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Abstract 

Raman spectroscopy is a technique that utilises inelastic scattering processes to provide a 

biochemical fingerprint that has been shown to successfully discriminate oesophageal 

pathologies. The aim of this study was to develop Raman spectroscopy as a clinical tool; 

both in vivo for ‘targeted biopsy’, and in ex vivo for ‘automated histopathology’.   

 

Two different Raman probes were evaluated and compared and tissue classification models 

generated ex vivo. A preliminary classification model of a novel single collection fibre 

probe demonstrated potential for the probe design. Both probes were shown to discriminate 

three different oesophageal pathology groups. A cross-validated tissue classification model 

(88 samples) discriminated normal, Barrett’s and neoplasia with an overall accuracy of 

86.5% with a sensitivity of 83.3-89.5% and specificity of 89.2-97.1%. A novel rapid 

Raman mapping technique was evaluated. It was shown that sufficient biochemical 

information for pathology diagnosis could be extracted from low signal to noise ratio data 

using multivariate analysis providing the dataset was sufficiently large, thus demonstrating 

the feasibility of automated histopathology in a clinically realistic time frame. Furthermore, 

it was demonstrated that high spatial resolution imaging was not necessarily required for 

automated histopathology using novel interpretation of multivariate techniques. A tissue 

classification model generated from two rapid Raman maps containing separated substrate, 

normal, HGD, luminescence and fibrous connective tissue with an overall training 

performance of 97.5%  Problems limiting clinical implementation of Raman techniques 

were investigated and methods of overcoming devised. 
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Chapter 1 Introduction 

This thesis is concerned with the potential medical applications of Raman spectroscopy 

for pathology diagnosis, both in vivo, with the development and evaluation of Raman 

probes for endoscopic use and also ex vivo, for potential automated histopathology. The 

work follows on from previous work carried out within the Biophotonics Research Unit 

at Gloucestershire Royal NHS Foundation Trust.1,2 

 

The thesis structure is set out such that a general overview of the clinical need is 

provided, focusing on the detection of oesophageal adenocarcinoma and 

premalignancies. This is followed by a review of optical technologies for pathology 

diagnosis and other competing technologies before introducing both Raman as the 

methodology of choice for both potential in vivo ‘optical biopsy’ using Raman probes 

and ex vivo ‘automated histopathology’ using Raman mapping. A review of the literature 

is included with applications in other fields and other disease sites. The methodology 

and results are split according to the in vivo and ex vivo studies, with a subsequent 

chapter covering general application issues common to both technologies. Following this 

is future work and a summary of conclusions.  

 

This chapter introduces oesophageal cancer in general, the techniques currently used for 

diagnosing oesophageal cancer, the shortcomings of current techniques and how these 

can be overcome using novel optical technology which can detect early cancer. The 

chapter concludes with the aims of this research project.  

1.1 Clinical motivation 

1.1.1 Incidence of oesophageal cancer 

The number of cases of oesophageal cancer is increasing (see Figure 1-1) whilst the 

prognosis for these patients remains poor.  The reasons for this increase can not be 

pinpointed, although possible causes include genetic predisposition, dietary or 
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environmental changes. The oesophagus is lined with epithelial cells, of importance 

since 85-90% of all cancers originate in the epithelia.
 3,4

 Treatment of epithelial cancers 

(referred to as carcinomas), is easier and more successful when diagnosed at pre-

invasive stages (before the cells penetrate the basement membrane),
3
 using a range of 

possible techniques such as those discussed in Section 1.1.2.3.  However, due to the 

nature of the disease, in many cases, the patient does not present until symptomatic, i.e. 

exhibiting dysphagia, which due to the elastic nature of the oesophagus, is only induced 

upon ~75% circumferential obstruction, at which point the cancer is usually advanced 

and often invasive.
5
 At this late stage the outcome is poor. Five year survival figures 

range from 2-25%,
8
 with Cancer Research UK quoting a figure of <10% (Figure 1-2).

6
 

The long term survival of patients with oesophageal cancer improves with early 

detection.  

 

 

Figure 1-1 : Age-standardised incidence rates of oesophageal cancer
7
 

In 2002 there were over 462,000 new cases of oesophageal cancer,
8
 with over 7,400 

cases in the UK in 2006.
9
  Oesophageal cancer is more common in men than women

8
 

(see Figure 1-1). There are two types of oesophageal cancer. Squamous cell carcinomas 

(SCC) and adenocarcinomas (adeno). SCC originates in the squamous epithelial surface 

(with a pre cursor stage - squamous cell dysplasia), with risk factors associated to 

smoking and Helicobactor pylori infection.
5
 This thesis concentrates on the second type 
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of cancer adenocarcinomas, which originate in the glandular or columnar epithelium. 

Adenocarcinoma, are of particular concern in the Western world since incidence of 

adenocarcinoma has increased to a level above that of SCC,5 furthermore, the incidence 

of SCC has remained stable.
7
  

 

Amongst other risk factors, there is a medical condition for which the chance of 

developing oesophageal cancer is increased called Barrett’s oesophagus (BO), a 

condition caused by gastric acid reflux, where stomach and bile acids are regurgitated 

into the oesophagus causing irritation and inflammation, and eventually a metaplastic 

change.
8,10

  BO is discussed further in Section 1.1.1.1.  

 

 

Figure 1-2: Five-year age-standardised relative survival (%), adults diagnosed 1996-1999, 

England and Wales by sex and site (Cancer Research UK, 2006
6
) 

1.1.1.1 Barrett’s oesophagus (BO) 

If an epithelial cell has been damaged the probability of malignant transformation is 

more likely. One example of this is where a cancer is formed on the basis of metaplasia, 

(pathological condition in which the normal mucosa is replaced by another type of 

mucosa) as in the case of Barrett’s Oesophagus (BO), or often referred to as columnar-
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line oesophagus (CLO). This is a condition in which acid reflux causes the lining of the 

oesophagus to undergo cellular changes characterised by the replacement of normal 

squamous epithelium by simple columnar epithelia as found in intestinal mucosa. This is 

referred to as a metaplastic change and is demonstrated in Figure 1-3, comparing normal 

and Barrett’s oesophageal endoscope images. There are three different cell types 

associated with BO – fundic type mucosa (FM), cardiac mucosa (CM - junctional type 

mucosa) and intestinal metaplasia (IM - columnar epithelium with goblet cells).
11,12

 

 

There is an increased risk of developing cancer of the oesophagus for patients with 

Barrett's oesophagus.
11

 Carcinogenesis is not fully understood but is thought to follow 

the chain of intestinal metaplasia, low grade dysplasia (LGD), high grade dysplasia 

(HGD) leading to invasive cancer.
13,14,15 

 

Figure 1-3: Endoscopic images of the oesophagus showing normal (left) and BO (right)
16

 

1.1.1.2 Dysplasia 

Dysplasia is a neoplastic epithelial change, which by the original definition by Riddell et 

al.
17

, must be confined by the basement membrane of the originating gland.
11,14,18

 The 

difference between normal and dysplastic cells is illustrated in Figure 1-4. Dysplastic 

cells are characterised by the following points:
3
  

• Vary greatly in size and shape (pleomorphism), usually abnormally large  

• Darkly stained nuclei (due to excessive chromatin)  

• Abnormal mitosis may be observed 

• Overall cell disorganisation 

• Loss of cell maturation 

 

Dysplasia is generally split into two categories, low and high grade dysplasia (LGD and 

HGD). For LGD, the changes are mild, with preservation of glandular structures/crypts. 
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Considering HGD, the cytological changes mentioned above are more severe, in 

particular more nuclear pleomorphism and hyperchroism compared to LGD.
11

 These 

changes can be seen compared to BO in Figure 1-4. 

 

Dysplastic cells are often described as having malignant potential since they always 

precede cancer, but do not always result in cancer. Goldblum refers to high grade 

dysplasia as a pre-invasive lesion of adenocarcinoma.
11

  This increased risk of 

developing adenocarcinoma in patients with BO is reported as being in the range of 30% 

-120%.
3,19

  There has been an increase in the number of patients diagnosed with BO and 

Barrett’s dysplasia, but this may be explained by the increase in the number of patients 

undergoing endoscopy procedures and increased recognition of the condition. 

 

 

Figure 1-4: H&E comparison between a) Barrett’s (IM with goblet cells), b) LGD and c) 

HGD
14

 

Surveillance of dysplasia is considered as a vital step towards the prevention of cancer. 

However, surveillance using the biopsy techniques described below is hindered by the 

fact that dysplastic regions may be invisible to the practicing endoscopist.
3
 As a result, 

there is significant risk that these areas can potentially be missed during random biopsy.  

 

If oesophageal cancer or a pre-cancerous condition is diagnosed, the appropriate 

treatment can then be given. These treatment options are discussed in Section 1.1.2.3.   

 

The histopathological analysis technique is currently the gold standard for diagnosing 

oesophageal cancer, although it has some drawbacks. These are discussed below. 
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1.1.2 Current diagnostic techniques  

1.1.2.1 Diagnosis and surveillance using endoscopic biopsy 

When a patient presents with symptoms they will undergo an endoscopic examination. A 

biopsy (usually several) is taken, sectioned, stained with haematoxylin and eosin (H&E) 

and then analysed in histopathology. 

 

Currently, patients within certain risk categories, such as BO also undergo routine 

endoscopic surveillance in which biopsies are taken following a set protocol, such as the 

Seattle protocol in which quadrant biopsies are taken at 2 cm intervals over the length of 

the Barrett’s region.20,21 This biopsy process is invasive and there is a risk of infection 

and perforation at the biopsy site. However, it is reported that less than 10% of patients 

undergoing surveillance are actually diagnosed with cancer.
22

 As a result there is debate 

as to the cost effectiveness of these surveillance programs but this is beyond the scope of 

this thesis. BO is confirmed by a biopsy which shows intestinal metaplasia (IM), 

characterised by goblet cells (also referred to as specialised mucosa).14  

 

1.1.2.2 Disadvantages of endoscopic biopsy for diagnosing of oesophageal cancer 

Since the biopsy samples need to be sent to histopathology for analysis, there is a delay 

associated with obtaining the diagnosis. This can be exacerbated by the fact that the 

pathologists are often required to analyse a large number of samples due to surveillance 

programs, many of which will not contain any neoplastic change.23 Figure 1-5 shows the 

number of biopsy samples taken from one patient in a single endoscopy session. 

 

Figure 1-5 : Photograph showing the number of biopsies taken from one patient in a single 

endoscopy session 
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There is also a degree of uncertainty associated with the results since there are not strict 

boundaries between cell differentiation and despite comprehensive training for the 

histopathologist there is an element of subjectivity associated with the diagnosis. Studies 

have been done to assess inter and intra observer agreement, which is reportedly as low 

as 50% in some cases.
18

 Similar results have also been demonstrated by Montgomery et 

al. who compared the opinions of twelve pathologists and Kendall et al. comparing the 

opinion of three expert pathologists, both using Kappa statistics to analyse the results.
1,24

  

 

Furthermore, since the biopsy samples taken are small with respect to the size of the area 

under surveillance, there is a chance that the biopsy may miss an area of local disease 

even if a rigorous biopsy protocol is followed.25 The biopsies are taken using endoscopic 

guidance, in which a live image of the oesophagus is viewed via the endoscope camera.  

Dysplastic changes may remain undiagnosed if they are not visible to the practicing 

endoscopist. Some protocols suggest the use of jumbo biopsy forceps to obtain larger 

samples, but these are still thought to miss unsuspected cancer in BO.
25

  In one report by 

Dar et al., in which patients with HGD were treated with a prophylactic 

oesophagectomy, 43-57% of patients were found to have undetected adenocarcinoma
26

 

showing that there is a need for better techniques for early diagnosis.   

 

Ultrasound, magnification endoscopy, chromoendoscopy (a spray of Lugol’s solution, 

which highlights glycogen depletion27 and enhances visualisation of Barrett’s28 and 

inflammation) and narrow band imaging (NBI, in which improved contrast is achieved 

using filters are used to increase the relative amount of blue light in the image to 

emphasise superficial structures and blood vessels) are also used for diagnosis. The 

former has been reviewed by Kaffes et al. 
29

 and more recently Lennon et al.
30

 and 

details of the latter techniques can be found in a recent review of imaging techniques for 

neoplastic changes in the oesophagus by Curvers et al.
31

 They comment that these 

techniques are hindered by operator dependence, as found with the above mentioned 

histopathology.
31

  

 

Alternative and adjunct methods of diagnosis are being explored. One technique 

investigated by Lao-Sirieix et al., uses a sponge capsule which is swallowed and 
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retracted and samples the oesophageal epithelial surface as it is retracted32. However, the 

technique would still require cytology diagnosis, which again has the disadvantages of 

pathology diagnosis as described previously.  

  

Optical diagnostic techniques such as Raman spectroscopy (RS), optical coherence 

tomography (OCT) and fluorescence are currently being investigated and have been 

shown to have potential for diagnosing many different medical conditions, in particular 

early cancer which will enable earlier diagnosis and hence more successful treatment. 

These techniques utilise lasers and other light sources to construct detailed images and 

obtain spectral information which can be used to determine the structure and 

biochemical makeup of the sample.  Complex analytical techniques can be used to 

extract diagnostic information and hopefully remove the element of subjectivity 

associated with the diagnosis. The details of these techniques are discussed later in 

Section 1.2.  

 

The majority of the work carried out using these optical techniques is being done ex 

vivo, in a laboratory based environment in which the techniques are compared to the 

current ‘gold standard’ histopathology result. These techniques could potentially 

complement the histopathology facilities, acting as a screening process to remove 

normal samples, thus reducing the workload on an overworked department or providing 

a virtual second opinion. The most significant application, however, would be the use of 

these techniques in a real clinical situation, in vivo. Currently, only a few studies have 

been carried out in vivo.  This is mainly due to limitations of the equipment required, but 

as technological advances are made then the in vivo work is becoming possible. If the 

technology can be adapted in such a way as to make in vivo diagnosis possible, then the 

possible clinical impact would be significant. The reasons for this are summarized 

below. 

 

1. Reproducible objective results 

2. Biochemical basis rather than morphology 

3. Immediate diagnosis 

4. Immediate treatment if required 
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5. Relatively non-invasive (potential for optical biopsy without tissue excision) 

6. Potential to reduce costs 

 

1.1.2.3 Treatment options 

The treatment option will depend on the stage of disease, which is determined by the 

gold standard histopathology diagnosis, which as described previously is not a perfect 

gold standard. This serves as a reminder of the importance of the diagnostic decision and 

the need for improvements in diagnosis which can potentially be provided by optical 

techniques.  

 

Palliative treatments of advanced cancer include stent insertion, laser ablation, and also 

chemo-radiotherapy.
33

 Laser ablation can also be effective for the eradication of 

dysplasia although there is potentially a risk of perforation.
34,35

  

 

For radical treatment, oesophagectomy (the complete removal of the oesophagus) has a 

high associated morbidity and mortality. However, it is still reported as being the gold 

standard treatment for HGD in patients with BO.
36

 This is in part due to the high number 

of patients which are found to have invasive cancer retrospectively.
26,27

 Chemotherapy 

and radiotherapy have a role in reducing the size of bulky tumours, which in turn makes 

complete resection easier.
33

   

 

For dysplasia
37

 and nodules, photodynamic therapy (PDT), endoscopic mucosal 

resection (EMR) and oesophagectomy are treatment options, as described by Barr et 

al.13 An EMR is an endoscopic procedure which involves suction of the mucosa into a 

plastic cap which is then removed using a hot wire loop. It is being used increasingly to 

remove localised lesions.
20,38

 For further details of treatment options, the reader is 

referred to the following reference.
39

  Photodynamic therapy involves the administration 

of a drug (either topically or intravenously) which is activated by light, called a 

photosensitiser. The photosensitiser is excited to a metastable triple state, which 

produces highly unstable and reactive singlet oxygen as it returns to the ground state. 

The photosensitiser is preferentially retained by tumour cells (ratio of 2-3:1),
13

 and 
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consequently the technique can be used to selectively target and destroy cells, although 

there is obviously a degree of damage to normal cells as well.  PDT has also been shown 

to be a successful method of treating dysplasia.35 PDT has also been shown to be a 

successful method of eradicating small tumours in patients for whom surgery is 

considered too risky.
40

  

 

It is evident that the treatment options become less drastic and more successful for 

earlier lesions. This reiterates the need for earlier diagnosis using techniques such as 

optical spectroscopy. Prediction of progression to cancer would be a further potential 

benefit.  

 

1.1.2.4 Genetic biomarkers 

Genetic instability is one of the characteristics of malignant progression and genetic 

biomarkers are an active area of research.  The details of this are beyond the scope of 

this report, but further details can be found in the following references.
41,42

 

 

A biomarker is defined as a characteristic that is measured/evaluated that is indicative of 

a given pathology process or therapeutic response.
41

 Considering malignant progression, 

a biomarker would be required to be detectable at the premalignant stage and 

subsequently vary throughout the neoplastic transformation. Several tissue biomarkers 

have been evaluated, the main example being p53, a protein that controls transcription of 

other proteins responsible for regulating cell proliferation.
43

 Further biomarkers are 

under investigation.
44

 Tissue biomarkers can potentially provide information regarding 

the risk of progression, and although there are some studies which report correlation 

with carcinogenesis, the genetic pathway is so complex that it is difficult to isolate 

specific mutations or protein expressions and to date they are generally unreliable.
45

  

 

To summarise, there are inadequacies with current diagnostic methods and suggested 

alternatives such as novel endoscopic imaging techniques and genetic biomarkers have 

not delivered to date and alternative reproducible and objective methods of diagnosis are 

required.  
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1.2 Introduction to optical diagnostic techniques 

Optical diagnostic techniques have shown considerable promise as alternatives and 

adjuncts to current diagnostic techniques.  

1.2.1 Interactions between light and tissue 

When optical radiation interacts with matter different effects occur, including reflection, 

scatter (elastic scattering and inelastic scattering), absorption and autofluorescence. 

These effects, illustrated in Figure 1-6 are utilised in the following optical diagnostic 

techniques. 

 

Figure 1-6: Illustration of different interactions of light with tissue  

1.2.2 Light scattering spectroscopy (LSS) 

This is a technique which utilises backscattered photons which have the same 

wavelength (elastically scattered) as the incident light to obtain morphological 

information about a tissue sample. Singly scattered photons provide information relating 

to the surface (epithelial) morphology, whilst multiple scattered photons (diffuse 

reflectance) provide morphological information regarding deeper stromal tissue. The 

technique is capable of detecting precancerous changes such as “nuclear size” and 

“degree of pleomorphism” (cellular atypia).20,46 Morphological changes associated with 

dysplastic changes have been detected in several studies.
20,47,48,49

  Recently, Dhar et al. 

have reported a larger study of 45 patients (483 spectra from 138 sites) with PCA-fed 

LDA classification of normal hyperplastic and dysplastic polyps and adenocarcinoma 
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with good sensitivity and specificity (77-85%).50 Similar promising results have been 

reported by Lovat et al. in a cross validated multivariate model.
51

  

 

The disadvantage of LSS is that it only probes the morphology of the tissue and not the 

biochemical changes, and also there is a limited sampling volume. However, the 

technology is simple and inexpensive making it a possible tool for in vivo diagnosis, or 

multimodal techniques.    

1.2.3 Raman spectroscopy 

The Raman effect was first described in 1928 was discovered by Chandrasekhara 

Venkata Raman, for which he was awarded the Nobel Prize in 1930.52 The Raman 

effect, is an inelastic scattering process in which there is an energy exchange between 

light and matter which occurs when incident light causes molecular bonds to vibrate. 

Raman scattering is a relatively inefficient process with approximately one in a million 

scattered photons undergoing Raman scatter in tissue at visible wavelengths.
53

 

 

The spectrum of scattered light (a plot of the scattered light intensity against the change 

in frequency with respect to the incident light) can be used to investigate matter since the 

characteristic peaks caused by the molecular vibrations are specific to each molecular 

species so the spectrum effectively provides a biochemical fingerprint. Examples of 

different biochemical constituents in tissue can be seen in Figure 1-7.  
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Figure 1-7: Raman spectra from biochemical standards acquired using a 785 nm excitation 

and x50 Leica objective, 10 s acquisition time – a) Histone - is a protein constituent of 

chromatin (DNA, RNA and protein which form chromosomes), b)collagen – fibrous protein 

which forms the extra-cellular matrix of connective tissue c) d)deoxyribonucleic acid (DNA), 

d) phosphotidylcholine (a phospholipid) - one of the major constituents of cell membranes, 

consisting of a glycerol molecule with a phosphate and nitrogen molecule attached to the third 

hydroxyl group e) glycogen, the major energy (carbohydrate) storage form in the body, is a 

branched polysaccharide (with glucose subunit), f) actin – a contractile protein is a 

constituent of microfilaments which are the main constituent of the cytoskeleton
3
  

 

As mentioned previously, the peaks are characteristic of different molecular vibrations 

and these are labelled in the figure and can be assigned to different molecular bonds and 

more generally to biochemical constituents. These can be found in most biochemical 

constituents of tissue in varying concentrations. Some of the Raman peaks associated 

with the main constituents in tissue are listed below in Table 1-1.  A more 
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comprehensive list can be seen in Appendix A. Furthermore, since the relative 

contributions of these peaks within the spectrum are proportional to the abundance of 

that constituent, 54 the entire spectrum can be utilised to obtain quantitative information 

making Raman spectroscopy potentially a powerful tool for diagnosis and tissue 

analysis. 

  

Table 1-1: Typical biochemical constituents in oesophageal tissue and associated Raman 

peaks assignments from the literature and biochemical standards measured from Sigma 

Aldrich (above)*  

 cm-1  

Glycogen 481-489, 576, 853-856, 937, 1046-1048, 1083-1092, 1123, 1256, 1377-

1382, 1455 

Protein 760, 876, 937, 1001, 1034, 1240, 1329, 1458, 1655 

DNA 624, 682, 770-795, 925, 1016,  1095, 1250, 1332, 1577 

Phenyl ring (breathing mode) 

O-P-O (DNA backbone) 

1001 

785, 1090 

CH2 twisting 1299-1320 

CH2, CH3 bending (Amide III) 1450 

C=C stretch (Amide I) 1653-1658 

*Peak assigments obtained from the literature and measurements above 
55,56,57,58

 

 

Raman can be used via fibre optics for in vivo applications
54

 and also ex vivo in mapping 

studies, providing imaging of tissue sections.
59

 As Raman spectroscopy is the main 

modality utilised within this study further details of instrumentation for Raman 

spectroscopy and a review of the literature are discussed in Chapter 2.   

 

There are also other applications of Raman spectroscopy techniques including Coherent 

anti-Stokes Raman scattering (CARS) spectroscopy,
60

 which can be used for accurate 

optical sectioning, and surface enhanced Raman scattering (SERS)
61

 spectroscopy 

utilises the local electric field (surface plasmon) between noble metal particles to 

enhance Raman signal to an extent where the technique is capable of detecting single 

molecules.
62

 Currently the techniques are limited to research applications, although there 

is the potential for fluorescence labelled dyes used in so called resonant SERS or 
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SERRS which could potentially have an application of genotyping in vivo or for 

histopathology.
63,64,65

 

 

As described previously, light is scattered within turbid media. From each scattering 

event there is a possibility of Raman scatter. This has led to the development of 

techniques for obtaining Raman molecular information from deep within tissue. Depth 

resolution is achieved using both lateral spatial offset between excitation and detection 

(Spatially Offset Raman Spectroscopy (SORS)) and time gating of the collection of 

Raman scattered photons (Kerr gated Raman Spectroscopy).
66,67

 These techniques have 

been applied ex vivo to detect deep calcifications in a breast tissue phantom,
68,69

 and to 

detect subsurface bone.70   

1.2.4 Infrared (IR) absorption spectroscopy 

Infrared absorption spectroscopy is a technique which is commonly used as a research 

tool for biochemical investigations for biomedical applications.
71,72

 Mid-infrared 

spectroscopy is a similar spectroscopic technique to Raman, but the technique utilises 

absorption of mid-IR radiation (not from a monochromatic source as with Raman) rather 

than scattering to probe vibrational molecular information. Mid-IR absorption 

spectroscopy is complimentary to Raman since each are sensitive to different functional 

groups with IR being more sensitive to polar bonds including C=O, C-O, O-H and C-H.  

 

Detection methods do not need to be as sensitive as Raman since the signal is greater 

than Raman scatter and signal to noise ratio of spectra is greater, but in general there are 

fewer spectral peaks compared to Raman.
73

 Imaging methods are also much more rapid 

than Raman mapping techniques. Mid-IR absorption spectroscopy, is however, hindered 

by water absorption which prevents (or limits) in vivo applications.  

 

Considering applications on oesophageal tissue, Wang et al. have carried out studies of 

oesophageal tissues including comparison of normal and cancerous tissue,
74

 as have 

Maziak et al. in a more recent study.
75

 In the latter study, Maziak et al. reported 

biochemical differences in normal compared to malignant oesophageal tissue including 

increased nuclear to cytoplasmic ratio, a relative increase and decrease in DNA and 
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RNA respectively and a relative decrease in glycogen, all of which are consistent with 

expected biochemical changes.
3,5

 More subtle biochemical changes including the 

structural protein changes (which results in subtle changes in the peak position/shape) 

and accumulation of triglycerides were also noted.  

 

More recently, Wang et al. have also published a larger and more detailed FTIR study 

(using ATR) of premalignant (dysplastic) oesophageal tissues using partial least squares 

to estimate changes in biochemical constituents and LDA for tissue classification.76 In 

this study they reported that dysplastic mucosa could be detected with an overall 

accuracy of 89% (sensitivity 92% and specificity 80%).    

 

FTIR imaging is an established technique and there have been many applications using 

FTIR to detect cancer in other tissues including the skin,77,78 cervix,79  prostate,80,81 

brain
82,83

 and breast.
84

 

1.2.5 Autofluorescence 

Fluorescence occurs when fluorophores in tissue are excited upon the irradiation of short 

wavelength light (often blue or UV). The wavelength of the emitted fluorescence is 

greater than that of the incident light. Since different tissues have varying biochemical 

constituents, different tissue types contain different naturally occurring fluorophores and 

this concept was first used for cancer detection by Alfano et al. in 1984.85 Since then 

fluorescence has been widely used for both spectroscopic and imaging applications.
86

 

 

Panjehpour et al. reported application of fluorescence spectroscopy for detecting cancer 

in the oesophagus, and initial results (from 26 cancer and 108 normal spectra) were 

promising and resulted in a model with a sensitivity and specificity of 100% and 98% 

respectively.
87

 Subsequent studies have all been hindered by false-positives.
88,89 

Similarly, fluorescence imaging is also hindered by false positives.
31,90

 

1.2.5.1 Induced Fluorescence 

Photosensitisers (refer to Section 1.1.2.3), such as 5-aminolevulinic acid (ALA) can be 

administered to the patient, either locally (in the form of a spray or topical cream) or 
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systemically. These are found to localise in areas of rapid cell division, such as 

dysplastic regions and cancers, which can provide enhanced fluorescent signal in these 

areas. In one study of 47 patients, a difference was noted in the sensitivity and 

specificity between the two methods, although there were small numbers of patients in 

each group, with an increased sensitivity to the recognition of dysplastic lesions using 

systemic administration (80-100%) compared to only 60% when a photosensitising 

spray was applied.
91

 A specificity of 70% was reported for the photosensitising spray, 

whilst poor specificity (26% and 56%) was reported for the systemic photosensitiser, 

which has been attributed to the presence of inflammatory cells. 

1.2.6 Optical coherence tomography (OCT) 

OCT is a technique analogous to ultrasound, but using light, to produce real time, high 

resolution (10-25microns) cross sectional images first presented by Fercher in 1990,
92

 

and subsequently published by Hitzenberger,
93

 and a fibre optic based system by Huang 

et al.
94

. Biological examples of OCT are discussed in the review by Wong Kee Song.
90

 

OCT can be used to look at the morphology of tissue samples and has been used for in 

vivo imaging. This has become routine in ophthalmology applications, but is still 

experimental elsewhere. OCT is sensitive to small differences in tissue refractive index 

(RI). It may be possible to obtain a diagnosis from the image alone, although, this 

process, unless computer automated, will be subjective, however, it has the potential for 

in vivo
95 and even time gated use.96 OCT has also been used in combination with other 

techniques such as Raman to provide a multimodal approach for diagnosis as described 

in Section 1.2.7.  

 

Many groups have investigated the use of OCT in the oesophagus.
95,97

 It is reported that 

BO can be detected, however, there have been problems detecting dysplasia.90,95 More 

recently, intramucosal carcinoma and HGD have been distinguished from LGD and IM 

by Evans et al. with a sensitivity and specificity of 83% and 75%, respectively.
98

 OCT is 

hindered by the fact that image analysis is subjective, and in a discussion of OCT for 

detecting dysplasia, Poneros concludes that further work is needed and eventually 

computer automation will be required.99 Automation of OCT image analysis is one 
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possibility.100 Further details of the advancing field of OCT can be found in many 

review articles.
101

  

1.2.7 Multimodal optical diagnosis 

As mentioned previously, these various techniques can be combined to provide a 

multimodal technique.  

 

Several groups have applied this multimodal approach to diagnosis in the upper 

gastrointestinal tract, for example, near infrared (NIR) auto-fluorescence and LSS were 

recently combined to identify dysplastic oesophageal lesions by Leiber et al., in an ex 

vivo study on biopsy samples harvested from 20 patients. In this study, a classification 

model was developed to discriminate between low risk (Barrett’s mucosa without 

dysplasia and other benign samples) and high risk (LGD, HGD, squamous cell 

carcinoma (SCC) and adenocarcinoma) with a sensitivity and specificity of 86% and 

96% respectively.
102

  

 

Considering Raman in particular, Huang et al., illustrated that the most effective 

diagnostic algorithms were those developed using a combination of Raman and NIR 

autofluorescence spectroscopy.
103

 Patil et al. used OCT guided Raman for measuring 

breast tissue ex vivo and skin in vivo.
104

  

1.2.7.1 Summary of optical diagnostic techniques 

Optical spectroscopic techniques provide the most suitable solution to one of the 

limiting factors of histology, since the spectroscopic information lends itself to computer 

automation using tissue classification models. Other techniques such as OCT and 

autofluorescence imaging are still vulnerable to subjectivity and inter and intra operator 

variability. To summarise, the above mentioned spectroscopic techniques each have 

advantages and disadvantages:  

 

• LSS is simple, but provides only morphological information.  
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• Raman can provide detailed biochemical information, providing high molecular 

specificity, but interactions are weak. However, recent technological advances 

have meant this is no longer such a limiting factor. 

• FTIR is an established spectroscopic technique for probing biochemical changes 

in tissue sections, but it is limited by water absorption and as a result is not 

suitable for in vivo use.  

• Fluorescence spectroscopy (and imaging) may be useful for targeting biopsy but 

is hindered by false positives.  

• OCT results are promising, but it is likely to have a place for image guided 

targeting rather than definitive diagnosis.  

 

Automated diagnosis based on biochemistry rather than morphology is advantageous 

and furthermore, biochemical changes are likely to occur prior to morphological changes 

which provide the opportunity of detecting disease before it is visible to the eye. It is 

also suggested that standard H&E diagnosis underestimates the extent of intestinal 

features in BO,
105

 which may potentially be visible/detected using optical techniques. 

Considering the sampling volumes, Raman also samples the surface epithelial layer 

which lends itself to detecting precancerous changes in the surface epithelium in vivo. 

As mentioned previously, IR spectroscopy is limited by water absorption, and as a result 

sample thickness is limited to ~10 µm. Wani et al. identified Raman spectroscopy as a 

potential modality for overcoming problems associated with ‘blind biopsy’.
15

 Overall, 

Raman appears to be the modality of choice since the technique can be used both in vivo 

for optical biopsy and also ex vivo for imaging.   
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Figure 1-8: Illustration of the sampling depths of different optical diagnostic techniques 

(adapted  from
21

) 

1.3 Project aims and objectives 

The study outlined in this thesis has concentrated on evaluating Raman spectroscopy as 

a potential tool for pathology diagnosis both as an optical tool for targeted biopsy in vivo 

and also as a laboratory aid to the histopathologist. The research addresses key areas 

which will hopefully move Raman diagnostic techniques towards implementation in the 

clinical environment. The process of carcinogenesis of oesophageal adenocarcinoma is 

used as a typical example of an epithelial cancer.  There are three aims of the study: 

 

1) To evaluate and develop Raman probes for potential in vivo pathology diagnosis - 

referred to as ‘Raman targeted biopsy’ 

• To evaluate the current leading fibre optic (which is no longer available 

commercially) Raman probe by generating a large tissue classification model ex 

vivo (Section 5.3-5.5). 

• To compare novel probe designs to the current leading Raman probe using tissue 

equivalent phantoms, calibration standards and tissue classification models 

(Sections 5.2 and 5.7). 
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2) To evaluate the potential application of rapid Raman mapping techniques as a 

potential adjunct to the histopathologist by providing automated Raman histopathology 

• To evaluate a novel rapid Raman mapping technique for imaging biological tissue 

sections and compare to previous technology (Section 6.1- 6.2). 

• To investigate the feasibility of clinical implementation of rapid Raman mapping 

by investigating overall mapping times and mapping parameters (Section 6.4). 

• To evaluate the application of rapid Raman mapping technique as a potential 

research tool for the elucidation of biochemical changes associated with 

carcinogenesis (Section 6.5).   

 

3) To evaluate and overcome factors which limit implementation of Raman diagnostic 

techniques (optical biopsy and automated histopathology) into the clinical environment 

 

This work was undertaken within the Biophotonics Research Unit based at 

Gloucestershire Royal NHS Foundation Trust, UK under the supervision of Dr. N. 

Stone, Dr. C. Kendall, Prof. H. Barr.  
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Chapter 2 Raman Spectroscopy 

2.1 Raman theory 

Raman spectroscopy is a technique used to study vibrational and rotational modes in a 

system. It is based on the inelastic scattering, or Raman scattering of monochromatic 

light, resulting in the energy of the scattered photons gaining or losing energy (to or 

from the interacting molecules). This gives information regarding the system under 

investigation and enables biochemical changes within the tissue to be probed.  

 

When a sample is illuminated with a laser beam, several processes take place, as 

mentioned previously, including elastic (Rayleigh) and inelastic (Raman) scatter. The 

Rayleigh scattered light is filtered out (laser line filter), and the remaining light is 

dispersed onto a detector, most commonly a charge coupled device (CCD).  

 

Raman scattering is very weak, typically 10
-6

 of the elastically scattered light. The 

intensity of the Raman scattered light is proportional to the intensity of the input light 

(Iin), the density of the Raman scattering molecules (ρ), the sampling volume (V) and the 

Raman cross-section (σ), according to Equation 2-1.  

 

Iout ∝ Iin ρ V σ 

Equation 2-1 

 

The Raman cross-section describes how likely it is that a photon will interact due to 

local electric fields. It is wavelength dependent. The density of the sample describes the 

concentration of scattering molecules within the sampling volume. A photon interaction 

is more likely for higher concentrations.  
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The Raman shift is given by the difference in energy of the incident and scattered 

photons (related to the frequency according to Energy=hν, where h is Planck’s constant 

and ν is frequency) respectively. The Raman shift is often described in terms of 

wavenumber (cm
-1

).  

 

The vibrational energy is eventually dissipated as heat, although this is not measurable 

within the sample.  

2.1.1 Classical Raman model 

The intensity of Raman bands can be described using a simple classical model. An 

induced dipole moment, P is proportional to the external electric field, E. The constant 

of proportionality, α, is called the polarizability and describes how easily the electronic 

cloud around a molecule can be distorted.  

 

P=αE 

Equation 2-2 

 

The induced dipole will emit elastically scattered light at the same frequency as the 

incident light. However, specific vibrations within some molecules can alter the 

polarizability of a molecule during the vibration (described by the polarizability 

derivative δα/δQ, where Q is the normal coordinate of the vibration). Raman scattering 

can only occur by an internal conversion of energy in the molecules during this process. 

It follows, that the selection rule for a Raman active vibration, is that there must be a 

change in the polarizability, i.e. δα/δQ≠0. The Raman selection rule is analogous to that 

of an infrared-active vibration which states that during vibration there must be a net 

change in the permanent dipole. If a molecule is symmetric then it follows that there will 

not be a net change in the permanent dipole and hence symmetric molecules will be 

silent in the infrared region. 

 

Raman scattered photons may be of lower or higher energy than the incident photon and 

this is referred to as Stokes and anti-Stokes scatter respectively, as illustrated in Figure 
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2-1. This depends on the temperature, since anti-Stokes scatter occurs when the initial 

state of molecule is excited (either thermally or by other means). At room temperature, 

anti-Stokes scatter is weak with respect to Stokes scatter.   

 

Figure 2-1: Illustration of the Stokes and anti-Stokes shift in wavelength (λ) compared to the 

excitation wavelength 

If the vibration greatly affects the polarizability then the polarizability derivative will be 

large and the intensity of the Raman band will be high and vice versa. For example, in a 

highly polar bond such as O-H, induced polarisation due to an external electric field will 

be less than the larger electron cloud of the C=C double bond which is evenly distributed 

and easily distorted. The intensity of the Raman scatter also increases with the fourth 

power of the incident radiation frequency and as discussed later, this affects the choice 

of wavelength selected. However, the benefits of using a shorter wavelength are 

counteracted by possible damage to the sample, penetration depth and also fluorescence 

effects.  

 

2.1.2 Quantum mechanical model 

Whilst the classical explanation views the scattering process as a perturbation of the 

molecule’s electric field, in the quantum mechanical model the scattering is described by 

the excitation to a virtual energy state followed almost immediately by de-excitation and 

a change in vibrational energy with a timescale in the order of picoseconds. The 

molecule can only gain or lose energy equal to the energy difference between two 

allowed energy states. Elastic and Raman scatter are illustrated in Figure 2-2. In the case 

λ 

Laser light 

(excitation) 

Stokes shift  Anti-Stokes shift 
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of elastic scatter, the scattered photon has the same energy as the incident photon and 

returns to the original energy state. In the case of Raman scatter, the scattered photon has 

more or less energy than the incident photon, referred to as anti-Stokes and Stokes 

scatter respectively.  

 

elastic scatter 
Stokes 

Raman 

 

Anti- Stokes 

Raman 

Virtual states 

Vibrational states 

 

Figure 2-2: Quantum mechanical illustration of elastic and Raman scatter 

2.2 History of the medical applications of Raman spectroscopy 

The first interpretable biological application of Raman spectroscopy was performed by 

Lord et al. on a native protein in 1970,
106

 using a He-Ne (633nm) laser. However, the 

use of light in the visible spectrum is limited because of the high fluorescence 

background from biological tissues. Some complex tissue matrices exhibit low 

fluorescence and visible excitation was still feasible, for example in the eye.107 Despite 

background subtraction techniques, the fluorescence is the limiting factor in the visible 

region. For excitation in UV region, the fluorescence occurs at wavelengths beyond the 

Raman fingerprint region and furthermore, an increase in the signal due to resonance 

within the electronic transitions. However, there are problems associated with 

mutagenesis of biological tissue samples and the penetration depth is very small (µm).  

Over time there was a trend toward the near-infrared (NIR) region since there is a 

significant reduction in fluorescence and an increased penetration depth as discussed in a 

review by Hanlon et al.
54

 Furthermore, Stone demonstrated 830 nm was optimum for 

Raman spectroscopic investigations of oesophageal tissues.
 108
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The use of Raman confocal microscopy systems to obtain increased spatial resolution 

(only for a small well defined volume) has been investigated for examples on 

deoxyribonucleic acid (DNA) in chromosomes.109 For more detail on confocal Raman 

microscopy, the reader is referred to Turrel et al.
110

 Confocal microscopy has also been 

used to study subtle changes in cholesterol, phospholipids and proteins in complex 

tissues such as the lens cataracts.111 

 

Initially studies using Raman employed Fourier transform (FT) spectrometers. In 

general, these were used in conjunction with Nd:YAG laser excitation (1064nm) and 

cooled InGaAs detectors. FT Raman systems use interferometric methods to collect all 

wavelengths simultaneously, also allowing a greater light collection. Early use revealed 

spectral peaks that were previously masked by the large fluorescence background.
112

 

Initial work applying Raman spectroscopy to investigate the biochemical changes 

associated with carcinogenesis in gynaecological lesions showed that diseased tissue 

could be distinguished from normal.
113

 Other applications in the field of cancer 

diagnosis included brain tumours114 and skin lesions.115,116 However, the detectors used 

were noisy and required long spectral acquisition times (30-60minutes) Also, the laser 

powers required (0.5-1W) exceed maximum permissible exposure (MPE) limits for the 

eye and skin.   

