as acetic acid) (Figure 4c) and as methanogenesis was inhibited 21 

methanogenic organisms were not detected in the clone library. The decrease in the organic matter 22 

removal rates were probably related to the accumulation of acetic acid in the reactor [33, 34] caused 23 

primarily by inhibition of methanogenesis. Inhibition was a result of the increase in the 24 

concentration of non-ionized sulfide (H2S) from 55 to 177 mg l
-1

 (TDS: 132 to 287 mg l
-1

) during 25 

treatment of high sulfate concentrations. Furthermore, it has been reported that the outcome of 26 
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sulfide inhibition depends not only on the pH, which is directly related to the H2S concentration, but 1 

also on the TDS concentration and the biomass characteristics [35]. This suggests that both TDS 2 

and H2S may promote an inhibitory effect on the organisms (SRB and MA). The decrease of pH 3 

values in the effluent at initial concentration of 3.0 gSO4
2-

 l
-1

 (from 6.7 to 5.6) suggests the presence 4 

of non-dissociated H2S as the main form of sulfur. Figure 4d shows the variations in the H2S for the 5 

trial with initial concentrations of 1.0, 2.0 and 3.0 gSO4
-2

 l
-1

 and maximum of H2S concentration 6 

were of 115 mg l
-1

 (H2S/TDS=0.51), 138 mg l
-1 

(H2S/TDS=0.45) and 194 mg l
-1

 (H2S/TDS=0.88), 7 

respectively. Therefore, the inhibitory concentration of methanogenesis (3.0 gSO4
-2

 l
-1

), was 8 

coincidental with the predominance of non-dissociated H2S (profile-88%), but it did not correlate 9 

with the TDS concentration, as it was also observed elsewhere [36]. This suggests that H2S exerted 10 

higher inhibitory effect on the methanogenic organisms than on the sulfate-reducing bacteria and 11 

this result was observed at sulfate concentrations equal or higher than 2.0 gSO4
-2

 l
-1

. 12 

It is known that the competition between SBR and MA is determined by the COD/sulfate 13 

ratios. According to some authors, the boundary determining a truly sulfate-reducing environment 14 

occurs on a COD/sulfate ratio of 0.67 [37]. On the other hand, there is some controversy between 15 

the applications of such COD/sulfate ratios when applied to biological treatment of complex 16 

wastes. The combination of organic substrates and of microbial species may affect the final ratios 17 

of COD to sulfate concentration. It was observed a significant shift in the microbial species in the 18 

different treatments (Figure 6). The frequency and diversity of moderate thermophilic fermentative 19 

bacteria decreased with increasing sulfate concentrations. Although Dysgonomonas spp. and 20 

Coprotermobacter spp. are associated to fermentative bacteria [38, 39], the mathematical model 21 

showed that their potential activity did not affected the main metabolic pathways described by 22 

coefficient k1S (0.0594 h
-1

) and k3S (0.01357 h
-1

), respectively (Table 3). The absence of 23 

acetoclastic methanogenic organisms and the accumulation of acetate, highlighted by the 24 

coefficient k1S, can be associated to the appearance of Desulfovibrio spp., which are acetate 25 

producing bacteria. On the other hand, the appearance of Desulfurella can be also associated with 26 
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the complete oxidation of acetate as highlighted by the coefficient k3S. This genus include acetate 1 

moderate thermophilic oxidizer which are capable of completely mineralize ethanol, lactate [40] 2 

and acetate as sole carbon.  3 

 4 

4. Conclusions 5 

 6 
These experiments showed that full-scale ASBBR reactors filled with mineral coal is an effective 7 

alternative for treating sulphate-rich wastewater. The reactor achieved significant sulfate reduction 8 

efficiencies (99%) in a short period of operation at different sulphate initial concentrations (1.0 to 9 

3.0 gSO4
2-

 l
-1

). Mineral coal was an effective inert support for biomass attachment, In addition, it 10 

can be concluded that this reactor configuration and operating parameters favour removal of 11 

sulphate at high rates. The kinetic parameters of the adopted model described the experimental data 12 

and, in conjunction to the microbial characterization, they suggested that at initial concentrations of 13 

1.0 and 2.0 gSO4
2-

 l
-1

 both sulphidogenesis and methanogenesis may have occurred simultaneously. 14 

The observed kinetic parameters used for considering metabolic relations among acidogenic 15 

bacteria, acetoclastic methanogenic archaeas and sulfate-reducing bacteria of the group I (non 16 

acetate oxidizers) and of the group II (acetate oxidizers) showed significant parallel and potential 17 

for physiological interaction which culminated with high rates of sulfate removal. However, high 18 

concentrations of reduced sulfur compounds (TDS) and high residual COD were observed at 19 

influent sulfate concentrations higher than 2.0 gSO4
2-

 l
-1

. Under such conditions, methanogenesis 20 

was inhibited by high concentrations of undissociated H2S formed during the sulfate reduction 21 

process. At 3.0 gSO4
2-

 l
-1

, the microbial diversity index was lower than in other tested 22 

concentrations indicating a significant shift in the community occurred as a result. On the other 23 

hand, as no decrease of sulfate removal efficiencies was observed, it is possible that the selected 24 

organisms were metabolically adapted which helped to sustain the functional stability of the 25 

system. 26 

The bacterial populations and the patterns of the main metabolic pathways observed in this 27 

work shown that the functional stability in terms of sulfate reduction does not imply microbial 28 
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community stability. It was observed that a dynamic community was able to remove sulfate at high 1 

rates and at high initial concentrations. 2 
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Table1. First-order kinetic constants obtained with the model proposed for metabolic pathways in 

several periods (I - 1.0 gSO4
2-.l-1, II - 2.0 gSO4

2-.l-1 and III-3.0 gSO4
2-.l-1).

