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Abstract. The hot star wind momentum problem η = Ṁ�∞/(L/c)� 1 is revisited, and it is shown that the conventional belief,
that it can be solved by a combination of clumping of the wind and multiple scattering of photons, is not self-consistent for
optically thick clumps. Clumping does reduce the mass loss rate Ṁ, and hence the momentum supply, required to generate
a specified radio emission measure ε, while multiple scattering increases the delivery of momentum from a specified stellar
luminosity L. However, in the case of thick clumps, when combined the two effects act in opposition rather than in unison
since clumping reduces multiple scattering. From basic geometric considerations, it is shown that this reduction in momentum
delivery by clumping more than offsets the reduction in momentum required, for a specified ε. Thus the ratio of momentum
deliverable to momentum required is maximal for a smooth wind and the momentum problem remains for the thick clump case.
In the case of thin clumps, all of the benefit of clumping in reducing η lies in reducing Ṁ for a given ε so that extremely small
filling factors f ≈ 10−4 are needed.
It is also shown that clumping affects the inference of Ṁ from radio ε not only by changing the emission measure per unit mass
but also by changing the radio optical depth unity radius Rrad, and hence the observed wind volume, at radio wavelengths. In
fact, for free-free opacity ∝ n2, contrary to intuition, Rrad increases with increasing clumpiness.
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1. Momentum problem

If one infers the mass loss rate Ṁ for hot massive (espe-
cially Wolf-Rayet) stars from the radio emission measure ε =∫

V
n2dV , using a smooth spherical wind model, one finds that

the wind “momentum” rate ṗ = Ṁ�∞ = η L/c involves η � 1,
where L/c is the radiative momentum outflow rate (Cassinelli
& Castor 1973). Insofar as such winds are believed to be ra-
diatively driven, this poses a “momentum problem”, the solu-
tion of which has long been a hot topic in the field (Barlow
et al. 1981; Abbott et al. 1986; Cassinelli & van der Hucht
1987; Willis 1991; Lucy & Abbbot 1993; Springmann 1994;
Springmann & Puls 1995; Gayley et al. 1995; Owocki &
Gayley 1999). Estimates of η vary according to assumptions
(e.g., arguing for a high value of L) but values of η ranging
up to nearly 100 are mentioned (Hamann & Koesterke 1998).
There are two main strands of argument quite widely believed
to combine to solve the momentum problem, one being mainly
observationally driven and the other mainly theoretical.

The values of Ṁ associated with these large η are those in-
ferred from a smooth spherical wind density model, the radio
emitting material filling the volume. The contribution to ε from
any volume element ∆V is ∆ε ≈ n2∆V ∝ Ṁ2/∆V . If, however,
the material is clumpy, filling only a fraction f = 〈n〉2/〈n2〉 of
the volume, then ∆ε is enhanced by a factor 1/ f for a given
Ṁ. The mass loss rate Ṁ required to generate an observed ε
thus scales as Ṁ ∝ f 1/2 in clumpy winds. For strong clumping
( f � 1), this ameliorates the momentum problem, though the
f = 10−4 required to reduce Ṁ�∞ by a factor of 100 seems very
unlikely, so this clumping effect alone cannot be the complete
answer (e.g., Nugis & Lamers 2000, cite clumping corrected
mass-loss rates yielding η ≈ 6). For example, making clumps
very small increases their radio optical thickness and may make
optically thin emission measures irrelevant. There is exten-
sive observational evidence for large scale clumping in WR
winds: the presence of narrow emission features moving out
on broad wind emission lines (e.g., Robert et al. 1989, 1991;
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Moffat & Robert 1991; Kholtygin 1995); broad band photo-
metric and polarimetric fluctuations (e.g., Brown et al. 1995;
Li et al. 2000); and the absence of strong electron scattering
wings (which scales as 〈n〉2 rather than 〈n2〉, Hillier 1991).