 

The development of low noise charge coupled device (CCD) detector technology, the 

use of dispersion rather than interference methods,
117,118

 and the advent of small, 

efficient semiconductor laser sources have all contributed to the rapid advances in 

Raman  spectroscopy.  

 

The advent of edge and notch filters are one of the most important additions to the 

modern Raman spectrometer since they efficiently reject elastically scattered and stray 

light and have enabled more compact spectrometer designs.117  

 

Studies have shown that working in the NIR region, and in particular the 800-830nm 

region, minimises florescence whilst utilizing the CCD to its full potential.3,54,108,119 The 
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fluorescence continues to reduce at greater wavelengths, but this is counteracted by the 

fact that the efficiency of the CCD detector falls sharply with increased wavelength.
3
   

 

Figure 2-3: Raman spectra acquired using green (532 nm), red (633 nm) and NIR (785 nm) 

excitation. The fluorescence background masks the Raman peak in the red and green spectra 

whilst it is clearly visible in the NIR spectra. Note that the NIR wavelength is represented by 

the blue spectrum.
120

   

There have been many biological applications of Raman spectroscopy for different pre-

cancer and cancers including the oesophagus,
1,2,108,121,122,123,124

 cervix,
125,126

 prostate,
127

 

bladder,
128,155

 brain,
114,128

 breast
129,130,131

 oral cavity,
132

 larynx,
133,134

 and stomach.
135 

These applications are covered in many review articles.54,73,136,137 There are also 

applications in other diseases besides cancer including atherosclerotic plaques
138

 and 

dementia.
139

  Several fibre optic probes have been proposed for in vivo applications, for 

use on the skin and gynaecological applications during colposcopy.
140

 The first 

endoscopic in vivo use of Raman spectroscopy of human gastrointestinal tissue was 

reported in 2000 by Shim et al.141 also detailed in a thorough review.54 

 

The following sections review applications of Raman in the upper gastrointestinal tract. 

This is followed by instrumentation common to both Raman probes and laboratory 

based spectrometers. A review of both the practical considerations and applications of 

Raman probes for potential targeted biopsy (Section 2.3.4 and 2.4.2) and Raman 

mapping applications (Section 2.5) is also included.  

532 nm 

785 nm (NIR) 

633 nm Raman peaks - masked by 

fluorescence background 

for the 532 nm spectrum 
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2.2.1 Raman studies in the upper gastrointestinal tract 

Locally, several studies have been carried out ex vivo using a customised laboratory 

based Raman microscopy system.
1,2,108,121,122,123 

In one study carried out by Kendall et 

al., 87 histopathologically homogeneous samples were taken from 44 patients.
1
 Cross 

validated PCA fed LDA tissue classification models were generated to separate both 

three, and nine different pathology groups. The multivariate classification model 

developed gave sensitivities of 73-100% and specificities of 90-100%. Additional 

potentially useful tissue groups are discussed in the results section including, amongst 

others, fibrous connective tissue and smooth muscle.  An important advance in these 

studies was that for the first time, a consensus histopathology opinion was obtained from 

three independent expert pathologists.1,121,122 This partially overcomes the problem that 

the pathology is subjective, and improves the histopathology opinion as a ‘gold 

standard’. This concept was used in this thesis to improve the robustness of the tissue 

classification models (Section 5.2). Kendall et al. used attributed peak assignments to 

biochemical constituents to support the Raman classification model, for example a 

decrease in glycogen levels consistent with increased proliferation,5 increase in nucleic 

acids and decrease in carotenoids.
1
 Further investigation of the biochemical changes 

using Raman mapping has supported this.
123

  

2.3 Raman instrumentation and practical considerations 

2.3.1 Modern Raman system components 

A typical Raman microscopy system is shown in Figure 2-4, a schematic diagram of the 

customised Renishaw Raman spectroscopy system (System 1000, Renishaw Plc. 

Wotton-under-edge, UK). The individual components are described in further detail in 

the following sections. A cylindrical lens can be added into the path of the laser resulting 

in a line focussed laser beam. This has practical uses which are described in Section 

2.5.2.  
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Figure 2-4: schematic diagram of the standard Raman microscopy system (Renishaw System 

1000) 

2.3.1.1 Laser 

The laser light is delivered to the system via two adjustable steering mirrors. The 

wavelength selection is important and as mentioned previously, there has been a general 

trend towards NIR wavelengths. Locally, 830nm has been shown to be optimum with 

reduced tissue fluorescence, whilst still working within the optimum region for the 

CCD.  

2.3.1.2 Microscope 

A typical Raman microscopy system is shown in Figure 2-5, showing the microscope on 

the left and the spectrometer on the right. The laser is hidden behind the spectrometer. 

The internal components of the spectrometer were shown previously in Figure 2-4. A 

microscope is used to view the sample, illuminate the sample at the target volume and 

collect the scattered light. The collection of scattered light depends on the numerical 

aperture of the objective which is given by NA = sinθ. (where θ is half of the angular 

aperture). It also depends on the spot size, for a smaller spot size there is greater 

intensity of light within a smaller region, but consequently the sample volume and hence 

the number of molecules within it is smaller. 
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2.3.1.3 Filters, slit and gratings 

Holographic notch filter or edge filters are used to separate the Raman signal from the 

elastic scatter.
3
 Following transmission through the edge filter, the collected beam then 

passes through the slit, which reduces the divergent components of the beam. Although 

this limits the amount of light passing through, it improves the spectral resolution. The 

diffraction grating disperses the light into its spectral components and disperses the light 

onto the detector. Multiple elements of the detector can be used to detect a range of 

wavelengths simultaneously. The grating density (locally this is 300 lines/mm) affects 

the spectral resolution. The angle of the grating determines which region of the spectral 

range is detected. The grating can also be moved during the spectral acquisition, referred 

to as a dynamic scan, to cover a wider spectral range whilst maintaining high spectral 

resolution, the trade off being that spectral acquisition are slower. The latter points have 

practical implications for Raman spectroscopic analysis since this will need to span the 

spectral range of interest and this is investigated in Section 6.1.2. 

 

 

Figure 2-5: Photograph of the Renishaw System 1000  

2.3.1.4 CCD camera 

A CCD is made up of an array of small detectors (~25 µm). The CCD can be rapidly 

read out by transferring charge from one detector element to the next in sequence. There 

are two main types of CCD in use for Raman spectroscopy, back thinned and deep 

depletion CCDs. Back thinned devices suffer from etaloning, and deep depletion CCDs 

are favourable for NIR applications.
117
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Calibration ensures that the correct wavelength is detected by the correct CCD element. 

One of the problems hindering the clinical development of Raman spectroscopy is a 

reliable calibration routine such that the measurements are reproducible and also 

comparable with spectra taken from another Raman system.  This is especially important 

when building spectra libraries.
142

 

2.3.2 Sources of noise and signal to noise ratio (SNR) 

Signal to noise ratio (SNR) is related to the intensity of the incident light. It is 

proportional to the square of the intensity multiplied by the acquisition time, thus if the 

intensity is increased the collection time can be reduced to achieve the same SNR and 

vice versa.143 The signal is limited by shot noise, arising due to the random quantum 

nature of photon interactions. It is given by N±√N where N is the number of counts. 

Increasing the number of counts reduces the relative effect of shot noise, provided the 

Raman signal is greater than any background signal.  

 

Dark noise is minimal with modern CCD detectors. Cooling the CCD reduces the 

number of counts generated by thermal effects. Temperature stabilization is also 

important and the effects of temperature on Raman spectrometers are investigated in 

Section 7.2.2. Cosmic rays also cause large spikes which can have a significant effect on 

the spectrum if not averaged out or removed (manually or using automated algorithms). 

This has particular implications for Raman mapping as discussed in Chapter 6.  

 

Many groups have investigated the impact of SNR on Raman spectral analysis.
144,145,146

  

This is discussed further in Section 6.3, since this aspect has particular importance for 

rapid Raman mapping applications. De Paula et al. studies the use of Raman 

spectroscopy for identification of atherosclerotic plaques, using mathematically added 

noise they investigated the effect of SNR on subsequent multivariate classification. They 

concluded that short acquisition times, as low as 20ms, could be used to distinguish 

calcified, atherosclerotic and non-pathological plaques.
144 

However, in this study, 

spectral features were very visibly different (due to strong Raman signatures for inherent 

calcification and lipids) and as a result the limit of PCA and other multivariate 

techniques was not tested.144   
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2.3.3 Spatial and spectral resolution 

Resolution is defined as the ability to separate two distinct objects. Considering spectral 

resolution, this is the ability to resolve separated Raman peaks (in the wavenumber 

direction). Overlapping Raman bands makes this issue complex and derivative spectra 

are often calculated to highlight shoulder of Raman bands.  

 

Spatial resolution has been investigated by many groups for Raman probe (lateral and 

axial)
147

 and spectral mapping applications for both Raman,
148

 and IR.
149,150

  Bhargava 

has published a thorough evaluation of FTIR imaging for histology diagnosis, 

demonstrating the effects of imaging parameters (similar to those used for Raman 

mapping (see Section 2.5) in particular spatial resolution (with the step size used as a 

nominal spatial resolution, determined by binning data acquired at 6.25µm to larger 

pixels 10-50µm) and SNR (random Gaussian noised artificially added to the spectra).
150

 

The aim of this study is not to determine spatial resolution for Raman probe and 

mapping applications, however, concepts are discussed later regarding the implications 

for clinical histology.  

 

2.3.4 Raman probes 

Light is transmitted through fibre optics via total internal reflection. For visible 

wavelengths, glass or plastic fibres can be used with a similar material with a lower 

refractive index chosen for the cladding. However, as the wavelength approaches the IR 

region silica and silica doped material are used as the core and cladding respectively. 

The obvious problem with this is that silica is Raman active and this can cause problems 

when performing Raman probe spectroscopy. 
151,152 

Fluorescence and optical properties 

of other materials used to construct the probe also need to be considered, for example 

optically transparent glues should be used.
151

   

 

For in vivo measurements in the oesophagus, a front viewing fibre is not ideal, and De 

Lima et al. report a side viewing probe suitable for fluorescence applications and have 

since reported on a catheter based Raman probe with manoeuvrable tip.153 
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2.3.4.1 Limitations of Raman Probes 

The weak Raman signal, makes rapid in vivo Raman diagnosis via endoscopy 

technically challenging.  Fluorescence and Raman backgrounds are generated by the 

probe itself, which can mask Raman signals and contribute to shot noise.  This results in 

subtle differences in probe spectra which require sophisticated multivariate statistical 

techniques.
141,151

 

 

Scatter within the probe and optical fibres causes a background signal that must be 

removed using background subtraction techniques such as that discussed in Section 

2.3.4.2, or by using an appropriate filter positioned at the distal probe tip, however, this 

is technically difficult due to the intricacies and precision required since the filters are 

often angular dependent.  

 

A further problem for in vivo studies is the possibility of spectral artefacts caused by 

angle and pressure changes, however this has been investigated and analysed by PCA 

and found to be insignificant.
141

 

2.3.4.2 Removing probe background and fluorescence 

The broad background spectrum is due to tissue and fibre optic autofluorescence, cross 

talk and backscatter.147,154 In the literature, probe background is generally removed using 

a 5
th

 order polynomial fit (for 785nm and 830nm Raman probes) to reveal narrow 

Raman peaks from the tissue,
133,141,155,156

 however the particular fit used is dependent on 

the wavelength, filtering and spectrometer.  

 

The probe background can also be removed by subtraction of a background signal. The 

background signal may be acquired, for example, with the probe covered by a black 

plastic cap,
125

 or from roughened aluminium.
157

 In the latter case, Boere et al. reported 

an angular dependence of the background signal, which was accounted for in the vector 

subtraction method.
157

 Shim et al reported that subtraction using such methods was 

inconsistent.147   
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In summary, there are discrepancies regarding the source of the background signal and 

furthermore, background subtraction methods are unreliable, resulting in the need for 

alternative methods of dealing with background subtraction.   

2.3.4.3 Safety concerns 

As mentioned previously, the power of the laser and its effect on the tissue is one of the 

limitations for probe design in vivo and consequently, the focus on probe design is to 

maximise the collected Raman signal and to utilise optimal data processing.
151

  

 

At NIR wavelengths, thermal damage is possible, however, more importantly, DNA 

strand breaks can occur in the UV region and hence this should be avoided. Tests have 

been carried out to assess the temperature rise in tissue caused by NIR lasers light. A 

250mW, 830nm laser focused to a spot size of 500 µm spot size did not produce a 

detectable temperature rise in tissue (<0.8ºC) after an exposure time of 1 minute.141 In 

another study by Mahadevan-Jansen et al., using a laser with power of 15 mW (785nm) 

at the probe tip and a spot size of 900 µm, it was calculated that this power produced an 

increase in temperature of 1.5 ºC in 5 minutes, insufficient to cause cytotoxicity. It is 

also suggested that powers up to 80 mW could be used, which would cause a calculated 

temperature rise in cervix tissue of 6 ºC/min, enabling a reduced acquisition time of 15-

20 s.
140

 This reduction in acquisition time would be more clinically useful since multiple 

point measurements could be made. Ideally, this should be reduced further to 1-2s, and 

recent reports in the literature suggest this is feasible.
158

 Further more it is later shown in 

this study that providing large spectra database is used multivariate techniques can 

tolerate poor signal to noise.  

   

Considering the probe system used in this study, similar to that used by Shim et al., with 

an output power of used <80 mW at the probe tip and an exposure time of 1 minute, no 

thermal damage would result,
141

 especially in vivo as perfusion of blood would reduce 

any temperature rise further. Studies are also carried out within this report to investigate 

the effect of reducing acquisition times and the effect this has on tissue classification 

models (Section 6.3).  
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2.3.5 Raman probe details 

To provide some history, to date the main probe used for biological applications is the 

Visionex probe (Enviva, Visionex Inc, Atlanta, Georgia, USA), since this was the only 

commercially available probe suitable for passing down an endoscope channel. 

However, production of the Visionex probe (see Figure 2-6) ceased before work on this 

thesis commenced. Several groups have been investigating alternative designs, such as 

the Emvision (also shown in Figure 2-6) and also some larger probes for skin 

applications which are not suitable for endoscopic use.
160

 The Visionex and Emvision 

probes are described in subsequent sections. Details of the novel single out-put fibre 

probe are confidential and as a result are not described, but for the proposes of this study 

this is not of significance and it is sufficient to consider the probe as a single out-put 

fibre whilst the other probes utilise multi-fibre collection.   

 

 

Figure 2-6: Photograph of a selection of Raman probes. From left to right: Emvision probe 

(830 nm), Visionex (785 nm), Visionex in a removable rigid casing (830 nm) and a novel 

single output fibre probe  

2.3.5.1 The Visionex and Emvision probes 

The Visionex probe consists of a central excitation fibre of 400µm diameter which is 

surrounded by seven 300 µm diameter bevelled collection fibres to maximize collection 

efficiency (see Figure 2-7). The angle of the bevelled fibres is described by the gaser 

level (5 and 10) for the Visionex probes. The higher the gaser level the smaller the 

sampling depth, i.e. the greater the degree of ‘beam steering’.
147

  The probe fibres have a 

numerical aperture of 0.22. A band pass filter is incorporated approximately 2.5cm from 
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the tip in line with the excitation fibre and a long pass filter in line with the collection 

fibers.
147

 The probe (Figure 2-7), is approximately 2mm in diameter and can pass down 

the biopsy channel of an endoscope. The probe reportedly samples to a depth of 500 µm 

and a tissue volume of 1 mm
3
 for the gaser level 10 probes.

56,155
   

 

Figure 2-7: Photograph of Visionex probe and illustration of tip
56

 

  

Two different Raman probe designs are shown in Figure 2-8, which illustrates the 

reduction in sampling volume for a bevelled fibre probe, which is advantageous for 

detecting precancerous changes in the surface epithelial layers. The Emvision probe 

(Figure 2-8), manufactured by Eric Marple is effectively a gaser level 0 probe, i.e. with 

no beam steering. Other probes are being investigated by other groups and these are 

discussed in the following section.  

 



 - 37 - 

 

Figure 2-8: left) Schematic diagrams of the two different Raman probe designs illustrating the 

excitation and collection regions for an unbevelled fibre probe (e.g. Emvision), right) and a 

bevelled fibre probe (Visionex) 

2.4  Raman probe studies for targeted biopsy  

Raman probes have been extensively tested ex vivo for targeted biopsy and some studies 

have been carried out in vivo. In the past, the majority of the latter have been in easily 

accessible sites such skin, 
159,160

 oral cavity (tongue, teeth),
154

 and cervix
140

, however, 

there are reports of in vivo applications in the upper GI tract by Shim et al.,
141 

and (a 

recent abstract by) Wong Kee Song et al..
161

 There have also been reports for in vivo 

tumour margin assessment
162

 and applications in stomach,
156

 bladder,
155

 prostate,
155

  

colon,163 and lung.164 

2.4.1 Probe studies ex vivo 

Several groups have begun to assess the performance of in vivo probes ex vivo, as the 

first step towards in vivo measurements. Ex vivo measurements have the potential for 

diagnosis in a theatre situation since the probe systems are mobile and can potentially 

provide an immediate diagnosis for excised tissue samples, which may be beneficial in 

assessing tumour margins or allowing earlier treatment if required. In a study by Huang 

et al., a Raman probe system designed for in vivo measurements of the skin was used for 

ex vivo measurements of bronchial tissue samples.
165

 This was the first application of 
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Raman spectroscopy in the bronchus. Measurements were made on 28 samples (biopsies 

and resected specimens) taken from 10 patients. Biopsies were taken under Laser 

Imaging Fluorescence Endoscopy (LIFE) guidance. The pathology results showed 12 

normal samples, 6 adenocarcinoma and 10 squamous cell carcinoma. The results were 

grouped as either normal (normal and inflammation) or malignant (adenocarcinoma and 

SCC).165 Univariate techniques were used to investigate the differences between normal 

and malignant with respect to the mean of the Raman intensity ratio of the 1445 and 

1655cm-1 peaks (CH2 bend and amide I). A peak ratio of 1 was used as the decision 

point, a sensitivity of 94% and specificity of 92% was achieved.  

 

Boere et al. developed a multivariate classification model based on a database of spectra 

acquired using different Visionex probes (standard Visionex and also Visionex with a 

200 µm CaF2 offset) and on different days.166  Raman spectra were acquired from 66 rats 

oesophagi opened longitudinally. A suture was placed at the point the measurements 

were taken so that the area could be located upon histology. The study concluded that 

the probe lacked reproducibility, even after filtering. The filtering methods, including 

correction for backscatter (see Section 2.3.4.2), caused loss of biological information 

which limits the diagnostic capabilities, although it was reported that >93% of spectra 

were correctly classified. Boere et al. stated that the sampling volume of the Visionex 

probe (830nm) was 100-600 µm, which was reduced to 400 µm with the addition of the 

CaF2 offset window. However, no evidence was provided to support this.  

 

A Visionex Raman probe system has also been used ex vivo to discriminate malignant 

and benign bladder and prostate samples with overall accuracy of 84% and 86% 

respectively.
155

  

 

Several real time Raman probe systems have been reported such as that described by 

Motz et al., who reported a sapphire ball lens probe (1 excitation fibre, 15 collection 

fibres) capable of acquiring spectra in 1s then a further 1s for analysis.
167

 Another real 

time software system was reported by Baker Schut et al., in which spectra were 

projected onto a previously developed LDA model in real time.154  
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High wavenumber Raman spectroscopy has also been explored since silica signal is not 

present at the high wavenumber region. Spectral contributions have been shown to 

contain similar diagnostic spectral information by Koljenovic et al. in a mapping study 

comparison to validate future high wavenumber probe applications.
128

  

2.4.2 In vivo Raman applications 

Mahadevan-Jansen et al. reported the first in vivo Raman application (Visionex probe, 

785nm) in the cervix, and successfully identified high grade precancerous changes 

which were verified by taking biopsies at that point.
140

 The algorithm based on the peak 

height ratios at 1659 to 1321 cm
-1

 (amide I to CH2 twist) and 1659 to 1452 cm
-1

 (amide I 

to CH2 bend) correctly identified high grade precancerous changes, but it was not stated 

in how many patients. Furthermore, biopsies were not taken from sites diagnosed as 

normal using the probe system so the histology could not be confirmed. A typical 

spectrum from normal and precancerous spectra was presented, considering only the 

region between 900 and 1800 cm
-1

. Spectra were similar to ex vivo system.  

 

A further in vivo study was carried out on 13 patients undergoing routine colposcopy 

procedures by Utzinger et al.
125

 A univariate algorithm based on peak intensities at 

1454cm
-1

 to 1656cm
-1

, which on average was greater for dysplasia and 1656 to 1330 cm
-

1
, which on average was lower for dysplasia. Multivariate analysis was not possible due 

to the limited sample size. Haka et al reported in vivo tumour margin assessment during 

breast surgery using the sapphire ball lens probe described previously.
162

  

2.4.2.1 Application of Raman probes in the upper GI tract 

The first in vivo use of Raman spectroscopy of human gastrointestinal tissue was 

reported in 2000 in a feasibility study.
141

 Emphasis was on the investigation of artefacts 

from pressure and angle, both of which were found to be negligible as discussed 

previously in Section 2.3.4.1.141 Raman spectra were acquired in vivo from 5 patients 

using a custom built fibre optic probe system. A diagnostic algorithm was developed 

using LDA, with cross validation. Barrett’s samples were classified with 86% sensitivity 

and 88% specificity, with an overall accuracy of 87%. High risk lesions (i.e. HGD and 

adenocarcinoma) were classified with 88% sensitivity and 89% specificity with 89% 
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accuracy overall. Shim et al. compared the spectra of blood and oesophageal tissue and 

found that there was no contamination of the heme vibrational modes in the oesophageal 

spectra, even when measured tissue is covered in blood.141 This and other contaminant 

were studied to provide negligible contributions to epithelial Raman spectra.  

 

A larger in vivo study was carried out more recently by Wong Kee Song et al. in 

2006,
161

 although results are yet to be published in a scientific journal. In this study, 

spectra were acquired using a custom built probe at 785 nm from at least 6 Barrett’s sites 

in each of the 100 patients.  In this study, a model was developed to differentiate non-

dysplastic samples from dysplasia (i.e. LGD, HGD and early adenocarcinoma) with an 

overall model accuracy of 80% (sensitivity 80%, specificity 79%). These results were 

improved to 88%, 88% and 88% respectively when the groupings were changed and 

LGD was included in the non-dysplastic group. This effectively creates a two group 

model for high risk and low risk pathologies. An important realisation in this study was 

that the inclusion of reactive/inflammatory changes did not alter the diagnostic 

accuracy.161  

 

Teh et al. have recently reported a Raman probe study to detect gastric cancers. In this 

study, 76 samples/spectra from 41 patients resulted in a cross validated PCA-fed LDA 

model which discriminated normal and dysplastic gastric samples with good sensitivity 

and specificity (95.2% and 90.9%). However, it must be noted that there appear to be 

artefacts in the background subtracted spectra used in the classification model.
156

  

2.4.3 Developmental probes 

Yamamoto et al. reported on a miniature Raman probe comprising hollow optical fibres 

and a ball lens although the probe has yet to be evaluated for biological applications.168 

De Lima et al, reported recently on a catheter based probe (1 excitation fibre, 5 

collection fibres and 1 fibre for ‘optoclinical treatments’) with a mechanism for 

manoeuvring the distal probe tip.
153

 Another catheter based probe has also been 

reported.
169

 However reports are recent and presented only in abstract form. To date 

little information is provided about the particulars of the probe design.  
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2.5 Raman mapping and applications for potential histology 

A further extension of Raman spectral analysis is the combination with spatial 

information to produce a 3D spectral data cube which can be used for imaging, referred 

to as a Raman mapping. Three different methods of Raman mapping were first described 

by Delhaye and Dhamelincourt, including point mapping, line mapping and global 

imaging.
170

 Raman mapping allows the possibility of multiplexed disease marker 

measurement without the use of stains.   

 

As mentioned previously, Raman scatter is a relatively weak process. As time has 

progressed technological advances have enabled the acquisition of Raman point tissue 

spectra in relatively short acquisition times. Imaging applications of Raman have 

generally relied on point mapping, which is widely regarded as a slow technique. 

However, there has been some limited use of global imaging (flat field illumination 

coupled with liquid crystal tuneable filters and array detection (ChemImage).
59,171

 Point 

and line mapping are described below to provide background details enabling the 

description of a recent technological development of line mapping referred to here as 

rapid Raman mapping. Global imaging is not described further here and the reader is 

referred to Treado and Nelson.
59

 

 

In previous studies our group has shown that Raman spectroscopy is capable of 

detecting and classifying pre-cancerous and cancerous changes with a high sensitivity 

and specificity.1,2 Further studies have gone on to elucidate biochemical changes 

occurring during the progression to cancer in the oesophagus.
123,172,173

 The first 

demonstration of Raman mapping for the biochemical analysis of the bladder was made 

by Stone et al.
174

 Other groups have used Raman mapping to investigate precancerous 

changes in the bladder,
175

 bronchus,
176

 and brain.
177

 Other Raman mapping studies have 

been carried out on healthy tissue such as the breast,178 and also hard tissue applications 

such as bone.
179

   However, the long overall mapping times have limited the size of the 

datasets which can be acquired and consequently the biochemical information which can 

be gleaned using multivariate analysis. Furthermore, long overall mapping times have 

hindered the progression of the technique into the clinical environment.  
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There are limited papers published which compare different Raman mapping 

techniques180 and the most recently developed techniques for rapid mapping have yet to 

be evaluated. For details of Raman imaging, the reader is referred to the following 

reference.
59

 In order to explain novel technology, Raman mapping techniques are 

described in brief below. In the following explanations, there are some references to the 

results section (Section 6.2.1.1). The details of some of these new technologies are 

described below and compared to existing mapping techniques in Chapter 6. 

2.5.1 Point Raman mapping 

During point spectral mapping (Figure 2-9a), a spectrum is acquired using effectively 

the entire length in one dimension (actually the edges are removed to reduce noise) of 

the charged couple device detector (CCD) with the collection pixels region spanning the 

width of the laser line to maximise the collected signal. The rest of the CCD is not read 

out to minimise dark current readout noise and readout time.  The sample is stepped 

along to the next position using an XY translational stage and the next spectrum is 

acquired and so on until a grid of spectra is obtained, often referred to as a spectral data 

cube. The overall mapping time is often limited by the acquisition time (per spectrum) 

when measuring tissue samples since they are not strong scatterers. The acquisition time 

may be of the order of 1-30 s depending on the tissue type and even as long as 120 s 

when measuring single cells.181 Typically the total mapping time is roughly equal to the 

total number of spectra multiplied by the acquisition time. Additionally, there is a stage 

translation delay and CCD readout time delay for each of the spectra. This is of the order 

of 1.6s (combined CCD readout and stage translation, calculated from a 0.1 s acquisition 

point map using a Renishaw system 1000 – see Section 6.3.1). For shorter acquisition 

times, the speed of the XY translational stage and, often most significantly, the readout 

time of the CCD can significantly limit the rate at which spectra can be acquired. 

Furthermore, factors such as extended scanning and auto-focusing reduce the rate of 

spectral acquisition. In one study, Krafft et al. reported an acquisition rate of only 30 

spectra per hour based on an acquisition time of 30 s whilst using auto-focus during the 

mapping of brain tissue182. 
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Figure 2-9: a) Illustration of point Raman mapping in which a spectrum is acquired at each 

position on a grid, b) High spatial resolution line mapping using a barrel lens to produce a 

line focused laser. Many spectra are acquired simultaneously by separating out the lines on 

the CCD, c) Low spatial resolution line mapping in which the entire laser line is used to 

sample a large area of the sample utilising vertical binning of the CCD pixels and d) 
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Illustration of rapid Raman mapping in which the CCD readout is synchronized with the 

movement of the stage to allow constant readout of Raman spectra thus reducing dead time 

between spectra  

A development of point mapping was the introduction of a cylindrical lens to create a 

line-focused laser, often referred to as line mapping.  

2.5.2 Line mapping 

A line focused laser can be used in two different ways as illustrated in Figure 2-9b and 

Figure 2-9c. First, line mapping can achieve spatial separation of the laser line using the 

CCD pixels, resulting in an increased spatial resolution as illustrated in Figure 2-9b. This 

is achieved by reading out each CCD line separately creating multiple spectra, the trade 

off being a reduction in the signal of each spectrum since only a portion of the laser light 

is used to illuminate the area of the tissue imaged by that CCD pixel. A further draw-

back is that since the power varies along the length (~50µm for the x50 objective used in 

this study) of the laser line (approximately Gaussian) this method of line mapping results 

in a variation in the intensity of the spectra along the laser line. A correction can be 

performed, but this can be unreliable for inhomogeneous samples such as biological 

tissue. Schlucker et al.,180 concluded that the signal to noise and images of a Si and 

aluminium test phantom were similar for point mapping and line mapping (spatial 

resolution from both methods was of the order of 1.1 µm), but line mapping (corrected 

using a manufacturers line map correction) was faster. However, in the study by 

Schlucker et al., the focus for the point mapping laser was reported as being 1.1 µm 

using a x50 objective, significantly smaller than the point focus achieved with the 

system in our laboratory due to the wavelength and the type of the laser used, which 

explains how they were able to achieve similar spatial resolutions with the two different 

mapping methodologies.   

 

The second method for line mapping is to utilise the expanded laser line to sample the 

mapped region in fewer steps (Figure 2-9c). In this case, an increased signal to noise 

ratio is achieved compared to the high resolution line-focused mapping (since the entire 



 - 45 - 

laser line is used to generate each spectrum), but the trade off is reduced spatial 

resolution. 

 

Line mapping is still limited by CCD readout (especially for short acquisition times), 

although this is reduced when portions of the laser line read out independently for higher 

spatial resolution since the readout time is spread over multiple spectra. In fact, it is 

possible to set up the system to in between settings, for example using only half the line 

focussed laser line.  

 

These two techniques were rigorously compared by Schlucker et al., along with wide 

field imaging concluding that depending on the application, line mapping was faster that 

point mapping.
180

    

2.5.3 Rapid Raman mapping 

Rapid mapping systems have been developed by several manufacturers including WITec 

(Ulm, Germany) and Renishaw. This study focuses on Renishaw StreamLine™, 

although the concepts discussed can potentially be applied to any imaging system 

capable of rapidly acquiring large Raman datasets. Considering StreamLine™ 

technology (Figure 2-9d), referred to as rapid Raman mapping from here forth, provides 

a novel and fast method of acquiring Raman maps. The sample is stepped along the laser 

line and the position of the stage is synchronised with the readout of the CCD (as 

illustrated in Figure 2-9c). Each spectrum is effectively made up of an accumulation of 

spectra as the entire laser line passes over each part of the sample. There is a short delay 

at the beginning of each column in the grid as the laser line passes over the first pixel 

and then following spectra are acquired at an increased rate. This enables high spatial 

resolution mapping without the reduction in intensity trade off (associated with spatial 

separation line mapping) and consequently eliminates the variation in SNR due to the 

laser profile, as illustrated in Figure 6-9d. There is still however a reduction in signal 

intensity and SNR compared to point/line mapping using the entire laser line.  A further 

advantage is that constant readout (i.e. reduced dead time between sequential data points 

compared to point mapping) of spectral data results in the acquisition of spectra and 

maps at an increased rate. This uses the multichannel advantage of the CCD in two 
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dimensions simultaneously to get full spectra readout that is orders of magnitude higher 

than the actual exposure time per spectrum. These advances have facilitated the 

acquisition of thousands of spectra within a matter of minutes compared to previous 

mapping techniques which took hours and even days. 

 

Compared to traditional line mapping, rapid mapping provides many advantages. There 

is an increased rate of spectral readout due to the synchronised readout of the CCD with 

movement of the XY translation stage, and also high lateral spatial resolution. High 

lateral spatial resolution line mapping (in which each line of the CCD is used to spatially 

separate the laser line) is subject to the variation in laser intensity across the laser profile 

(approximately Gaussian) as shown previously in Figure 6-9.  

 

Gendrin et al.183 recently reviewed the impact of spectral imaging on the field from the 

perspective of pharmaceuticals (with some biological examples). Discussing the 

advantages of obtaining both spatial and spectral information, the author also 

highlighted the multidisciplinary challenges raised by the advent of spectral imaging 

with the need for a combination of traditional spectroscopic skills (biochemical and 

instrumentation), chemometric, signal processing and image processing skills. 

 

De Paula et al. studied the use of Raman spectroscopy for identification of 

atherosclerotic plaques; using mathematically added noise they investigated the effect of 

SNR on subsequent multivariate classification. They concluded that short acquisition 

times as low as 20ms which result in poor quality spectra could be used distinguishing 

plaques (calcified, atherosclerotic or non-pathological).
 
However, in this study, spectral 

features were very visibly different (due to strong Raman signatures for inherent 

calcification and lipids) and as a result the limit of PCA and other multivariate 

techniques was not tested.
138

 

2.5.4 Relevant points from FTIR mapping studies 

As discussed previously, spatial resolution of spectral imaging is a key parameter. For 

mapping studies, it is important to distinguish the spatial resolution from the step size, 

which determines the pixel size. A consequence of finite spatial resolution is spectral 
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mixing between adjacent pixels. This has been investigated by Bhargava, who 

investigated the effects of nominal spatial resolution (step size) on the classification 

performance. They went on to attribute complications to what are referred to as 

“boundary pixels” which are pixels resultant of spectral mixing of neighbouring pixels, 

as described previously. The effect of over-sampling (increasing the number of pixels 

which represent a given area) was also considered, concluding that over-sampling can 

result in improved boundary definition, but spectral mixing is still an issue.
150

 

2.6 Practical considerations for sample preparation 

The substrate used for Raman spectroscopy and Raman mapping in particular, is 

particularly important practical consideration since it is vital that the substrate does not 

have a strong Raman signature. Stone and Kendall investigated different substrates 

concluding CaF2 was the most suitable for Raman applications.
108,121

 Various other 

substrates are still routinely used including glass,
131

 and quartz.
169

  

 

Formalin fixed samples are not suitable for in vivo mimicking Raman spectroscopy, due 

to the fact that the fixation process induces biochemical changes in the tissue.184  Sample 

storage is also an issue, and Shetty investigated the effects of long term storage (at -

80°C) of tissue samples, concluding that the effects of prolonged storage on Raman 

spectra was insignificant.
124

 Samples should also be snap frozen in liquid nitrogen to 

prevent formation of ice crystals. However there are reports in the literature which do 

suggest there are subtle peak of the amide I due to freezing of tissue samples.185 
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Chapter 3 Data Analysis 

This section summarises the techniques used for pre-processing data and subsequent 

chemometric techniques used for developing a classification model. The main emphasis 

is on techniques actually used in this study, but also touches on other competing and 

complementary techniques that will be investigated in the future.   

3.1 Data pre-treatment 

Where possible, raw data should be energy sensitivity corrected to account for CCD 

efficiency across the wavenumber range (see Section 4.4). Spectra are also interpolated 

to unitary wavenumber divisions since the spectral wavenumber values are determined 

by the positions of the CCD pixels.  

 

Data pre-processing reduces systematic and random errors in the Raman spectra.
186

 For 

single spectra, smoothing techniques such as the Savitsky-Golay filter, removes high 

frequency fluctuations. This is achieved by isolating low frequency fluctuations through 

fitting polynomial functions to a number of points around each spectral point.
 187

  

 

Normalisation eliminates differences in absolute intensity. Normalisation can either be 

carried out with respect to a well defined peak, but overlapping bands etc. can be 

problematic, or with respect to the total area. Another alternative commonly used is 

where the centred and normalised to a given variance (normally unity).
187

 

 

A common approach to standardise data is mean centring in which the mean of the entire 

dataset is subtracted from each individual spectrum. This also allows scaling of test 

datasets.187 
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The elimination of background signals is also problematic and this has been discussed in 

Section 2.3.4.2.  

3.2 Chemometrics 

3.2.1 Empirical analysis 

Empirical analysis includes calculation of difference spectra, peak assignment, absolute 

peak heights and peak ratios. Subtracting spectra is useful to give a general indication of 

the main differences between spectra. For example, subtraction of the mean normal 

spectra from the mean cancer spectra indicated shows a spectrum with peaks in the same 

position as glycogen showing that there is less glycogen in cancer samples as expected 

due to increased proliferation. Although this method is crude, it can be a useful starting 

point. Peak ratios take it one step further and several groups have developed successful 

classification models based on peak ratios. A commonly used peak ratio is 1651 cm
-1

 to 

1445 cm
-1

 (Amide I C=O stretch vs lipid vibrational mode CH2, CH3) which has been 

used on several sites, including the cervix,
140,113

 breast
131

 and bronchus
165

 to discriminate 

between normal and abnormal/malignant tissue samples.  The technique is simple and 

often used for feasibility studies. However, it is limited since it only takes into account a 

small region of the spectra, and complex biochemical changes would affect the entire 

spectrum. Although using more than one intensity ratio may improve this, a significant 

amount of spectral information is still wasted. Multivariate methods utilise the entire 

spectra enabling more subtle changes to be detected. 

3.2.2 Principal component analysis (PCA) 

Principal component analysis (PCA) forms the basis for multivariate statistical 

analysis.188  PCA is a data compression technique which removes collinear variations, 

variations in spectral features that arise from the same source, and retains only spectral 

features with independent variations.  The first principal component (PC) is such that it 

is representative of the highest variance in the spectral dataset; the second principal 

component is representative of the next highest variance. This continues until the 

principal components represent only noise. The principal component scores represent the 
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fit coefficient/weight of each PC. The most significant principal components can then be 

used to separate different groups. This is most easily visualized by plotting the scores in 

principal component space, although this is difficult in multiple dimensions.  

 

This is referred to as an unsupervised model since the process separates the groups with 

no prior knowledge of their classification.  

 

Many groups have used PCA for analysis and separation of Raman (and other 

vibrational) spectroscopic data.
50,132,138,189

 A model can be trained against a gold 

standard using linear discriminant analysis (LDA), for example by inputting pathology 

information.  

 

3.2.3 Linear discriminant analysis (LDA) 

LDA is referred to as a supervised method, since the model is generated with groups 

separated based on prior knowledge of the classification groups. The process of LDA 

maximises the variance between the different groups and minimises the variance within 

each group and creates a discriminant function which describes this. Many groups have 

used PCA fed LDA for separating different Raman spectroscopic tissue 

pathologies.
1,50,103,133,155,175 

The number of PCs (i.e. using the minimum) used for LDA is 

an important variable to prevent overfitting the data (fitting noise components etc.).  

 

Alternative chemometric techniques such as artificial neural networks are described 

below with regards to imaging, but these techniques can also be applied to point spectra. 

PCA and LDA are established techniques and as a result these are chosen for use in this 

study.  

3.3 Model validation  

Ideally, a model will be tested using an independent dataset. However, due to limitations 

with patient and sample numbers this is not always possible. Retaining a number of 

samples to generate an independent validation dataset means that the number samples to 
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produce the model training set is reduced, thus limiting the training model, which ideally 

will have as many samples/patients as possible. A method of overcoming this is leave-

one-out cross validation.  

3.3.1 Leave-one-out cross validation 

After a model is generated, it can be tested by removing one spectra (which may include 

all spectra from a sample/patient) and regenerating the model. The removed spectrum is 

then fed into the LDA classification model to determine the classification based on the 

new model. This is then repeated by removing each spectrum (again this may refer to all 

spectra from one sample/patient) in turn.  

 

This technique has been widely used for validating classification models in the other 

tissues,
133,155,192

, and oesophageal tissue.
1
  

3.4 Chemometrics for spectral imaging 

Univariate imaging (or functional group imaging) is one of the simplest forms of 

displaying biochemical information from a spectral image, however, multivariate 

techniques as described previously, utilise the entire spectra and all of the biochemical 

information contained within it.  