Constants (h-1) Period I Period II Period III
k1S 0,000437 0,095578 0,059420
k2S 0,000235 0,009219 0,000000
k3S 0,062894 0,010000 0,013569
k1A 0,206439 0,000000 0,000000
k1M 0,063724 0,037798 0,000000

Table(s)
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Figure captions 
 

Figure 1. Schematic representation of operation ASBBR containing biomass immobilized in 

mineral coal. 

Figure 2. Figure 2: Schematic model proposed for metabolic pathways. 

Where:  

k1S - first-order kinetic constant that represents the reduction of sulfate by microorganisms reducing 

sulfate using ethanol (partial oxidation) and generating acetic acid and H2S; 

k2S - first-order kinetic constant that represents the reduction of sulfate by microorganisms reducing 

sulfate using ethanol (complete oxidation) and generating CO2 and H2S; 

k3S - first-order kinetic constant that represents the reduction of sulfate by microorganisms reducing 

sulfate using acetic acid (complete oxidation) and generating as final products CO2 and H2S; 

k1A - first-order kinetic constant that represents the conversion of ethanol to acetic acid and H2 by 

the acidogenic bacteria; 

k1M - first-order kinetic constant that represents the conversion of acetic acid to CO2 and CH4 by 

methanogenic archaea. 

Figure 3. Mean values of SLR (Sulfate loading rate), SRR (Sulfate removal rate), OLR (Organic 

loading rate) and ORR (Organic removal rate) by cycle in several periods (I -1.0 gSO4
2-

 l
-1

, II - 2.0 

gSO4
2-

 l
-1

 and III-3.0 gSO4
2-

 l
-1

). 

Figure 4. Temporal profiles of sulfate (), ethanol () and acetic acid () obtained experimentally 

for sulfate concentration of  1.0 gSO4
2-

 l
-1 

(a), 2.0 gSO4
2-

 l
-1 

(b), 3.0 gSO4
2-

 l
-1

 (c) by first order 

model adjusted  (- - - -  sulfate, ▬ ethanol and  acetic acid) and sulfide concentration (1.0 

gSO4
2-

 l
-1 

(), 2.0 gSO4
2-

 l
-1 

(), 3.0 gSO4
2-

 l
-1

 ()). 

Figure 5.  Phylogenetic tree of distance showing similarities between the assessed OTUs (about 

880 pb) for domain Bacteria and some sequences of type category (full name) downloaed from the 

ribosomal database project website. The numbers beside clones (1, 2 and 3) refers to the operational  

conditions ((1.0, 2.0 e 3.0 gSO4
-2

 l
-1

) respectively. The tree was constructed using PAUP and 

Kimura 2-parameter algorithm (bootstraps values higher than 80 were not shown). The scale bar 

represents 5% changes per nucleotide.  

Figure 6. Histogram showing the frequencies (%) of the cloned 16S rRNAs obtained from the 

bacteria biomass sampled at the end of the trial (1.0, 2.0 and 3.0 gSO4
-2

 l
-1 

) and the affiliations with 

Figure(s)
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the sequences of type category (full name) downloaded from the Ribosomal Database Project. 
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Table1. Characteristics of the industrial wastewater (20 samples) 

Variables Minimum Maximum Mean 

pH 2.31 3.25 - 

CODTotal (g.l
-1

) 9.24 15.43 13.7 4.1 

CODFiltered (g.l
-1

) 8.98 10.90 10.6 1.3 

NH4
+

 (g.l
-1

) 1.32 1.87 1.52 0.5 

SO4
-2

 (g.l
-1

) 183 284 201 35 
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Table2. Characteristics of the domestic sewage (50 samples) 

Variables Minimum Maximum Mean 

Temperature  (ºC) 15 25 21 2 

pH 6.6 7.7 - 

BA (mgCaCO3
-2

.l
-1

) 84 206 130 24 

VFA (mgHac.l
-1

) 25 59 45 13 

CODTotal (mg.l
-1

) 406 860 569 112 

CODFiltered (mg.l
-1

) 173 307 243 33 

NTotal (mg.l
-1

) 18 66 41 5 

PO4
-2

 (mg.l
-1

) 12 19 14 2 

SO4
-2

 (mg.l
-1

) 10 31 24 8 

TSS (mg.l
-1

) 83 269 131 44 

VSS (mg.l
-1

) 68 209 105 34 
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Table3. First-order kinetic constants obtained with the model proposed for metabolic pathways in 

several periods (I - 1.0 gSO4
2-

.l
-1

, II - 2.0 gSO4
2-

.l
-1

 and III-3.0 gSO4
2-

.l
-1

). 

Constants (h
-1

) Period I  Period II Period III 

k1S 0,000437 0,095578 0,059420 

k2S 0,000235 0,009219 0,000000 

k3S 0,062894 0,010000 0,013569 

k1A  0,206439 0,000000 0,000000 

k1M  0,063724 0,037798 0,000000 
 

 