On the theory side, it has long been recognised that the limit
ṗ = Ṁ�∞ ≈ L/c is only true if (all) photons are scattered once
only. If the wind scattering optical depth is high, the photons
can, loosely speaking, be scattered “back and forth” across the
wind delivering momentum of up to 2hν/c at each scattering
(for thick clumps) until ν is progressively dissipated by Doppler
reddening at each momentum-delivering scattering on the mov-
ing matter. The nature of this multiple scattering has been de-
scribed with progressively greater insight over the years. In par-
ticular, Gayley et al. (1995) showed that scattering back and
forth across the entire wind is not required. Instead, the mo-
mentum is delivered in a series of random semi-local scatter-
ings of photons as they diffuse outward, provided successive
scatterings involve long enough paths to sample different mat-
ter velocities. The essential feature is that of the large scatter-
ing optical depth τ, which enhances the momentum delivery
rate to τL/c (e.g., Friend & Castor 1983; Kato & Iben 1992;
Netzer & Elitzur 1993; Gayley et al. 1995), because the diffu-
sive delivery scales with the number of scatterings Ns as N1/2

s ,
while Ns = τ

2. Since the predominant driver is via the large
opacity/cross-section associated with lines, Gayley et al. (1995)
and Owocki & Gayley (1999) have suggested that the issue is
not so much a momentum problem as an opacity problem.

The massive WR winds are still believed to be driven by
line opacity (e.g., Lucy & Abbott 1993). Unlike the less mas-
sive winds of OB stars, the WR winds have significant ioniza-
tion gradients, that can substantially alter the line opacity dis-
tribution with radius in the flow (Herald et al. 2000; Vink et al.
2000). Consequently, as the photons move away from the star,
interact with a certain line opacity that exists at some radius r
in the flow, and then escape, the photons encounter a new line
opacity distribution at a different radius. Consequently, if there
are gaps in the line distribution at one radius, those gaps can be
filled by a different line distribution that exists in another part
of the wind flow. The opacity problem then represents how ef-
fectively all of these gaps are “filled”.

Photon escape at gaps in the line frequency forest re-
duces the flux mean opacity (or flux mean cross section σ per
particle in our formulation) used in the gray approximation.
The maximum that can be achieved by multiple scattering is
reached when the number of random scatterings is so great as
to Doppler shift the photons down to near zero frequency, the
maximum Doppler shift per scattering being of order �/c for
wind speed �. This requires τ ≈ N1/2

s ≈ c/� (≈ 100), imply-
ing Ṁ�∞ ≈ L/c × c/�∞ or Ṁ�2∞/2 ≈ L/2 which is the energy
conservation limit. Available calculations of multiple scattering
with real opacities can yield η gains of order 10, that may ex-
plain some WR winds, but not the more extreme cases in which
η ∼ 102 is required.

Since reduction of Ṁ (for a given ε) by clumping and in-
crease of momentum delivery by multiple scattering can each
offer a factor of order 10 reduction in the momentum prob-
lem, there seems to be growing widespread belief that the
momentum problem can be laid to rest (e.g., Conti 1995).

However, this involves the tacit assumption that these two fac-
tors can operate independently and constructively, the impact
of clumping on the effectiveness of multiple scattering never
having been addressed (Hillier & Miller 1999; although Shaviv
(1998) has discussed the related topic of how optically thick
clumps increase the Eddington luminosity for novae). Here
we show, using simple geometric arguments, that this assump-
tion is incorrect in the case of optically thick clumps, and that
clumping, while reducing Ṁ, also reduces τ, so making multi-
ple scattering less effective. Essentially this is because clump-
ing reduces the number of scattering centres compared to scat-
tering off of atoms and also reduces 〈n〉, for a given ε. (Note that
when discussing the effects of clumping it is essential to keep
in mind that the observed ε is held fixed. This fact is sometimes
overlooked.)