 

Principal component analysis has been applied by many groups for spectroscopic image 

processing of both Raman and FT-IR applications.148,181,190 The reader is referred to 

Raman textbooks for further details.
187

  

 

Hayden et al. investigated the effects of sampling parameters and compared for Raman 

line images using PCA, demonstrating that improved results were obtained using the 

higher magnification, concluding that this was due to an increased dataset size.
148

   

 

Principal component analysis has been used by many groups as an unsupervised method 

of data reduction to produce pseudocolour PC score images of Raman and FTIR spectral 

images.
148,182,190

 Various other forms of cluster analysis (Hierarchal cluster analysis, k-
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means cluster analysis, fuzzy C-means) have also been used as unsupervised methods of 

imaging for spectral imaging. 
175,178,191

 

 

Many groups have generated supervised multivariate tissue classification models using 

LDA based on spectra, or mean spectra extracted from Raman maps, however, few 

groups have taken the step to produce images from the classification results. Supervised 

methods include artificial neural networks (ANN),
138,191

 and LDA, although after a 

search of the literature, only one paper which uses (LDA) for Raman imaging could be 

found (based on an LDA model spectral averages from cluster analysis trained with 

histology).
192

 Mansfield et al. have reported the application of LDA for FTIR imaging of 

skin cancer,193 and Krafft et al. reported LDA applied to FTIR imaging of gliomas.194  

 

 

 

 

 



 - 53 - 

Chapter 4 Materials and methods 

The following chapter describes the materials and methods involved in a preliminary 

study carried out with the Visionex probe system for targeted biopsy ex vivo (described 

in Section 2.3.5) and how this model was developed, include trial of different 

preprocessing and the addition of consensus pathology.  Materials and methods for the 

Raman mapping (for automated histopathology) studies and also studies which impact 

both in vivo and ex vivo clinical applications of Raman spectroscopy are also included.   

4.1 Oesophageal tissue sample collection 

Informed written consent was obtained from patients undergoing routine upper 

gastrointestinal endoscopic surveillance of Barrett’s oesophagus, endoscopic mucosal 

resection (EMR) treatments and radical oesophagectomy. Ethical approval for this study 

was obtained from Gloucestershire Local Ethics Committee. 

 

Tissue samples were collected during EMR and oesophagectomy procedures. Both EMR 

and resected samples were approximately 1cm in diameter. In the latter case, samples 

could be obtained from disease free regions of the resected oesophagus. Biopsy samples 

have also been harvested during routine endoscopic surveillance, including a small 

number of jumbo biopsies, although these have not been used in this study. Samples 

were placed in a cryovial and immediately snap frozen in liquid nitrogen. 

 

Included in this preliminary study were 50 EMR and resected samples obtained from 39 

patients used in this preliminary study.  

4.2 Histopathology definition  

Pathology information was obtained from three expert pathologists specializing in 

gastrointestinal pathology, Prof. N. Shepherd, Prof. K. Geboes and Prof. Bryan Warren. 

However, this was not possible for all samples due to time limitations and pathologist 
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commitments. A comparison was made between the pathology diagnosis from each 

histopathologist and a consensus opinion and majority diagnosis determined.  

 

Samples were measured on fresh or defrosted samples. From the early stages of the 

study, following spectroscopic measurement, samples were formalin fixed after 

measurements, sectioned and stained with H&E for histological diagnosis. 

Subsequently, samples were snap frozen after measurement and frozen sections were 

then stained with H&E. This allowed the remainder of the sample to be retained for 

further spectroscopic measurements.  

 

For rapid Raman mapping, 15-20 µm tissue sections were cut onto calcium fluoride 

(CaF2) substrates which have a low background signal with only one Raman peak at 

~320 cm-1 which is outside of the finger print region (400-1800 cm-1). For these 

sections, consecutive 7µm sections were sectioned and stained with H&E for 

histological diagnosis. Furthermore, some frozen sections were stained with H&E to 

improve correlation of morphology and biochemistry of the Raman maps.   

 

Although only a low number of classification groups were used in this preliminary study 

due to the limited number of patients/samples, the pathologist provided a range of 

diagnosis from 9 classifications listed below, along with abbreviations. These could be 

then used in the future when the model is extended. Pathologists were encouraged to 

highlight uncertainty, in keeping with pathology criteria in which clinical samples are 

diagnosed as indefinite for dysplasia.  

 

• Normal squamous – NSq 

• Cardiac mucosa – CM 

• Fundic mucosa – FM 

• Intestinal metaplasia – IM 

• Low grade dysplasia – LGD  

• High grade dysplasia – HGD 

• Adenocarcinoma – Adeno 
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• Squamous dysplasia – SqDysp 

• Squamous cell carcinoma – SCC 

• Inflammation 

 

Further tissue groups were also identified for mapping sections which often contained 

submucosa  including: 

• Fibrous connective tissue 

• Smooth muscle 

• Lymphoid aggregate 

• Glands 

• Duct 

• Goblet cells 

• Nerve 

• Blood vessels 

• Laser damage 

• Fibrosis 

4.3 Wavelength selection 

As discussed previously, 785-830 nm is the ideal wavelength range of choice for Raman 

spectral measurements of biological tissue. 830 nm has been chosen as the wavelength 

of choice, supported by previous studies and commonly used by other groups.
108,138

 In 

general, two different types of Renishaw spectrometers were used in this study, one for 

probe based studies and a laboratory based microspectrometer for mapping experiments. 

These are discussed in detail below. Two model variations of these were used in 

preliminary studies, where relevant these are noted in the methods of that particular 

study. System calibration issues are discussed separately below.  
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4.4 Raman system calibration 

There must be a calibration to ensure that the conversion from channel number to 

wavenumber is reproducible. An intensity calibration is also required since there is 

wavelength dependence in the efficiency of the detector (due to filtration), efficiency of 

the gratings and quantum efficiency (QE) of the detector.
195

 Different calibration 

methods are listed below:  

 

• Offset calibration – Silicon is often used to monitor any shift in wavenumber 

since it gives a well defined single peak at 520cm
-1

. Although a quick and easy 

test, it does not check calibration across the entire wavenumber range.  

• Neon argon lamp – this can be used to test the CCD across the entire wavenumber 

range, however it requires that the laser light is blocked.
2,125

 A calibration 

standard which has Raman spectra peaks has advantages over neon argon atomic 

emission lines.
142

 Cyclohexane is also used locally (in combination with neon 

argon source) and by other groups since it does not require the laser line to be 

blocked. White light calibration (diffusely scattered by BaSO4) – this provides 

calibration traceable to national standards. Raman intensities can be corrected for 

wavelength dependent detector efficiency using the emission spectrum of a 

calibrated tungsten band lamp.
3,196

  

• Fluorescence –A recent paper by Etz et al. reports on a doped glass standard for 

relative Raman intensity calibration developed by the National Institute of 

Standards and Technology (NIST). However calibration is only carried out at one 

wavelength (785nm).197 Locally, green glass is used as secondary standard 

traceable standard which can be related to the calibrated white light source. 

 

The Raman systems within the department have been wavelength calibrated using neon 

argon atomic emission lines. The emission lines provide well defined bands within the 

wavenumber range of interest as described previously in Section 4.4. An example of 

three neon argon calibration spectra acquired using the probe system spectrometer can 

be seen in Figure 4-1. 
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For the probe system, the neon argon calibration was carried out when the system was 

initially set up. For the laboratory based spectrometers, this was also carried out, and 

additionally, neon argon spectra were acquired routinely before each spectral acquisition 

to monitor temporal changes, although the spectra are not used to calibrate the system on 

a daily basis, the data is merely stored in case retrospective correction is required. A full 

calibration is performed if the system is realigned or the laser is replaced.  
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Figure 4-1: Neon argon emission lines measured with the Renishaw RA100 spectrometer 

(three independent measurements (blue, cyan and green) acquired from Oct 2005 to July 2007  

Green glass is used as secondary standard (to an NPL calibrated tungsten lamp) for 

intensity calibration. For the laboratory based Raman systems, the green glass standard 

is measured using the x50 Leica objective (1s acquisition) prior to any tissue 

measurement Green glass correction is not required for mapping measurements since the 

data is only self-compared, i.e. data analysis is not carried out over weeks or months as 

tissue classification models are and thus drift in system performance is not an issue.  

 

Green glass calibration measurements were only carried out sporadically. A 1s 

acquisition was used for the probe system. Green glass correction was not deemed vital 

for the probe model since measurements were carried out in large batches so system drift 
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was not generally a problem, however replacement of the CCD and realignment did 

result in some issues which is discussed in Section 5.5. 

 

 

4.5 Methods – 1) optical biopsy 

The methods section has been constructed such that the heading numbering correlates 

with the relevant section in the results chapters. For example, the methods described in 

Section 4.5.1 can be found in section 5.1 and so on.  

 

Raman spectra were acquired from endoscopic mucosal resections (EMR) and resected 

tissue specimens using a Visionex probe (Gaser level 10, described previously in Section 

2.3.5). A diode laser (Process Instruments) with wavelength of 830nm was used for 

excitation, which was connected to the excitation fibre. The collection fibres (arranged 

in a linear array) were passed through a further laser line rejection filter and connected to 

a Renishaw RA100 spectrometer (Renishaw plc., Wotton-under-edge, UK). The 

Renishaw System 100 spectrometer is a simple design, shown in Figure 4-2. The 

collection fibres direct the Raman scattered photons via a lens, mirror, and grating, onto 

the CCD detector. The spectral resolution of the probe spectrometer is approximately 

15cm
-1

. 

 

Figure 4-2: Photograph of the Renishaw System 100 spectrograph  
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The spectrometer and spectral acquisition is controlled via GRAMS (Graphic Relational 

Array Management System), a 32-bit software package for collecting Raman spectra via 

the Renishaw spectrometers.  

 

The Raman probe was positioned vertically in a jig as shown in Figure 4-3. The sample 

was then placed on CaF2 on a z-translation stage. The sample was raised until in (gentle) 

contact with the probe. Prior to each spectral tissue measurement, the probe 

spectrometer was calibrated using a Si standard. A 1s acquisition time was used. If a 

spectral offset was detected (from the expected 520cm
-1

) position, a wavenumber offset 

correction was applied. For large offsets, the system was shut down and rebooted with a 

full system motor check and the wavenumber calibration process repeated. A tolerance 

of ±0.5cm
-1

 has previously been shown to be acceptable.
108

  

 

 

Figure 4-3: left) Photograph of the Visionex Raman probe and spectrometer, right) 

photograph of the Visionex probe, z-translation stage and substrate   

4.5.1 Raman probe background signal 

As described previously, reports in the literature state that current methods of 

background subtraction are unreliable. To investigate this further, the most widely used 

technique was tested which involves the iterative subtraction of a polynomial described 

by Leiber et al.
 198

  Considering the Visionex probe, a 5
th

 order polynomial is suggested. 

The technique was tested on a series of spectra acquired using the Visionex probe and 

Rensihaw RA100 spectrometer described above is 4.5. 
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An acquisition time of 4x15s was used for these measurements. Spectra from 96 samples 

were averaged into three pathology groups (defined by one expert pathologist). The 

mean spectra were compared before and after background subtraction. Artefacts due to 

the probe background and also from the background subtraction process itself are 

compared to results in the literature. The results can be found in Section 5.1 

4.5.2 Comparison of Raman probes 

A second probe for potential in vivo optical biopsy was obtained from Eric Marple, and 

is referred to as the Emvision probe. As described previously in Section 2.3.5.1, this 

probe has the same fibre set up as the Visionex probe, however the probe does not have 

the filters at the tip, nor the bevelled fibres which limits the collection volume/depth.  

 

It was not evident whether or not this probe would be suitable for in vivo diagnosis in the 

oesophagus and since there appears to be no evidence of its use in the literature. It was 

decided that an initial comparison would need to be carried out, firstly and most 

importantly to investigate the sampling volume.   

 

To compare the two different probes, depth profiles in air and water were measured, 

using diamond as the target sample. The Raman probes were held vertically in a jig. The 

sample was placed on a CaF2 substrate on a vertical translation stage. Initially, spectra 

were acquired in contact with diamond chip with an acquisition time of 1s. The stage 

was then lowered at 50µm intervals and a spectrum acquired at each position.  

 

The collection efficiency of the probes was determined using the magnitude of the 

diamond peak (with respect to the baseline), divided by the acquisition time and power 

at the sample. The power at the sample was measured using a calibrated power meter 

with optical diffuser.   

 

Depth profiles were also plotted, with the peak intensity, normalised with respect to the 

value at the probe tip. This was repeated for both probes in air and water. A comparison 

of the calibration standards was also carried out. Results of these measurements can be 

seen in 5.2 
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4.5.3 Preliminary three group Visionex model 

Previous measurements had shown that 4x15 s acquisition maximised counts and signal 

to noise ratio without CCD saturation so this protocol was adopted for all future tissue 

measurements using the Visionex probe system. 163 spectra were acquired from 50 

EMRs and resected samples taken from 39 patients, a break down of the pathology can 

be seen in Table 5-1. The biopsies were then formalin fixed, sectioned and H&E stained 

for pathology diagnosis. The pathologist classified the samples as 1 of 9 groups listed in 

Section 4.2.1.  

 

The majority of samples were snap frozen and defrosted before measurement, however 

some samples were measured fresh. Record was made of how the sample was stored 

prior to measurement and spectra analysed to assess the effects of fresh and frozen 

tissue. In addition, 6 of the samples were clinical samples (needed for diagnosis) and 

therefore measured fresh and the sample was subsequently put through the normal 

diagnostic route. PCA was used to investigate any subtle variation in spectra acquired 

from fresh and frozen sample, discussed and no evidence was found (see Appendix B). 

Clinical samples were put through the normal diagnostic route for patients undergoing 

routine surveillance for Barrett’s oesophagus, but the pathology report did not provide 

sufficient detail for this study and these samples have been excluded from the 

classification model. They were however used in a comparison of fresh and frozen tissue 

spectra.  

 

After each Raman spectrum was acquired, clinical biopsy forceps were used to localise 

and remove the region on the sample from which the Raman measurement was made to 

mimic the situation in vivo. The biopsy samples were then either formalin fixed or snap 

frozen (if required for further measurements). Subsequently, 7µm frozen sections were 

stained with H&E for histological diagnosis following standard H&E protocol. For the 

initial model, pathology opinion was obtained from one expert histopathologist. The 

tissue samples were large enough to allow multiple measurements to be taken from 

different regions. On average, three spectra were acquired from each, starting at one end 
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of the sample and working along, and thus on average three samples were obtained from 

each larger sample. These were treated independently since each has individual 

pathology diagnosis.  Initially, the idea was to correlate these probe measurements with 

OCT images taken from the same regions and also the gold standard histopathological 

analysis. However, this proved fruitless since the OCT images were not of sufficient 

quality and it was impossible to correlate pathology results from inhomogeneous 

samples. Furthermore, OCT images were acquired from distinct borders in the tissue for 

example on the edge of a lesion in an attempt to emphasise the differing appearance with 

tissue type, but this was sub-optimal for the Raman method since a homogeneous tissue 

sample is required for best results and correlation with pathology.  

 

Tissue inhomogeneity, due to the size of the biopsy samples used, was a problem. An 

attempt was made to overcome this problem by eliminating samples that were 

inhomogeneous with respect to the 3 group model, i.e. inhomogeneous samples were 

accepted providing the different pathologies present were all covered by umbrella of the 

three group definitions. This was applied between pathologists as well as within the 

samples, e.g. if one pathologist’s diagnosis was adenocarcinoma and the second 

pathologist’s diagnosis was HGD, the sample was accepted into the model and placed in 

the high risk group.  Conversely, if a sample was reported as containing both NSq and 

HGD, the sample was rejected. The pathology break down for the preliminary model 

based on the opinion of one pathologist is shown in Table 4-1.  

 

Table 4-1: Pathology break down based on the opinion of one pathologist for ALL samples 

measured in the preliminary Visionex study  

Pathology Number of samples/spectra 

NSq 11 

Barrett’s CM 14 

Barrett’s FM  5 

Barrett’s IM 16 

LGD 11 

HGD 23 

Adeno 18 

SqDysp 0 

SCC 0 

Discarded 65 

Total 163 
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Many samples were not used in the model since it is necessary to ensure models are 

trained with reliable groups and as a result, criteria for rejecting samples were relatively 

strict. Samples were discarded from the study if the sample only contained submuscosa 

(caused by sample accidentally being placed epithelial surface down), the pathologist 

was uncertain of the diagnosis, the sample contained mixed pathologies (i.e. not within 

the boundaries of the three group pathology model), or there was poor staining which 

prevented accurate diagnosis. A further two Barrett’s FM samples were rejected since 

spectrally, they appeared to be stomach samples (obtained from 

oesophagectomy/gastrectomy) with high lipid content. This resulted in a total of 96 

samples/spectra the following groupings for the preliminary Visionex probe model, as 

summarised in Table 4-2.  

 

Table 4-2: Pathology breakdown based on the opinion of one pathologist for samples using in 

the PCA fed LDA three group tissue preliminary Visionex probe classification model   

Pathology Number of samples/spectra Model Groups 

NSq 11 NSq (11) 

Barrett’s CM 14 

Barrett’s FM  3 

Barrett’s IM 16 

Barrett’s (33) 

LGD 11 

HGD 23 

Adeno 18 

Neoplasia (52) 

SqDysp 0 

SCC 0 

Discarded 67 

 

Total 163 96 

 

4.5.3.1 Data analysis  

Data analysis was carried out using Matlab and the PLS toolbox (Eigenvector 

Technologies, Manson, Washington, USA). Acquisition parameters described above 

minimised the occurrence of saturated spectra.  Cosmic rays were removed using the 

‘zap’ function in GRAMs. Further cosmic rays (detected using the multivariate analysis 

process) were removed in Matlab by linear interpolation of the regions either side of the 

cosmic ray.  
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Spectra were interpolated to 1 wavenumber per point. Spectra were normalised, 

smoothed (Savitzky–Golay filter with a 2
nd

 order polynomial and window of 21) and 

mean centred prior to principal component analysis. This was supported by previous 

studies within the group which also used these settings.
121

 This was repeated with and 

without background subtraction (normalisation following background subtraction in this 

case) according to the procedure and Matlab program by Leiber et al.
199 to investigate 

the model performance with different pre-processing steps. Iterations of number of PCs 

fed into the LDA model were carried out from 3PCs to 30PCs. The final model was then 

cross validated by methodically removing one sample (i.e. one spectrum) and 

recalculating the model. (See section 5.3) 

4.5.4 Visionex probe model following replacement of the CCD 

The above model was extended following the same methods described previously, but 

due to a CCD failure, and subsequent alignment issues, the models have been separated 

for clarity. These results can be seen in Section 5.4 

 

145 spectra were acquired from 145 samples obtained from 28 patients. This was 

reduced to 88 samples from 20 patients after rejecting samples and spectra according to 

the aforementioned criteria.  

 

Table 4-3: Pathology breakdown based on the opinion of one pathologist for samples using in 

the PCA fed LDA three group tissue Visionex probe classification model (following 

realignment after CCD replacement) 

Pathology Number of samples/spectra Model Groups 

NSq 19 NSq (19) 

Barrett’s CM 2 

Barrett’s FM  1 

Barrett’s IM 15 

Barrett’s (18) 

LGD 6 

HGD 9 

Adeno 36 

Neoplasia (51) 

SqDysp 1 

SCC 2 

Discarded 54 

 

Total 145 88 

 



 - 65 - 

4.5.5 Visionex combined model 

In order to maximise the size of the tissue classification model, methods of combining 

the two previously calculated models was investigated. This is also an issue which is 

significant for translation to a clinical environment since tissue classification models 

would need to be robust to changes in equipment and in particular for the probe, 

potential alignment issues which may occur as the spectrometer is transported in a 

theatre environment for example. Three different methods of combining the two datasets 

were compared. 

 

The combined dataset contained 184 samples/spectra from 59 patients.   

4.5.5.1 Combining the datasets without pre-processing 

A first step towards investigating this was to combine the raw data from both models 

and evaluate the subsequent tissue classification model. This was feasible since PCA fed 

LDA has been shown to be relatively insensitive to probe backgrounds so it was possible 

that variation in the background would not effect classification.  

 

The model was recalculated simply by combining the two datasets, both normalised, 

smoothed and mean centred. A PCA fed LDA model was generated using 15 PCs.  

4.5.5.2 Removal of probe background variation using PCs to independently 

reconstruct the datasets 

A further option is to reconstruct the dataset minus the artefact, in this case the probe 

background. In order to achieve this, PCA was carried out on the datasets independently, 

the probe background was identified in the PC loads and the date reconstructed minus 

the PCs in question. The two reconstructed datasets were then combined and PCA 

recalculated with 15 PCs fed into the LDA tissue classification model.  

4.5.5.3 Removal of the probe backgrounds using energy sensitivity correction 

The third option for combining the datasets is to use an energy sensitivity correction as 

described previously in Section 4.4. Green glass calibration standards were acquired as 

and when possible for the probe system. Mean green glass calibration spectra were 
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determined for pre and post alignment issue. The mean spectra were interpolated to the 

same wavenumber range as the tissue spectra. A ratio of the absolute (reference green 

glass) and the mean green glass calibration file is used to correct for the energy 

sensitivity of the spectrometer. The two different datasets were corrected with the ratio 

for the corresponding mean green glass correction. The datasets were then combined and 

PCA-LDA carried out using 15PCs. The results can be seen in 5.5.3.  

 

4.5.6 Short acquisition (4 s) Visionex probe model 

Whilst the above mentioned spectra were acquired with an acquisition time of 4x15s, a 

spectrum of each sample was also acquired using a shorter acquisition time of only 4s. 

The purpose of this was to demonstrate that diagnosis is potentially feasible in clinically 

practicable time frames. Results of this model can be seen in Section 5.6. Datasets from 

the preliminary and post alignment Visionex models were combined to maximise sample 

numbers since consensus (of three pathologists) pathology was used to train the 

classification model, which resulted in a high rejection rate of samples. A breakdown of 

the samples in each pathology group can be seen in Table 4-4.  

 

Considering the samples rejected after consensus pathology, the majority of 

disagreements were for neoplastic samples with 42 samples rejected. This was often due 

to pathologists failing to mention focal regions of other pathologies, e.g. Barrett’s or 

normal within the samples. 11 Barrett’s samples were also rejected, whilst only 2 NSq 

samples were rejected. In the latter case, the good agreement between pathologists with 

NSq samples is expected since identification is less subjective compared to different 

Barrett’s sub-types and neoplastic changes.  

 

Table 4-4: Pathology breakdown for the 4 s Visionex combined model trained with consensus 

pathology opinion from three expert pathologists 

  # samples correctly classified 

NSq 28 

Barrett’s 40  

Neoplasia 42 

Total 110 
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4.5.7 Single output fibre probe tissue classification model 

The custom built probe, which consisted of a single excitation fibre and single collection 

fibre, (with diameters of 62.5 µm and 105 µm, respectively) was connected to a custom 

built spectrometer with similar performance characteristics to the Renishaw System 100 

spectrometer used above. The probe, schematically shown in Figure 4-4, differs from 

other probes which generally rely on multiple collection fibres to increase collection 

efficiency. The probe contains a notch filter and fluorescence filter near the tip to 

remove elastically scattered light and reject background fluorescence signal.  

 

 

Figure 4-4: Schematic diagram of the single collection fibre probe 

 

Thirty spectra were measured from 30 homogeneous biopsy samples from 30 different 

patients with an acquisition times of 4x15 s and 4 s. The samples were placed on a 

vertical CaF2 and moved laterally until in contact with the (unpackaged) probe, which 

can be seen in Figure 4-5. 
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Figure 4-5: Experimental set up for the single collection fibre probe ex vivo 

 

The consensus histology diagnosis from three expert pathologists was used to train a PC 

fed LDA model (15 PCs, data normalised and mean centred). A breakdown of the 

sample numbers in each pathology group can be seen in Table 4-5. 

 

The consensus histology diagnosis from three expert pathologists was used to train a 

PCA fed LDA model.  

 

Background subtraction was not used for the PCA-LDA model, but was performed to 

enable comparison of spectra with the Visionex probe spectra.  

 

Spectra were also measured with shorter acquisition times (4s) to determine the 

feasibility for more realistic time scale Raman measurements. This was based on the fact 

that there was scope to improve throughput of the probe by a factor of 4, thus enabling 

1s acquisition times in the future.  

Table 4-5: Summary of the number of samples for each pathology group for the single 

collection fibre probe 

  # samples correctly classified 

NSq 13 

Barrett’s 8 

Neoplasia 9  

Total 30 
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4.6 Methods – 2) Rapid Raman mapping for potential automated 

histopathology 

The general construction of a Raman microscopy system has been described previously 

in Section 2.3. To summarise the system components for the microscopy systems used in 

the mapping studies.  

 

Typically, the core of the StreamLine instrument is a Renishaw inVia Raman 

microscope, although in these experiments Raman point spectra and maps were acquired 

using a customised Renishaw Raman System 1000 spectrometer coupled to a 

microscope fitted with a Leica x50 long working distance objective (NA 0.5). A diode 

laser with a wave-length of 830 nm was used with 70 mW at the sample (270 mW at 

source).  A dielectric coated edge filter is used to reject Rayleigh scattered photons, 

which have been found to have good long term stability.
121

  

 

A grating (300 lines/mm) was used to disperse the scattered light which was measured 

with a deep depletion charged couple device (CCD) detector. A peltier cooled deep 

depletion CCD was used. The spectral resolution of the probe spectrometer is 

approximately ~10cm
-1

. 

 

For mapping experiments, the sample is placed on an x-y translation stage which is co-

registered with spectral readout. The mapping system can work in three modes, as 

described previously in Section 2.5 – point, line and rapid (line) mapping. 

4.6.1 A preliminary study of rapid Raman mapping parameters 

To test the optimum objective lens for rapid Raman mapping a series of objectives were 

tested using a prototype rapid mapping system (785nm) at Renishaw Plc. The rapid 

Raman mapping system was only set up for use with a x50 objective. Two were 

available for use, the NPlan x50 and the Leica x50 long working distance objective. The 

Nplan objective is recommended by the manufacturer due to the higher throughput, but 

locally the Leica x50 objective has been used for tissue classification models and 

mapping since the objective does not have a glass background. The thickness of the 
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mapping section was chosen to maximise Raman scattered photons from the tissue 

section (whilst not taking the section beyond 1-2 cells thick). This was based on work 

carried out previously in the group.108,121,123  

 

Raman spectra were acquired using both spectra to compare the signal to noise for each 

objective. An acquisition time of 5 s was used. Raman maps (of NSq and FCT) were 

acquired using both objectives as a further comparison. The Nplan x50 objective  map 

was acquired with an acquisition time of 5 s, step size of 27.5 µm step size, and Leica 

x50 long working distance map was acquired with a 5 s acquisition time and step size of 

11 µm. The area of the 11 µm map was cropped to the same mapped area as the 27.5 µm 

map. Spectra were not normalised or mean centred in this case. It was decided that 

intensity variations may be relevant to pathology for mapping studies. The latter is also 

important for mapping studies containing large areas of CaF2 since this will dominate 

the mean spectrum.   

 

A 1200 lines/mm grating was available which provides improved spectral resolution 

over a shorter wavenumber range. This was tested by running a trial map a step size of 

6.6 µm and acquisition time of 30 s. The map dimensions were 141x111 spectra 

resulting in a total of 15651 spectra.  

4.6.2 Comparison or rapid Raman mapping with point mapping and line 

focus mapping 

Rapid Raman mapping as described in Section 2.5 utilises spatial separation of the CCD 

to achieve increased lateral spatial resolution. In theory, there should be no difference in 

signal to noise for different step size settings, since each spectrum is effectively made up 

of accumulations of the entire laser length. However, it was noticed that there was a 

slight reduction in signal to noise with decreasing step size. Although not significant, it 

was necessary to investigate this since it may be necessary to increase acquisition time 

for small step size maps to counter act the reduction in signal to noise ratio.  
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To evaluate this, repeated rapid Raman maps (line maps were used to reduce dataset 

sizes) were carried out on both Si and tissue with a constant acquisition time of 0.1 s and 

40 s respectively, with the step size varying from 52.8-1.1 µm.  

 

Mean map spectra were compared, along with individual spectra from the same position 

in the map. The signal to noise ratio (at 1000 cm-1) was determined, along with the 

signal to baseline ratio (at 1000 cm
-1

 and 1450 cm
-1

).  

4.6.3 Principal component analysis in combination with rapid Raman 

mapping for potential automated histopathology 

In this study, two samples from two different patients have been mapped. Due to the 

heterogeneous nature of the samples the pathologist annotated each sample with the 

various pathologies according to the list defined in Section 4.2. 

 

In the following experiments, the SNR was monitored for a range of maps methodically 

acquired with various combinations of acquisition time and spatial resolution parameters 

(step size). This study presents the results of this investigation and demonstrates that 

total mapping time for oesophageal biopsies can potentially be reduced to a clinically 

practicable timescale 

 

Repeated maps were carried out on tissue sections, methodically varying the spectral 

acquisition time and step size. There are several variables to take into consideration – for 

a constant area map, a higher resolution map (i.e. smaller step size) results in a larger 

number of spectra compared to a lower resolution map (i.e. larger step size) of the same 

area. The total number of spectra is an important consideration since the size of the 

dataset has an impact on the reliability of any multivariate analysis used. However, for a 

lower spatial resolution map the total number of spectra is reduced, thus the acquisition 

time can be increased to obtain higher quality spectra in the same overall time scale. The 

quality of the spectral dataset is also an important factor when attempting to identify 

subtle biochemical changes using multivariate techniques.  
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Acquisition times ranged from 0.1-20 s. For each acquisition time, the step size was also 

varied between 7.4-25.3 µm. The mapping parameters are summarised in Table 6-3. The 

total mapping time was limited to a maximum of 24 h since longer maps were not 

practicable. The total number of spectra in each map varied between 0.9x10
4
 and 

10x10
4
. The approximate mapping time using standard point mapping was calculated 

based on a CCD readout and XY translation delay of 1.65 s per spectra (1.2 s reported 

by Schlucker et al.
180

). This value was determined by running a map (traditional point 

map mode) with an acquisition time of 0.1 s, step size of 6 µm and calculating the delay 

according to actual map time minus the best case scenario map time (i.e. number of 

spectra multiplied by the acquisition time) and dividing this by the total number of 

spectra in the map. To account for the difference in Raman signal intensity for the rapid 

Raman spectra compared to point mapping (which varies with step size, in a similar 

manner to line mapping), the acquisition time used in the estimate of the overall point 

mapping time was scaled by a factor equal to the step-size divided by the length of the 

laser line. Including this scaling factor ensured that the advantage of rapid Raman 

mapping was not overestimated. 

 

Work has also been carried out elsewhere by Sasic et al., to investigate the effects of 

reducing the acquisition time (from 30 s to 3 s) with Raman mapping of pharmaceutical 

beads analysed using principal component analysis.
145

 In this and a previous study,
146

 

Sasic et al., used the relative standard deviation (RSD) to compare maps with varying 

degrees of noise within the raw spectra, but the effect of varying the size of the dataset 

was not considered. Since the performance of multivariate techniques improves with 

increased dataset size, the number of spectra within a map is an important variable to 

consider and this is the first paper to investigate the effects of this with Raman mapping.  

Krafft et al. also demonstrated that PCA could be used to evaluate low SNR data 

acquired from mapping single cells.
181

 However, the focus of this study was on the 

recovery of biochemical information rather than the implications of reducing the total 

mapping time. To date, little work has been carried out to investigate the effect of 

reducing the total mapping time on the data obtained from biological tissue samples. 

Many of these studies have used mathematically modelled noise rather than actual 

data.
144,145
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It is well known that larger datasets improve the performance of multivariate techniques. 

Subsequently it was hypothesised that sufficient diagnostic information, for screening 

out non-relevant samples, could be extracted from low SNR spectra providing that the 

dataset was sufficiently large. An initial trial experiment was carried out on a sample 

containing normal squamous epithelium to demonstrate feasibility, and results can be 

seen in Appendix C.  

 

Signal to noise (SNR) measurements were carried out on spectra measured on a 

relatively homogeneous tissue sample containing connective tissue and smooth muscle 

as diagnosed by an expert pathologist Figure 6-10. Further SNR and relative standard 

deviation (RSD) measurements were made using a sample containing circumferential 

normal squamous epithelium. To determine the optimum mapping parameters, the step 

size (and thus total number of spectra) was varied from 9.5-31.7 µm whilst optimizing 

the acquisition time to maintain a constant total mapping time of 4.5 h (Table 6-4). 

 

Data analysis was carried out using Matlab and the PLS toolbox (Eigenvector 

Technologies, Manson, Washing-ton, USA). Saturated spectra and cosmic rays were re-

moved by replacement with the nearest neighbour. Principal components (PCs) were 

calculated and pseudocolour PC score maps were generated. Any remaining cosmic rays 

appearing in the score maps were blanked out and the PCs recalculated so as not to 

distort the loads. The relative standard deviation (RSD) (the ratio between the standard 

deviation and the mean at a given peak position177) measured at the 1000cm-1 

phenylalanine peak, expressed as a percentage, was used as a measure of the SNR to 

enable comparison between the different maps. This technique was adopted since the 

SNR of the raw spectra was low making it difficult to determine accurately. The focus of 

the laser causes variation in the spectral intensity and SNR at the edge of the sample and 

in areas where the calcium fluoride substrate has been measured. To overcome this, a 

region 1/16th of the total map area was selected over the region of connective tissue for 

the RSD measurements. The area was kept constant for all maps to enable direct 

comparison. The RSD calculations were performed on normalised data to give an 

indication of SNR variation only. Spectra with saturations and cosmic rays were not 
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included in the RSD calculations. Although not directly attributable to the acquired 

spectra, the ‘signal to noise ratio’ (‘SNR’) of the principal component loads was also 

calculated at the 932 cm-1 peak (the strongest peak in the 5th PC load) to provide a 

relative comparison between the loadings for the different mapping parameters. This 

was done for the fifth principal component only. The fifth PC was chosen since the 

psuedocolour score map provided good correlation with the morphology of the H&E 

sections which was underpinned by good correlation biochemically with the PC load. 

 

This is the first study reporting rapid Raman mapping of biological tissue. Raman maps 

containing larger numbers of spectra (100,000+ spectra) of biological tissue are 

presented. There is only one paper in the literature reporting Raman mapping of 

oesophageal tissue,
123

 in which maps contained approximately 2000 spectra (see 

Appendix D for an examples), therefore, this study presents a significant improvement 

over map size and image quality (total number of spectra and spatial resolution) due to 

an increase in the size of the spectral dataset.  The effect of varying mapping parameters 

and the subsequent effect on the PCA is also shown, in particular the consequences of 

reducing the signal to noise ratio for such large datasets is investigated. This is also the 

first study to demonstrate that Raman mapping times for biopsies has reduced 

sufficiently to enable the technique to be used as a histological screening tool. 

4.6.4 Raman mapping and linear discriminant analysis to evaluate the 

importance of lateral spatial resolution for histology diagnosis  

As described previously, fresh tissue samples were immediately snap-frozen in liquid 

nitrogen and stored in a -80°C freezer until measurements were carried out. For each 

sample, a 15 µm frozen section was cut onto a CaF2 substrate for Raman spectral 

mapping, as previously described. A contiguous 7 µm section was obtained and stained 

with H&E for diagnosis by an expert gastrointestinal registry pathologist. Regions of 

connective tissue (smooth muscle (SM) and fibrous connective tissue (FCT)), normal 

squamous (NSq), Barrett’s (BO), low grade dysplasia (LGD), high grade dysplasia 

(HGD) and adenocarcinoma (Ad) were identified. Biopsy samples are typically 1-2 mm 

in diameter.  
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Mapped samples were also stained with H&E following Raman mapping to enable 

better correlation with morphological features. The diagnosis was verified on the 

mapped section H&E (on CaF2) by a second histopathologist. Two samples from two 

different patients have been mapped in this study.  

  

Raman maps were acquired using a customised Renishaw Raman System 1000 

spectrometer with StreamLine technology described previously in Section 2.5.3. 

 

An initial rapid pre-scan was carried out using a crude step size (26.4 µm) and short 

acquisition time (0.5 s). This allowed general morphological features to be visualised so 

that a region of interest could be identified. Further maps were acquired with step size of 

8.4, 4.2 and 2.1 µm with a 15 s acquisition time (to achieve spectra with good signal to 

noise ratio). It was decided that it was optimum to generate the tissue classification 

model using good quality spectra, with the prospect of reducing the acquisition times in 

the future based on results from the previous chapter.  

 

Cosmic rays and saturated spectra were removed, followed by PCA. However, in the 

case of these maps, data was normalised and mean centred since the PC components 

would be used to generate an LDA model. Raman maps are not normally normalised and 

mean centred since this makes identifying changes due to tissue thickness difficult to 

identify. Also, normalisation including CaF2 can bias the mean, especially if large areas 

of the substrate are mapped. However, since the spectra were to be later used in an LDA 

model (described below), of which CaF2 would be included as a group in the model this 

was deemed the best pre-processing protocol.  

 

Pseudocolour PC score maps were then generated as described previously. However, a 

novel method of displaying the PCs images was developed to assist with identifying 

different regions of pathology. The pixels of the Raman map were colour coded with the 

upper and lower extremes of the PC scores and those pixels falling into the central range 

of the scores were left transparent to enable the images to be overlaid. This represented 

the pixels/spectra with the most significant contributions from the positive and negative 

aspects of the PC loads, respectively. The corresponding PC loads were colour coded 
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accordingly to enable correlation of biochemical constituents from peaks within the PC 

loads with morphological information from the pseudocolour PC score image.  

 

Bhargava stated that “the effect of limited spatial resolution on data classification 

[FTIR] in not entirely clear.”
150

 In this study, Bhargava investigated the effect of low 

spatial resolutions (nominal step size). This study looks at the converse of this and 

investigates the effect of high spatial resolution on classification models, the effects of 

which are also unclear. This was not feasible for FTIR data, highlighting the advantage 

of Raman spectroscopic mapping.  

 

To compare the different step size maps, PC fed LDA was carried out (using the first 10 

PCs). Spectra were selected using the threshold process described above which 

highlights regions of pathology. Spectra were classified as either calcium fluoride 

(CaF2), tissue border (TB),
*
 high grade dysplasia (HGD), fibrous connective tissue 

(FCT) and luminescence (Lum). Spectra which ambiguously belonged to more than one 

group (either due to the fact that there are not distinct boundaries or the spectra found to 

have overlapping PC load contributions) were classed as ‘unknown’.  

 

Two PC fed LDA models were generated for each map. The first with the unknown 

group included as a separate group to investigate misclassifications within the LDA. For 

the second model, the unknown group was excluded from the model and subsequently 

projected onto the classification model as an independent test data set.   

 

To further test the tissue classification model, the number of spectra in the training 

dataset was refined with a stricter tolerance level on the threshold level which was used 

to select the spectra. A region of unknown spectra (i.e. test dataset) was also defined at 

the boundary of different tissue types.  

 

                                                 

*
 The idea of classifying pixels as border pixels was also used by Bhargava et al. in which they were 

referred to as boundary pixels and reported as a cause of misclassification.
150
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This was taken one step further by selecting small and well defined regions of each 

tissue pathology (and CaF2), with the remainder of the map projected onto the model as 

an independent test set.  

 

As an extension of this, two samples were stitched together to add further tissue 

pathologies and to test the classification between different samples. Small well defined 

regions of pathology were identified in the map using the threshold procedure. The 

remainder of the map spectra were used as an independent test dataset.  

 

4.6.5 Rapid Raman mapping as a research tool to elucidate biochemical 

changes associated with carcinogenesis 

Previous studies of rapid Raman mapping have investigated the limitations of the system 

with respect to clinical implementation of the technique. A further, additional benefit of 

the technique is the application of rapid Raman mapping to investigate subtle 

biochemical changes occurring in tissue which will help to support clinical 

implementation and help us to understand carcinogenesis processes.  

 

Oesophageal tissue sections were prepared as described previously. Rapid Raman maps 

were acquired of two samples containing Barrett’s mucosa. The first was acquired with 

an acquisition time of 60 s and step size of 1.1 µm and the second mapped with an 

acquisition time of 40 s and step size of 3.2 µm.  

 

PCA was carried out on the samples. The larger maps were cropped to focus on regions 

containing only Barrett’s glands to remove variance associated with other pathology 

types present in the sample. Peak assignments of the PC loads were carried out to 

investigate biochemical constituents.  
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4.7 Methods – 3) Factors limiting translation of Raman spectroscopy 

to the clinical environment 

4.7.1 Comparison of the Raman probe spectra and Raman microscopy 

spectra  

Previous work has been based on Raman microscopy systems ex vivo. To compare the 

two systems, Raman spectra from two cancer samples were measured using both the 

Visionex probe (4x15 s acquisition time) and the Raman System 1000 

microspectrometer (4x15 s acquisition time) with the x50 Leica long working distance 

objective.  

 

Spectra were normalised and plotted to enable comparison of the background and 

Raman peaks.  

 

4.7.2 Practical considerations 

Clinical implementation of Raman spectroscopy for histological diagnosis will require 

large scale clinical studies to validate methods and to develop large spectral libraries.   

In order to achieve this, optimum parameters must be determined to maximise collected 

data for both accuracy of diagnosis and widespread population and pathology 

representation.  

 

Highly accurate models are clearly fundamental. In a perfect situation, classification 

models will be infinitely large and comprising of high quality spectra. In a practical 

sense this is not possible and as with all medical techniques there are trade offs. 

Considering Raman probe applications for targeted biopsy and Raman mapping for 

automated histopathology, it is evident that this trade of is spectral quality vs. spectral 

quantity.  

4.7.2.1 Ambient light sources 

A range of ambient light sources were tested for peaks within the Raman spectral 

fingerprint region. This was in part rule out spectral contamination sources for 
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laboratory experiments (tissue classification models etc.) and also for prospective 

clinical implementation in a theatre environment.  Confounding factors are presented 

with recommendations for practical implementation both experimentally and in a 

clinical environment. 

4.7.2.2 The effect of ambient temperature Raman spectrometers 

The Visionex probe and microspectrometer have been described previously in Sections 

4.5 and 4.6.  

 

As described previously, the silicon peak (Si) is used to perform a wavenumber 

calibration. If the peak was not positioned correctly, an offset correction was applied. 

The system was switched on and allowed to stand for at least 30 minutes before 

measurements were carried out. This was to allow the system to stabilize since problems 

with Si peak position drift were encountered within this time.  

 

To investigate the effect of ambient temperature on peak position, the air conditioning 

unit setting was altered in 2ºC intervals ranging from 19 to 31ºC (the actual room 

temperature was also measured). Polymer spectra were acquired using two Renishaw 

System 1000 spectrometers (830 nm, 5 s, x50 objective) and a Visionex probe system in 

combination with a Renishaw System 100 spectrometer (830 nm, 30 s). Spectra were 

also acquired from a neon argon lamp (1 s). At each air-conditioner setting, the systems 

were allowed to reach temperature equilibrium for 2 hours. Peak positions were plotted 

against actual room temperature.  

 

A Raman map of the polymer standard was also acquired whilst ramping the 

temperature up from 19-28ºC using S1000 (1). A 2 mm square was mapped with a step 

size of 2 µm, with acquisition time of 2 s.   

 

4.7.2.3 Reproducibility and transferability 

One of the key areas currently limiting clinical implementation of Raman spectroscopy 

is reproducibility and transferability. Comparison of spectra between systems will be 
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vital for generating large tissue classification models in the future. These areas are 

investigated and potential methods for comparing systems suggested.  

 

4.7.3 The combination of chemometric analysis and Raman spectroscopy 

for pathology diagnosis – data quality versus data quantity 

To investigate this, the classification performance of different models was assessed from 

a perspective of practical clinical implementation, with the aim of determining optimum 

parameters for future clinical implementation studies. The number of pathology groups 

included, dataset size and spectral quality were considered. The overall experimental 

time and analysis time was also considered. 

4.7.3.1 Determining optimum parameters for large scale clinical trials 

The final step before clinical implementation is large scale clinical trials to validate 

techniques. Considering both the Raman probe and also Raman mapping, pitfalls are 

discussed and recommendations made for robust protocols.   
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Chapter 5 Results and discussion: 1) Evaluating 

Raman probes for potential in vivo optical 

biopsy 

5.1 Raman probe background signal 

The background subtraction process can successfully remove the large background, 

although as mentioned previously, the consistency of this method still requires further 

validation. A further area of concern is the broad spectral artefacts in the regions 600-

750 cm-1, 750-900 cm-1 and 1150-1230 cm-1, marked by an asterisk in Figure 5-1. The 

latter has also been identified in other studies using the Visionex probe and attributed to 

silica,
56

 although, the lower wavenumber region was not included in this study, the peak 

in the 750-900 cm
-1

  region is shown in one figure, although not mentioned in the paper 

itself. However, it is referenced one of the later papers.
141

 From measurements obtained 

in this group, it is believed the background signal may also be attributable to system 

alignment since the probe background has been seen to vary after realignment.  Further 

work is needed to investigate the sources of the background signal.  
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Figure 5-1: Mean spectrum (96 spectra acquired using the Visionex probe 4x15 s acquisition 

time) illustrating silica peaks marked with * 
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5.1.1 Background subtraction using iterative subtraction of fifth order 

polynomial  

An example of three mean spectra (taken from the preliminary three group Visionex 

probe model) can be seen in Figure 5-2. The mean background subtracted spectra 

(subtraction of a 5
th

 order polynomial)
199

 in each of the three classification groups 

(normal, Barrett’s and neoplasia) are shown in Figure 5-3. From the background 

subtracted spectra, it can be seen that more spectral peaks are evident. However, peak 

assignment with these spectra should be treated with caution due to silica spectral 

contributions and possible artefacts resulting from the background subtraction process.  
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Figure 5-2: Mean spectra from Visionex probe - Green (normal squamous), blue (Barrett’s) 

and red (neoplasia) 

Considering peaks common to each tissue groups at 1660 cm
-1

 (amide I), 1140 cm
-1

 

(CH2 and CH3 deformation), 1172cm-1 (C-N stretch, protein, hydroxyproline).  
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Figure 5-3: Mean spectra Visionex probe (background subtracted) for normal (green), 

Barrett’s (blue) and neoplasia (red) 

It is evident that the background subtraction process removes variation at the lower 

wavenumber regions and broad spectral background peaks are evident in the regions 

1150-1230 cm
-1

 and 750-900 cm
-1

, previously attributed to silica in accordance with 

literature. This reduction in the variance at lower wavenumbers using background 

subtraction is also evident in the mean centred spectra (see following sections). 

However, it remains unknown as to whether or not removing this variance is correct or 

even beneficial.  

 

Although it is useful to note that there is spectral information superimposed on the peak 

in the region 1150-1230 cm
-1

, other spectral peaks in this region could also be attributed 

to collagen/glycogen (shoulder at 1130 cm
-1

), tyrosine from protein, collagen 

(hydroxyproline)(1175 cm-1 and 1201 cm-1). This suggests that there is an increased 
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amount of glycogen in normal tissue, as expected, since glycogen is the cellular energy 

store which is used up in rapidly proliferating cells.
5
  

 

Peaks can also be identified in the amide I region (1653-1658 cm
-1

), CH2, CH3 

deformation (1446-1455 cm
-1

) and phenylalanine (1005 cm
-1

). Although, due to 

uncertainty regarding the background subtraction process it is difficult to draw any real 

conclusions from these peaks at this stage and more work is required in this area 

  

The peak at 493 cm
-1

 is tentatively attributed to glycogen, which appears to be narrower 

and shifted to the lower wavenumber range compared to Barrett’s and neoplastic mean 

spectra. However, background peaks have been noticed in this region when measuring 

thin tissue biopsy samples, which is potentially due to the substrate (CaF2). Although 

unlikely since the tissue samples are bulk tissue samples, 5-8 mm thick, without 

knowing the sampling volume (reported to be of the order of 500 µm in the literature
155

) 

some substrate contribution is possible since the optical properties of the tissue may vary 

with pathology for example considering the dense nature of tumour tissues, which 

potentially could be more optically opaque than normal epithelium. Potential 

contributions should not be disregarded since the investigation of the optical properties 

of tissue pathology is an active area of research in itself. To investigate the effects of 

sampling depth further, the depth profile of two different Raman probes were measured 

since sampling volume, based on the above mentioned details was considered an 

important parameter.  The results of this are discussed below.   

5.2 Comparison of Raman probes 

The first comparison of the Raman probes was their signal collection efficiency. Firstly, 

the power at the laser source, which was measured as 320 mW, was compared to the 

power measured at the probe tip. The power at the probe tips was measured to be 50 

mW and 25 mW for the Visionex and the Emvision probes respectively. The throughput 

of the excitation fibre for the Emvision probe was approximately half that of the 

Visionex probe. This agreed with previous measurements using an alternative 

connection fibre (to link the laser and excitation fibre for the probe), the power at the 
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probe tip was found to be 22 mW and 9 mW for the Visionex and Emvision probes 

respectively. In both cases there are considerable losses, although this is expected when 

working with fibre optics. This poor throughput for the Emvision probe is attributed to 

the fact the probe system alignment is optimised for the Visionex probe.  

 

Throughput of collection fibres is more important for collection efficiency 

considerations. The collection efficiency of the two probes was calculated using the 

height of the diamond peak with respect to the baseline and found to be 

3.4x10
4
counts/mW/s for both the Visionex and Emvision respectively. Therefore the 

probes have equal collection efficiency, but the Visionex returns higher single due to 

higher illumination powers with the current set up. There is scope for improving 

throughput as technology relating to fibre connections, and fibre optics is constantly 

improving.  

 

A key further consideration for Raman probe designs is sampling volume, as discussed 

previously. To recap, since precancerous changes occur in the epithelial layer, it was 

concluded that the sampling volume should not exceed 100-200 µm in depth to prevent 

significant spectral mixing with underlying stromal tissue. To briefly investigate the 

sampling depth, a study was carried out in which a diamond chip was placed at the 

bottom of a beaker of water. Spectra were acquired (1s) at 50 µm intervals. The resultant 

spectra for the Visionex and the Emvision probe can be seen in Figure 5-4. 
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Figure 5-4: Series of depth profile spectra of diamond in water using left: Visionex probe and 

right: Emvision A probe (first Emvision prototype probe) 
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It can be seen that there is a variation in signal intensity, and also background between 

the probes. This was in part accountable by the power output at the probe tip (discussed 

above. To enable better comparison, the ratio of the peak height (at the maximum signal 

intensity at the probe tip, i.e. 0 µm) was plotted against distance from the probe tip (in 

microns), as shown in Figure 5-5. The distance from the probe tips at which the intensity 

is reduced to half the initial intensity were found to be 150 µm and 280 µm in air for the 

Visionex and Emvision probes respectively. In water the half intensity depths were 

found to be 90 µm and 305 µm respectively.  
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Figure 5-5: The ratio of the peak maximum (at the 1332 cm
-1

 diamond peak) with the peak 

maximum at 0 µm distance from the Visionex probe in left) air and right) water. 

The results agree with the expected profile based on the delivery and excitation volumes 

described in Figure 2-8, since the signal intensity rapidly falls off with the Visionex 

probe compared to the Emvision probe. Also, considering the Emvision probe, the ratio 

rises above 1 at 50 µm from the probe tip indicating that the intensity at this point is 

slightly greater than that at the probe tip (i.e. 0 µm). This is also expected since, 

considering the collection and delivery fibres shown in Figure 2-8, there is a region for 

which, on the central axis, there is a volume for which there is no overlap between the 

collection and excitation regions. This is less so in the Visionex probe and not evident in 

the depth profile. The refractive index of water will affect the beam steering, which is 

the likely cause of why the beam steering is more affected).  
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This could also be due to issues with the experimental setup since Raman spectra from 

crystal lattices are known to be dependent on the angle of interface and since diamond 

was used as the Raman scatterer, this may account for the variation in intensity with 

distance from the diamond. The position of the diamond was kept constant for both 

experiments to minimise effects, but this cannot be ruled out. This potential void in the 

sampling volume may be significant for detecting precancerous changes in surface 

epithelial layers, so it was concluded that further work would need to be done in the 

future to investigate the sampling volume in more detail. One potential method of 

overcoming this problem was to introduce an offset to the Emvision probe tip. This 

offset would need to be reproducible, for example a physical barrier e.g. on the probe tip 

to create an air gap. Another option is to use calcium fluoride or quartz, substances 

which are commonly used as Raman substrates. However, in the latter case, work would 

need to be carried out to investigate the effects at refractive index boundaries, and also 

to investigate the optimum offset since to determine the thickness of the offset window, 

depth profiles would need to be measured using the offset material as a test medium. 

Offset windows are also likely increase background signals.166   

 

There are some other minor issues with the design of this experiment, including the fact 

that water does not mimic the scattering properties of tissue. Also, it was difficult to 

ensure that the diamond was on axis, especially at depth. It was decided that maximising 

the signal at each depth by adjusting the position of the diamond laterally was not 

feasible since that assumed maximum intensity was on the central axis. Lateral profiles 

would be required to confirm this.  Also, the depth profile appeared to vary with 

medium, as expected, since neither had the same scattering and attenuation properties of 

tissue quantification of the sampling volume and depth would have been fruitless. 

Generating a suitable scattering phantom with the same scattering and attenuation 

coefficients as tissue was not a trivial study in itself.  

 

Due to the number of points raised in this study it was concluded that significant work 

needed to be carried out on this area, which was beyond the scope of this thesis. As a 

result an MSc student took on the project to investigate these issues in more detail and 

investigations are ongoing.  
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As a simple test, the diamond chip was measured through an EMR sample which was 

estimated to be 4-5 mm thick. The diamond peak could be detected with both probes 

with an acquisition time of only 1s. Although diamond is an extremely strong Raman 

scatterer, and Raman signals from tissue constituents are not of the same magnitude, this 

demonstrates that Raman signals can potentially be detected at depth which will have 

implications for spectral mixing.  
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Figure 5-6: diamond chip measured through an oesophageal EMR (1 s acquisition) 

As discussed above, the sampling depth of the Emvision probe is greater than the 

Visionex probe. However, it has been found in a study by our group (results not 

published), supported by other reports in the literature,
200,201

 that there is a biochemical 

difference between stroma from normal and diseased regions.  

 

Based on this there is also an argument for using Raman probes with a larger penetration 

depth in combination with probes with a smaller sampling depth, but for tissue 

classification in both cases it is important to know which depths of spectral contributions 

so that spectral mixing can be accounted for. 
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5.2.1 A comparison of probes using calibration standards  

Calibration standards measured with the Visionex and Emvision probe illustrate that the 

background broad spectral peaks may not necessarily be attributable to silica since the 

spectral peaks are in different positions. They appear to be the effect of a broad 

luminescence background that is transmitted through the filters.  

 

However, this does imply that green glass correction may be a potential method of 

background subtraction since the background peaks may be specific to the broad probe 

background shape. A correction is made for the energy sensitivity throughput of the 

system using mean luminescence spectra measured from a green glass calibration 

standard measured at each spectrometer configuration.  The results of this are discussed 

in Section 5.5.3.  

 

Figure 5-7: Green glass calibration spectra for the Visionex and Emvision probe (Renishaw 

system 100 spectrometer), measured in contact, with a 1 s acquisition time. 
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5.3 Preliminary three group Visionex model  

5.3.1 Preliminary three group Visionex model with background 

subtraction   

No differences were noted between fresh and frozen samples as found by previous 

studies within the group.
108,121

 Background subtracted spectra acquired from the 

oesophageal samples with the Visionex probe were used to generate a PC (15PCs) fed 

LDA model. The LDA model was trained using the pathology diagnosis from each 

sample (which could be correlated to each individual spectrum). Samples were separated 

into three different pathology groups, defined as NSq, Barrett’s (including IM, fundic 

and cardiac Barrett’s) and neoplasia (which includes LGD, HGD, adenocarcinoma and 

SCC). Figure 5-8 shows the scatter plot of the linear discriminant (LD) scores, with the 

normal, Barrett’s and neoplasia represented by green, blue and red respectively. 
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Figure 5-8: Left) Scatter plot of LD1 vs. LD2 for the three group training (normal – green, 

Barrett’s – blue, neoplasia – red) right) Plot showing the percentage classified in each of the 3 

groups 

Separation can be seen between the three groups visually, although there is some 

overlap. This can probably be attributed to the fact that the sample numbers are small 

and the spectral differences are subtle due to the large probe background.  The overall 

training performance of the classification model is illustrated in Figure 5-8. Reasonable 

correlation can be seen between the Raman prediction and the pathology opinion. The 
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overall training performance was 76%. Sensitivities were calculated in the range 70.0-

100.0% and specificity in the range 84.1-91.8%. 

 

In addition to the relatively poor Raman signal (compared to microscopy based Raman 

spectra which were used to generate previous classification models), discrepancies can 

be attributed to the fact that there are not discrete steps in the progression to cancer and 

as a result, subtle changes between the spectra may cause spectra to be misclassified. 

Artefacts due to the background subtraction process may also cause problems.  

 

Furthermore, the pathology opinion, used to train the model is not a perfect ‘gold 

standard’ due to the difficulties in classifying samples based on morphology. Obtaining 

a consensus opinion will improve this. The number of spectra and % correctly classified 

is summarized in Table 5-1.  

 

Table 5-1: The number of spectra in each group and the percentage of spectra correctly 

classified for the preliminary three group PCA-LDA model with background subtraction 

 # spectra % correct 

Normal 11 (out of 11) 100.0 

Barrett’s 23 (out of 33) 70.0 

Neoplasia 39 (out of 52) 75.0 

Total  96  

 

It is evident that the number of spectra in each group is not balanced, with the number of 

normal spectra significantly lower than the Barrett’s and neoplasia groups. This is due to 

the fact that normal tissue samples are difficult to obtain (only available from patients 

undergoing the oesophagectomy procedure). It is also important to note that although 

these samples are defined as normal, they are harvested from normal regions of the 

oesophagus of patients who have advanced cancer in another region. For this reason, the 

normal results should be treated with caution since there may be subtle biochemical 

changes that are picked up in the spectra, but not in the histopathological diagnosis.  
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5.3.1.1 Interpretation of PC loads for the Visionex probe tissue classification 

model 

PC loads for the preliminary Visionex probe model (three groups) are shown in Figure 

5-9. 
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Figure 5-9: PC loads 1-6 for the preliminary Visionex probe (background subtracted) tissue 

classification model). 

The first PC load identifies the probe background. Further PCs identify biochemical 

constituents which enable the separation of the different pathology groups. General peak 

assignments indicate protein contributions (1005, 1453-1463, 1640 cm
-1

) and peaks at 

487, and 1089-1110 cm-1 which can tentatively be attributed to glycogen. The peak at 
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785 cm-1 could possibly be attributed to the strongest peak in the DNA fingerprint 

region.  

 

In general, peak assignments on the PC loads are difficult, especially for the probe 

spectra which are of poorer spectral resolution than Raman microscopy spectra.  

 

Of particular concern is the evidence of the probe background despite background 

subtraction. To investigate this further, the model was recalculated without background 

subtraction. 

5.3.1.2 Three group Visionex model – analysis without background subtraction 

The process was repeated without the background subtraction to check the effectiveness 

of the process. The overall training performance of the PCA-LDA model was 83.3% 

with sensitivity and specificity of 81.8-90.1% and 87.3-95.3% respectively. The results 

are summarised in Figure 5-10 and Table 5-2. 
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Figure 5-10:  left) Plot of LD1 vs. LD2 for the three group training model generated without 

background subtraction right) Performance of the classification model generated without 

background subtraction 
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Table 5-2: The number of spectra in each group and the percentage of spectra correctly 

classified for the preliminary three group PCA-LDA model without background subtraction 

 # spectra % correct 

Normal 10 (out of 11) 90.1 

Barrett’s 27 (out of 33) 81.8 

Neoplasia 43 (out of 52) 82.7 

Total 96  
 

An improved performance was demonstrated, which shows that the PCA-LDA process 

is sensitive enough to detect subtle biochemical changes despite the large fluorescence 

background, and perhaps is less of an issue than previously thought. These results also 

suggest that the process of background subtraction does not adequately remove 

background signal and accentuates silica peaks which could be potentially mistaken for 

spectral peaks relating to biochemistry. It is proposed that background subtraction 

should be not used for multivariate models without further validation. The benefit of the 

background subtraction, however, is that it clarifies the peaks used when determining the 

constituent components of the spectrum which further supports the model. The mean 

background subtracted spectra have been shown in Figure 5-3. However, if the 

background subtraction process is unreliable as suggested previously, the usefulness of 

this is in doubt.  Investigation of further techniques is required in this area.  

 

It is possible that the mean centring process acts to remove the background sufficiently 

since the background is actually contained within the mean spectrum. The plot of the 

mean centred spectra (Figure 5-11) highlights a possible problem at the low 

wavenumber region suggesting that the background is less consistent in this region.   
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Figure 5-11: Mean centred spectral data colour coded with pathology group 
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It is evident that there is significant variation at the lower wavenumber range (i.e. 450-

600 cm
-1

), likely to be caused by variation in the probe background. This indicated 

truncation to remove this region was potentially beneficial (as investigated in Section 

5.3.3. 

 

PC loads 1-6 can be seen in Figure 5-12 for comparison with the previously calculated 

model with background subtraction. In general, the background appears to be 

represented in PC load 1 and 2, with the remaining PC loads containing similar peak. 

 

Results suggest that background subtraction should not be used for PCA fed LDA tissue 

classification models, which is also supported by Shaver.187 Since an improved training 

performance was achieved without background subtraction, and it is advantageous to 

minimise data processing, especially if artefacts are introduced, it was decided that 

further models would be generated without background subtraction. To confirm this, 

model iterations were carried out varying the number of PCs used to train the model.  
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Figure 5-12: PC loads 1-6 for the three group preliminary Visionex probe model (without 

background subtraction) 

5.3.2 Assessment of the number of PCS for training model generation 

Figure 5-13 shows the overall accuracy for the preliminary probe tissue classification 

model trained with different numbers of PCs. The number of PC loads contributing to 

the model was increased from 3 to 30 and the model recalculated. This was repeated for 

both models with and without background subtraction. Similarly, the sensitivity and 

specificity ranges are also shown in Figure 5-14.  
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Figure 5-13: Overall accuracy of the three group preliminary Visionex PC-fed LDA model 

(trained with the pathology opinion from 1 pathologist) calculated for with (green) and 

without (blue) background subtraction 

0 5 10 15 20 25 30
40

50

60

70

80

90

100

min and max sensitiv ty  range

number of  PCs

s
e

n
s

it
iv

it
y
 (

%
)

with b/g subtraction

without b/g subtraction

0 5 10 15 20 25 30
65

70

75

80

85

90

95

100

min and max specif icity  range

number of  PCs

s
p

e
c

if
ic

it
y
 (

%
)

without b/g subtraction

with b/g subtraction

 

Figure 5-14: sensitivity range for the three group preliminary Visionex PCA-fed LDA model 

(trained with 1 pathologist opinion) – with background subtraction (green) and without 

background subtraction (blue) 

The overall training performance was generally higher without background subtraction. 

The sensitivity ranges were similar, whilst there was a slight improvement in specificity. 

This is a useful finding supported by Shaver who states that background subtraction of 

polynomials should be used with caution when used with multivariate analysis since the 

background subtraction routine can introduce large variance which can detract 

multivariate techniques from more subtle and real variance.
187
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5.3.2.1 Cross validation of the three group model 

Leave one spectrum (i.e. sample) out cross validation was carried out on the three group 

model generated without background subtraction. One spectrum was acquired from each 

sample, so leave one spectrum out is a reasonable test of the model. However, it must be 

remembered that more than one biopsy sample is harvested from each EMR, and 

furthermore, in some cases, more than one EMR is harvested from the patient, so leave 

one EMR out or leave one patient out would be a more rigorous test, and this will be 

carried out in the future once a consensus pathology opinion is obtained.   

 

The model performance dropped when leave one spectrum out cross validation was 

carried out, with only 70.0% of the spectra correctly classified compared to 83.3% 

previously. The main cause is limited sample numbers, in particular in the NSq group. 

Therefore further samples are required to validate the model. 

5.3.3 Trial model with the wavenumber truncation 

It is also noted that there is significant probe background below 800 cm
-1

 and reports in 

the literature
140,155

  suggest that this region should be excluded from the analysis. The 

model performance could potentially be improved by eliminating this region from the 

analysis, or possibly selecting regions of interest in the spectra. Since the only 

problematic region is below 600 cm-1 the spectra were truncated to this value. There was 

no improvement in training model performance, with an overall training performance of 

82.3% (based on 15PCs fed into the LDA model) with sensitivity and specificity of 

72.7-100% and 84.1-95.3% respectively.  The results are summarised below.  

 

Table 5-3: The number of spectra in each group and the percentage of spectra correctly 

classified for the preliminary three group PCA-LDA model without background subtraction 

and truncated to 600-1800cm
-1

 

 # spectra % correct 

Normal 11 (out of 11) 100.0 

Barrett’s 24 (out of 33) 72.7 

Neoplasia 44 (out of 52) 84.6 

Total 96  
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Figure 5-15: left) Scatter plot of LD1 vs LD2 and right) Performance for the three group 

training model generated without background subtraction and truncated to 600-1800 cm-1 

5.4 Visionex model (following CCD replacement) 

It is well known, as discussed previously that energy sensitivity correction is required to 

correct for CCD sensitivity across the wave number range of interest. In particular this is 

required to correct for alignment issues which alters the light collection path causing 

subtle variations in the energy sensitivity profile. It has also been touched upon that this 

will vary from system to system which introduces issues with transferability of data. The 

following applies within a system when the alignment is changed, for example following 

the replacements of a major component such as the CCD. The following results were 

acquired after a laboratory relocation and also CCD replacement on the Renishaw 

system RA100 spectrometer which is used in combination with the Visionex probe. 

Based on the calibration data (see Figure 5-24), it was possible to pinpoint the source of 

variation in the probe background to the CCD change and exclude the laboratory move 

as the source of the alignment change.  

 

In this model, a significant portion of the spectra were removed due to poor tissue 

staining and therefore uncertain pathology diagnosis, cosmic rays and also mixed 

pathology samples.  
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The initial model was generated including all samples to investigate the effects of mixed 

samples and cosmic rays on the model performance. The model performance was less 

than 70% with very poor sensitivity and specificity. Upon recalculation, with cosmic 

rays and mixed samples removed, model performance improved to 90.1% with 

sensitivity and specificity 89.5-94.4% and 92.9-100% respectively. This highlights the 

importance of filtering the training dataset before model generation.   

 

There were still misclassifications, but upon further investigation, these were two Nsq 

samples which were classified as neoplasia. These two samples actually came from a 

larger sample which also contained adenocarcinoma (1 pathologist reported this as 

mucin, the second reported as query cancer – these spectra were excluded from the 

model since pathology was uncertain.). However, spectra from the NSq regions of this 

sample were included since a definitive diagnosis was given (by two expert 

pathologists). 

 

Table 5-4: The number of spectra in each group and the percentage of spectra correctly 

classified for the three group PCA-LDA model without background subtraction following 

CCD replacement/alignment 

 # spectra correctly classified  % correct 

Normal 17 (out of 19) 89.5 

Barrett’s 17 (out of 18) 94.4 

Neoplasia 46 (out of 51) 90.2 

Total 88  
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Figure 5-16: Three group probe training model generated using the Visionex probe after 

system realignment  
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5.4.1 Cross validation 

The cross validation of the model resulted in an overall model performance of 86.4% 

with a sensitivity and specificity of 83.3-89.5% and 89.2-97.1% respectively. The scatter 

plot is shown below in Figure 5-17. This model was more robust, most likely to be due 

to the higher sample numbers in the NSq group.  
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Figure 5-17: Cross validated (leave one sample/spectrum out) for the three group Visionex 

probe training model generated with 15PCs 

5.5 Combined Visionex probe model (pre and post CCD 

replacement/realignment) 

5.5.1 Combining the datasets without processing to remove variation in 

background 

The combined dataset consisted of 184 spectra obtained from 184 biopsy samples from 

59 patients. A three group LDA model generated based on the histology diagnosis from 

one expert histopathologist (Prof. N. Shepherd). The three pathology groups were 

defined as Normal squamous, Low Risk (Barrett’s and Low Grade Dysplasia (LGD)) 

and High Risk (High Grade Dysplasia (HGD) and cancer). The results can be seen in 

Figure 5-18 and summarised in Table 5-5. The overall performance of the classification 

model was 72% with a sensitivity and specificity of 78.4-83.3% and 83.5-96.1% 

respectively. The majority of misclassifications were between LGD and HGD in the 

Low risk and High risk groups.  
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Figure 5-18: LDA classification model trained using the pathology opinion of 1 expert 

pathologist for the combined (pre and post alignment) Visionex probe 

Table 5-5: The number of spectra in each group and the percentage of spectra correctly 

classified for the combined (pre and post alignment) three group PCA-LDA model without 

background subtraction  

 # spectra correctly classified  % correct 

Normal 25 (out of 30) 83.3 

Barrett’s 40 (out of 51) 78.4 

Neoplasia 82 (out of 103) 79.6 

Total 184  
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Figure 5-19:left) Mean centred spectra for the combined dataset without pre-processing to 

remove probe backgrounds (colour coded for pathology group (NSq – green, Barrett’s – blue 

and neoplasia – red), right) mean spectra for each group background subtracted  
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5.5.2 Removal of probe background variation using PCs to independently 

reconstruct the datasets 

A further option is the removal of the PCs relevant to the CCD background by 

performing PCA on the separate models, identifying the relevant PC, removing this PC 

and reconstructing the dataset from the PC scores and PC loads. The two different 

datasets, could in theory then be recombined and PCA re-run in the absence of the 

background PCs.  
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Figure 5-20: Three  group Visionex tissue training classification model generated using data 

combined from before and after CCD replacement, with the background PCs removed  

Table 5-6: The number of spectra in each group and the percentage of spectra correctly 

classified for the preliminary three group combined (pre and post alignment) PCA-LDA 

model with the background PCs removed 

 # spectra correctly classified  % correct 

Normal 25 (out of 30) 83.3 

Barrett’s 34 (out of 51) 66.7 

Neoplasia 76 (out of 103) 73.8 

Total 184  

 

The model performance was 73.4% with a sensitivity and specificity of 67.6-83.3% and 

83.5-90.9% respectively. 
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Figure 5-21: Mean centred spectra for the combined dataset reconstructed without 

background PCS (NSq – green, Barrett’s – blue and neoplasia – red) 

5.5.3 Removal of the probe backgrounds using energy sensitivity 

correction 

As discussed previously, green glass calibration data had not been acquired routinely, 

however after analysis of all of the green glass calibration data acquired over the three 

years, it was evident that there was very little change from month to month and two 

distinct groups were clearly visible correlating with alignment variation which coincided 

with the CCD change.  It was deemed sufficient to average the green glass correction 

files for both before and after the CCD change and use a generic correction file to 

correct each separate batch of spectra.  
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Figure 5-22: green glass calibration spectra (normalised) before and after system alignment 

problems following replacement CCD 
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Figure 5-23: white light correction function (ratio of white light energy sensitivity function 

and the green glass calibration mean spectrum)  

Figure 5-24 shows the two different datasets corrected using the green glass calibration 

mean spectrum. Although, general background is corrected, ripples are still evident and 

furthermore, there is still an obvious split in the dataset at approximately 900cm
-1

.  
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Figure 5-24: Green glass correction of the probes datasets before and after realignment 

following CCD replacement  
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Figure 5-25: Three group PCA fed LDA scatter plot for the green glass corrected training 

model (pre and post alignment following CCD replacement)  
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5.6 Short acquisition (4 s) Visionex probe model 

The Visionex model was re-generated with consensus pathology from 3 expert 

histopathologists (110 samples in total). Figure 5-26 shows the scatter plot and bar graph 

indicating the number of classifications and misclassifications. Model performance 

improved with consensus pathology opinion to train the model with an overall 

performance of 82%. The sensitivity and specificity were 77-86% and 87-95% 

respectively. The number of correctly classified samples is summarised in Table 5-7. 

 

Figure 5-26: LDA tissue classification training model for the Visionex probe (4 s) 

Table 5-7: Tissue classification training model for the Visionex probe (4 s) 

  # samples correctly classified % correctly classified 

NSq 24 (out of 28) 86% 

Barrett’s 31 (out of 40)  78% 

Neoplasia 35 (out of 42 ) 83% 

Total 110  

 

5.7 Single output fibre probe tissue classification model 

Comparing the collection efficiency by measuring the silicon standard peak at 520 cm
-1

 

the single-fibre probe performed better than the multi-fibre Visionex probe (163 

counts/mW/s and 74 counts/mW/s respectively). 
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The results from the novel single output fibre probe are also promising. The 4x15 s 

classification model (trained with consensus pathology) was able to discriminate normal, 

low risk and high risk with an overall performance of 90% with a sensitivity and 

specificity of 85-100% and 95-100% respectively.  

 

 

Figure 5-27: Classification model for the single output fibre probe (4x15 s) 

Table 5-8: Tissue classification model for the single output fibre probe (4x15 s)  

  # samples correctly classified  % correctly classified 

NSq 11 (out of 13) 85 

Barrett’s 7 (out of 8) 88 

Neoplasia 9 (out of 9) 100 

Total 30  

 

Model performance of the single probe indicate that it is comparable with the multi-fibre 

Visionex probe, although sample numbers are very low, this produces an indication of 

similar future performance compared to the Visionex probe. 

 

The results from the 4 s model were also promising with an overall model performance 

of 86% with a sensitivity and specificity of 86-88% and 88-100% respectively. Four 

seconds was chosen since optical components had not been optimised and it was thought 

to be possible to increase throughput by a factor of 4 leading to a potential sampling 

time of 1 s in the future. A comparison of raw and background subtracted tissue spectra 
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is shown below illustrating a reduction in background artefacts with the single fibre 

probe compared to the multi-fibre Visionex probe. The large background from the multi-

fibre Visionex probe dominates the spectrum, whilst for the single fibre probe more 

tissue spectral peaks are evident. Comparing the silicon standard peak at 520 cm
-1

 the 

single-fibre probe performed better than the multi-fibre Visionex probe (163 

counts/mW/s and 74 counts/mW/s respectively). This may be attributed to the beam 

steering since there is no penetration of 830 nm light in Si.  

 

Figure 5-28: Comparison between Visionex probe spectra and single output fibre probe 

spectra acquired with an acquisition time shown in brackets. The top spectra are raw spectra, 

the bottom spectra are background subtracted (5
th

 order polynomial)  

Although the Visionex probe has been shown in this study and others to successfully 

classify pathologies,158,202 a smaller probe with a reduced background Raman signal 

would be more suitable for in vivo diagnosis in the oesophagus, further more the 

Visionex probe is no longer manufactured and thus an alternative is required. Initial 

results from the single-fibre probe are encouraging, the sample size is small (30 samples 

from 30 different patients) and a larger study with more samples and patients is required 

to further validate the model. More samples will enable separation of a greater number 

of pathology groups. The sampling depth of the single-fibre probe is less than the 

Visionex probe and as a result should ensure that there is no spectral contribution from 

underlying stroma. Further work is required to verify this. Cross validation needs to be 

carried out to ensure the classification models are robust. Development of a large 
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consensus pathology model using the optimised design of the single-fibre probe is now 

required before in vivo use.  

 

Cross validation was not carried out for this model since limited sample numbers did not 

permit this.  

5.8 Summary 

These results have shown that the Visionex probe can successfully discriminate three 

oesophageal pathology groups ex vivo with good sensitivity and specificity in a cross 

validated PCA fed LDA model. It was concluded that the current version of the 

Emvision probe was not suitable for oesophageal applications due to the large sampling 

depths, since as described previously, probing the superficial layers (~200 µm) will be 

most beneficial for detecting the earliest pre cancerous changes. As a result, the 

Emvision probe was not pursued for further investigation, however, the Emvision probe 

may have a role in detecting deeper cancers or with adaptation by the addition of an 

offset window for detecting more superficial pathologies. The novel single collection 

fibre probe proved to have potential with a resulting classification performance 

comparable with the Visionex, although a further large scale model is required in the 

future.   

 

In summary, Raman probes (Visionex and novel single collection fibre) have been 

shown to have potential for biopsy targeting ex vivo and that improvements in the single 

output fibre design could result in further improvements. This implies that further time 

and effort should be invested in large scale in vivo trials once relevant modifications to 

the probe and housing have been carried out to make it suitable for in vivo use (i.e. C.E 

marking etc.).  

 

In the future, targeted biopsy could be taken to the next step and provide in vivo 

diagnosis. This would have significant implications to clinical practice since in vivo 

diagnosis would allow immediate treatment at the time of diagnosis, resulting in reduced 

trauma to the patient since only one endoscopy session would be required, and would 
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also alleviate the stress of waiting for histology diagnosis. The results of this study can 

also be extended to other treatment sites, in particular other epithelial tissues which often 

follow the same route of carcinogenesis.  This could also lead to a significant reduction 

in cost to patient surveillance programs by minimising the number of biopsies requiring 

detailed processing and histopathological analysis.  

 

The classification model performance is consistent with published results using similar 

probes. Perhaps a two group model is more clinically realistic since this could be set at a 

level which reflects the clinical borderline between surveillance and opting for 

treatment. Biochemically, there is no foundation for merging Barrett’s and NSq and this 

is potentially a source of error and should be avoided. Thus, as sample numbers permit, 

separation into more groups is likely to be more advantageous for improving 

classification performance rather than grouping dissimilar pathologies to bolster group 

numbers.    
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Chapter 6 Results and discussion: 2) Evaluating 

rapid Raman mapping for potential 

automated histopathology 

6.1 A preliminary study of rapid Raman mapping parameters 

Before the rapid mapping system could be used to its full potential, the system needed to 

be fully tested and evaluated. System parameters which needed investigation included 

the objective used (see section 6.1.1), grating selection (Section 6.1.2), signal to noise 

ratio (Section 6.1), step size and acquisition time (Sections 6.1-6.4). The substrate and 

thickness of tissue sections is also a consideration, and these were determined based on 

previous work within the group which concluded 15-20 µm sections on CaF2 were 

optimum for Raman mapping.
108,121,123

 Optimum system parameters also needed to be 

determined for future mapping studies and a potential large scale clinical mapping study.  

6.1.1 Determining the optimum objective for rapid Raman mapping 

A comparison of the two objectives was carried out and example spectra acquired with 

an acquisition time of 5 s can be seen in Figure 6-1.  
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Figure 6-1: Raman spectra of connective tissue acquired using the prototype rapid Raman 

system (line focussed) at Renishaw Plc. (785 nm) with an acquisition time of 5 s – Nplan 

(green) and x50Long working distance (blue). An arbitrary offset has been applied since the 

spectra overlap 

The Nplan x50 objective was recommended by the manufacturers but it was concluded 

that the signal to baseline ratio, and signal to noise ratio were comparable and as a 

results the Leica long working distance x50 objective was chosen since the reduction in 

the glass background was considered a significant advantage. Furthermore, peak 

assignment discrepancies due to the glass background present for the NPlan objective 

was also considered to be a potential problem for future tissue classification. 

 

As an additional comparison, both objectives were used to obtain maps of a normal 

squamous epithelium island within Barrett’s oesophagus.  Raman maps were acquired 

with an acquisition time of 5s. Two different step sizes were used to ensure maps fitted 

into the allocated time slots available for the system. The pseudocolour PC score maps 

and corresponding PC loads (PCs 1-4) are shown in Figure 6-2. PC score images and 
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loads for PCs 5-8 can be seen in Appendix E. At the time of the mapping experiment the 

differences in signal to noise with varying step size/dataset size was not known (see 

following section for further details), but despite the difference in step size, it is still 

evident that there are background peaks evident in the PC loads (PC 1, 2 and 4),
†
 and 

although other PC loads are similar, the objective background signal will make fitting 

biochemical constituents to the data difficult and also prevent comparison with previous 

tissue classification models. These results confirm that the Leica x50 long working 

distance objective is optimum for future Raman maps for potential automated 

histopathology. 