We find quantitatively that, for thick clumps, the reduction
in multiple scattering momentum delivery more than offsets
the reduction in momentum required, the nett effect being that
clumping worsens the momentum problem rather than solv-
ing it.

2. Single clump

To illustrate the point, we first consider one thick scattering
clump of mass M composed of atoms/ions of mass m. This is
taken to have very high internal optical depth in the line-driving
wavelength range so the clump as a whole is the scattering cen-
tre. Since we are not concerned with the wind speed profile �(r)
but only with the final wind speed and momentum, we here ap-
proximate clumps as moving radially with speed � ≈ �∞ and to
have the shape of a conical slice of radial thickness δ and solid
angle Ω, the volume of the cone being r2Ωδ at distance r. We
assume the clump to be optically thin at radio wavelengths, so
its radio flux depends on the emission measure, but optically
thick to lines for the stellar radiation at short wavelengths that
are responsible for driving the flow.

The emission measure ε1 = n2V (which measures the radio
emission rate) of a single clump is

ε1 =
(M/m)2

r2Ωδ
=
ε1o

x2
(1)

where ε1o = (M/m)2/(R2
radΩδ) the clump emission measure at

r = xRrad = Rrad, for Rrad the radius of the radio photosphere
which may be hundreds of times larger than the optical photo-
sphere radius. Note that, for a prescribed ε1, M ∝ √Ω for any
chosen r, δ.

On the other hand, the available rate of delivery of momen-
tum is

ṗ1,avail =
L
c
Ω

4π
, (2)

where we ignore scale factors of order unity due to the effects
of gravity and of the backward scattering angular distribution
function. The rate of momentum delivery required is

ṗ1,req ≈ M�
r/�
· (3)
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It follows that, for a given ε1, the effectiveness of momentum
delivery to a single clump is

Ψ1 =
ṗ1,avail

ṗ1,req
=

 L

4πm�2cε1/2
1


(
Ω

δ

)1/2

. (4)

This decreases as we make Ω smaller – i.e., as we make
the clump clumpier – because the momentum ṗ1,req required
∝ M ∝ √Ω, but the momentum ṗ1,avail available ∝ Ω, and the
decline of the latter withΩ is dominant for a single clump. That
is, making the Ω of a single clump smaller does reduce ṗ1,req

for a given ε1 but reduces ṗ1,avail even more. So shrinking one
clump of a given ε1 makes it harder to drive it to terminal speed
of known value �∞.

Compressing the clump radially does help (in this sin-
gle thick clump case) since reducing δ reduces M� for pre-
scribed ε1,Ω.

3. Multiple clumps

We now have to consider the effect of multiple scattering in the
case of a multiple clump wind, since multiple scattering can-
not occur in the case of an individual discrete clump. In doing
so we take all clumps to be optically thick in the UV but thin
in the radio, identical in size and mass, and use the gray opac-
ity approximation, the clumps being driven by a spectral mean
“continuum” radiation flux. We are of course well aware that in
reality there will be a distribution of clump sizes and masses.
However, if one can prove that for any specific clump param-
eters, clumping reduces the benefit of multiple scattering, then
the same must be true of the sum over any distribution of clump
parameters so long as they remain thick. Put another way, the
arguments that clumping a wind increases its emission mea-
sure, that multiple scattering increase momentum delivery, and
that clumping reduces multiple scattering all derive essentially
from geometric arguments and have nothing to do with the de-
tails of opacity or of clump size distribution (other than being
thick).