 

 

                                                 

†
 Recall that the maps were not mean centred, therefore the first PC load represents approximately the 

mean spectrum. 
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Figure 6-2: PCs 1-4 for comparison of maps acquired with the Nplan x50 objective, 5 s, 27.5 

µm step size (left) and Leica x50 long working distance objectives, 5 s, 11 µm step size (right) 

Note that PC3 and PC4 for the Leica x50 objective, the colour bar is inverted and thus the PC 

load is also inverted  
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6.1.2 Rapid Raman mapping with high spectral resolution 

An example map of a region of normal squamous epithelium mapped with the 

1200lines/mm grating is shown in Figure 6-3. The wavenumber range was centred at 

1100 cm
-1

. The overall map time was approximately 15 hours.  

 

Briefly, subtle biochemical variations are evident with what appears to by glycogen and 

protein peaks dominating the PC loads, however as previously mentioned this is 

inconclusive without the remainder of the fingerprint region. 

  

Although initial results were promising it was difficult to attribute biochemical changes 

based on only a portion of the spectra fingerprint region. 

 

Figure 6-3:An example of a rapid Raman map of NSq epithelium acquired with a 1200 

lines/mm grating, x50 NPlan objective, 8.8 µm step size and 30 s acquisition time 

 

Figure 6-4: PC1 load (corresponding to pseudocolour PC score map in Figure 6-3), and mean 

regions 1 and 2 illustrated in Figure 6-3 
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Tentative peak assignments show that the main component separating the two regions is 

the glycogen, see peaks at 936, 1083 and 1127 cm
-1

. However, this is difficult to confirm 

with the limited wavenumber range. Furthermore, collagen peaks in this wavenumber 

region (931-940, 1003, 1048 cm
-1

) are very similar to glycogen, making this difficult to 

confirm. The peaks at 1003 and 1030 cm
-1

 could also be attributed to other protein 

structures other than collagen. A combination of the above mentioned constituents is 

likely.
201

  To iterate this point, Figure 6-5 shows the similarities of glycogen and 

collagen IV in this spectral range. Identification of unique peaks (in this example) for 

glycogen at 492 cm
-1

 and for collagen at 1381 cm
-1

 would help biochemical analysis. 
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Figure 6-5: Comparison of (normalised) glycogen and collagen spectra (as shown previously, 

measured with the 785 nm  

 

There is obviously the potential to repeat maps with the wavenumber range centred at 

different regions and subsequently stitch together retrospectively to form a larger 

wavenumber range. This is feasible for applications in the research laboratory (discussed 
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further in Section 6.5), but it is likely that this would be technically demanding and time 

consuming for application in the clinical environment. CCDs are available which enable 

high spectral resolution Raman spectra over a wider wavenumber range which may 

improve tissue classification for Raman mapping and as technology becomes cheaper 

this may become feasible.  

 

It was concluded that future measurements would be carried out using the 300 line/mm 

grating since this spectral resolution has been shown to be sufficient for the separation of 

9 pathology groups by Kendall et al.
1
  

 

A comparison was also carried out with mid-IR absorption spectroscopy, the results for 

which can be seen in Appendix F. 

6.2 Comparison of rapid Raman mapping with point mapping and 

line focus mapping 

6.2.1 Comparison of rapid Raman map spectra with line focus spectra 

Rapid Raman mapping provides a significant time advantage over traditional point and 

line focus mapping techniques as confirmed later in Table 6-3. However, for 

completeness, these rapid line maps were compared to traditional line focus mapping 

(described previously).  

 

Considering the raw spectra there appeared to be degradation in the quality of the rapid 

Raman spectra compared to point Raman spectra. To investigate the sources of 

discrepancy, a 40s rapid Raman map spectrum was compared to a point spectrum, line 

map (high spatial resolution line map co-added), as shown in Figure 6-6. The signal to 

baseline ratio and magnitude of the peaks at 1000 and 1450cm
-1

 are shown in Table 6-1.  
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Figure 6-6: Spectrum extracted from a 40 s rapid Raman map (52.8 µm step size), 40 s point 

spectra, co-added line map (individual spectra from 1.1 µm spatially separated line map (1 

laser length) co-added to simulate a point spectrum)  

Table 6-1: Signal to baseline ratio and magnitude of the peak height at 1000 and 1450 cm
-1

  

 Signal to baseline 

ratio (at 1000 cm-1) 

Magnitude  (at 

1000cm-1) 

Signal to baseline 

ratio (at 1450 cm-1) 

Magnitude (at 

1450 cm-1) 

Point spectrum 1.3 1431 1.6 1685 

Line map (high spatial 

resolution co-added) 1.3 1574 1.6 1728 

Spectrum extracted from rapid 

Raman map 1.2 748 1.5 968 

     

 

 

There is good agreement between the co-added line spectrum and the point spectrum, 

visually and considering the magnitude of the peaks (Table 6-1), but there is a reduction 

in intensity of the rapid Raman map spectrum. This appears to be an intensity reduction 

since both the magnitude of the peak and signal to baseline ratio are reduced.  

 

It is difficult to determine the origins of this discrepancy without access to in depth 

software and system settings and the difference was reported to the manufacturer. It is 
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expected that the Raman signal and background increase with acquisition time and that 

the signal to noise ratio improves according to the square root of n, due to the shot noise 

dependence. Therefore it is expected that for small step sizes, which are effectively 

spectra made up from additive multiple accumulations across the length of the laser line, 

the spectra would have a poorer signal to noise compared to spectra acquired using the 

entire laser length. In theory, the total intensities should be equal to that of the entire 

laser line, just split over multiple pixels. However, in this study there appears to be a 

reduction in signal intensity. From a research point of view it is sufficient to 

acknowledge the presence of this increased background and make suitable allowances to 

account for this when performing rapid mapping experiments.  

6.2.1.1 Results – variation in signal to noise for rapid Raman line maps with step 

size 

Figure 6-7 shows typical spectra extracted from the centre of each rapid Raman line 

maps (line maps i.e. only one column of spectra with the centre spectrum halfway 

vertically in the map). Visually, there was a slight deterioration in SNR with extremely 

small step sizes (i.e. 3.2, 2.1 and 1.1 µm) but also a reduction in background. To 

quantify this, the signal to baseline, a method also used by Hayden et al., was 

determined to quantify this and the results are summarised in Table 6-2.   
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Figure 6-7: Spectra extracted (from the same positions) from rapid Raman maps acquired 

with different step sizes. The step size is shown to the right of each spectrum 

The signal to baseline ratio (defined as the peak height divided by the average of the 

troughs either side of the peak, taking into account any noise present) was used as a 

comparison between the spectra since this eliminates variation in signal background. 

The overall magnitude of the signal was also considered along with the signal to noise 

ratio, although this quantity is difficult to quantify accurately for good and poor quality 

spectra. The SNR of the spectra were expected to decrease with decreasing step size 

since fewer CCD pixels were binned. Since it appeared, that the baseline signal was also 

increasing along with the Raman signal, spectra were also normalised and re-plotted to 

investigate whether or not normalisation was sufficient for eliminating background to 

enable direct comparison of the spectra. This is more evident in the normalised and 

offset plot shown in Figure 6-8.  
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Figure 6-8: Central spectra from the rapid Raman line maps (normalized and plotted with an 

arbitrary offset)  

Since each of spectrum is effectively an accumulation of the entire laser line length, the 

overall signal from a set of spectra spanning the length of the laser line should be 

equivalent to that from a single spectrum acquired using the entire laser profile, but as 

shown in the previous section, there is a slight discrepancy.   

 

Table 6-2: Signal to noise ratio (at 1000 cm
-1

)  and signal to baseline ratio (at the 1000 cm
-1

 

and 1450 cm
-1

) for the series of rapid line maps acquired with varying step size and 

acquisition of 40 s 

Step  

size 

Map 

dimensions 

Signal to noise ratio (at 

1000 cm-1) 

Signal to baseline ratio (at 

1000 cm-1) 

Signal to baseline ratio (at 

1450 cm-1) 

1.1 1 x 1000 5.1 1.09 1.19 

2.1 1 x 501 6.7 1.10 1.20 

3.2 1 x 335 9.1 1.11 1.21 

4.2 1 x 253 11.7 1.11 1.21 

5.3 1 x 203 16.2 1.11 1.21 

6.3 1 x 170 17.8 1.11 1.21 

12.7 1 x 86 25.0 1.11 1.21 

25.3 1 x 44 34.5 1.11 1.19 

52.8 1 x 22 35.5 1.09 1.19 
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It is evident that there is little difference in the signal to baseline ratio with step size, 

however, there does appear to be a slight reduction in the signal to baseline for small 

step sizes (below 3.2 µm), although to 1 decimal place, there appears to be no variation. 

This confirmed that taking the mean of a larger number of spectra counteracts the slight 

degradation in signal to noise with decreasing step size. This data was based on line 

maps acquired with rapid Raman mapping technology, but when mapping rectangular or 

square maps the total number of spectra increases by a square factor for each reduction 

in step size. Consequently, a reduction in noise would be further reduced by averaging 

effects.  This is investigated in the following sections. 

 

Figure 6-9 demonstrates the variation in signal intensity and SNR across the line profile 

of the laser, with 50 individual spectra acquired by spatial separation of the CCD. The 

profile from a map acquired of Si (1 s) is also shown to illustrate that the variation 

occurs due to the laser profile rather than an intensity variation in the tissue. In contrast, 

the rapid Raman map of the same region is shown which demonstrates that there is no 

variation with intensity of the laser profile and that this factor is no longer an issue.  

Bernard et al. also demonstrated this result in another study of rapid Raman mapping for 

geological applications.
203
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Figure 6-9: a) Variation in intensity along laser line of a line focused laser beam (left axis is 

1µm step size along the sample and right axis is Raman shift 450-1850 cm-1) measured on 

oesophageal tissue, b) Example oesophageal tissue spectra from the line focused line map 

illustrating the variation in SNR along the laser line (CCD pixels position is indicated to the 

right of each spectrum), c) Variation in signal intensity (at 520 cm
-1

 peak) along the line 

focused laser line (for line mapping) measured on a piece of silicon, d) Example spectra at 1.1 

µm step size acquired using the rapid Raman mapping system on the same region of tissue as 

plots a and b, with the spectrum number equivalent to one pixel in plots a-c 
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6.3 Principal component analysis in combination with rapid Raman 

mapping for potential automated histopathology 

 

6.3.1 Evaluation of rapid sampling parameters for Raman mapping 

technology for potential automated histopathology 

The results of this study were published in Hutchings et al.
204,205

 (the latter can be found 

in Appendix G). Figure 6-10 shows the H&E stained section, contiguous to the sample 

used in maps A-J, illustrating regions of fibrous connective tissue (FCT) and smooth 

muscle (SM). The contiguous section to the sample used in maps I-V is also shown 

illustrating circumferential normal squamous (NSq) and fibrous connective tissue.  

 

Figure 6-10: Annotated H&E (re-stained) section of the contiguous section to the frozen 

section used in the repeated mapping studies a) Maps A-J – sample containing areas of 

smooth muscle (SM) and fibrous connective tissue (FCT) are identified and b) Maps I-V – 

sample containing circumferential normal squamous epithelium (NSq) and fibrous connective 

tissue (FT) 

PC loads 1-8 are shown in Figure 6-11. PC 5 was chosen for subsequent analysis since 

this map demonstrated the best biochemical and morphological fit with the pathology 

diagnosis of the tissue sample. This is further demonstrated in Figure 6-12 in a 

comparison between the difference spectrum of collagen and actin and PC load 5.  
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Figure 6-11: PCs 1-6 for map D  
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Figure 6-12: Difference spectra for collagen – actin (normalised and subtracted). NB Raman 

spectra were acquired at 785 nm 

6.3.1.1 Signal to noise ratio variation in repeated maps 

Figure 6-13 shows pseudocolour score maps (PC5 for maps B-D, F-H and PC9 for maps 

A and E). Maps A-D were measured with varying acquisition time whilst maintaining a 

constant mapped area and step size of 25.3 µm.  
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Figure 6-13: Fifth PC pseudocolour score map and corresponding principal component load 

(Maps A and E displays ninth PC). Maps A-D are for a constant step size of 25.3 µm with 

increasing acquisition time from left to right of 0.1, 0.5, 1.7 and 20.0 s. The total mapping 

time is shown in brackets for comparison. Maps E-H are repeated maps using a step size of 

7.4µm with increasing acquisition time from left to right of 0.5, 1.7, 3 and 5 s (see Table 6-3 

for mapping parameters) 

Maps E-H show each of the various acquisition times whilst maintaining a constant 

mapped area and a step size of 7.4 µm. Maps C, I, J and F (Figure 6-14) show maps 

acquired with a constant acquisition time of 1.7 s with various step sizes. The fifth 

principal component load (PC9 for map A and E) exhibits opposing positive and 

negative peaks which are similar to the difference between actin and collagen spectra 

(see Figure 6-12 which compares PC5 and the difference spectra of collagen and actin – 

NB measured at 785 nm), which is consistent with the biochemical signatures of smooth 

muscle and connective tissue respectively. This agrees with results published by 

Koljenovic et al. who reported the biochemical difference between smooth muscle and 

fibrous connective tissue in bronchial tissue using PCA and K-means cluster analysis.
177
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However, further work is required to investigate biochemical differences in more detail 

since, as can be seen in Figure 6-12 there are discrepancies between the difference 

spectra and PC load indicating that there are contributions from other biochemical 

constituents. 

 

Morphologically, this also agrees with pathology identified in the H&E sections. For 

maps A and E, PC 9 exhibited the same morphological appearance and similar loads and 

as a consequence were used instead of PC 5. PCs 1-4 (PC scores and loads can be seen 

in Appendix H) describe the mean spectra, difference between tissue and calcium 

fluoride substrate, small regions of luminescence, and protein distribution. Fibrous 

connective tissue and smooth muscle are in fact very similar biochemically and as a 

result this was a good test for detecting very subtle biochemical changes.  Further 

detailed biochemical analysis with this data is possible (beyond the scope of this thesis) 

but this demonstrates that it is possible to detect gross biochemical changes even with 

poor SNR spectra. 

 

Figure 6-14: Fifth principal component pseudocolour score map and corresponding principal 

component load for maps C, I, J and F all with a constant acquisition time of 1.7 s with 

decreasing step size (thus increasing total number of spectra) from left to right of 25.3, 15.8, 

10.6 and 7.4 µm (see Table 6-3 for mapping parameters) 

Figure 6-15 shows typical raw spectra from maps with acquisition times of 0.5 s, 1.7 s 

and 20 s exhibiting the quality of the raw spectra within the maps.  
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Figure 6-15: Typical raw spectra with an acquisition time of a) 0.5 s, b) 1.7 s and c) 20.0 s 

taken from map B, C and D respectively 

The values for the RSD of the raw spectra calculated at the peak at 1000 cm
-1

 are shown 

in Table 6-5. They clearly demonstrate that the RSD reduces with increasing acquisition 

time as expected. For Map D, an RSD value of 2 was considered as a benchmark since 

the 20 s acquisition time provided a reasonable SNR of the raw spectra. The relative 

‘SNR’ values measured at the 932 cm
-1

 peak of the principal component loads are also 

shown in Table 3. The corresponding ‘SNR’ for PC 5 load of map D was also high (>50) 

as expected. Similarly high ‘SNR’ values for the loads were achieved with shorter 

acquisition times provided the total number of spectra was large enough. As expected 

the relative ‘SNR’ of the loadings also increased with increasing number of total spectra 

with maps C, I, J and F. with the ‘SNR’ increasing from 12 to 44. 

 

Figure 6-16 shows maps acquired with a constant mapping time of 4.5 hours. From left 

to right, maps I-V were acquired with increasing acquisition time and step size detailed 

in Table 6-4. 
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Figure 6-16: Fifth PC pseudocolour score map and corresponding PC load for maps I-V (left 

to right) all acquired with parameters adjusted to give a total mapping time of 4.5h (see Table 

6-4 for parameter details) 

There is good correlation with the pathology indicated on the H&E section with 

circumferential normal squamous identified by the negative peaks of the 5th PC load.  

Visually, the degradation in the spatial resolution is evident whilst there is little 

difference between the PC loads. The RSD and ‘SNR’ results are shown in, which 

demonstrates a slight decrease in the RSD as the acquisition time and step size are 

increased. This was mirrored for the previous set of maps (C, I, J and F), all acquired 

with an acquisition time of 1.7 s, illustrating that this increase in RSD is not linked to the 

reduction in spectral acquisition time, but more likely due to the number of spectra 

contained in the area sampled for the RSD calculation.  The ‘SNR’ of the loads remains 

approximately constant. It should be noted that the ‘SNR’ values are not directly 

comparable with maps A-J since they have been measured on different samples obtained 

from two patients. 
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Table 6-3: Summary of mapping parameters for repeated maps. Maps A-D are for a constant 

step size of 25.3 µm, maps E-H are for a constant step size of 7.4 µm, maps C, I, J and F are 

for a constant acquisition time of 1.7 s. Overall mapping times are shown along with estimated 

mapping times for traditional point mapping (only applicable to the Renishaw system in these 

experiments) 

Map ID Step size (µm) Acquisition time (s) Total number of spectra Total mapping time (hours) 

    Rapid mapping 

(actual) 

Point mapping 

(estimated) 

      

A 25.3 0.1 0.9x104 0.1 4.2 

B 25.3 0.5 0.9x104 0.5 4.7 

C 25.3 1.7 0.9x104 1.5 6.5 

D 25.3 20 0.9x104 17 29.0 

      

E 7.4 0.5 10x104 2.0 49.6 

F 7.4 1.7 10x104 6.3 55.2 

G 7.4 3.0 10x104 11 60.4 

H 7.4 5.0 10x104 19 70.8 

      

C 25.3 1.7 0.9x104 1.5 6.5 

I 15.8 1.7 2x104 2.8 13.9 

J 10.6 1.7 5x104 4.0 27.3 

F 7.4 1.7 10x104 6.3 55.2 

      

 

 

Table 6-4: Maps I-V are repeated maps of the sample with parameters adjusted to maintain a 

constant total mapping time of 4.5 hours. Overall mapping times are shown along with 

estimated mapping time for traditional point mapping (only applicable to the Renishaw 

system) 

Map ID Step size (µm) Acquisition time (s) Total number of spectra Total mapping time (hours) 

    Rapid mapping 

(actual) 

Point mapping 

(estimated) 

I 9.5 2.4 4x104 4.5 23.6 

II 12.7 3.0 2x104 4.5 15.7 

III 19.0 4.7 1x104 4.5 9.6 

IV 25.3 8.2 0.6x104 4.5 9.1 

V 31.7 9.0 0.4x104 4.5 7.4 
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Table 6-5: Summary of the RSD for normalised spectra (16th of the total mapped area) within 

each map measured at the 1000 cm-1 peak and ‘SNR’ for the fifth principal component 

loading (PC9 for maps A and E) measured at the 932 cm
-1

 peak. Total mapping time (in 

hours) is shown in brackets next to the map ID for comparison 

Map ID RSD 

(normalised 

data) 

PC (5th) load ‘SNR’ 

   

A(0.1h) 16 <2 

B(0.5h) 7 4 

C(1.5h) 4 12 

D(17h) 2 >50 

   

E(2h) 11 8 

F(3.6h) 6 44 

G(11h) 5 >50 

H(19h) 4 >50 

   

C(1.5h) 4 12 

I(2.8h) 4 14 

J(4h) 5 28 

F(6.3h) 6 44 

   

I (4.5h) 6 8 

II(4.5h) 5 10 

III(4.5h) 4 10 

IV(4.5h) 4 8 

V(4.5h) 4 11 

   

 

6.3.1.2 Comparison with estimated point mapping times 

The ratio of the estimated point map time and overall mapping time for the rapid Raman 

maps, for various mapping parameters, is shown in Table 6-6. This illustrates the large 

reduction in mapping time achievable with rapid Raman mapping when compared to 

point mapping using a standard Renishaw Raman spectrometer.  
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Table 6-6: Summary of mapping parameters and comparison of  total mapping times with 

traditional point mapping times indicated by the ratio of the estimated total map time using the 

point mapping technique and the total map time using the rapid mapping technique 

Map ID Acquisition 

time (s) 

Ratio (estimated point map time/ 

rapid map time) 

   

A 0.1 37.1 

B 0.5 10.4 

C 1.7 4.2 

D 20.0 1.7 

   

E 0.5 25.0 

F 1.7 8.8 

G 3.0 5.4 

H 5.0 3.7 

   

Map ID Step size (µm) Ratio (point map time/ rapid map 

time) 

C 25.3 4.2 

I 15.8 5.0 

J 10.6 6.9 

F 7.4 8.8 

   

I 9.5 5.1 

II 12.7 3.5 

III 19.0 2.1 

IV 25.3 2.0 

V 31.7 1.6 

   

 

There is a clear advantage of increasing the number of spectra within the map in terms 

of the performance of multivariate techniques. In this study, larger datasets were 

achieved by increasing the spatial resolution but this would also be achieved by mapping 

a larger sample with the same or lower spatial resolution. Factors limiting the size of the 

dataset include the 32-bit operating system addressable memory restriction and Matlab's 

requirement for the entire matrix to be held in a contiguous block. In the case of this 

study, memory restrictions limited the spatial resolution achievable for mapping the 

entire biopsy sample since smaller step sizes would have generated excessively large 

datasets (mapping the sample shown in Figures 3-4 with 1.1 µm step size would result in 

excess of 5x106 spectra or 7.5 x109 data points (based on 1501 data points per spectrum). 

6.3.1.3 Relative standard deviation (RSD) and signal to noise ratio (SNR) 

variation 

From Figure 6-13 and Figure 6-14, for all maps shown except A and E, it is evident that 

the fifth PC load represents similar tissue features (in this example tentatively attributed 
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to collagen which is abundant in fibrous connective tissue and actin which is abundant in 

smooth muscle) in each of the repeated maps despite the variation in the number of 

spectra and acquisition time. For map A, noise dominated the ninth principal component 

load, although tissue peaks can be approximated. Considering map E, these spectral 

features appeared further down the PC loads at the 9th PC component. 

 

For all maps except for D, for which an acquisition time of 20 s was used, the SNR of 

the raw spectra was very low (results not tabulated). Therefore the RSD measure was 

used to allow comparison. Ideally a high SNR would be desirable to ensure that subtle 

biochemical changes are detected but from these results it is evident that PCA is 

powerful enough to extract gross biochemical information even with a very low SNR. 

The RSD calculations on the normalised data (Table 6-5) illustrate the reduction in noise 

with increased acquisition time. The lowest RSD, as expected, was for the longest 

acquisition time of 20 s for map D. In general, this was mirrored on the raw data without 

normalisation (results not shown), although RSD values tended to be higher than 

expected for larger maps indicating a larger variance, likely to be caused by the presence 

of luminescent spectra and cosmic rays highlighting the difficulty in ‘cleaning up’ large 

datasets. This could also be caused by focusing issues across the sample area. 

 

The relative ‘SNR’ values calculated for the PC loadings showed improved performance 

with longer acquisition times, in particular in the case of maps D and H for which the 

apparent noise was negligible with respect to the 932 cm
-1

 peak within the load.  

 

As expected, the relative ‘SNR’ of the loadings also increased with increasing number of 

total spectra with maps C, I, J and F.  An additional advantage of improved resolution is 

improved recognition of morphological features, which will make this technique more 

acceptable to the histopathologist.  

 

When considering the maps acquired with a constant mapping time of 4.5 h (Maps I-V) 

it is evident that there is little difference regarding the loads but increased spatial 

resolution would be beneficial. The advantage afforded by rapid Raman mapping is also 

greater for higher resolution maps. Increased spatial resolution would also reduce the 
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effects of under-sampling and the possibility of missing crucial subcellular biochemical 

information. This would have little consequence for the samples in this study, but may 

become clinically significant for a sample containing a focus of disease. 

 

The section shown in Figure 6-10 was initially thought to contain a region of 

inflammation or possibly adenocarcinoma to the bottom left, but this was inconclusive 

due to very poor staining. Following rapid Raman mapping, in which there was no 

evidence of a region of adenocarcinoma, this section was re-stained to obtain definitive 

diagnosis and found to only contain smooth muscle and fibrous tissue. This highlights a 

further potential advantage of spectroscopic diagnosis which could enable diagnosis of 

inconclusive sections based on distinguishing biochemical features from unstained 

tissue.  

 

From Table 6-6 it is evident that rapid Raman mapping is significantly faster than 

traditional point mapping (from the same manufacturer). As expected there is a 

correlation between the step size and the speed of the map acquisition and thus there is 

an inverse correlation with the total mapping time. For a step size of 25.3 µm (maps A to 

D) rapid Raman mapping was approximately 3 times faster than point mapping for long 

acquisition times and up to 38 times faster for short acquisition times. Data published 

previously by Hutchings et al.
205

  was based on best case scenario point mapping times 

which significantly underestimated overall mapping times for short acquisition times. 

With a step size of 7.4 µm (maps E to H) rapid Raman mapping was of the order of 4 

times faster than point mapping for longer acquisition times (5 s) and 25 times faster for 

short acquisition times (0.5 s). Due to the large number of spectra within the dataset the 

advantage of rapid acquisition of spectra is accentuated.  

 

One option, not considered in this investigation, is the potential to mismatch x and y step 

sizes to prevent under-sampling when using step sizes greater than the width of the laser 

line (7-8 µm). This is an area which will need further investigation before optimum 

mapping protocols can be determined. Further work must also be carried out to 

investigate the potential problems associated with under-sampling with regards to 

missing diagnostically significant information. The step size in this study has not been 
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reduced beyond that of the width of the laser line (7-8 µm for the x50 objective used in 

this study) due to size limitations on the datasets and also to prevent over-sampling but 

this is also an area for further investigation since this may provide further benefits with 

regards to increased spatial resolution and even larger datasets. This may be of particular 

interest when mapping cells at high resolution and leads to the possibility that 

biochemical changes within the tissue can now be investigated at the cellular level 

across larger areas of tissue. One consequence of this would be the need for 

improvement in computational facilities. The use of 64-bit computers has increased the 

datasets that can be managed since this work was undertaken.  

 

There is also potential to investigate noise reduction techniques and smoothing of the 

spectral data such as those available within the Wire 3.0 software and those described by 

Sasic et al.145  

 

Potential sample degradation has previously limited the maximum laser power that can 

be used with biological tissue samples, however with reduced acquisition times there is 

the potential to increase the laser power and thus improving the signal to noise ratio.  

 

Before an automated screening technique can be developed, further work is also required 

to develop automated algorithms capable of identifying ‘non-relevant’ samples so that 

only diseased samples are forwarded for diagnosis by an expert histopathologist. It will 

also be beneficial to reduce the thickness of the mapped tissue sections towards the 

thickness used for H&E histopathology (7 µm), although potentially longer acquisition 

times may be required to counteract the reduction in Raman scattered photons with the 

thinner tissue section. One way to counteract this may be to use mirrored slides which 

maximises the return signal to the objective. This will also have an impact on the spatial 

resolution which can be achieved at smaller step sizes.  

 

Each map contains a vast amount of biochemical detail and work is ongoing to explore 

information regarding the carcinogenesis process. 
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The use of PC load ‘SNR’ and RSD are relatively arbitrary methods of comparison, but 

methods were reproducibly determined for each of the maps to enable direct comparison 

between the repeated maps, however it must be noted that the values are not comparable 

between different samples due to differences in sample biochemistry and mapping 

conditions. 

 

It should also be noted that there was no evidence of spectral difference between the first 

and the last map, furthermore, maps were acquired in a random order to prevent any 

systematic errors with time and sample state.   

 

Rapid Raman mapping has enabled frozen tissue sections to be mapped on a clinically 

practicable timescale. The combination of large spectral datasets (generated by rapid 

Raman mapping) with multivariate analysis provides a powerful method of analysing 

tissue sections. The frozen tissue samples do not require preparation with histological 

stains, providing a significant advantage over current techniques. Frozen samples can be 

stored and subsequently stained if required. Furthermore, the process lends itself to 

automation using computed algorithms which removes the subjective element of 

histological diagnosis. Potentially a rapid pre-scan could be carried out at relatively low 

resolution with low SNR. Subsequent detailed high quality maps can then be acquired 

on regions of interest. In combination with multivariate classification models, there is 

the potential for the automated screening out of non-relevant samples, with those 

deemed as abnormal going on for diagnosis by an expert histopathologist. Consequently 

this would reduce the burden of ‘non-relevant’ samples which currently swamp the 

system and allow more time for analysis of the critically diseased samples.   

 

A large amount of work will be needed to develop a comprehensive database of tissue 

spectra before Raman mapping can be used in the clinical environment. Rapid Raman 

mapping provides a method of acquiring such data which will enable verification of this 

technique on a timescale that was previously not possible.  
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Raman spectral mapping has historically been significantly slower than the 

complimentary technique of IR absorption spectroscopy and a rigorous comparison of 

the two techniques is now required. 

 

There is a trade off with overall mapping time and signal to noise. Although the signal to 

noise ratio of the rapid Raman mapping spectra are not of the same quality as point 

mapping spectra (due to the line focusing and also the waterfall nature of reading the 

CCD which potentially translates residual CCD noise across the CCD), it is in effect a 

half way house or to word another way a technique which makes the compromise 

between rate of acquisition and the subsequent quality (and quantity) of the acquired 

spectra.  

 

Advances in mapping technology have also facilitated the use of alternative wavelengths 

since shorter acquisition times can be used. Diem at al. used 514nm with an acquisition 

time of 0.5 s for mapping cells.
206

 Considering the discussion previously regarding the 

spatial resolution achieved by Shlucker et al., this could potentially enable even higher 

spatial resolution Raman mapping in the future.  

6.4 Raman mapping and linear discriminant analysis to evaluate the 

importance of lateral spatial resolution for histology diagnosis  

The previous section has demonstrated the feasibility of measuring molecular signals 

from unstained tissue in relatively short time scales. Methodologies for utilising this 

information for clinical diagnosis are explained here, with particular emphasis on 

evaluating the spatial information for clinical utility.  A portion of the results from this 

study have been submitted for publication (November 2008, Analyst),
207

 a copy of the 

submitted manuscript can be seen in Appendix I. 
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6.4.1 Linear discriminant analysis of Raman maps  

6.4.1.1 Principal component imaging 

The results from one sample (Sample 1) are presented in detail, with the results from a 

second (Sample 2) sample added to demonstrate the technique can be used to identify 

other pathology groups. Figure 6-17 shows the white light montage image of Sample 1, 

acquired using a x2.5 objective. The small box indicates the region containing high 

grade dysplasia (HGD) and fibrous connective tissue (FCT) which was mapped 

repeatedly. It was noted that the regions between the HGD glands were also FCT. The 

H&E stained CaF2 image (i.e. the mapped tissue section) and contiguous section stained 

with H&E for histology purposes are also shown.  

 

 

Figure 6-17:  a) White light image and mapped area b) mapped tissue section stained with 

H&E (on CaF2) c) contiguous 7 µm H&E stained section of Sample 1 

Figure 6-18 shows PC2 as an example of a pseudocolour PC score images and 

corresponding PC load. The extremes of the colour bar are represented by a single 

colour, with the central portion remaining transparent. This allows the PC images to be 

overlaid, as shown in Figure 6-19, in which PCs 1-5 are shown overlaid with 

corresponding PC loads colour coded accordingly. 

 

The biochemical information contained within the PC loads is shown to be similar (for 

the two maps acquired with 8.4 and 2.1 µm). Although the two different regions of tissue 

can be identified in both maps, it is much easier to identify morphological structure in 

the smaller step size map as glandular features and this further supports the presence of 

HGD. 
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Figure 6-18: Example of how PC images are overlaid (pseudocolour PC 2 scores image and 

corresponding PC load for the 2.1 µm map) 

 

Figure 6-19: Pseudocolour PC score images overlaid for the 8.4 µm and the 2.1 µm step size 

map. PC loads are shown with corresponding colour coding  

6.4.1.2 Linear discriminant analysis (LDA) 

Initially, LDA models for six spectral groups were generated (see Table 6-7). As 

described previously, spectra were selected using thresholding of the PC score images, 

with ambiguous spectra (not clearly belonging to a single group) classed as ‘unknown’. 

For the 8.4 µm map, the overall training performance of the LDA model was 70.1% with 
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the overall training performance degraded by the large number of misclassifications for 

spectra in the ‘unknown’ group and also the CaF2 group. Sensitivity and specificity were 

58.7–92.9% and 88.1–99.9% respectively. The number of spectra within each group and 

the percentage correctly classified by the LDA model is summarised in Table 6-7.  

 

Table 6-7: Classification performance of the training (including the ‘unknown’ group) 

dataset of the LDA model (8.4 µm and 2.1 µm step sizes, 15 s acquisition time) 

  CaF2 TB FCT HGD Lum Unknown % correctly classified 

CaF2 354 27 0 0 0 0 94.4 

TB 62 111 3 0 0 13 82.7 

FCT 0 0 920 1 0 79 99.3 

HGD 1 67 234 2608 0 752 88.0 

Lum 0 1 13 0 140 13 96.3 

8.4 

µm 

Unknown 7 185 796 544 6 2655 71.7 

         

CaF2 5713 371 0 0 0 0 93.9 

TB 150 1386 13 0 0 1 89.4 

FCT 0 3 5145 0 0 252 95.3 

HGD 0 41 2952 52864 424 14322 74.9 

Lum 0 3 0 0 4070 0 99.9 

2.1 

µm 

Unknown 2100 1528 13533 14152 5046 32151 46.9 

 

For the 2.1 µm map, the overall training performance of the LDA model was 64.9%. As 

with the 8.4 µm model, the majority of the misclassified samples are from the 

‘unknown’ group (as expected) which consequently skews the overall performance 

value. There are also misclassification of FCT spectra (predicted as ‘unknowns’) and 

some discrepancies with CaF2 and tissue border. Table 6-7 shows the number of spectra 

within each LDA classification group. Sensitivity and specificity were 46.9 - 99.9% and 

83.4 - 98.9% respectively, but again, these values are skewed by the large number of 

misclassifications within the ‘unknown’ group. As described earlier, the ‘unknown’ 

spectra were those which ambiguously belonged to more than one group i.e. spectra 

which were identified by the FCT PC scores image, but actually lay within the HGD 

region of the map. This will obviously have an effect on the model since spectra in the 

unknown group will not be similar biochemically since it is likely to contain a range of 

pathologies.  
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Figure 6-20 illustrates the model performance spatially to provide further insight. Figure 

6-20a and Figure 6-20c identify spectra (as black pixels) which are misclassified by the 

LDA model for the 8.4 µm and 2.1 µm maps respectively.  In Figure 6-20b and Figure 

6-20d, these misclassified spectra (pixels) are colour coded according to the group in 

which the LDA model classifies them for the 8.4 µm and 2.1 µm maps respectively. This 

additional spatial information provides an insight into whether or not the LDA 

prediction is sensible which can potentially provide useful information regarding initial 

group. The process is also subjective to a certain extent, albeit based on biochemical 

information from the PC scores images, PC loads and pathology opinion. 

 

 

Figure 6-20: Pseudocolour LDA pathology images for the 8.4 µm (a-b) and 2.1 µm (c-d) maps 

colour coded with pathology. Figures 4a) and 4c) show the locations of the misclassified 

spectra/pixels, whilst Figures 4b) and 4d) show the predicted pathology according to the LDA 

model for each of the misclassified spectra 
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In the 2.1 µm map PC score image (Figure 6-19), the FCT appears to extend into regions 

between HGD glands. In the LDA pathology classification, although over 25000 spectra 

are misclassified as FCT, spatially, many of the inter-glandular spectra are still classified 

as “unknown” (white) and luminescence. This is likely to be due to initial choice of 

LDA groups for which the LDA process would try to separate the groups, but it could 

possibly be due to a biochemical difference in the FCT depending on the location of the 

tissue. This issue is addressed in the next section in which the ‘unknown’ group is 

extracted from the model and used as an independent test set. There is also the 

possibility there is spatial and spectral averaging of nearby HGD and further work is 

required to verify the actual spatial resolution achieved with rapid Raman mapping 

systems.  

 

The central portions of the some of the glands appear to be misclassified as FCT, but 

again it is likely that a separate group would be required to account for these gland 

lumens which are likely to contain glandular mucin secretions etc. from the goblet cells. 

This may be based on protein signature of mucins, but further work is required to 

investigate this.  

 

Luminescence also appears to be very structural within the tissue and mostly, within the 

regions of FCT. The location of the luminescence within the FCT is more evident with 

the small step size map, highlighting the potential importance of high lateral spatial 

resolution mapping.  

 

Including spectra acquired from calcium fluoride in the mean centring may not be the 

optimum method, but it was concluded that calcium fluoride/other substrate would be an 

important constituent with any model since any discrepancy with substrate impurities 

may lead to misclassifications. This may also be important for regions of thin tissue 

which may contain contributions from both substrate and tissue. Further work will be 

needed to investigate this. 
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6.4.1.3 Projecting the ‘unknown’ group as an independent test set 

Figure 6-21 shows the pseudocolour LDA image for the model generated excluding the 

‘unknown’ group as a separate test set and later projecting these onto the model. Both 

the 8.4 µm and the 2.1 µm maps are comparable, with spectral predictions consistent 

with morphological features and location in the image. 

 

Figure 6-21: Projection of the test set onto the LDA model (generated excluding the 

‘unknown’ group which was kept aside as a test set) for the 8.4 µm (a-c) and 2.1 µm (d-f) 

maps. Figures a) and d) illustrate tissue classification of the training set by the LDA model 

according to tissue pathology colour code with misclassifications as black pixels and the test 

set identified as white pixels. Figures b) and e) illustrate the predicted classification group of 

the misclassified spectra within the training set according to the LDA model and figure c) and 

f) show the projected test set results according to the classification by the LDA model 

The overall performance of the training set models improved from 70.1% to 94.4% 

(79.4-99.0% sensitivity  and 95.0-99.8% specificity ) for the 8.4 µm step size model and 

from 64.9% to 93.7%  (87.3-99.9% sensitivity  and 95.2-100% specificity ) when the 

unknown group was excluded as the test dataset. 

 

As with previous LDA models which included the ‘unknown’ group, FCT appears to 

extend in between the glandular features of the HGD. Previously, this was only 2.1 µm 
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map, but when using the ‘unknown’ group as a test set this is also evident in the 8.4 µm 

map (Figure 6-21). Again, the centre of some of the glandular HGD structures are 

classified as FCT (especially evident in the small step size map). This is likely to be 

incorrect, and as discussed previously, a further group, tentatively attributed to mucin, 

may need to be added to the model to account for such regions. However, there is also 

the possibility that FCT, which is relatively transparent, is misclassified as tissue border 

since it comprises a lesser contribution from tissue spectral features and more CaF2 due 

to spectral mixing with substrate spectra. Further work is needed to investigate the 

origins of these misclassifications. The projection model also suggests that regions of 

luminescence are surrounded by FCT.   

 

To further investigate the projection of test dataset (and the presence of luminescence 

within the FCT), the LDA model was recalculated with fewer spectra in the training 

dataset. An additional ‘unknown’ margin around each pathology group was defined and 

allocated to the test dataset i.e. each region of luminescence was surrounded by a region 

of test set pixels/spectra. Similarly, the region between HGD and FCT was blocked out 

and allocated to the test set. Results indicate more strongly that luminescence is 

structural within the FCT. Pixels at the edge of the tissue and also the gland centres are 

also projected to be FCT, reiterating the need for an additional group within the model. 

The results are shown in Figure 6-22. 

 

It is evident that reducing the training dataset does not impact on the ability to project 

the test set onto the classification model. Furthermore, improved training performance is 

achieved by ensuring the classification model is trained with well define spectral groups.  
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Figure 6-22: Projection of the larger test set (to account for tissue margins) onto the LDA 

model (generated excluding the test set) for the 8.4 µm (a-c) and 2.1 µm (d-f) maps. a) and d) 

illustrate tissue classification by the LDA model according to tissue pathology colour code 

with misclassifications as black pixels with the test set identified as white pixels. b) and e) 

illustrate the predicted classification group of the misclassified spectra according to the LDA 

model and figure c) and f) show the projected test set results according to the classification by 

the LDA model 

6.4.1.4 An example of normal squamous epithelium (Sample 2) 

The above process was repeated on a map (15 s acquisition and 8.4 µm step size) of 

Sample 2 (containing NSq and FCT), but in this case the size of the training dataset was 

reduced further. 

 

Results are shown in brief in Figure 6-23, which shows the white light image and pseudo 

colour LDA image, the training set (defined by relatively small, but distinct regions of 

NSq, FCT and CaF2), H&E of the contiguous section and also the mapped section 

stained with H&E (on CaF2). It can be seen in the figure that there are no black pixels 

indicating a perfect overall training performance of 100%.  
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Figure 6-23: left) Model training set defined by small region of NSq (green) FCT (yellow) and 

CaF2 (grey), centre) white light image of the sample with the projected tissue classification 

overlaid at the mapped region, right) annotated H&E of the consecutive section 

6.4.1.5 Combined maps 

To further test the LDA projection of map data onto the tissue classification model, the 

two maps (15s acquisition time and 8.4 µm step size), were combined to form a large 

map containing HGD (sample 1), FCT (from samples 1 and 2), NSq (sample 2) and 

CaF2 (from samples 1 and 2). The entire map was then reanalysed to investigate the 

feasibility of extending this to multiple tissue maps and tissue types.  

 

Again, small, distinct regions of each tissue type (NSq, FCT and HGD) and also CaF2 

were defined as the training dataset, with the test set defined as the remainder of the 

dataset. The H&E images from each sample have been reconstructed to indicate the 

pathology of the combined map as shown in Figure 6-24, the regions selected for the 

training dataset are also indicated. The mean raw spectrum for each training set group 

(CaF2, FCT, HGD, NSq and Lum) is shown in Figure 6-25. 
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Figure 6-24: Reconstructed H&E for samples 1 and 2 to indicate pathology of combined map. 

The spectral regions selected for the training model are also indicated. Note the discontinuity 

in right hand H&E image which indicates the region cropped to ensure map dimensions 

agreed 
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Figure 6-25: Mean spectra for the training dataset (for the combined LDA map for Sample 1 

and 2). Plus and minus two standard deviations is also shown. Spectra have been plotted with 

an arbitrary offset for clarity 
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Further information can be gleaned from the difference spectra of the different groups. 

Examples of difference spectra between the NSq and the HGD training group spectra 

can be seen in Figure 6-26a and NSq and FCT in Figure 6-26b.  
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Figure 6-26: Difference spectra for the mean training set spectra a) NSq minus HGD and b) 

NSq minus FCT 

Considering Figure 6-26, the 481(483), 884(853), 937(940), 1337(1338), 1450(1455) 

cm
-1

 peaks present in both can be attributed to glycogen, consistent with normal 

epithelial tissue. There is also relatively more protein content in NSq compared to FCT 

and HGD illustrated by the peaks 937, 1005, (1034 not labelled), 1329 (peak shoulder), 

1458, 1655 cm-1. In Figure 6-26a negative peaks at 685, 779 cm-1 may be due to DNA. 

In Figure 6-26b negative peaks at 874 and 920 cm
-1

 (not labelled) in the NSq minus the 

FCT could also potentially be attributed to collagen.   

 

Figure 6-27c shows the classification for each spectra/pixel for the test dataset projected 

onto the LDA model generated using the training dataset.  
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Figure 6-27: Classification model generated based on a training set taken from two samples 

(Sample 1 and 2 combined to one map) Sample 1 is the sample containing HGD and FCT and 

sample 2 contains FCT and NSq. a) shows the training set performance with correctly 

classified spectra classified according to pathology colour code with misclassified spectra 

highlighted as black pixels, b) illustrates the groups into which the misclassified spectra are 

predicted and c) illustrate the predicted classification for the test dataset (previously white 

pixels)   

The overall accuracy of the training set classification model was 97.5% (98.8–100% 

sensitivity and 95.8 – 100% specificity). The number of correctly classified samples is 

summarised in Table 6-8.  

 

Table 6-8: Classification performance of the training model generated with the combined 

maps (sample 1 and sample 2) 

 CaF2 FCT HGD Lum NSQ Total % correctly classified 

CaF2 335 3 1 0 0 339 98.8 

FCT 0 524 13 8 0 545 96.1 

HD 2 5 161 0 0 168 95.8 

Lum 0 0 0 82 0 82 100.0 

NSq 0 0 0 0 158 158 100.0 

        

 

In general, projection of the test dataset (Figure 8c) agrees with histology diagnosis 

(Figure 6-17- sample 1, Figure 6-23 – sample 2), however there are discrepancies which 

occur within the basement membrane region of the NSq (i.e. the border between NSq 

Training data set (with 

misclassification) 

Training data set (with misclassed 

spectra prediction Training and projected test set 
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and FCT) which gets projected as HGD. Regions of luminescence, not previously 

identified in Sample 2 are also detected within the FCT.  
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Figure 6-28: Mean spectra for the projected data set and training set  

It can be seen from Figure 6-28 that there are a few a cases (in particular at the high 

wavenumber range of the CaF
2
 and Lum group) where the standard deviation is large. 

This is caused by the presence of cosmic rays in the test set. It appears that the LDA 

process is relatively insensitive to the presence of cosmic rays, but further work is 

required to verify this.   

 

The mean of the luminescence group for the projected spectra also contains evidence of 

Raman spectral peaks. This may be due to spectral mixing of adjacent pixels, but future 

work may reveal the biochemical composition of luminescent structures.   
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Admittedly this is not a full model containing all pathology groups, nor was the region 

of basement membrane included in the training dataset, but conclusions can still be 

drawn from this, since the result indicates that classification could be occurring based on 

biochemical signature of (potentially of dividing) cell nuclei densely packed in both 

HGD and also basement membrane regions. Furthermore, since epithelial cells originate 

at the basement membrane and migrate to the surface (where they are exfoliated), cells 

in the basement membrane region are also proliferating which could also further explain 

the misclassification. The misclassification could also be due to spectral mixing 

artefacts, as suggested by Bhargava et al. who also reported boundary epithelial pixels 

are misclassified as malignant.
150

 

 

This result indicates that misclassifications are highly likely if sub tissue classes are not 

included into the training dataset, and perhaps suggests that spatial averaging may be 

advantageous to avoid such issues. Further work is required to determine the optimum 

number of classification groups for pathology diagnosis.   

 

In a study by de Jong et al., increased levels of DNA and RNA in inflammatory regions 

of Raman maps of bladder sections were reported (although data was not shown).175 

Concluding this study, de Jong et al. comment that spectral databases will need to 

include a reference dataset for inflammatory tissues to prevent misclassification. It was 

previously noted that inflammatory changes could not be detected with a Raman probe 

and point spectra and it is likely that spectral mixing overwhelms this subtle change 

which is only evident when mapping tissue sections. In the future, a thorough 

investigation of spectral mixing effects will be required to determine optimum number 

of pathology groups required for tissue diagnosis. 

 

This study has shown that high lateral spatial resolution mapping is not necessarily 

needed for histological diagnosis. However, high lateral spatial resolution mapping does 

have advantages. There is the advantage of acquiring a large number of spectra which is 

amplified for reduced step sizes due to the square relation between step size and number 

of pixels. The additional spatial and spectral biochemical information could potentially 

facilitate the separation of more pathology groups.  
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LDA is a well known and accepted technique for spectral classification, and this thesis 

has shown its potential application in Raman imaging for histological diagnosis, 

supporting previously published work.
192-194

 These works have been based on tissue 

classification models generated previously, with mapping data projected onto the model. 

This approach was not possible in this study since maps were acquired on a novel 

mapping system, with different optics to previously generated tissue classification 

models. Furthermore, due to the nature of rapid mapping technology, there are 

differences in the step size and sampled volume compared to previously acquired model 

data. In the future, large tissue classification models can be generated, more rapidly than 

previous studies due to the rapid mapping technique. Training dataset sizes will 

approach those reported in IR studies, for example Bird et al. reported a study in which 

1.4 million spectra were analysed,191 and this will easily be achievable with rapid Raman 

mapping. Further work is still required to investigate the extent to which the technique 

can be exploited with respect to automated imaging and also larger sample numbers 

need to be included in the model. In this preliminary study projection of an unknown 

dataset onto the model allows validation of the model to a degree but using spatial 

information relating to morphology, but rigorous validation and testing will still be 

required when further samples are added to the model. Nevertheless, this is an important 

step in the move towards clinical implementation of vibrational spectroscopy for 

automated histopathology.   

 

Although, validating LDA as a potential method for automated histopathology was not 

the primary aim of this study, and it was merely used as tool of comparison, this study 

has shown that the technique holds promise for future application.  Other groups have 

favoured various other cluster analysis techniques such as k-means and ANN, but these 

techniques have failings, namely they are extremely computer intensive, they also force 

spectra into distinct groups, which is not realistic for two reasons. First, pathology 

groupings do not have distinct boundaries, especially for lower spatial resolutions where 

spectral mixing is known to have an effect on ‘boundary pixels’ and, second,
150

 in a 

similar manner, the carcinogenesis progression is not separated by distinct boundaries 

between pathologies. LDA has advantages over other, more widely used chemometric 
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techniques for spectral imaging, since the technique could potentially facilitate the visual 

and spectral representation of spectral mixing. This idea was also proposed by Mansfield 

et al. regarding FTIR imaging, in which the probability was described by a mixed colour 

palate which mirrored the probability of a spectrum/pixel belonging to more than one 

classification group, which could account for spatial averaging and also uncertainty in 

the pathology classification due to subtle spectral differences. E.g. for a pixel/spectrum 

which was predicted to be in two groups, say connective tissue (yellow) and cancer (red) 

with equal probability would be represented by an orange pixel. The shade of which 

could be further determined by the probability weightings.  

 

Although LDA model performance provides a relatively arbitrary method of 

comparison, it allows a quick and easy method of comparing the maps acquired with 

different parameters. PC fed LDA models are also able to cope with low signal to noise 

spectra, where other techniques may fail. Since it is well known that the initial group 

choices are an important factor with LDA models, the initial grouping may play a large 

part in the model performance, but as the groups were the same in both the 8.4 and 2.1 

µm models, it enabled direct comparison of the two maps. The use of this ‘unknown’ 

group as an independent test set to validate the model provided confirmation that the 

classification was reasonable, supported further by spatial information relating to 

morphology.  

 

There is also the potential, as discussed above that the small step size map may identify 

more subtle biochemical features which may account for the larger number of 

misclassified spectra within the small (2.1 µm) step size map. As a result, the model 

performance for the small step size map could potentially be significantly better if the 

initial groupings are chosen more carefully. However, mapping at even smaller step 

sizes, may also induce greater heterogeneity in the maps, even from cells of the same 

pathology (due to sampling different parts of the cell within each image pixel).  It 

remains a question what needs to be distinguished for a specific pathology application 

and this is discussed further in Section 7.3. 
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There is also scope to reduce map times in this study. Acquisition times of 15s were 

used to maximise tissue classification performance, but as shown in the previous 

chapter, PCA is able to cope with relatively poor SNR spectra providing spectral 

datasets are large enough. Map times were of the order of 12h for the high spatial 

resolution maps, whilst the rapid prescan was acquired in approximately 10 minutes. 

This was sufficient for visualising morphology in the PC scores image, but when 

reduced to well-defined rectangular training sets, the dataset size was not sufficient to 

deal with the poor signal to noise.   

 

Further work ongoing within the group may lead to accurate biochemical fitting of the 

spectral maps and therefore images can be constructed of biochemical distributions also 

see Appendix D).
124,172

 

 

In summary, rapid Raman spectral mapping with LDA discrimination has the potential 

for automated tissue classification in the future. Greater numbers of samples and patients 

(to cover the likely variability in the population of interest), with detailed histopathology 

will need to be included into the training model. It also appears from this initial study 

that high lateral spatial resolution mapping is not essential for clinical diagnosis of bulk 

tissue types, but may have advantages in the future for discriminating further tissue 

types.  

 

This study has shown that the LDA projection imaging process can potentially be 

applied to multiple samples making it a suitable technique for automated histopathology 

in the future. Furthermore, spatial information from visually representing LDA 

classification as pseudocolour images can provide insightful information which will help 

to explain misclassifications based on morphological features which is not possible from 

traditional scatter plot representation. After a thorough search of the literature, this 

appears to be the first study in which multiple images are stitched together to investigate 

classifications between samples and also the first study to investigate misclassifications 

visually in this way. 
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6.5 Evaluation of rapid Raman mapping as a research tool to 

elucidate biochemical changes associated with carcinogenesis  

6.6 Background - goblet cells and mucins 

As described previously, Barrett’s oesophagus (intestinal metaplasia) is characterised by 

the presence of goblet cells. Goblet cells are simple columnar epithelial cells found in 

many parts of the body, in particular in the intestinal and respiratory tract. The function 

of the goblet cell is to secrete mucus which is comprised mainly of mucins 

(glycoproteins in electrolyte solution).
208

 Oesophageal submucosal glands have been 

shown to contain neutral, sialated, and sulphated mucins and furthermore this varies 

with Barrett’s subtype (IM, CM and FM).11,209,210  The presence of the sia-group in 

glycoproteins, which has been linked to cancers which metastasise, could be detected 

and potentially quantified using Raman spectroscopy using a peak at 880 cm
-1

, although 

this peak is also attributed to tryptophan residues.
211

  

 

It was hypothesised that Raman spectroscopic mapping could be used to obtain high 

spatial resolution images of goblet cells and furthermore gain insight into the 

biochemical constituents within goblet cells and potential biomarkers. This could help to 

understand the process of carcinogenesis and also provide biochemical evidence which 

may help to support tissue classification models which separate Barrett’s subtypes and 

premalignant changes.    

 

In order to elucidate subtle biochemical changes, a long acquisition time of 60 s was 

used to ensure good quality spectra. A step size of 1.1 µm was used. The entire sample 

was mapped, then cropped to the Barrett’s gland to highlight variance within the region 

of interest. The H&E section and large area map can be seen in Figure 6-29. The pseudo 

colour PC scores images and corresponding PC loads can be seen in Figure 6-30. 
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Figure 6-29: H&E stained section (of the mapped section on CaF2) and PC2 scores image of a 

region of Barrett’s (with goblet cells) surrounded by stromal fibrous connective tissue(FCT)  

Of particular interest is the ability of resolve the 4 nuclei in the centre of the Barrett’s 

gland in PC2 (indicated in Figure 6-30 with negative peaks (785, 859, 930, 1089, 1204, 

1233, 1255, 1314 and 1325cm-1) consistent with FCT and DNA.  
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Figure 6-30: Pseudocolour PC score images (PC2-5) for the cropped region of interest 

containing Barrett’s (with goblet cells) and surrounding FCT 

 

There is potentially some evidence of the sia-group peak at 880 cm-1, considering the 

negative peak in PC 5 but this was not conclusive in this sample.   

 

Cluster of nuclei 
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A second sample of Barrett’s was mapped with high spatial resolution, and the 

pseudocolour PC score images and corresponding PC loads can be seen in Figure 6-31. 

The glandular structure of the Barrett’s is clearly evident.  
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Figure 6-31: Pseudocolour PC score images (PC1-4) and corresponding PC load of a sample 

of Barrett’s (with goblet cells) mapped with a 40 s acquisition time and step size of 2.1 µm. 

The H&E of the contiguous section is also shown 
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In the second sample, there were also peaks at 880 cm-1, (positive peaks in PC 3 and 4). 

However, this is anecdotal at present and further work is required to investigate the 

presence of mucins in oesophageal tissue. Biochemical fitting may assist with this as 

suggested previously.  

  

It should also be noted that luminescence was again detected within the FCT regions, in 

this case, in the inter-glandular FCT, this strengthens the observations noted in the 

previous section (HGD and FCT using LDA).   

 



 - 162 - 

Chapter 7 Results and discussion: 3) Factors limiting 

translation of Raman optical diagnostic 

techniques into the clinical environment 

7.1 Comparison with Raman microscopy system results  

Figure 7-1 compares the normalised Raman spectra acquired from two oesophageal 

cancer tissue samples using both the Visionex probe and Renishaw microscopy system 

1000 (labelled as system 1 - S1). The probe spectra were directly from the EMR, whilst 

the S1 spectra were acquired from the biopsy taken from the point of probe 

measurement. 

 

 

Figure 7-1: Comparison between probe (spectra with large background) and Renishaw system 

1000 (S1) for two cancer samples (spectra with well defined peaks) 
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As discussed previously, the amide I band, CH2, CH3 deformation and phenylalanine 

peak at 1005 cm
-1

 is visible even with the large probe background. The inferior spectral 

quality is obvious, especially with respect to spectral resolution (peak width). It is also 

interesting to note the probe spectra appear to be very consistent and two cancer samples 

taken from the EMR sample are very similar, whereas the spectra acquired using S1 

shows subtle differences, despite normalisation. This is likely to be caused by the 

smaller sampling volume of the microspectrometer. For the microspectrometer (x50 

objective) the laser spot size is ~15x25 µm, (~7x50 µm line focussed) whilst the 

sampling volume for the Visionex probe is considerably larger (of the order of mm).  

 

There is a possibility that the consistent probe background may be beneficial, since 

consistency is a key attribute when constructing tissue classification models. However, it 

is also likely that although the background is consistent, it is likely the background is 

masking subtle biochemical differences in the spectra. Further work is required to 

compare the two systems. 

7.2 Practical considerations for implementing Raman spectroscopy 

in a clinical environment 

7.2.1 Ambient light sources 

Ambient light can pose a problem with Raman spectrometer systems. This is especially 

problematic when translation to a clinical environment is considered, and potentially 

more problematic for probe based systems compared to laboratory based systems, such 

as those which could potentially be used for automated histology.  

 

LCD computer screens were found to be a very problematic source with very distinct 

peaks appearing in the Raman spectra as shown in Figure 7-2. Fluorescent lighting can 

also provide spectral artefacts.  
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LED light sources were found to over come these problems. Further work will be 

required to investigate endoscopic light sources for in vivo application and also effects 

from theatre lighting.  
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Figure 7-2: Raman spectra acquired using the Visionex probe of the LCD screen used in 

conjunction with the spectrometer computer control 

7.2.2 Effect of ambient temperature 

Table 7-1 shows the peak shifts which were noted in both System 1000 spectrometers 

for both the polymer standard and neon argon lamp. It is evident that there is potentially 

a contribution to the ambient temperature artefacts from both the spectrometer and laser. 

For the S100 probe system, a linear peak shift with temperature was not evident with the 

polymer standard so the range is stated.  

 

Table 7-1: Summary of the peak shifts for polymer standard and Ne-Ar calibration lamp with 

variation in ambient temperature 

System Polymer peak shift Ne-Ar lamp peak shift 

S1000 (1) 0.4 cm-1/ºC 0.1 cm-1/ºC 

S1000 (2) 0.6 cm-1/ºC 0.5 cm-1/ºC 

S(100) Range (max-min) 1.5 cm-1 -0.1 cm-1/ºC 
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7.2.2.1 Ambient temperature study using Raman mapping 

Figure 7-3 shows a pseudocolour score map of the 1st principal component. The region 

of increasing temperature is clearly evident as a region of low scores (blue-purple). A 

repetitive stripe pattern is also evident once the temperature has stabilised and this is 

attributed to temperature oscillation as the air-conditioning maintains a constant 

temperature, consistent with that noted by Fukura et al
212

. The region of oscillation is 

consistent with a peak shift of approx 0.5 cm
-1

.  The 1st PC load (not shown) exhibits 

derivative spectral features which is consistent with characteristic peak shifts.  

 

 

Figure 7-3: Raman map acquired with varying ambient room temperature. Left – 

pseudocolour PC score map of a polymer standard with correlating change in ambient 

temperature. Right – mean spectra taken from the red and green areas of the pseudocolour 

score map 

The effect of peak shifts on a multivariate tissue classification model was also 

investigated. A classification model was generated using spectra acquired from S1000(1) 

at 23 ºC. Considering the effect of this on a tissue classification model, work in 

collaboration with another group member demonstrated that when spectral data modified 

with an artificial peak shift of 5 cm
-1

 was projected onto the original classification model 

the percentage correctly classified dropped from 94% to only 75%. This is an important 

result as it demonstrates the importance of temperature stability of Raman systems. A 
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copy of a poster presented at the International Conference of Vibrational Spectroscopy 

can be seen in Appendix J.  

7.2.2.2 Summary 

Peak shifts can have significant effect on Raman spectra, and results are consistent with 

the literature.
213

 Shifts occurred in both the polymer standard and neon argon spectra 

suggesting that shifts were caused by expansion or contraction of spectrometer 

components with temperature as well as a potentially significant contribution from the 

laser source. The apparent linear shift across the entire wavelength range would make 

correction easier than for example if a breathing artefact was apparent. Initial results 

suggest that the effect is less pronounced when using the compact S100 spectrometer 

which may be due to the simplicity of the spectrometer, or due to the lower resolution 

spectra, although further work is required to investigate this. This could potentially ease 

the transition to clinical application, in theatre for example. The detrimental effect of 

temperature induced peak shifts on a tissue classification model is demonstrated 

highlighting the importance of temperature stabilisation over short and long time 

periods.  

7.2.3 Reproducibility and transferability 

Comparison of Raman probes has generally relied on measuring the sampling efficiency 

and determining the focal depth using Si. Attempts at measuring the sampling volume 

off axis have also been made using diamond chips.
147

 These measurements can give a 

good and simple method of comparing probes, but what is really of interest is the 

sampling volume and depth in tissue or a tissue equivalent material. Of interest is the 

ability to quantify a probe’s ability to detect subtle differences in materials with different 

Raman signatures. For example the ability to detect a small region of cancer within a 

region of normal or Barrett’s epithelium or a region of Barrett’s within normal 

epithelium. This is a situation which is difficult to mimic in a phantom due to difficulties 

in replicating optical properties of different pathologies. However, considering a 

situation for which this would be easiest, the biomarker would be a substance with a 

unique Raman peak allowing the substance to be easily identified within surrounding 

tissue, for example a calcification in tissue. However, for substances, for example 
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collagen and glycogen, which may be easily distinguishable using Raman microscopy, 

this is more difficult with probe spectra due to large backgrounds, which are often 

dominant at the lower Raman shift range 400-900 cm-1. A further aspect for 

consideration is the effect of substance concentration on a probe’s ability to detect a 

certain substance within tissue.  

 

7.2.4 A discussion of lateral spatial resolution: moving towards 

quantification when multivariate statistical techniques are used for 

imaging 

This study also highlights an important aspect of spatial resolution for clinical diagnosis 

and raises the question: what is the spatial resolution in a Raman image. Although 

studies have looked at the impact of spatial resolution for spectral imaging,148,180 this 

issue is non trivial since contrast and spatial resolution are inseparable for spectra data, 

an idea supported by other authors.
149

 One concept is that due to the multidimensional 

nature of the spectroscopic information (for Raman mapping for example the 3D spectra 

data cube) there are many contributing factors to the contrast and spatial resolution that 

can be achieved. The multivariate techniques used for analysis may be of particular 

importance. To the author’s knowledge there is nothing in the literature investigating 

this concept. Further work will need to be carried out in the future to investigate these 

concepts.  

7.2.4.1 Initial phantom designs 

In order to test the limitations of the system and investigate how performance varies for 

detecting different substance, the design of a phantom would need to incorporate the 

concentration of a substance and Raman cross section. An alternative approach may be 

to construct the phantom with substances with a varying biochemical similarity, which 

can be measured by the degree of orthogonality.  

 

To mimic the clinical situation, the background would be a substance with similar 

optical properties (less important for mapping phantoms since penetration/sampling 

depth is not really a consideration) and Raman signature to say for example, epithelial 
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tissue, Barrett’s or stroma (or in the most simple of cases intralipid or intralipid/gelatine 

mixture), whilst the focal region may be a small region of cancer. It would be important 

to mimic the biochemical signature of the focal region for the phantom, or use a material 

with comparable orthogonality to the background tissue type chosen. Detecting HGD 

and LGD would require more subtle biochemical differences in the phantom which can 

be represented by a reduced concentration of a substance or more similar biochemical 

signature.  Interpreting the results would become especially complex since multivariate 

techniques are often used to interpret Raman images.   

 

Figure 7-4 shows some initial phantom designs which could potentially be used for 

quantifying spatial resolution and image contrast in Raman images. This could also be 

extended to depth and lateral spatial resolution for Raman probe and surface offset 

Raman spectroscopy.66  

 

 

Figure 7-4: Initial phantom designs which can incorporate materials of varying concentration 

and volume to overcome limitations with current assessment of spatial resolution 

7.3 The combination of chemometric analysis and Raman 

spectroscopy for pathology diagnosis – data quality versus data 

quantity 

As touched upon in both the Raman probe for targeted biopsy and Raman mapping for 

automated histology studies, signal to noise ratio and dataset size are key parameters of 

multivariate tissue classification models. For Raman probe studies, spectra datasets sizes 

are relatively small, compared to Raman mapping studies, and whilst the SNR of the 

probe spectra is relatively good, spectral peaks are masked by probe backgrounds. 
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Considering Raman mapping experiments, to obtain Raman images in clinically 

practicable time frames, the SNR must be sacrificed 

 

It was demonstrated previously (Figure 6-14), that the quality of the PC loads increases 

with dataset size. It has also been shown that fewer numbers of good quality probe 

spectra (albeit with few spectral peaks) can separate out three pathology groups.  

 

Consensus pathology has also been shown to improve tissue classification by improving 

the training of the model.  

 

A further consideration for automated histopathology and targeted biopsy techniques is 

how specifically the spectrum relates to the pathology, which is in effect a problem of 

spatial resolution since it relates to spectral mixing. To investigate this, the classification 

performance of different models was assessed from a perspective of practical clinical 

implementation, with the aim of determining optimum parameters for future clinical 

implementation studies. The number of pathology groups included, dataset size and 

spectral quality were considered. The overall experimental time and analysis time was 

also considered. The results are summarised in Table 7-2. 

 

The quality and quantity of the data required will depend on the diagnostic requirements. 

For example if the ultimate aim is only to separate out normal from abnormal tissues 

then relatively crude spatial averaging and poor signal to noise spectra could be used 

however if the aim is to separate out tissue types, pre-cancers, cancers and even predict 

prognosis then more subtle biochemical features may need to be resolved. It will also 

depend on whether the histopathologist is confident in spectroscopic diagnosis without 

the additional morphological information represented in the form of a pseudocolour 

histology image. If not then crude step size maps could potentially provide a rapid and 

automated method of pathology diagnosis. Taking this idea to the extreme, it may be 

sufficient simply to use an ex vivo probe or collect a spectrum with a low magnification 

objective, averaged over a large area of tissue, although work will need to be carried out 

to verify the minimum level of signal mixing required to detect pathology changes. A 

combination of modalities may be advantageous, for example FTIR for mapping the 
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entire sample, followed by high lateral spatial resolution Raman mapping of regions of 

interest. The complementary nature of FTIR and Raman is being explored by many 

groups including ours.137,190  

 

Table 7-2: Summary of training model performance for Raman probe and Raman mapping 

studies 

Model summary 

Samples/ 

spectra 

Model parameters 

Acq. time, stepsize, 

pathology groups,   

Training 

performance 

% 

Novel probe – Limited dataset size, prelim.  model 30/30 4s&60s,3gp(consensus) 86, 90 

Visionex probe model – reasonable dataset size 184/184 4s, 3gp (consensus) 82 

Raman map B – low SNR, large dataset 1/9000 0.5s, 25.3, N/A N/A(PCA) 

Sample 1 – LDA, poorly define dataset, low spatial res. 1/9592 15s, 8.4, 6gp 70.1 

Sample 2 – LDA, poorly defined dataset, high spatial res. 1/156220 15s, 2.1, 6gp 64.9 

Sample 1 – LDA, well defined dataset, high spatial res. 1/9592 15s, 8.4, 5gp 94.4 

Sample 1 – LDA, well defined dataset, low spatial res. 1/156220 15s, 2.1, 5gp 93.7 

Sample 2 – very well defined dataset, low spatial res. 1/500 15s, 8.4, 3gp 100 

Sample1&2 – LDA, very well defined dataset, low spatial res. 2/1292 15s, 8.4, 5gp 97.5 

    

 

These two points have considerable impact on the implementation of Raman 

spectroscopy as a clinical tool. It can be inferred that if small datasets are used (such as 

Raman probe studies, relatively good SNR spectra will be required until adequately 

large datasets are acquired. This implies that for future model generation, Raman spectra 

with a poorer SNR than initially conceived should be acquired in tandem with better 

quality spectra with the prospect of larger datasets in the future. The number of 

pathology groups which can be separated will be low until larger spectral datasets are 

acquired. In the future, it may become apparent that the limited spectral information 

within Raman probe spectra with high background and poor spectral resolution. 

However, the development of novel probe designs should improve Raman spectra.   

 

The extent to which we attempt to separate out pathology information is a question of 

clinical need which, ultimately, will need to be answered by the histopathologist. 

 

It is evident from the results of this thesis that there is promise for future clinical 

implementation of Raman spectroscopy for both targeted biopsy and automated 

histopathology. For the probe studies, the next step is to take the probe to the next phase 
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of development, dealing with issues such as sterilization and retesting in a clinical 

environment, whilst for the mapping studies, large pre-clinical trials are now required 

which will involve mapping many more samples to verify inter-compare patients and 

pathologies. The following sections summarise potential protocols for these studies 

based on lessons learned from this thesis.  

7.3.1 Optimum parameters for future Raman probe for targeted biopsy 

studies 

One factor which has arisen from these studies is the limits of SNR which can be pushed 

when used in combination with multivariate techniques. In any future study, SNR of 

measured spectra should be taken below what is thought feasible in the anticipation of 

measuring spectral datasets large enough to deal with limited SNR data. Acquiring both 

good and poor quality spectra from each sample enables robust training classification 

models to be generated.  

 

A proposed protocol for ex vivo probe validation is to measure clinical samples in 

theatre, prior to clinical throughput for histology. Once samples have been formalin 

fixed and archived, samples can be extracted and reanalysed for consensus pathology. 

This will maximise sample numbers. This method may not be suitable for the probes 

with large sampling volumes, but for the novel probe this is not an issue. The acquisition 

times determined were 2x15 s, 1 s, and 0.1 s. The latter would feasibly allow large areas 

to be sampled or even imaged, with the clinician effectively able to sweep the probe 

over larger areas to survey for potential disease, however, spectrometer design may be 

needed to reduce dead time in CCD readout as with rapid Raman mapping. The 

proposed protocol is schematically described in Figure 7-5. 

 

For probe studies with larger sampling volumes, the in vivo set up must be mimicked 

more closely, for example measuring EMRs or resected samples. Measuring in a theatre 

environment would maximise sample numbers. 
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Figure 7-5: Proposed protocol for large scale ex vivo Raman probe study for targeted biopsy 

7.3.2 Optimum parameters for future Raman mapping studies for 

automated histopathology 

In order to determine optimum parameters, the method in which potential automated 

histopathology will be carried out needs to be considered. There are two possible ways 
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in which it could be utilised which require different approaches. The first approach is the 

use of relatively crude spatial resolution Raman mapping for filtering out non-relevant 

tissue samples (i.e. normal or low risk samples). The second would be to provide the 

histopathologst with a more detailed histology breakdown, and image.  

 

Any potential future study would ideally encompass both eventualities. This would be 

easy to achieve since bulk discrimination of tissue types would likely to be carried out 

using crude spatial resolution with short acquisition times to minimise overall mapping 

times. For more detailed information, these maps can then be followed by longer 

acquisition time and/or high spatial resolution maps.  

 

It appears that high spatial resolution is not necessarily required for bulk tissue 

classification which implies that mid-IR imaging may be a more suitable mapping 

technique, since it is more reliable and has greater SNR data. However, it is also implied 

that higher spatial resolution may have advantages, but until a larger scale trial is carried 

out, this cannot be ruled out. Furthermore, Raman has advantages over mid-IR 

techniques since sample preparation is simple (mid-IR absorption mapping is very 

sensitive to saturations caused by thick tissue samples). Continuity with in vivo studies 

would also be advantageous since this would enable biochemical validation of both 

techniques in tandem.  

 

Considering Raman mapping technology is advancing it can be assumed that Raman 

mapping times will reduce further still in the future. Based on this, future large scale 

Raman mapping studies should be carried out, potentially in tandem with mid-IR 

imaging. Similar SNR factors apply to Raman mapping experiments as well as mid-IR 

imaging, and reducing the SNR of mid-IR spectra should also be investigated.  

 

It is envisaged that the Raman spectrometer system will eventually be situated in the 

histology department. It has been shown that frozen sections can be stained on the 

substrate which enables comparison with contiguous sections (Figure 6-17). However, 

CaF2 substrates (~£25) are not reusable once stained and coverslipped which implies 

that a cheaper alternative is required. Polished aluminium slides have been used in the 
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group for cell mapping studies which are cheaper than CaF2, however they will need to 

be evaluated fully for tissue measurements and histopathology.   

 

Raman mapping could be carried out in parallel with current clinical practice. A 

selection of biopsies will be snap frozen rather than formalin fixed and frozen sections 

and contiguous H&E sections taken. The remainder of the sample could then either be 

retained as a frozen sample, or formalin fixed and archived according to current clinical 

procedure.  

 

Raman mapping would be used in a similar manner to traditional microscopy. A low 

magnification global image would be assessed, followed by higher magnification 

regions of interest. The initial aim would be to filter out non-relevant tissue samples (i.e. 

filter out normal samples), and for this only bulk tissue pathology discrimination would 

be required.  

 

To mimic this process, a Raman mapping protocol should be adopted similar to that 

described in Section 4.6.4, additional rapid scans should be carried out in anticipation of 

larger datasets improving tissue classification. The proposed study would consist of 

several rapid pre-scan (0.1s, 25, 8 and 1-4µm), followed by and a longer acquisition time 

maps of regions of interest (5-15s, 8 and 1-4µm). For developing the training model, 

mapping the entire sample is not necessarily essential, as long each of the pathologies is 

well represented. However, this will be required for clinical implementation.  

 

Investigating the effects of projecting poor quality spectra onto classification models 

with good SNR data may be an alternative to long mapping times in clinic since spectral 

libraries can be built in advance of clinical implementation.  

 

It is likely that main-frame computing may be required for the analysis stage to handle 

large datasets until computer technology improves sufficiently.  
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Chapter 8 Future work 

8.1 Multi-centre study of calibration standards and tissue equivalent 

phantoms  

The previous section described potential protocols for large scale clinical trials for both 

Raman probes for targeted biopsy and Raman mapping for automated histopathology. 

Moving towards inter-departmental trials is another key step, but in order to achieve this, 

it is important to ensure system standardisation and transferability.  This problem has 

been addressed within our laboratories between microscopy systems, using green glass 

intensity calibration. However, problems were experienced in this study for the Raman 

probe system. Further work is required to identify sources of these discrepancies and 

similar investigations carried out using novel probe designs. 

 

Objective: To develop methods of transferring data and classification models between 

microscopy and laboratory Raman systems. This will enable probe data to be compared 

to previously developed classification models (from the Raman microscopy systems) 

and furthermore allow development of large scale spectral databases from different 

hospitals. If a reliable method can be developed, it will enable probe data to be 

compared to previously validated and published results.  

 

It is anticipated that this should be carried out using test phantoms and calibration 

standards since measurements will need to be carried out internationally and 

reproducibly to obtain data to represent different instrumentation under different setups. 

 

It is also proposed that a simple and homogeneous tissue sample is used to obtain 

multiple consecutive sections (with H&E sections in between) to enable more realistic 

comparison of different instrumentation.  Obtaining a large tissue sample from an 

oesophagectomy may be one way of obtaining such a sample since regions of normal, or 

potentially Barrett’s mucosa can be harvested away from the disease site.  
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8.2 Investigate and compare alternative pre-processing and 

multivariate analytical techniques 

It has been discussed previously that there is a need for investigating pre-processing and 

calibration methods to ensure transferability of spectral data between systems. A 

comparison of multivariate techniques such as artificial neural network (ANN), support 

vector machines (SVM) and hierarchal cluster analysis (HCA) with LDA is also 

required.  

8.3 Develop the prognostic model 

The prognostic model investigates correlations between Raman signature and high risk 

patients with HGD, i.e. which high risk patients which are likely to progress to cancer.  

A poster presented at SPEC, Heidelberg (2006) which resulted from some data analysis 

carried out on behalf of Mr. Simon Dwerryhouse (formerly Biophotonics Research 

Group) can be seen in Appendix K.  Following up patients from previous classification 

models, and those within this thesis may enable correlation with progression to cancer.  

8.4 Biochemical fitting of rapid Raman mapping and a comparison 

with immunohistochemistry staining  

One of the next steps towards automated Raman histopathology is fitting biochemical 

constituents to the rapid Raman maps. This so called biochemical mapping has been 

used by our groups and others to elucidate biochemical changes associated with 

carcinogenesis.
214,123,175

 A further extension of this is to correlate the results with 

immunohistochemistry to identify the presence of mucins and other subtle biochemical 

changes with Raman mapping results and genetic mutation studies.  

 

A collaborative project has already been established with Prof. Sir. N. Wright at CRUK, 

London and preliminary measurements have already commenced to identify different 

phenotypes in Barrett’s crypts.  
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Chapter 9 Conclusions 

9.1 Aim 1 – Classification model conclusions 

The Visionex probe was shown to discriminate three different pathology groups with a 

good overall accuracy in a cross validated multivariate model. Promising results were 

obtained in a preliminary study of a novel single collection fibre probe. Although this 

model was small, it can be inferred that a similar and potentially improved performance 

as the Visionex probe will be achieved with a larger spectral dataset since raw spectra 

(and background spectra) can be seen to contain equivalent spectral information. It was 

also demonstrated that an acquisition time of as low as 4s could be used.  

 

Sampling depth is considered to be an important parameter for probe design and as a 

result, the Emvision probe was ruled out as a potential in vivo probe for endoscopic use 

for early diagnosis of oesophageal premalignancies, however this probe may have other 

applications for probing deeper structures/resection margins.  

 

In summary, both the Visionex and single collection fibre Raman probes have been 

shown to have potential for in vivo applications, and further efforts should now be 

committed to developing large tissue classification models and overcoming 

instrumentation issues prior to in vivo trials.  

9.2 Aim 2 – Evaluation of rapid Raman mapping for potential 

automated histology 

This study has demonstrated the advent of rapid Raman mapping technology in 

combination with multivariate techniques, has enabled mapping times to be reduced to a 

clinically practicable time scale.
204,205

 

 

A further question of whether or not high spatial resolution mapping is required for 

automated histopathology was addressed. It was concluded that high spatial resolution 
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was not necessarily required and that a step size of 8µm was sufficient for separating 

bulk tissue pathologies. High spatial resolution imaging, does however, have visual 

advantages for the histopathologist since morphological structures can be identified 

more easily. Furthermore, there is the potential for separating out more pathology groups 

by reducing spectral mixing effects. Maps with different spatial resolutions were 

compared using linear discriminant analysis imaging of multiple maps demonstrating 

that technique could be applied between different samples. Rapid Raman mapping has 

been shown to be a useful research tool for elucidating biochemical changes associated 

with pathology.   

 

This thesis and subsequent publications has served to improve the results within the 

literature which will hopefully enable scientists to make an informed choice when 

selecting a Raman imaging technique for biomedical and wider applications.  

9.3 Aim 3 – Factors limiting translation of Raman optical diagnostic 

techniques into the clinical environment 

Practical considerations for implementing Raman spectroscopy for both in vivo and ex 

vivo diagnostic applications were investigated. Ambient light sources such as LCD 

computer screens were found to be a significant problem, which can easily be overcome 

using shielding, switching off the screen or using alternative computer screens. LEDs 

can also provide an alternative light source. However, further work is required to 

investigate theatre lights and those used during endoscopy.   

 

A variation in peak position with ambient temperature was also detected which 

highlights the importance of temperature stabilisation and calibration procedures. Peak 

shifts appear to be less of an issue for the probe based spectrometer. 