Retention of the conical slice shape described above, tak-
ing Ω and δ independent of r, means that the clumps expand in
2-D (transversely) rather than in 3-D, which is reasonable for
a highly supersonic wind. The constant Ω, δ assumption also
means that, for constant �, clumps occupy the same fraction
(constant filling factor f ) of the volume at all r. For spherical
(3-D) clump expansion, linear radial expansion (δ ∝ r) would
result, for constant �, in radial merging of clumps, which corre-
sponds to an r-dependent filling factor f with f → 1 as clumps
merge. Situations with non-constant filling factor f = f (r) have
been discussed by Nugis, Crowther, & Willis (1998); Hillier
& Miller (1999); and Ignace et al. (2003). We assume clumps
are, on average, emitted uniformly over the stellar surface at a
rate Ċ in clumps per second. Then the space density of clumps
at r is

N(r) =
Ċ

4πr2�
, (5)

where we again approximate � = constant = �∞ and the radio
emission measure of one clump is again given by Eq. (1). Using

Eqs. (1) and (5), the total emission measure can be written

ε=

∫ ∞

Rrad

4πr2drNε1=
Ċ

Rrad�

( M
m

)2 1
Ωδ
=

ĊRrad

�
ε1o=Neffε1o. (6)

The last form is interesting, showing that the total emission
measure ε is just the initial emission measure of one clump ε1o

at r = Rrad times an effective number of clumps Neff = ĊRrad/�,
namely that located in the range Rrad ≤ r < 2Rrad.

The mass loss rate Ṁ and the momentum delivery rate ṗreq

required are

Ṁ = ĊM (7)

and

ṗreq = ĊM�, (8)

where we neglect scale factors of order unity as we did in
Eq. (2). By Eqs. (6) and (8), we get the momentum delivery
rate required for a given total wind emission measure ε as a
function of M, Ω, namely

ṗreq = m2�2Rradε
Ωδ

M
· (9)

We want to compare this with the momentum delivery rate
available from multiple scattering of stellar photons and we
take this to be given by (cf. Sect. 1)

ṗavail =
L
c

N1/2
s =

L
c
τ (10)

where τ is the mean (gray approximation) line scattering opti-
cal depth of the wind and Ns = τ

2 is the number of scatterings
of an escaping photon. τ is also the “covering factor” or the to-
tal solid angle of all the clumps as seen from the star divided
by 4π – see Appendix.

The wind optical depth for starlight due to lines treated in
the gray approximation is (for individually thick clumps)

τ =

∫ ∞

RUV

nQdr (11)

where n is the density of scatterers, Q is the cross section of
scatterers, and RUV is the UV photosphere associated with the
dominant line driving.

We choose to split the range into two sectors, r < d and
r > d, where d is the distance at which an individual clump be-
comes optically thin radially. At r < d the individual scatterer
is a clump of area r2Ω and thickness δ, while at r > d, it is
an ion of area σ (the actual value adopted for σ being some
frequency average over lines). Thus the optical depth integral
expands to

τ =

∫ d

RUV

N(r)r2Ωdr +
∫ ∞

d
N(r)

M
m
σdr

=
ĊRUV

4π�

Ω
(

d
RUV

− 1

)
+

Mσ

mR2
UV

RUV

d

 (12)

where d satisfies

Mσ
m

1
Ωd2

= 1 (13)



326 J. C. Brown et al.: Wind momentum problem

and thus

d
RUV

=

 Mσ

mR2
UV


1/2

1
Ω1/2
· (14)

Then Eq. (12) becomes

τ =
ĊRUV

4π�

2
 Mσ

mR2
UV


1/2

Ω1/2 −Ω


=
Ċ

4π�

( Mσ
m

)1/2

Ω1/2

2 −
mR2

UV

Mσ


1/2

Ω1/2

 . (15)

Consider the second term in expression (15). The ratio Mσ
m is

the total area of all the atoms in a clump, and R2
UVΩ is the to-

tal area of a clump at r = RUV. Since our analysis deals with
individually thick clumps, we require Mσ

m � R2
UVΩ, so we get

d � RUV and can neglect the second term in Eq. (15) to write

τ =
Ċ

2π�

( Mσ
m

)1/2

Ω1/2. (16)

If we express Ċ in terms of ε by using Eq. (6), then Eq. (16)
becomes

τ =
Rrad σ

1/2

2π

( m
M

)3/2
ε δΩ3/2. (17)