 

Consideration of practical issues also led to the development of protocols for future large 

scale clinical studies. One conclusion was that the effectiveness of noise reduction using 

PCA should not be underestimated and it was recommended that this should be taken 

into account when devising study protocols.  
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The potential benefits of optical biopsy/automated histopathology are well known, 

namely that the technique is objective reproducible and in the case of in vivo diagnosis, 

can provide an immediate diagnosis. These factors will have patient outcome and cost 

benefits. This study has addressed some of the important issues which have previously 

limited the translation of Raman spectroscopy into the clinical environment for potential 

in vivo and ex vivo diagnosis of pathology.   
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Appendix A Raman peak assignments in oesophageal 

tissue 

Table A1: Characteristic Raman shift (δ=deformation, νstretch vibration, νs=symmetric vibration, 

νas=asymmetric vibration, adapted from Stone,
110

 Kendall
123

 and  Shetty
126

 

 Assignment Tissue/Substance 

207 Calcium carbonate Cholesterol 
275 τCCC Lactic acid 
350 Ribose, cytosine  
370 δCCC Lactic acid 
385 Cytosine  
400 Silica Fibre probe on cervix 
424 δCCC Human strateum corneum 
425 δCCO Lactic acid 
429 Calcium hydroxyapatite  
430 Cholesterol  
430 δ(OPO) Human tooth 
435 Ribose  
451 O-P-O symmetric bend Chicken leg bone 
481 Glycogen Sigma Aldrich G0885 
492 νs (SiOSi) silicone gel 
500 Cytosine, guanine & disulphide  
500-550 Disulphide (S-S) stretch Protein 
505 ν (S-S) Bovine serum albumin 
507 Disulphide Nails 
509 Disulphide (S-S)  
510 Disulphide (C-S-S-C gauche-gauche-

gauche) 
Protein 

518 Glucose  
525 Disulphide (C-S-S-C gauche-gauche-

trans) 
Protein 

526 ν (S-S) Strateum corneum 
526 ν (S-S) Human strateum corneum 
528 ν (S-S) Protein 
529 Desmosine & isodesmosine (amino 

acids) 
Elastin 

530-1 ν (S-S) Callus, psoriatic plaque 
533 COC deformation (glycosidic ring)  
533 Glucose Blood 
540 Disulphide (C-S-S-C trans-gauche-trans) Protein 
541 νSS AGP (glycoprotein)

*
 

540 νOCO Lactic acid 
547 Cholesterol Protein 
553 Glucose Blood 
556 ν (S-S)  
574 Tryptophan Eye lens 
575 Cytosine, guanine & disulphide  
576 Glycogen Sigma Aldrich G0885 
576 Glycogen Glycogen (Sigma Aldrich)

†
 

                                                 
*
 Kopecky, V. et al. (2003). Structure of human a1-acidn glycoprotein. Biochemical and Biophysical 

Research Communications, 300, p. 41-4. 

†
 Hutchings J (Thesis, Section 1.2.3) 
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587 Calcium hydroxyapatite Protein 
591 Apatite Human tooth enamel 
591 δ(OPO) Human tooth 
600 ρ(CH) wagging Human strateum corneum 
607 Cholesterol Protein 
618 Phenylalanine(amino acid) Collagen 
620 Phenylalanine(amino acid) Diseased breast tissue 
620 Phenylalanine  
620-2 ν (C-S) Callus, psoriatic plaque 
620 Phenylalanine (AGP) AGP (glycoprotein)* 
622 Phenylalanine  
623 ν (C-S) Human strateum corneum 
623 ν (C-S) Strateum corneum 
624 Adenine DNA (Z), RNA(Z) 
625 Guanine in the C3' endo/syn form DNA (Z) 
626 Phenylalanine  
626  Cervix tissue 
626 Silica Fibre probe on cervix 
637 Ribose & disulphide Protein 
640 Guanine RNA(Z) 
641 Tyrosine (AGP) AGP (glycoprotein)* 
642 Thymine DNA (A), RNA (A) 
643 ν (C-S), amide IV Strateum corneum, Callus, 

psoriatic plaque 
643 Tyrosine  
644 Tyrosine  
644 ν (C-S), Amide IV Human strateum corneum 
650 δC-COH Lactic acid 
665 Thymine DNA (B) 
668 Guanine in the C3' endo/anti form DNA (A), RNA (A) 
669 ν(C-S) Bovine Serum albumin 
669 ν(C-S)  
669 Thymine  
670 Breathing of aromatic ring of purine 

bases (guanine  & adenine) 
DNA 

670 Guanine DNA (C) 
670 Guanine  
670 Thymine & guanine  
681 Guanine breathing ring  
682 Guanine in the C2' endo/anti form DNA (B) 
692 Creatine (O-C=O) deformation  
704 Calcium carbonate Cholesterol 
709 Glycogen Sigma Aldrich G0885 
700 Cholesterol Brain 
701 Cholesterol  
710 Adenine  
710 νs (Si-C) silicone gel 
710 νCS (AGP) AGP (glycoprotein)* 
717 phosphotidylcholine Phosphotidylcholine(Sigma 

Aldrich)† 
720 Nucleotides Breast cancer in mouse 
720 C-N vibration Phospholipid membrane 
722 Adenine  
724-7 Adenine DNA (A), DNA(B), RNA(A) 
725 C-S Eye lens 
725 CH2 rocking  
727 =C-H in plane bend Breast tissue, lipid 
727 C-C stretch, proline Normal breast tissue 
727 =C-H in plane bend  
728 C-C stretch, proline Oleic acid methyl ester 
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729 Adenine breathing ring  
729 Adenine DNA (Z), RNA(Z) 
730  DL-Lactic acid (C3H6O3) 
742-748 O-P-O DNA (Z), RNA(Z) 
743 in bovine albumin Sigma Aldrich A2153 

746 ρ(CH2) Human strateum corneum 
748 Thymine DNA (B) 
749 Thymine breathing ring  
750 δOCO Lactic acid 
750 Cholesterol Carotid artery 
756 Tryptophan (AGP) AGP (glycoprotein)* 
759 Tryptophan (amino acid)  
759 Tryptophan (amino acid) Human eye lens 
760 Tryptophan (amino acid) Rabbit & human cornea & Rabbit 

aqueous humour 
760 Tryptophan & tyrosine Rabbit lens 
760 Tryptophan (amino acid)  
760 Tryptophan (amino acid)  
760 Tryptophan (amino acid)  
761 Glycogen Sigma Aldrich G0885 
762 Collagen Sigma Aldrich C7774 
770 Breathing of aromatic ring of pyrimidine 

bases (cytosine & thymine) 
DNA 

777 Thymine DNA (A), RNA (A) 
780 Cytosine DNA (A), RNA (A) 
780 Nnucleotides Breast cancer in mouse 
780 Uracil ring  
782 Cytosine ring breathing DNA (B) 
785 O-P-O DNA (C) 
787 Cytosine & uracil  
788 Thymine, cytosine, O-P-O DNA 
790 νs O-P-O DNA 
790 Acetone (C-C-C) stretch  
795 DNA DNA (Sigma Aldrich)† 
800  pyruvate 
806-813 (809) νs O-P-O DNA (A) 
811 Nucleotides Breast cancer in mouse 
814 νs O-P-O DNA 
814 νs O-P-O RNA (A) 
814 C-C stretch, backbone Type I collagen (human placenta) 
814 C-C stretch, backbone Collagen 
814 C-C stretch, backbone in collagen Sigma Aldrich C7774 
815 Phosphate  
816 C-C Proline ring Collagen type I, normal skin 

dermis 
817 C-C stretch, backbone Infiltrating ductal carcinoma 
817 C-C stretch, backbone Diseased breast tissue 
818 Haemoglobin  
818  Cervix tissue 
818 Silica Fibre probe on cervix 
819 Tyrosine  
820 Structural protein Breast 
825-830 Tyrosine (amino acid) Histones 
825-842 O-P-O DNA (B) 
826 in bovine albumin Sigma Aldrich A2153 
827 δ(CCH) aliphatic Human strateum corneum 
828 Tyrosine (amino acid) Sigma Aldrich T8909 
830 C-COOH stretch Lactate 
830 C-COOH stretch DL-Lactic acid (C3H6O3) CH3-
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CHOH-COOH 
830 C-COOH stretch Lactate 
830 Tyrosine (amino acid) Human eye lens 
830 Tyrosine (amino acid)  
830 Tyrosine (amino acid)  
830 Tyrosine (amino acid)  
830 νC-COOH Lactic acid 
832 Tryptophan & tyrosine Rabbit lens 
832 Tyrosine  
832 Tyrosine  
833 νas O-P-O DNA 
833 Ribose phosphate 

 
 

834 (832-834) Tyrosine (AGP) AGP (glycoprotein)* 
835 νas O-P-O DNA (B) 
840 Tyrosine (amino acid)  
840 Glucose  
840-860 Polysaccharides  
840-860 Polysaccharides  
840-880 Glucose Blood 
846 Tyrosine (amino acid) Sigma Aldrich T8909 
847 Glucose Sigma 
849  Breast 
850 Proline  
850 Tyrosine (amino acid)  
850 Tyrosine (amino acid)  
850  Bovine albumin Sigma Aldrich 

A2153 
850 δ(CCH) aromatic Human strateum corneum 
850-3 δ(CCH) aromatic Strateum corneum, Callus, 

psoriatic plaque 
852 Tyrosine (AGP) AGP (glycoprotein)* 
853 Tyrosine (amino acid) Human eye lens 
853 Tyrosine (amino acid) DNA 
853 Glycogen Sigma Aldrich G0885 
854-6 Tyrosine (amino acid) Histones 
855 Tyrosine  
855 C-C stretch Proline ring Collagen 
855 C-C stretch, proline Type I collagen (human placenta) 
856 Glycogen Glycogen (Sigma Aldrich) † 
856 Proline Chicken leg bone 
856  Polysaccharides in glioma grade 

III (human brain tissue) 
856 CC strectch, COC stretch, 1,4 glycosidic 

link 
 

856 C-C stretch collagen backbone & Proline 
ring 

Diseased breast tissue 

856 collagen Collagen IV (Sigma Aldrich)† 
856 C-C stretch, proline Infiltrating ductal carcinoma 

(breast) 
856 ν(CC) skeletal vibrations, keratotic Healthy human skin dermis 
856 C-C stretch collagen backbone & Proline 

ring 
 

856 Tryptophan & tyrosine Rabbit lens 
856 C-C stretch Proline ring in collagen Sigma Aldrich C7774 
857 Tyrosine  
858 C-C stretch in elastin Sigma Aldrich E1625 
859 C-C Proline ring Collagen type I, normal skin 

dermis 
860 Collagen Fibrocystic human breast tissue 
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860 Lactate Human aqueous humour 
865 Ribose, Tryptophan (amino acid) Protein 
866 Lactic acid DL-Lactic acid (C3H6O3) CH3-

CHOH-COOH 
868 C-C stretch, hydroxyproline Oleic acid methyl ester 
870 C-C stretch, hydroxyproline Normal breast tissue 
870 Proline (amino acid) Malignant breast tissue 
870  Breast 
872 C-C stretch of 4-hydroxyproline in 

collagen 
Sigma Aldrich C7774 

873 hydroxyproline Chicken leg bone 
873 Glycerol fragment vibration (Sialic acid)  AGP (glycoprotein)

 ‡
 

874 C-C stretch, hydroxyproline Type I collagen (human placenta) 
874 C-C stretch of 4-hydroxyproline Collagen 
876 phosphotidylcholine Phosphotidylcholine(Sigma 

Aldrich)† 
876 C-C stretch, hydroxyproline Infiltrating ductal carcinoma 

(breast) 
876 C-C stretch of 4-hydroxyproline Diseased breast tissue 
878 Tryptophan (AGP) AGP (glycoprotein)* 
879 Tryptophan (amino acid) Human eye lens 
880 Tryptophan (amino acid)  
880 Tryptophan (amino acid)  
880 Tryptophan (amino acid)  
880 Tryptophan (amino acid) Rabbit & human cornea 
880 Tryptophan & tyrosine Rabbit lens 
880 Tryptophan (amino acid) Rabbit aqueous humour 
880 Sialic acid (Sia) (AGP) AGP (glycoprotein)‡ 
883 CH2 rocking, Strateum corneum, 
883 ρ(CH2) Human strateum corneum 
885 Ribose, Tryptophan (amino acid) Protein 
890 Structural protein Breast 
890  Breast 
890-1 CH2 rocking, Callus, psoriatic plaque 
892 CH2 rocking,  collagen hydroxyproline Skin 
893  Bovine albumin Sigma Aldrich 

A2153 
895 DNA backbone DNA 
896 Proline Sigma Aldrich T8449 
915 Ribose Protein 
917 Deoxyribose (CH2 deformation) DNA (B) 
920 Glucose Sigma 
920 C-C stretch in elastin Sigma Aldrich E1625 
920 Lactic acid DL-Lactic acid (C3H6O3) 
920 C-C stretch Proline ring Diseased breast tissue, collagen 
920 C-C Proline ring Type I collagen (human placenta) 

& infiltrating ductal carcinoma 
(breast) 

920 C-C stretch Proline ring in collagen Sigma Aldrich C7774 
921 C-C Proline ring Collagen type I, normal skin 

dermis 
921 C-C stretch Proline ring Collagen 
925 DNA backbone DNA 

                                                 
‡
 Oleinikov, V., Kryukov, E., Kovner, K., Ermishov, M., Tuzikov, A., Shiyan, S., Bovin, N. and Nabiev, 

I. (1999). Sialylation sensitive bands in the Raman spectra of oligosaccharides and glycoproteins. Journal 

of Molecular Structure, 480-481, p. 475-480 
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928 DNA backbone, α helix Protein 
928-940 C-C Proline, valine  
930 Tryptophan (amino acid) Protein 
930 rCH3 Lactic acid 
931 CH3 rocking,  collagen proline Skin 
931 ρ(CH3), ρ(C-C) α-helix Human strateum corneum 
932 Skeletal C-C, α helix DNA 
932-5 CH3 rocking,  C-C stretch α helix keratin Strateum corneum, Callus, 

psoriatic plaque 
934 C-C stretch, backbone Collagen 
934 C-C Proline ring Type I collagen (human placenta) 
935-945 (C-C) skeletal vibrations, α helix α-helix protein secondary 

structure 
935 Collagen Fibrocystic human breast tissue 
936 C-C stretch backbone, hydroxyproline & 

collagen 
Skin 

936 C-C stretch, backbone in collagen Sigma Aldrich C7774 

937 C-C stretch collagen Collagen IV (Sigma Aldrich)† 
937 Glycogen Sigma Aldrich G0885 
937 Glycogen Glycogen (Sigma Aldrich) † 
937 C-C stretch, backbone Diseased breast tissue 
937 C-C Proline ring Infiltrating ductal carcinoma 

(breast) 
937 α-helix nails 
938 ν(C-C) skeletal vibrations, 

keratotic 
Healthy human skin dermis 

938 Peptide backbone stretch  
938 C-C backbone Collagen 
939 C-C-N stretching Bovine Serum albumin 
940 C-C-N stretching in bovine albumin Sigma Aldrich A2153 
940 ν(C-C) of proline and valine Normal human skin 
940 Triple helix vibrations Collagen type I, normal skin 

dermis 
941 C-C stretch Protein 
944 ν(C-C) (AGP) AGP (glycoprotein)* 
944 ν(C-C) Asian skin 
950 4-hydroxyproline Malignant breast tissue 
955 Hydroxyapatite  
956 Carotenoids Human brain tissue, acoustic 

neuroma 
956 ρ(CH3), δ(CCH) olefinic Human strateum corneum 
960 Calcification - hydroxyapatite Human brain tissue, central 

neurocytoma 
960 Calcification - hydroxyapatite Aortic valve leaflets & coronary 

artery segments 
960 P-O symmetric stretch Chicken leg bone 
960 P-O symmetric stretch Atherosclerotic plaque calcified 

salts 
960 Hydroxyapatite, P-O symmetric stretch Calcified plaque 
960 Cholesterol  
961 Apatite Human tooth enamel 
961 Υs(PO) of PO4

3-
in apatite Human tooth 

961 Phosphate groups Calcified atherosclerotic plaque 
966 Hydroxyapatite Calcified plaque 
966 Desmosine & isodesmosine (amino 

acids) 
Elastin 

966 Triple helix vibrations Collagen type I, normal skin 
dermis 

968 C-OH  
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972 =C-H out of plane deformation Breast tissue 
972 C-C Proline ring Normal breast tissue, Oleic acid 

methyl ester 
972 =C-H out of plane deformation Breast 
975 Ribose Protein 
975 Deoxyribose (CH2 deformation) DNA (B) 
978 Symmetric phosphate ion stretching Phospholipids, glucose-1-

phosphate 
978 Symmetric phosphate ion stretching Human cervix 
978 Phosphorylated proteins and nucleic 

acids 
Human cervical biopsies 

982 CH2 rocking Strateum corneum 
1000-1100 Glucose Blood 
1000-1150 C-C skeletal vibrations Phospholipid membrane, 

hydrophobic chains 
1000-1250 Phosphate groups DMPC 

(dimyristoylphosphatidycholine), 
a typical lipid, brain 

1000-1200 C-C stretch – lipids Healthy human skin 
1000 Phenylalanine in bovine Albumin Sigma Aldrich A2153 
1001 Phenylalanine(amino acid) Sigma Aldrich T8324 
1001 Phenylalanine(amino acid) Malignant breast tissue 
1001 Phenylalanine(AGP) AGP (glycoprotein)* 
1001  Ovary 
1001-1004 Phenyl ring breathing mode  
1002 υ(C-C) aromatic ring Strateum corneum, Callus, 

psoriatic plaque 
1002 (C-C) skeletal vibrations, β sheet β-sheet protein secondary 

structure 
1002 Phenylalanine(amino acid)  
1002 Phenylalanine(amino acid)  
1002 Phenylalanine(amino acid) Collagen 
1002 collagen Collagen IV (Sigma Aldrich)† 
1002 Hydroxyproline, tyrosine Type I collagen (human placenta) 
1002 ν(CC) aromatic ring Human strateum corneum 
1003 ν(CC) aromatic ring stretch of 

phenylalanine residue in keratin 
Healthy human skin 

1003 Phenylalanine(amino acid) breathing 
mode 

Human brain tissue, protein 

1003 C-N stretch Urea 
1003 C-N stretch of urea Urea 
1003 C-N stretch of urea  
1004 Phenylalanine(amino acid) Rabbit lens, aqueous humour, 

cornea & human cornea 
1004 Aromatic ring (breathing mode) Normal human skin 
1004 Phenylalanine(amino acid)  
1004 Phenylalanine(amino acid)  
1004 Phenylalanine(amino acid)  
1004 Phenylalanine(amino acid) Diseased breast tissue 
1004 Phenylalanine(amino acid) Infiltrating ductal carcinoma 

(breast) 
1004 Phenylalanine(amino acid) + Trp 

aromatic ring 
Bovine Serum albumin 

1004 Carotenoid Beta carotene, Human breast 
carcinoma 

1004 Phenylalanine in collagen Sigma Aldrich C7774 
1004 P-O symmetric stretch Chicken leg bone 
1005 Carotenoid Normal human breast tissue 
1005 Beta carotene Breast 
1005 Carotenoid Human breast tissue 
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Renal cell carcinoma (1003) 
1005 Phenylalanine(amino acid) Protein 
1006 C-N stretch of urea Urea, rabbit aqueous humour 
1006 Phenylalanine, amino acid Collagen, histones 
1006 Phenylalanine, amino acid Protein 
1006 Carotenoids Human brain tissue, acoustic 

neuroma 
1008 C-N stretch Urea NH2-CO-NH2 
1008 Carotenoids Carotenoids in normal colon 
1010 C-N stretch Human aqueous humour 
1013 Urea N-C-N stretch  
1014 Tryptophan (amino acid)  
1015 Tryptophan (amino acid) Protein 
1016 Tryptophan – amino acid DNA in water 
1017 DNA backbone C-O stretch  
1029 Phenylalanine(AGP) AGP (glycoprotein)* 
1030 Collagen Sigma Aldrich C7774 
1031 Proline  
1031 ν(CC) skeletal cis conformation Human strateum corneum 
1031-32 υ(C-C) keratin Strateum corneum, Callus, 

psoriatic plaque 
1032 Phenylalanine(amino acid) Rabbit & human cornea Rabbit 

lens Rabbit aqueous humour 
1032 Phenylalanine(amino acid)  
1032 proline Type I collagen (human placenta) 
1034  Ovary 
1035 Ribose, Phenylalanine(amino acid) Protein 
1035 C-C skeletal cis  
1043 Proline Infiltrating ductal carcinoma 

(breast) 
1043 Formalin artefact breast tissue 
1046 C-O stretch carbohydrate

§
 

1046 Lactic acid  DL-Lactic acid (C3H6O3) CH3-
CHOH-COOH 

1046 Glycogen Glycogen (Sigma Aldrich) † 
1048 Glycogen Sigma Aldrich G0885 
1050 νC-CH3 Lactic acid 
1050 CO stretch, CCC trans skeletal stretch Healthy human skin dermis 
1057 DNA backbone C-O stretch  
1060 δOD Methyl lactate 
1061 Lipid Strateum corneum 
1061 phosphotidylcholine Phosphotidylcholine(Sigma 

Aldrich)† 
1062 υ(C-C) skeletal trans conformation lipid Strateum corneum 
1062 ν(CC) skeletal trans conformation Human strateum corneum 
1064 C-C stretch  
1065 C-O stretch & C-O-C sym. stretch - 

phospholipids 
Human brain tissue 

1066 C-C stretch Breast 
1066 C-C stretch breast tissue 
1066 Proline Normal breast tissue 
1066 C-O, C-O-C stretch Phospholipids 
1066 Lipid  

                                                 
§
 Kast, R. E., Serhatkulu, G. K., Cao, A., Pandya, A. K., Dai, H., Thakur, J. S., Naik, V. M., Naik, R., 

Klein, M. D., Auner, G., W. and Rabah, R. (2008). Raman Spectroscopy Can Differentiate Malignant 

Tumors from Normal Breast Tissue and Detect Early Neoplastic Changes in a Mouse Model.  

Biopolymers, 89(3), p. 235-241. 
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1066  Ovary 
1067 Proline Oleic acid methyl ester 
1069 Hydroxyapatite shifted due to 

environment 
Human cervix 

1070 Symmetric phosphate ion stretching Glucose -1-phosphate, collagen 
1070 Symmetric phosphate ion stretching Human cervix 
1070 Collagen/elastin  
1070  Cervix 
1070 Phosphate / carbonate Atherosclerotic plaque 
1070 Phosphate / carbonate  
1071 apatite Human tooth enamel 
1071 Υas(PO) Human tooth 
1072 P-O asymmetric stretch Chicken leg bone 
1074  Adipose tissue 
1074 Triglycerides Adipose tissue from human aorta 
1078 C-N stretch Benign breast tissue 
1078-1090 C-C, C-O stretch in lipids. C-C, PO2 

stretch in nucleic acids 
 

1079 C-C stretch Breast tissue 
1079  Normal breast tissue 
1079 C-C stretch Breast 
1080 C-C stretch & PO2- sym. stretch - 

phospholipids 
Human brain tissue 

1082 υ(C-C) skeletal random conformation 
lipid 

Strateum corneum 

1082  Oleic acid methyl ester 
1082 PO2- vibration in phospholipids and 

nucleic acids 
Normal human skin 

1082 Lipid Normal human breast tissue, 
Lipid (TPE) 

1082 Lipid Human breast tissue 
1082 Lipid  
1082  Protein 
1082 ν(CC) skeletal random conformation Human strateum corneum 
1083 Glycogen Sigma Aldrich G0885 
1084 Lactic acid DL-Lactic acid (C3H6O3) CH3-

CHOH-COOH 
1084-90 ν(CC), ν(CN) (AGP) AGP (glycoprotein)* 
1085 Calcium carbonate Cholesterol 
1085 C-C stretch Lipid 
1085 Phenylalanine(amino acid) Protein 
1085 Phosopholipids Malignant breast tissue 
1086 C-C stretch, PO2 stretch Phospholipids 
1087 Symmetric stretching of phosphate 

groups of the polynucleotide chain 
DNA 

1090 νCO Lactic acid 
1090 PO

-
2 DNA (C) 

1091 PO
-
2 DNA (B) 

1092 Glycogen Glycogen (Sigma Aldrich) † 
1094 DNA O-P-O  
1094 DNA O-P-O  
1095 νs of two ionised phosphate oxygens in 

the diphosphate ester 
DNA (B) 

1095 DNA DNA (Sigma Aldrich)† 
1095 PO

-
2 DNA (Z), RNA(Z) 

1095 CC stretch, COC deformation 1-4 
glycosidic link 

 

1097 phosphotidylcholine Phosphotidylcholine(Sigma 
Aldrich)† 

1099 PO
-
2 DNA (A), RNA(A) 
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1100 Formalin Formalin 
1100 PO2 stretch Protein 
1100 νs of two ionised phosphate oxygens in 

the diphosphate ester 
DNA (A) 

1100 Lipid disorganised  
1100-1110 (C-C) skeletal vibrations Unordered protein secondary 

structure 
1104 C-C stretch lipid  
1108 Desmosine & isodesmosine (amino 

acids) 
Elastin 

1118  Normal breast tissue 
1119  Oleic acid methyl ester 
1119 C-C stretch Breast tissue 
1119 C-C stretch Breast 
1122 C-C stretch lipid  
1123 Glycogen Sigma Aldrich G0885 
1123 Glucose Sigma 
1125   
1125  Infiltrating ductal carcinoma 

(breast) 
1126 C-N stretch Protein 
1126 C-C stretch - phospholipids Human brain tissue 
1126 ν(CC) skeletal trans conformation Human strateum corneum 
1127 υ(C-C) skeletal trans conformation lipid 

& keratin 
Strateum corneum, Callus, 
psoriatic plaque 

1127 Lipids Strateum corneum 
1127  Type I collagen (human placenta) 
1128 C-C stretch  
1128 Heme vibrational mode  
1129 C-C stretch, lipid Healthy human skin strateum 

corneum & epidermal membrane 
1130 Trans C-C stretch – phospholipids Human brain tissue, glioma grade 

III 
1130 Lipid Healthy human skin strateum 

corneum & epidermal membrane 
1130 C-C stretch, lipid  
1130 C-O stretch glucose  
1130 Low density lipoproteins  
1131 Lactic acid DL-Lactic acid (C3H6O3) 
1135 νCO, rCH3 Lactic acid 
1150 Carotenoid Human artery 
1150 C=C Carotenoid Food 
1150 Cholesterol Carotid artery 
1155 C-C stretch, δ(COH)  
1155 ν(CC), δ(COH) Human strateum corneum 
1156 CN stretch Bovine Serum albumin 
1156 Carotenoid  
1156 Carotenoid Human breast carcinoma, Beta 

carotene 
1157 Carotenoid Normal human breast tissue 
1157 Carotenoid Human breast tissue 

Renal cell carcinoma (1155) 
1157 Carotenoid Human brain tissue, acoustic 

neurinoma, beta carotene 
1158 Carotenoid Carotid artery 
1158 Carotenoid Carotenoids in normal colon 
1158 NH2 rocking vibration Urea 
1159 C-N Protein in eye lens 
1160 Carotenoid Blood plasma 
1162 Ribose  
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1166  Type I collagen (human placenta) 
1167  Infiltrating ductal carcinoma 

(breast) 
1172 ν(CC) Human strateum corneum 
1174 Tyrosine (AGP) AGP (glycoprotein)* 
1175 C-O stretching Human cervical biopsies 
1176 Tyrosine, Phenylalanine Protein 
1180  Cervix 
1180 Tyrosine Breast 
1180 Tyrosine  
1180 Cytosine, guanine, adenine  
1197 Carotenoid  
1200-1700 Collagen Dentine 
1205 Tyrosine + Phenylalanine Bovine albumin, Sigma Aldrich 

A2153 
1206 4-hydroxyproline (amino acid), tyrosine Diseased breast tissue 
1206 4-hydroxyproline (amino acid) Collagen 
1206 Hydroxyproline, tyrosine Type I collagen (human placenta) 

& infiltrating ductal carcinoma 
(breast) 

1207 Tyrosine Human eye lens 
1207 Tyrosine (AGP) AGP (glycoprotein)* 
1207 Tyrosine + Phenylalanine (amino acid) Bovine Serum albumin 
1207  Ovary 
1208 Thymine DNA (B) 
1210 hydroxyproline Chicken leg bone 
1210  Cervix 
1210 Tryptophan, phenylalanine  
1211 Tyrosine, Phenylalanine, Thymine Protein 
1226-1243 Amide III - ν(C-N) β pleated sheet protein secondary 

structure in β-Poly-L-alanine 
1227 Heme vibrational mode  
1227-1247 Amide III (C-N stretch, N-H in plane 

bending) β-sheet 
β-sheet protein secondary 
structure 

1230 Uracil in RNA Cultured breast cells 
1230-1240 Amide III β-sheet  
1230-1245 Amide III - ν(C-N) β pleated sheet protein secondary 

structure in β-Poly-L-glutamate 
1234 Antisymmetric stretching of phosphate 

groups of the polynucleotide chain 
DNA 

1235-1270 Amide III (C-N stretch, N-H in plane 
bending) unordered 

 

1237 Amide III Human eye lens 
1238 Amide III, random coil Rabbit & human cornea 
1238 Amide III in elastin Sigma Aldrich E1625 
1238 Cytosine, uracil, Amide III  
1239 Thymine DNA (A), RNA (A) 
1240 Amide III - ν(C-N) β pleated sheet protein secondary 

structure in β-Poly-L-lysine 
1240 Vibration of pyrimidine bases (cytosine 

& thymine) 
DNA 

1240 Amide III ν(C-N) Benign breast tumour 
1240 Amide III  
1240 Amide III in collagen Sigma Aldrich C7774 
1240 Amide III - ν(C-N) Uterus cancer 
1240 Amide III Caractous lens 
1240 Thymine Protein 
1240-1260 Amide III unordered  
1243 Amide III Liver - collagen 
1243 Amide III Chicken leg bone 
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1243 Amide III Rabbit lens 
1243-48 Amide III - ν(C-N) irregular protein secondary 

structure in β-Poly-L-lysine pH4 
1244 δ(CH2) wagging, ν(CN) amide III 

disordered 
Human strateum corneum 

1245 νCO, δOH Lactic acid 
1245 Amide III, random coil Human brain tissue, glioma grade 

III 
1245 Keratotic Healthy human skin dermis 
1245  Cervix 
1245 Amide III: keratin, disordered collagen  
1245-1305 Amide III (C-N stretch, N-H in plane 

bending) 
Histones 

1246 Amide III Bovine Serum albumin 
1246 Amide III ν(C-N) Collagen & DNA 
1246 Amide III ν(C-N) Human cervix precancer 
1246 Amide III (C-N stretching vibrations) Human cervical biopsies 
1246 Amide III (C-N stretching vibrations)  
1246 Amide III (C-N stretching vibrations) Protein 
1247 Amide III Type I collagen (human placenta) 

& infiltrating ductal carcinoma 
(breast) 

1247 Amide III Diseased breast tissue 
1247  Neutrogena sarcoma (brain) - 

collagen 
1247 Amide III Collagen 
1247 Amide III - ν(C-N) Endometrium cancer 
1247 Collagen Fibrocystic human breast tissue 

 
1248 Amide III Breast 
1248 PO2- vibration in phospholipids and 

nucleic acids 
Normal human skin 

1248 Amide III (C-N stretch, N-H in plane 
bending) 

Collagen 

1249 Amide III - ν(C-N) irregular protein secondary 
structure in β-Poly-L-glutamate 
pH 11 

1250 Cytosine, uracil, Amide III  
1250 Amide III Human artery 
1250 Amide III  
1250 Cytosine DNA (B) 
1250 DNA DNA (Sigma Aldrich)† 
1250 Amide III Collagen type I, normal skin 

dermis 
1252 Amide III Aorta 
1253 Amide III random coil protein Breast cancer in mouse 
1254 Adenine Protein 
1254 Amide III (C-N stretch, N-H in plane 

bending) 
Elastin 

1255 Cytosine Protein 
1256 Glycogen Sigma Aldrich G0885 
1258-1304 Amide III (C-N stretch, N-H in plane 

bending) 
α-helix protein secondary 
structure 

1260-1310 Amide III (C-N stretch, N-H in plane 
bending) 

α-helix protein secondary 
structure 

1259 Amide III Silicone gel 
1260 Tyrosine Unordered protein secondary 

structure 
1260 Structural protein Breast 
1260 Symmetric CH3 deformation Silicone gel 
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1260 Amide III Chicken leg bone 
1260 Amide III Malignant breast tissue 
1260-1280 Amide III Bovine Serum albumin 
1261 Lipid  
1262 Amide III - ν(C-N) Benign or normal cervix 
1262 Amide III - ν(C-N) Benign or normal uterus 
1262 Amide III - ν(C-N) Benign or normal endometrium 
1262 Amide III - ν(C-N) Benign or normal ovary 
1264 Amide III in collagen Sigma Aldrich C7774 
1265-1300 Amide III (C-N stretch, N-H in plane 

bending) 
α-helix protein secondary 
structure 

1265-1348 Amide III - ν(C-N) α-helix protein secondary 
structure in α-Poly-L-alanine 

1265 =C-H in plane deformation Breast 
1265 =C-H in plane deformation breast tissue 
1265 Amide III Normal breast tissue 
1267 =C-H in plane deformation  
1267 Amide III Infiltrating ductal carcinoma 

(breast) 
1267 δ (=C-H) Phospholipid membrane 
1267 δ (=C-H) Coronary Artery, unsaturated 

fatty acids 
1267 Amide III Lymph node 
1267 Amide III Diseased breast tissue 
1267 Amide III Collagen 
1268 Amide III Oleic acid methyl ester 
1268 Amide III - ν(C-N)  and δ(NH) in bovine 

albumin 
Sigma Aldrich A2153 

1269 Amide III Type I collagen (human placenta) 
1269 Amide III α-helix Human brain tissue 
1270  Cervix 
1270 Amide III - ν(C-N) Endometrium cancer 
1271 Amide III - ν(C-N)  and δ(NH) Normal human skin 
1271 Amide III (C-N stretch, N-H in plane 

bending) 
Collagen 

1273 Amide III Collagen type I, normal skin 
dermis 

1274 δ(NH) wagging, ν(CN) amide III α-helix Human strateum corneum 
1280 Amide III Phospholipid membrane 
1290 Amide III - ν(C-N) α-helix protein secondary 

structure in α-Poly-L-glutamate 
1295 Amide III - ν(C-N) α-helix protein secondary 

structure in α-Poly-L-lysine 
1296 δ(CH2) Human strateum corneum 
1296 Keratotic Healthy human skin dermis 
1296 δ(CH2) Strateum corneum 
1297 Lipid Healthy human skin strateum 

corneum & epidermal membrane 
1300 ν(C-C) ν(C-N) Benign breast tissue 
1300 Amide III Bovine insulin 
1300 C-H bending Lipid 
1300 Phospholipids - CH2 twist and wagging Human brain tissue 
1300 Lipids – fatty acids Breast 
1300 δCH Lactic acid 
1300 Adenine , cytosine  
1300 phosphotidylcholine Phosphotidylcholine(Sigma 

Aldrich)† 
1302 Lipid Lipid (TPE) 
1302 Lipid Human breast tissue 
1302 Lipid Normal human breast tissue 
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1302 Lipid Human breast tissue 
1303 CH2 twisting Breast 
1303 Triglycerides Adipose tissue from human aorta 
1303 Adenine  
1303 δ CH2 Phospholipid membrane 
1303 CH2 twisting Normal breast tissue 
1303 CH3CH2 twisting Diseased breast tissue 
1303 CH3CH2 twisting Normal breast tissue & 

infiltrating ductal carcinoma 
1304 CH3CH2 twisting Oleic acid methyl ester 
1306 Lipid Human colon 
1309 CH2 twisting & wagging in lipids Normal human skin 
1310-16 ∆(CH2) Callus, psoriatic plaque 
1316 Histidine Sigma Aldrich T8776 
1316 Guanine DNA (Z), RNA(Z) 
1317 CH2 twisting Skin 
1318 Guanine DNA (A), RNA (A) 
1319 CH3CH2 twisting Type I collagen (human placenta) 
1319 CH3CH2 twisting Collagen 
1320 Guanine  
1321 in bovine albumin Sigma Aldrich A2153 
1322 C-H  
1325 Tryptophan (amino acid) ring vibrations  
1325 Nucleic acid ring vibrations  
1330 Tryptophan (amino acid) ν(C-C) Cervix cancer 
1330 Tryptophan (amino acid) ν(C-C) Uterus cancer 
1330 Tryptophan (amino acid) ν(C-C) Ovary cancer 
1330 C-H Nucleic acid bases & DNA, 

phospholipids 
1330 C-H Human cervix precancer 
1330  Cervix 
1330 DNA Cultured breast cells 
1330 δCH Lactic acid 
1332 DNA DNA (Sigma Aldrich)† 
1333 Glycogen Sigma Aldrich G0885 
1333 Guanine DNA (B) 
1334 CH deformation  
1335 Nucleic acids Colon 
1335 Adenine DNA (A), RNA (A) 
1337 Nucleic acid, purine bases (adenine, 

guanine) 
Colon 

1337 Nucleic acid, purine bases (adenine, 
guanine) 

 

1337 Purine bases (adenine, guanine) DNA in water 
1337 Adenylates Colon mucosa 
1338 Glycogen Glycogen (Sigma Aldrich)† 
1338 Tryptophan, amino acid  
1339 Adenine DNA (B) 
1339-41  Strateum corneum, Callus, 

psoriatic plaque 
1340 Tryptophan (amino acid) Rabbit & human cornea 
1340 Tryptophan (amino acid) Rabbit aqueous humour 
1340 Nucleic acid Colon  adenocarcinoma 
1343 CH3CH2 wagging Diseased breast tissue 
1343 CH3CH2 wagging Collagen 
1343 CH3CH2 wag Type I collagen (human placenta) 

& infiltrating ductal carcinoma 
(breast) 

1343  Rabbit aqueous humour 
1343 Adenine  
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1350 Glucose Sigma 
1358  Normal renal parenchyma & renal 

cell carcinoma 
1359  Hepatocellular carcinoma 
1360  Normal hepatic parenchyma 
1360  Myoglobin 
1360  Human aqueous humour 
1361 Tryptophan  
1365 Guanine, tryptophan  
1372 Lipid Human colon 
1375  Myoglobin 
1376 Thymine, guanine, adenine  
1377 Glycogen Sigma Aldrich G0885 
1380 δCH3 δOH Lactic acid 
1382 Glycogen Glycogen (Sigma Aldrich)† 
1385 δ(CH3) symm Human strateum corneum 
1400 Uracil, adenine  
1400  Cervix 
1400 vCOO- AGP (glycoprotein)* 
1401 Symmetric CH3 bending in proteins  
1410 δOH Methyl lactate 
1412 Antisymmetric CH3 deformation Silicone gel 
1420 δOH, νCO Lactic acid 
1421 δ(CH3) Human strateum corneum 
1421 Guanine, adenine  
1438 δ(CH2) scissoring Human strateum corneum 
1438 CH2 deformation  
1439 CH2 scissoring deformation breast tissue 
1439 CH3, CH2 deformation Normal breast tissue 
1439 CH2 deformation Human breast biopsy 
1439 CH2 deformation due to lipids and 

proteins 
Human brain tissue 

1439 CH2 scissoring deformation Breast 
1440 Lipid  
1441 CH2 bending Fibrous atherosclerotic plaque 
1441 Lipid Liver 
1441 phosphotidylcholine Phosphotidylcholine(Sigma 

Aldrich)† 
1442 CH3, CH2 deformation Oleic acid methyl ester 
1442 Lipid Human breast tissue 

Colon tissue 
1442 Lipid Normal human breast tissue 
1442 Lipids – fatty acids Normal breast tissue 
1443 elastin Sigma Aldrich E1625 
1444 Lipid Lipid (TPE) 
1444 Triglycerides Adipose tissue from human aorta 
1445 δ(CH2) or δ(CH3) Cervix cancer 
1445 δ(CH2) or δ(CH3) Uterus cancer 
1445 δ(CH2) or δ(CH3) Benign or normal cervix 
1445 δ(CH2) or δ(CH3) Benign or normal endometrium 
1445 δ(CH2) or δ(CH3) Benign or normal ovary 
1445 δ(CH2) or δ(CH3) Human breast tissue. Benign and 