Now we get the available momentum using Eqs. (10) and (17)
in terms of M, Ω for a given ε, namely

ṗavail =
L
c

(
Rradσ

1/2

2π

) ( m
M

)3/2
εδΩ3/2. (18)

Comparing Eqs. (9) and (18), we find a dimensionless measure
of the effectiveness of momentum delivery, as the ratio of mo-
mentum available to momentum required, as a function of M,
Ω, for a given ε, namely

Ψ =
ṗavail

ṗreq
=

[
L

2π�2cRrad

(
σ

m

)1/2
] ΩR2

rad

M


1/2

· (19)

For a given star (L) and a wind of given speed � and compo-
sition (m, σ), the expression in the bracket [ ] of Eq. (19) is
constant, so we can vary the value of Ψ by varying the clump
parameter combinationΩ/M.

The essential result is that Ψ increases with increasing
Ω/M, i.e., with increasing clump cross section per unit mass
(which is different from the single clump case of Eq. (4)). To
minimise the momentum problem (maximise Ψ) for a given
mass M (and thickness δ), Ω should be as large as possible
while for a given Ω the mass M should be as low as possible
with, in both cases, Ċ varying according to Eq. (6) to ensure
the correct ε. If we change (e.g., increase) δ,Ψ does not change
but Ċ changes (falls) to maintain fixed ε. Consequently, to max-
imise Ψ we must make the clump mass small, the clump an-
gle large, and the clump thickness large with correspondingly
small Ċ, all of these corresponding to minimising clumping.

It is also of interest to express Ψ in terms of the volume
filling factor f = 〈n〉2/〈n2〉 which can be expressed (with Vc =

single clump volume = Ωr2δ at r) as

f =
4πr2drN(r)Vc

4πr2dr
=

ĊRrad

�

Ω

4π
δ

Rrad
= Neff fΩ fr (20)

where fΩ = Ω
4π and fr = δ

Rrad
are solid angle and radial filling

factors respectively. Alternatively, the volume filling factor can
be expressed as

f =
Rradεm2

4π

(
Ωδ

M

)2

· (21)

Comparing Eqs. (19) and (21), we see that, under our thick
clump assumption, Ω/M ∝ f 1/2 so that Ψ ∝ f 1/4, so that for
any values of (ε, δ), decreasing f decreases the effectiveness of
momentum delivery.

All of the above shows that, contrary to conventional “wis-
dom”, in the case of thick clumps, clumping does not help solve
the momentum problem but actually makes it worse.

The case of a smooth wind can be considered a limit of
the clumpy case as the clumps blend. However, there are in-
finitely many clumpy cases that approach the smooth case as
the clumps blend and it is easier to evaluate Ψ = Ψo for the
smooth case directly using no(r) = Ṁ/(4πr2m�). Then with
subscript “o” denoting the smooth case, we get

ṗo,req = Ṁ�, (22)

εo =
Ṁ2

m2

1
4π�2Rrad

, (23)

τo =
Ṁσ

4πm�RUV
, (24)

and

ṗo,avail =
L
c
τo =

L
c

Ṁσ
4πm�RUV

(25)

from which we deduce that

Ψo =
L
c

1
4π�2RUV

σ

m
· (26)

Explicitly comparing the momentum delivery effectiveness for
the clumpy and smooth cases we have, by Eqs. (19) and (26)

Ψ

Ψo
= 2


ΩR2

UV

M

/
(
σ

m

)
1/2

=

 (2RUV)2

Mσ
mΩ


1/2

=
2RUV

d
(27)

which is clearly � 1 for clumps which are initially optically
thick. Note also that Ψ involves the ratio of Ω(2RUV)2/M and
σ/m, respectively, the cross-sections per unit mass of clumps
and of atoms, while Ψo involves only σ/m. Clearly, the contin-
uous limit corresponds to Ω(2RUV)2/M → σ/m at d → 2RUV

(cf. Eq. (13)), the “clumps” become individual atoms, becom-
ing thick at that point. Note that d → RUV is essentially the
limit where driving approaches the smooth wind limit, equally
applicable to optically thin clumps.

Carrying this line of inquiry further, it is helpful to see how
Eq. (19) forΨ approaches the smooth limit Ψo. We require that
τ = τo from Eqs. (16) and (24), that ε = εo from Eqs. (6)
and (23), and finally that f = 1. These conditions are met for

ĊRrad

�

Ω

4π
δ

Rrad
= Neff fr fΩ = 1, (28)

Mσ
m
= Ω(2RUV)2, (29)
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and

δ =
16πm�R2

UV

Ṁσ
(30)

which, on substitution in Eq. (19) gives Ψ = Ψo (Eq. (26))
as required. To interpret Eq. (29) physically, note that Mσ/m is
the total cross sectional area of all the atoms in one clump while
Ω(2RUV)2 is the cross sectional area of one clump at r = 2RUV.
These can only be equal if clumps have the scale of individual
atoms. Secondly, Eq. (30) can be expressed as 4π(2RUV)2 =

Ṁσδ
m� . Here Ṁσ

m� is the total area of all clump atoms per unit

radial distance, so Ṁσδ
m� is the total area of all clump atoms in

a scale length δ. Thus, since 4π(2RUV)2 is the spherical area at
r = 2RUV, the scale δ defines the range of r around 2RUV in a
smooth wind over which the clump atoms just cover the sphere.

4. Discussion and conclusions

4.1. Conclusions regarding thick clumps

Using a simple model we have shown that while clumping re-
duces the mass loss rate of WR stars required by radio emission
measures, it also reduces the wind optical depth and hence mul-
tiple scattering and momentum delivery. The nett result is that
thick clumping worsens the momentum discrepancy rather than
solving it. This is not the case for thin clumps, as we discuss
below.

4.2. Discussion of assumptions

First we comment on various simplifications we have made
which might modify our results somewhat. These include the
approximation of constant �, relaxation of which does not seem
very likely to change our results much since the radio emis-
sion measure is produced well out in the winds beyond where
wind acceleration starts. Secondly, in common with many au-
thors, we have so far assumed that the inner boundary Rrad (and
hence the volume) of the radio emission measure region does
not change with clumping. In fact, one might expect, by anal-
ogy with the UV optical depth (Eq. (17)), that the radio optical
depth might fall with increased clumping, reducing Rrad and
increasing the radio source volume and emission measure. To
check this, we first want to know the radio optical depth τ′ for
a clumped wind. This is roughly given by

τ′(r) =
∫ ∞

r
N(r)

M
m
σ′dr (31)

where σ′ is the relevant cross section per proton. However, we
have to note that the main radio absorption mechanism is free-
free opacity which is density dependent (σ′ ∝ nc ≈ 1/r2) and
we have to write

σ′ = σ′o
nc(r)

no
(32)

where nc = no and σ′ = σ′o are defined in any reference level
r = ro. Then Eq. (31) becomes

τ′(r) =
Ċ

12π�
σ′o
no

( M
m

)2 1
Ωδr3

, (33)

so that now Rrad is given by τ′(Rrad) = 1, namely

Rrad =

(
Ṁσ′o

12π� nom2

)1/3 ( M
Ωδ

)1/3

· (34)

Consequently, increasing M for given Ω, δ or decreasing Ω, δ
for a given M (i.e., increasing clumpiness) actually makes Rrad

bigger, not smaller, in a clumpy wind because of the density
dependence of free-free absorption.

The corresponding emission measure expression is now
as before but based on the new clumping dependent value in
Eq. (34) of Rrad which leads to

ε =
31/3

(4π)2/3

(
Ṁ
�

)2/3 (
no

m4σ′o

)1/3 ( M
Ωδ

)2/3

(35)

which does increase as we increase M/Ωδ (i.e., clumpiness)
for a given Ṁ but now with ε ∝ [ṀM/(Ωδ)]2/3, instead of
[ṀM/(Ωδ)] for the constant Rrad case. Thus although clumpi-
ness still reduces Ṁ for a given ε, it does so less than with con-
stant Rrad and likewise, thick clumps are now even less helpful
to the momentum problem.

4.3. Discussion of thin clumps

Throughout, we have considered here the case when each
clump is an optically thick scatterer at line-driven wavelengths.
The other case of relevance to reducing η is where there is
strong clumping ( f � 1) but with very large numbers of very
small scale clumps, each optically thin. We have considered
here the case when each clump is an optically thick scatterer
at line driving wavelengths but with a large overall wind opti-
cal depth. In this case our analysis does not really apply and
the driving has to be described by multiple scatterings over
the small Sobolev optical depths of many successive individ-
ual thin scatterers. The nett effect here is to yield the same mo-
mentum delivery rate as in a smooth wind but to reduce Ṁ for
a given ε by increasing the optically thin radio emission mea-
sure ε1 of each clump. In this thin clump limit, clumping does
not reduce momentum delivery by photon escape, as happens
for thick clumps, but reduces Ṁ for a given ε. As a solution
to the momentum problem, this scenario puts the entire onus
on the reduction of Ṁ/ε and of η by a factor f 1/2 and for the
extreme case of η ≈ 100 it requires f ≈ 10−4. How such a huge
compression of wind matter into clumps is achievable physi-
cally, and whether it can be done without making the clumps
optically thick in the radio (bearing in mind that the radio opac-
ity ∝ n2) are questions that must be addressed before clumping
solutions of the momentum problem, are to be accepted.

4.4. Other solutions to the momentum problem?

Since clumping solutions, thick or thin, remain questionable,
we briefly mention here some other possibly relevant fac-
tors. Some have advocated non-spherical models for the mas-
sive WR flows. Lamers & Pauldrach (1991) developed a bi-
stability model for early-type stars (e.g., B[e] stars), and Poe
et al. (1989) proposed a two-component model with fast winds
from polar regions and a slow flow from equatorial regions,
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later termed the Luminous Magnetic Rotator model (Cassinelli
1991). In aspherical models such as these, the high radio flux
arises from the denser equatorial region, whereas the high ter-
minal speeds derive from a line-of-sight that lies perhaps in a
broad polar region. These two-component structures have not
been widely accepted because few WR stars show substantial
(non-varying) intrinsic polarizations, as would be expected for
stars that have a dense equatorial flow (Harries et al. 1998).
However, Taylor & Cassinelli (1992) studied the cancellation
of polarization owing to a more tenuous polar wind, and it was
surprisingly effective. Whether or not the solution to the mo-
mentum problem lies in the aspherical structure of such a ro-
tational model, or yet some other aspherical picture, our paper
has shown that the wide spread belief that the solution lies in
the clumpy + multiple scattering picture is too simplistic.
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Appendix A: Relation between Covering factor Y,
number of scatterings Ns, and optical depth τ

Y is the fraction of the solid angle around a star that is covered
by scatterers. Let A and ω be the cross section and solid angle
for one scatterer at r, so that ω = A(r)/r2 and let Ns(r) be the
space density of scatterers, then the covering factor at r is the
total solid angle of all the scatterers divided by 4π, namely

Y =
1

4π

∫ ∞

r
Ns(r)ω 4π r2 dr =

1
4π

∫ ∞

r
Ns(r)

A(r)
r2

4π r2 dr

=

∫ ∞

r
N s(r) A(r) dr = τ(r). (A.1)

A photon travelling in a medium with typical size D, den-
sity N s, and particle cross section A, on average undergoes Ns

scatterings before escaping. Its mean free path l = 1/(NsA), is
related to Ns by l

√
Ns = D, so

Ns =

(D
l

)2

= (NsA D)2 = τ2. (A.2)
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