Malignant tumours 
1445 CH2 deformation breast tissue 
1445 CH2 bending mode Normal breast tissue 
1445 CH3CH2 deformation in collagen Sigma Aldrich C7774 
1447 δ(CH2)  (AGP) AGP (glycoprotein)* 
1447 CH3CH2  bending modes in bovine 

albumin 
Sigma Aldrich A2153 

1448 CH2 deformation Chicken leg bone 
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1448 Deoxyribose DNA (B) 
1448-9 ∆(CH2) scissoring Strateum corneum, Callus, 

psoriatic plaque 
1449 CH2 deformation Lymph node 
1450 Glucose Blood 
1450 CH bending Rabbit & human cornea 
1450 CH bending Rabbit aqueous humour 
1449 CH3CH2  bending modes Bovine Serum albumin 
1450 CH3CH2 deformation Diseased breast tissue 
1450 CH2 bending Human artery 
1450 CH2 bending mode Diseased breast tissue 
1450 δ(CH2) or δ(CH3) Endometrium cancer 
1450  Elastin & collagen 
1450 CH3, CH2 deformation Infiltrating ductal carcinoma 
1451 C-H bend Normal human aorta 
1451 CH3, CH2 deformation Type I collagen (human placenta) 
1451 CH3CH2 deformation Collagen 
1451 CH2 bending  
1451-1454 CH2 bending Histones 
1452 Structural protein Breast 
1452 δ(CH2) scissoring in lipids & δ(CH2) 

δ(CH3) in proteins 
Normal human skin 

1452 CH2 bending Malignant breast tissue 
1452 CH2 in plane bending Normal aorta 
1453 δ(CH2) or δ(CH3) Ovary cancer 
1453 δ(CH2) or δ(CH3) Benign or normal uterus 
1453 C-H bending modes Aorta 
1454 CH3 bending CH2 scissors Elastin & collagen & 

phospholipids 
1454 CH3 bending CH2 scissors Human cervix 
1454 CH3 asymmetric bending of proteins  
1454  Cervix 
1455 δCH3 Lactic acid 
1455 Glycogen Sigma Aldrich G0885 
1455 CH2 deformation Breast 
1456 CH3 bending in elastin Sigma Aldrich E1625 
1456  Ovary 
1457  DL-Lactic acid (C3H6O3) CH3-

CHOH-COOH 
1458 Nucleic acid Colon  adenocarcinoma 
1460 Pentose sugar vibration due to δ CH2 DNA 
1462 Deoxyribose DNA (B) 
1475 δCH3 Lactic acid 
1475 DNA DNA (Sigma Aldrich)† 
1480 Vibration of purine bases (adenine & 

guanine) 
DNA 

1480 DNA Cultured breast cells 
1485 Nucleic acids Colon 
1485 Purine bases DNA in water 

1485 Nucleic acid, purine bases (adenine, 
guanine) 

Colon 

1485 Nucleic acid, purine bases (adenine, 
guanine) 

 

1487 Nucleic acid Colon 
1491 Formalin  
1500-1650 Heme  
1509 Phenylalanine Bovine Serum albumin 
1510 Adenine, guanine  
1512  Ovary 
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1517 Carotenoid  
1520-1670 Tryptophan & tyrosine Cultured breast cells 
1520 C=C Carotenoid Food 
1520 Carotenoid Blood plasma 
1522 Carotenoid Carotid artery 
1523 Carotenoid Human breast tissue 

Renal cell carcinoma 
1523 Carotenoid Normal human breast tissue 
1524 Carotenoid Human brain tissue, acoustic 

neuroma 
1525 Carotenoid Beta carotene 
1525 Carotenoid Human breast carcinoma 
1525 Carotenoid Human breast carcinoma 
1528 Carotenoid Carotenoids in normal colon 
1529 Carotenoid Carotenoids in normal colon 
1540 Amide II Bovine insulin 
1541 Tyrosine  
1547 Tryptophan Human eye lens 
1550 Tryptophan  
1552 Tryptophan (AGP) AGP (glycoprotein)* 
1552 δ(NH), ν(CN) Amide II Human strateum corneum 
1553 Tryptophan  
1554  Type I collagen (human placenta) 

& infiltrating ductal carcinoma 
(breast) 

1555 Tryptophan DNA in water 
1556 Tryptophan Bovine Serum albumin 
1570 Vibration of purine bases (adenine & 

guanine) 
DNA 

1570 nucleotides Breast cancer in mouse 
1575 Guanine, adenine tryptophan  
1576 Nucleic acid Colon  adenocarcinoma 
1577 Guanine, adenine  
1577 DNA DNA (Sigma Aldrich)† 
1580 nucleotides Breast cancer in mouse 
1580 DNA Cultured breast cells 
1580  Cervix 
1585 Nucleic acid, purine bases (adenine, 

guanine) 
Colon 

1585 Nucleic acid, purine bases (adenine, 
guanine) 

 

1585 υ(C-O) olefinic Strateum corneum, Callus, 
psoriatic plaque 

1585 ν(C=C) olefinic Human strateum corneum 
1593 Purine bases DNA in water 
1600   
1602 Phenylalanine  
1602 Tyrosine Tyrosine, colon adenocarcinoma 
1606 Phenylalanine Bovine Serum albumin 
1607 Phenylalanine in bovine albumin Sigma Aldrich A2153 
1610 Tyrosine Colon mucosa 
1610 Tyrosine Protein bands 
1612 C=C stretching Benzene 

 
1615 Tyrosine (AGP) AGP (glycoprotein)* 
1616 Tyrosine Bovine Serum albumin 
1617 Tyrosine, phenylalanine  
1620 Tryptophan, tyrosine, phenylalanine, 

uracil 
 

1620 Tryptophan Colon mucosa 
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1620 Tryptophan Protein bands 
1622 Tryptophan DNA in water 
1637 Amide I ν(C=O) Diseased breast tissue 
1637 Amide I ν(C=O) Collagen 
1640 OH bending Water 
1642 Amide I ν(C=O) Collagen 
1648-1661 Amide I ν(C=O) Histones 
1645 Bending mode Water 
1645 Amide I (C=O stretch) α-helix protein secondary 

structure in α-Poly-L-lysine 
1645-1660 Amide I (C=O stretch) α-helix protein secondary 

structure 
1665-1680 Amide I (C=O stretch) β-sheet protein secondary 

structure 
1660-1670 Amide I (C=O stretch) Unordered protein secondary 

structure 
1645-1655 Amide I (C=O stretch) α-helix protein secondary 

structure 
1665-1680 Amide I (C=O stretch) β-sheet protein secondary 

structure 
1655-1665 Amide I (C=O stretch) Unordered protein secondary 

structure 
1654-1662 Amide I (C=O stretch) α-helix α-helix protein secondary 

structure 
1665-1680 Amide I (C=O stretch) β-sheet protein secondary 

structure 
1654-1685 Amide I (C=O stretch) Unordered protein secondary 

structure 
1650 Amide I Normal human aorta 
1650 lipid Colon mucosa 
1650 Pyrimidine bases (cytidine, thymidine) ?  DNA in water  
1650 C=C lipid bands Colon 
1650 Amide I ν(C=O) 

 
Bovine insulin 

1650  Ascorbate 
1650  Rabbit aqueous humour 
1650 Amide I (C=O stretch) ν(C=O) Human artery 
1650-1666 C=C vibration cis-isomer in fatty acid 

chain 
Phospholipid membrane 

1651 Amide I, ν(C=O) Benign breast tissue and 
malignant tumours 

1651-1664 Amide I, ν(C=O) Healthy human skin 
1651 Amide I, ν(C=O) in collagen Sigma Aldrich C7774 
1651 Amide I, (C=O stretch) Ovarian cancer 
1651-4 υ(C-O) Amide I, α helix Strateum corneum, Callus, 

psoriatic plaque 
1652 Lipid Lipid (TPE) 
1652 Lipid Human breast tissue 
1652 Amide I α-helix protein secondary 

structure in α-Poly-L-glutamate 
1652 ν(C=O) Amide I α-helix Human strateum corneum 
1653 Lipid Human breast tissue 

Human colon 
1653 Lipid Normal human breast tissue 
1653 Amide I protein  
1653 Amide I (C=O stretch) in bovine 

albumin 
Sigma Aldrich A2153 

1654 α-helix nails 
1654 C=C stretch Olefinic Breast biopsy tissue 
1654 C=C stretch Breast tissue 
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1654 Amide I Normal breast tissue 
1654 C=C stretch Breast 
1655 C=C stretch of unsaturated fatty acid 

chains 
Aorta 

1655 Amide I Oleic acid methyl ester 
1655 Amide I protein (C=O stretch) Coronary Artery 
1655 Amide I (C=O stretch) Lymph node 
1655 Amide I (C=O stretch) Endometrial cancer 
1655 Amide I (C=O stretch) α-helix protein secondary 

structure in α-Poly-L-alanine 
1656 phosphotidylcholine Phosphotidylcholine(Sigma 

Aldrich)† 
1656 Amide I (C=O stretch) Collagen 
1656 Amide I (C=O stretch) Human cervix 
1656 Amide I (C=O stretch)  
1656  Cervix 
1656 Amide I (C=O stretch) Benign or normal endometrium 
1656 Amide I (C=O stretch) irregular protein secondary 

structure in β-Poly-L-glutamate 
pH 11 

1657 Amide I (C=O stretch) Cervical cancer 
1657 Lipids – fatty acids Breast 
1657 Lipids Colon 
1657 Amide I (C=O stretch) Malignant breast tissue 
1657 Amide I Infiltrating ductal carcinoma 

(breast) 
1657 Amide I (C=O stretch) Diseased breast tissue 
1658 Amide I (C=O stretch)  
1658 Amide I Aorta 
1659 Amide I, ν(C=O) Benign breast tumours 
1659 Amide I (C=O stretch) Benign or normal ovary 
1659 Amide I (C=O stretch) Benign or normal cervix 
1659 Amide I (C=O stretch) Benign or normal uterus 
1659 Amide I (C=O stretch) Uterus cancer 
1659 Amide I (C=O stretch) ά helical Human brain tissue 
1659 Amide I (C=O stretch) Bovine Serum albumin 
1659 Amide I (C=O stretch)  
1661 Amide I ν(C=O) in elastin Sigma Aldrich E1625 
1661 Amide I ν(C=O) Normal human skin 
1662 Nucleic acid Colon  adenocarcinoma 
1662 Triglycerides Adipose tissue from human aorta 
1662 Nucleic acids Colon 
1662 Amide I (AGP) AGP (glycoprotein)* 
1664 Amide I (C=O stretch) Healthy human skin 
1664  Ovary 
1665 Amide I (C=O stretch) irregular protein secondary 

structure in β-Poly-L-lysine pH 4 
1665 Amide I (C=O stretch) Collagen 
1665 Amide I Type I collagen (human placenta) 
1665 Amide I (C=O stretch) Liver - collagen 
1665 Carbonyl vibration mode Fibrous atherosclerotic plaque 
1666 C=O stretching modes of pyrimidine 

bases 
DNA 

1667 Structural protein Malignant breast 
1668 Amide I (C=O stretch) Elastin 
1669 Amide I (C=O stretch) Human eye lens 
1669 Protein Breast cancer in mouse 
1669 Amide I (C=O stretch) β pleated sheet protein secondary 

structure in β-Poly-L-alanine 
1669 Amide I (C=O stretch) Normal aorta 
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1670-1680 C=C vibration trans-isomer in fatty acid 
chain 

Phospholipid membrane 

1670 Amide I Chicken leg bone 
1670 Amide I (C=O stretch) Pure protein - β pleated sheet 
1670 Amide I (C=O stretch) Collagen 
1670 Amide I (C=O stretch)  
1670 Amide I (C=O stretch) Rabbit lens 
1670 Amide I (C=O stretch) β pleated sheet protein secondary 

structure in β-Poly-lysine 
1672 Amide I (C=O stretch) β pleated sheet protein secondary 

structure in β-Poly-L-glutamate 
1683 Amide I (C=O stretch) Bound protein - regular 

uncharacterised secondary 
structure 

1717 C=O stretching modes of purine bases DNA 
1725  Lactate 
1725 νC=0 Lactic acid 
1726 Lactate  
1736 ester stretching mode C=O DMPC 

(dimyristoylphosphatidycholine), 
a typical lipid 

1740 ν(C=O) -lipid Food, coronary artery 
1742 phosphotidylcholine Phosphotidylcholine(Sigma 

Aldrich)† 
1743  Oleic acid methyl ester, normal 

human breast tissue 
1743 C=O stretch Breast tissue 
1743 C=O stretch Breast 
1743 ν(C=O) lipid Human strateum corneum 
1747 C=0 stretch Aorta 
1750 C=O Normal skin dermis 
1752 Triglycerides Adipose tissue from human aorta 
1768 ν(COO) Human strateum corneum 
2579 S-H stretch Rabbit lens 
2700-2880 Collagen C-H stretch Dentine 
2717-23 υ(CH) aliphatic Strateum corneum, Callus, 

psoriatic plaque 
2723 ν(CH) aliphatic Human strateum corneum 
2730  Breast 
2800-3000 CH stretch – lipids Healthy human skin 
2850-2960 CH3, CH2 stretching in alkyl/ acyl chains DMPC 

(dimyristoylphosphatidycholine), 
a typical lipid 

2850 νs(C-H) in (Ethylene CH2=CH2) Phospholipid membrane 
(constant with temperature) 

2850 C-H stretching vibration Normal skin dermis 
2852 υ(CH2) symmetric Strateum corneum 
2852 νs(CH2) in lipids & proteins Normal human skin 
2852 νs(CH3) - lipid Healthy human skin 
2852 ν(CH2) symm Human strateum corneum 
2857 C-H stretch (-CH3 sym.) Breast tissue 
2857 C-H stretch (-CH2 sym.) Breast 
2872 υ(CH2) asymmetric Callus, psoriatic plaque 
2875 C-H stretch (-CH3 asym.) Breast tissue 
2875 C-H stretch (-CH2 asym.) Breast 
2880 νas(C-H) Phospholipid membrane 
2880 C-H stretch Human tooth enamel 
2882 C-H stretch Chicken leg bone 
2883 υ(CH2) asymmetric Strateum corneum 
2883 ν(CH2) sym.- lipid Healthy human skin 
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2883 ν(CH2) symm, ν(CH2) asymm Human strateum corneum 
2885 CH3 stretch Lactate 
2886 C-H stretching vibration Normal skin dermis 
2898 C-H stretch (-CH3 sym.) Breast 
2890 νas(C-H) in (Ethylene CH2=CH2) Phospholipid membrane 

 
2890 CH2 symmetric stretch Glucose 
2890 CH2 stretch Rabbit & human cornea 
2890 CH2 stretch Glucose 
2890 CH stretch Rabbit & human aqueous humour 
2893 Glucose & lactate Rabbit aqueous humour 
2894-5 Lactate & glucose  
2898 C-H stretch (-CH3 sym.) Breast tissue 
2918 C-H stretch Chicken leg bone 
2929 C-H stretch (-CH3 sym.) Breast tissue 
2929 C-H stretch (-CH3 sym.) Breast 
2930 ν(CH2) – lipid Coronary Artery 
2931 υ(CH3) symmetric Strateum corneum, Callus, 

psoriatic plaque 
2931 ν(CH3) symm, ν(CH2) asymm Human strateum corneum 
2932 C-H stretch Human tooth enamel 
2935 ν(CH2) sym.- lipid Healthy human skin 
2935 C-H stretch Rabbit lens 
2939 Glucose & lactate Rabbit aqueous humour 
2942 C-H  
2942 νas(CH3) – lipids and proteins Normal human skin 
2943 Glucose  
2945 CH stretch Rabbit & human cornea 
2945 CH3 stretch Lactate 
2945 CH stretch Rabbit & human aqueous humour 
2945 Lactate  
2950 CH2 anti-symmetric stretch Glucose 
2950 CH2 stretch Glucose 
2958 ν(CH3) asymm Human strateum corneum 
2960 C-H stretch (-CH3 asym.) Breast tissue 
2960 C-H stretch (-CH3 asym.) Breast 
2975 C-H stretch  
2982 Glucose & lactate Rabbit aqueous humour 
2983 υ(CH3) symmetric Strateum corneum, Callus, 

psoriatic plaque 
2990 CH3 stretch Lactate 
2995 Lactate  
3006 =C-H stretch Breast tissue 
3006 C-H stretch Breast 
3059-60 υ(CH) olefinic Strateum corneum, Callus, 

psoriatic plaque 
3060 ν(CH) olefinic Human strateum corneum 
3063 C-H stretch Rabbit lens 
3245 νOH Methyl lactate 
3390 OH mode Rabbit lens 
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Appendix B Investigation of sample state using PCA 

Following the Raman probe tissue classification, PCA analysis of the sample state 

(fresh and frozen) was investigated. It was found that no separation of the fresh and 

frozen samples was evident as shown below.  PCA was carried out, and plots 

constructed colour coded for sample state – fresh (black), frozen once (green) and 

frozen twice (pink). There was no correlation/clustering for different sample state. The 

plot of PC1vPC3 shown in the figure, exhibited 5 outliers, which upon further 

investigation were found to be gastric samples exhibiting strong lipid peaks confirming 

that these samples should be removed from the model. No evidence was visible in the 

other PCs. There was no evidence in other PC plots.  
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Figure C: PC1 vs PC3 (colour coded for sample state fresh (black), frozen once (green) and frozen twice 

(pink) 
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Appendix C Preliminary study of rapid Raman mapping 

 

Rapid Raman maps were acquired using the prototype 785nm rapid mapping system at 

Renishaw. The sample contained a normal squamous island in Barrett’s (with query 

LGD) as shown in Figure D1. PCA (using the Wire 3.0 Renishaw software), 

demonstrates that NSq is easily detectable with PC loads indicating presence of 

glycogen.  

 

 

Figure C1: H&E of an oesophageal EMR section containing normal squamous, Barrett’s (IM) and query 

low grade dyplasia (non conclusive).  

 
Figure C2: Rapid Raman maps (78x228=17784 total spectra) acquired with a step size 27.5 µm and 

acquisition times of 5, 0.5 and 0.1s. The 6th PC load (5th for the 0.1s map since the 6th PC was dominated 

by noise) are shown which exhibit peaks which can be attributed to glycogen (green bands) in normal tissue. 

The overall mapping time and relative standard deviation (RSD) is shown for comparison purposes. 
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Appendix D Previous mapping of oesophageal tissue 

(Shetty et al.**) 

 

Figure D1: Examples Raman point maps of oesophageal two biopsy sections taken from Shetty et al. 

“Normal squamous and HGD sample (H&E stained section Figure 1A). (A) Third principal component 

score map with selected regions marked. 

(B) Mean Raman spectra from selected regions. (C) Relative concentration of selected biochemical 

constituents calculated with mean spectra from selected 

regions. Normal squamous and adenocarcinoma sample (H&E stained section Figure 1B). (D) Third 

principal component score map with selected regions 

marked. (E) Mean Raman spectra from selected regions. (F) Relative concentration of selected biochemical 

constituents calculated with mean spectra from 

selected regions.” 

 

                                                 
**

 Shetty, G., Kendall, C., Shepherd, N., Stone, N. and Barr, H. (2006). Raman spectroscopy: elucidation 

of biochemical changes in carcinogenesis of oesophagus. British Journal of Cancer, 94(10), p. 1460-

1464. 
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Appendix E Raman mapping objective comparison (PCs 5-

8) 
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Figure E1: PCs 5-8 for comparison of maps acquired with the Nplan x50, 5 s, 27.5 µm step size (left) and 

Leica x50 long working distance, 5 s, 11 µm step size (right) objectives. Note that PC6 and PC8 for the Leica 

x50 obejctive, the colour bar is inverted and thus the PC load is also inverted. 
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Appendix F Raman Vs FTIR imaging 

A comparison of Raman and FTIR mapping was carried out on a sample of NSq 

epithelium.  

 

 

Figure F1: A comparison of Raman and FTIR maps acquired with the same mapped area, and similar 

signal to noise 

 

Less data processing (cosmic rays etc) 

Higher SNR 

Quicker mapping times 

More spectra peaks 

Potential for higher spatial resolution 

PE Spotlight 300 - 1.4h 15h 

With upgraded Spotlight 400 - 0.7h ~0.2-1h with optimised parameters 

 

The conclusion of this study was that FTIR also has potential for automated 

histpathology, but it is limited by sample preparation, and furthermore, increasing the 

spatial resolution is not an option. However, reduced mapping times are extremely 

beneficial. Raman mapping would also provide continuity with in vivo studies.  

 

• 6.6µm step size 

• 141x111=15651 spectra 

• acquisition time 30s 

• 6.25µm step size 

• Cropped to 15651 spectra 

• 16 scans per pixel 
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Appendix G Hutchings et al. Journal of Biophotonics, 2(1-

2), p. 91-103 

(BLANK PAGE) 
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(BLANK PAGE)
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Appendix H PCs 1-8 for the rapid Raman map D 

 

 

Figure H1: PC loads 1-8 for Map D 
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Appendix I       Manuscript submitted to the Analyst (Nov 2008) 

 (BLANK PAGE)  
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Appendix J Ambient temperature poster 

2. Method

5. References

4. Conclusions
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Hutchings J1,2, Kendall C1,2, Barr H1,2 and Stone N1,2

1. Biophotonics Research Group, Gloucester Royal Hospital, Gloucester, GL1 3NN

2. Cranfield Health, Cranfield University, Silsoe, Bedfordshire, MK45 4DT

• Raman spectroscopy has been used to successfully    
identify and classify precancerous changes in the 
oesophagus1

• Ambient temperature has been shown to affect Raman 
spectra2 which is a possible limitation on the use of 
Raman spectroscopy in a clinical environment

1. Introduction

a) Peak shift investigation

3. Results

1. Kendall C, Stone N, Shepherd, Geboes K, Warren B, Bennett and Barr H Raman Spectroscopy, a 
potential tool for the objective identification and classification of neoplasia in Barrett’s 

oesophagus. Journal of Pathology; 2003; 200: 602-609

2. Fukura S, Mizukami T, Odake S and Kagi H. Factors Determining the Stability, Resolution, and 

Precision of a Conventional Raman Spectrometer. Applied Spectroscopy. 2006; 60 (8): 946-950 
2006

The effect of ambient temperature on a Raman classification model 
for the diagnosis of precancerous changes in the oesophagus

• The air conditioning unit setting was altered in 
2ºC intervals ranging from 19 to 31ºC (the actual 
room temperature was also measured)

• Polymer spectra were acquired using two 
Renishaw System 1000 spectrometers (830nm, 
5s, x50objective) and a Visionex probe system in 
combination with a Renishaw System 100 
spectrometer (830nm, 30s 

• Spectra were also acquired from a neon argon 
lamp (1s)

• At each aircon setting, the systems were 
allowed to reach temperature equilibrium for 
2hours

• Peak positions were plotted against actual 
room temperature

b) The effect of peak shifts on a multivariate tissue classification model

• A multivariate tissue classification model was tested by projecting  spectral 
data with an artificial peak shift to illustrate the effect of ambient 
temperature on the model performance

a) Peak shift investigation

• Peak shifts were noted in both System 1000 spectrometers for both the 
polymer standard and neon argon lamp

• A Raman map of the polymer standard was also acquired whilst ramping the 
temperature up from 19-28ºC using S1000(1).

• An 2mm square was mapped with a step size of 2µm, with acquisition time 
of 2s.  
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3. Results cont…

Aim

To investigate spectral artefacts caused by variation in ambient temperature 

and to demonstrate the effect on a multivariate tissue classification model

• Peak shifts can have significant effect on Raman spectra

• Shifts occurred in both the polymer standard and neon argon spectra 
suggesting that shifts were caused by expansion or contraction of 
spectrometer components with temperature as well as a potentially 
significant contribution from the laser source

• The apparent linear shift across the entire wavelength range would make 
correction easier than for example if a breathing artefact was apparent

• Initial results suggest that the effect is less pronounced when using the 
compact S100 spectrometer which may be due to the simplicity of the 
spectrometer, or due to the lower resolution spectra, although further work 
is required to investigate this. This could potentially ease the transition to 
clinical application, in theatre for example. 

• The detrimental effect of temperature induced peak shifts on a tissue 
classification model is demonstrated highlighting the importance of 
temperature stabilisation over short and long time periods

a) The effect of peak shifts on a multivariate tissue classification model

• A classification model was generated using spectra acquired from S1000(1) 
at 23ºC 

• An test set consisting of the original data set with an artificial peak shift of 
5cm-1 was projected onto the original classification model

Normal

Barrett’s

Dysplasia 
& cancer

• The figure shows a psuedocolour score 
map of the 1st principle component

• The region of increasing temperature is 
clearly evident as a region of low scores 
(blue-purple)

• A repetitive stripe pattern is also evident 
once the temperature has stabilised and 
this is attributed to temperature oscillation 
as the air-conditioning maintains a 
constant temperature, consistent with that 
noted by Fukura et al2

• The region of oscillation is consistent with 
a peak shift of approx 0.5cm-1

• The training set and test set 
centroids are illustrated in the figure 
with a square and triangle 
respectively

• The percentage correctly classified 
drops from 94% to 75%

• Note that the most significant shift 
is the misclassification of Barrett’s 
as cancer with the shifted spectra

• This temperature shift would also 
have a detrimental effect on Raman 
maps of tissue sections

• The loading for 
the 1st PC 
exhibits 
discontinuities 
characteristic of 
peak shifts
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• It is evident that there is potentially a contribution to the ambient temperature 
artefacts from both the spectrometer and laser

• For the S100 probe system, a linear peak shift with temperature was not 
evident with the polymer standard so the range is stated

2. Method
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Appendix K Prognostic model poster 

Can Raman Spectroscopy be used to predict the prognosis 

of cancer in patients with high grade dysplasia (HGD)? 

Joanne Hutchings1, Simon Dwerryhouse2, Nicholas Stone1, Catherine Kendall1, Hugh Barr1

1. Biophotonics Research Group, Gloucester Royal Hospital, Gloucester, GL1 3NN

2. Department of Surgery, Addenbrooke’s Hospital, Cambridge, CB2 2QQ

email: Johutchings@hotmail.com

1. Introduction

2. Method

5. References

4. Conclusions

Currently, patients with Barrett’s oesophagus undergo routine endoscopic 

surveillance. Biopsy samples are taken and analysed in histopathology to 

detect cancerous cells and premalignant changes such as dysplasia. 

Oesophageal Cancer

Oesophageal cancer is the 9th most common cancer 
in UK [1]. Over 7,500 people diagnosed per year in the 
UK [1]. 5-year survival 2 to 25%[2]. In most cases 
patients do not present until the disease is advanced 
at which point it is difficult to treat. The earlier we 
diagnose the cancer the easier to treat.

Barrett’s Oesophagus

Barrett’s oesophagus is a precursor condition to oesophageal cancer. 
Acid reflux causes normal stratified squamous epithelium that lines the 
stomach adapts over time to become columnar epithelium, similar to 
that found in the stomach. Patients with Barrett’s oesophagus have a 
30 fold chance of developing adencarcinoma[3].  

1. Cancer Research UK 2005

2. Parkin DM, Bray F, Ferlay J, Pisani P. Global Cancer Statistics, 2002 CA Cancer J Clin 2005; 55:74-108

3. Spechler SJ Managing Barrett’s Oesophagus, BMJ 2003;326:892-894
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•25 biopsies were obtained from 14 patients with Barrett’s oesophagus

•Acquired using customised Renishaw system 1000 

•10-40 spectra measured on 1st biopsy diagnosed HGD (total 576)

•Excitation 830nm

•x80 objective 

•Acquisition time of 30s

Aim

To determine whether or not Raman spectroscopy can be used to detect 
those dysplastic cells with a higher probability of progressing to cancer.

What is Raman Spectroscopy?

Raman Spectroscopy is based on the inelastic scattering of 

monochromatic light. Energy changes in the scattered light can be 
detected and used to characterise tissue samples. 
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3. Data Analysis and Results

Multivariate Analysis
•A prognostic model was created 
using Matlab. 

•Principal component analysis 
(PCA) was carried out and the first 
15 components were fed into a 
linear discriminant model.

•The linear discriminant loads 
were used to create a scatter plot 
of the four different groups. 

Performance of the Model
•The performance of the model 
can be seen in the bar chart which 
plots spectral prediction against 
actual outcome.  

•The training performance, 
sensitivity and specificity are 
tabulated below. 

92-99%Specificity

81-97%Sensitivity

81.6%Training performance

•This was a pilot study. More patients and samples (including LGD) are 
required to improve the reliability of the model. Cross validation will also 

be carried out. Other areas will also investigated such as the location of 
the cancer compared to the initial biopsy. 

•Although further work is required, this pilot study demonstrates the 

potential for Raman spectroscopy to correctly predict the future
development of cancer in patients with HGD. Hopefully in the future this 
will lead to the in vivo diagnosis and prognosis of patients with HGD and 
Barrett’s oesophagus. 

Correlate pathology results with Raman spectra

Monitor patients over 2yrs

Identify those who develop cancer

Develop model that predicts if a patient will develop cancer

Raman on 1st biopsy

•Patients were grouped into one 

of four categories. The spectral 

prediction was compared to the 

histopathological results and the 

mean spectra determined. 

1) never developed cancer              

2) cancer at first biopsy 

3) cancer within 1 year

4) cancer after 1 year

Patient Groups

Endoscopic image of 

advanced oesophageal cancer

Raman Shift (cm-1) 
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Rapid Raman mapping was carried out on 20 mm sec-
tions of oesophageal biopsy samples. Contiguous 7 mm
sections were stained with haematoxylin and eosin
(H&E) with histopathology provided by an expert
pathologist. The step size and acquisition times were
varied and the resulting spectra, principal component
(PC) score maps and loads were compared. Overall
mapping times were also compared to traditional Ra-
man point mapping. The principal component loads for
each of the maps were seen to be similar despite varying
the acquisition time and number of spectra. Gross bio-
chemical information was extracted showing good corre-
lation with the H&E sections even for short overall
mapping times (30–90 minutes for a 2 mm biopsy, 0.5 s
acquisition time per 25.3 mm Raman pixel). This demon-
strates that low signal to noise spectral maps are suffi-
cient for the identification of histologically relevant bio-
chemistry using principal component analysis as long as
the spectral dataset is large enough.

5th PC score map and corresponding load for a rapid
Raman map (1.7 s acquisition, 10.6 mm step size, 5� 104

total spectra, overall map time 4 h)
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1. Introduction

1.1. Oesophageal cancer

Barrett’s oesophagus is a condition caused by long
term gastro-oesophageal reflux. Patients with
Barrett’s oesophagus have an increased risk of de-
veloping adenocarcinoma [1]. As a result, patients
undergo routine endoscopic surveillance during
which biopsies are taken, formalin fixed, sectioned
and stained with haematoxylin and eosin (H&E) for
histopathological diagnosis. Approximately 90% of
biopsies taken during routine endoscopic sur-
veillance are not of clinical relevance resulting in
unnecessary removal of tissue and stretched his-
topathological resources. A further problem is that
histological diagnosis is subjective since the process
of carcinogenesis is a continuum, and morphologi-
cally based classification can not reliably predict can-
cer risk [2]. An objective and reliable method of
identifying non-relevant tissue samples would poten-
tially relieve the huge burden of biopsy numbers on
the histopathologist.

1.2. Raman Spectroscopy

Raman spectroscopy is an inelastic scattering techni-
que that has been shown to be a promising method
for distinguishing tissue pathologies based on a spec-
trum (effectively a biochemical fingerprint) not only
in oesophageal disease [3], but also in other organ
systems such as cervix [4, 5], stomach [6], breast
[7, 8] colon [9] and parathyroid [10]. This technique
could potentially be used as an aid to the his-
topathologist to classify more subtle biochemical
changes occurring within the transition from Bar-
rett’s oesophagus, through dysplasia, to adenocarci-
noma. Furthermore, it may be possible to detect mo-
lecular changes occurring before macroscopic
morphological changes are evident at histopathologi-
cal analysis.

Raman scatter is a relatively weak process com-
pared to elastic scatter with as little as one in a mil-
lion photons undergoing Raman scattering. As time
has progressed technological advances have enabled
the acquisition of Raman point tissue spectra in rela-
tively short acquisition times. Imaging applications
of Raman have generally relied on point mapping,
which is widely regarded as a slow technique. How-
ever, there has been some use of flat field illumina-
tion coupled with liquid crystal tunable filters and ar-
ray detection (ChemImage) [11].

In previous studies we have shown that Raman
spectroscopy is capable of detecting and classifying
pre-cancerous and cancerous changes with a high

sensitivity and specificity [3]. Further studies have
gone on to elucidate biochemical changes occurring
during the progression to cancer in the oesophagus
[12–14]. The first demonstration of Raman for the
biochemical analysis of the bladder was made by
Stone et al. [15]. Other groups have used Raman
mapping to investigate cells [16, 17] and biological
tissues in the bronchus [18], breast [19] and brain
[20]. Raman mapping has also been used for phar-
maceutical [21–23], materials [24, 25] and geological
applications [26]. However, the long overall mapping
times have limited the size of the datasets which can
be acquired and consequently the biochemical infor-
mation which can be gleaned using multivariate ana-
lysis. Furthermore, long overall mapping times have
hindered the progression of the technique into the
clinical environment.

1.3. Raman mapping

Details of Raman mapping techniques can be found
in the following reference [27]. A brief overview of
point and line mapping techniques is provided to il-
lustrate the rapid mapping technique in context.

During point spectral mapping (Figure 1a), a
point spectrum is acquired using effectively the en-
tire length (actually the edges are removed to reduce
noise) of the charged couple device detector (CCD)
with the collection pixels region spanning the width
of the laser line to maximise the collected signal.
The rest of the CCD is not read out to minimise
dark current readout noise and readout time. The
sample is stepped along to the next position using an
XY translational stage and the next spectrum is ac-
quired and so on until a grid of spectra is obtained,
often referred to as a spectral data cube. The overall
mapping time is often limited by the acquisition time
(per spectrum) when measuring tissue samples since
they are not strong scatterers. The acquisition time
may be of the order of 1–30 s depending on the tis-
sue type and even as long as 120 s when measuring
single cells [16]. Typically the total mapping time is
roughly equal to the total number of spectra multi-
plied by the acquisition time. Additionally, there is a
stage translation delay and CCD readout time delay
for each of the spectra. This is of the order of 1.6 s
(combined CCD readout and stage translation, cal-
culated from a 0.1 s acquisition point map using a
Renishaw system 1000 – see methods section for de-
tails). For shorter acquisition times, the speed of the
XY translational stage and, often most significantly,
the readout time of the CCD can significantly limit
the rate at which spectra can be acquired. Further-
more, factors such as extended scanning and auto-fo-
cusing reduce the rate of spectral acquisition. In one
study, Krafft et al. reported an acquisition rate of
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only 30 spectra per hour based on an acquisition
time of 30 s whilst using autofocus during the map-
ping of brain tissue [28].

A development of point mapping was the intro-
duction of a cylindrical lens to create a line-focused
laser, often referred to as line mapping. A line
focused laser can be used in two different ways as il-
lustrated in Figure 1b and c. First, line mapping can
achieve spatial separation of the laser line using the
CCD pixels, resulting in an increased spatial resolu-
tion as illustrated in Figure 1b. This is achieved by
reading out each CCD line separately creating multi-
ple spectra, the trade off being a reduction in the sig-
nal of each spectrum since only a portion of the laser
light is used to illuminate the area of the tissue im-
aged by that CCD pixel. A further drawback is that
since the power varies along the length (�50 mm for
the �50 objective used in this study) of the laser line
(approximately Gaussian) this method of line map-

ping results in a variation in the intensity of the spec-
tra along the laser line as illustrated in Figure 2a and
c. Consequently, there is a variation in the signal to
noise ratio (SNR) as illustrated in Figure 2b. A cor-
rection can be performed, but this can be unreliable
for inhomogeneous samples such as biological tissue.
One further consequence of this correction process is
that noise will be magnified at the edges of the line
focused laser. As shown in Figure 2b, the SNR at the
edges of the line-focused laser is less, therefore cor-
rection would result in the non-uniform magnification
of the noise along the laser profile.

The second method for line mapping is to utilise
the expanded laser line to sample the mapped region
in fewer steps (Figure 1c). In this case, an increased
signal to noise is achieved compared to the high re-
solution line-focused mapping (since the entire laser
line is used to generate each spectrum), but the
trade off is reduced spatial resolution.

Figure 1 a) Illustration of tradi-
tional point Raman mapping in
which a spectrum is acquired at
each position on a grid, b) High
spatial resolution line mapping
using a barrel lens to produce a
line focused laser. Many spectra
are acquired simultaneously by se-
parating out the lines on the CCD,
c) Low spatial resolution line map-
ping in which the entire laser line
is used to sample a large area of
the sample utilising vertical binning
of the CCD pixels and d) Illustra-
tion of rapid Raman mapping in
which the CCD readout is synchro-
nized with the movement of the
stage to allow constant readout of
Raman spectra thus reducing dead
time between spectra. Note that re-
lative intensity/power colour cod-
ing is for demonstrative purposes
only and is not quantitative.
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Line mapping is still limited by CCD readout
(especially for short acquisition times), although this
is reduced when portions of the laser line read out
independently for higher spatial resolution since the
readout time is spread over multiple spectra. These
two techniques were rigorously compared, along
with wide field imaging concluding that depending
on the application, line mapping was faster that
point mapping [29].

Rapid mapping systems have been developed by
several manufacturers including WITec (Ulm, Ger-
many) and Renishaw. This paper focuses on Re-
nishaw StreamLine, although the concepts discussed
can potentially be applied to any imaging system
capable of rapidly acquiring large Raman datasets.
Considering StreamLine technology (Figure 1d), the
sample is stepped along the laser line and the posi-
tion of the stage is synchronised with the readout of
the CCD (as illustrated in Figure 1b). Each spectrum
is effectively made up of an accumulation of spectra
as the entire laser line passes over each part of the
sample. There is a short delay at the beginning of
each column in the grid as the laser line passes over

the first pixel and then following spectra are ac-
quired at an increased rate. This enables high spatial
resolution mapping without the Gaussian profile in-
tensity trade off (associated with line mapping) and
consequently eliminates the variation in SNR due to
the laser profile, as illustrated in Figure 2d. There is
still however a reduction in signal intensity and SNR
compared to point mapping using the entire laser
line. A further advantage is that constant readout
(i.e. reduced dead time between sequential data
points compared to point mapping) of spectral data
results in the acquisition of spectra and maps at an
increased rate. This uses the multichannel advantage
of the CCD in two dimensions simultaneously. These
advances have facilitated the acquisition of thou-
sands of spectra within a matter of minutes com-
pared to previous mapping techniques which took
hours and even days. A previous study by our group
evaluated rapid Raman mapping for spectroscopic
analysis of oesophageal tissue by varying mapping
parameters [30]. Bernard et al. have also investi-
gated the use of rapid Raman mapping (referred to
as advanced line-scanning) for geological applica-

Figure 2 a) (online colour at: www.biophotonics-journal.org) Variation in intensity along laser line of a line focused
laser beam (left axis is 1 mm step size along the sample and right axis is Raman shift 450–1850 cm�1) measured on
oesophageal tissue, b) Example oesophageal tissue spectra from the line focused line map illustrating the variation in
SNR along the laser line (CCD pixels), c) Variation in signal intensity (at 520 cm�1 peak) along the line focused laser
line (for line mapping) measured on a piece of silicon, d) Example spectra at 1.1 mm step size acquired using the rapid
Raman mapping system on the same region of tissue as plots a and b, with the spectra number equivalent to one pixel
in plots a–c.
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tions, including a comparison with line mapping (sta-
tic line scanning) [26].

1.4. Data analysis

Principal component analysis (PCA) has been ap-
plied by many groups as a spectroscopic image pro-
cessing technique for both Raman and FT-IR appli-
cations [14, 16, 31]. Other techniques for vibrational
imaging such as k-means [19, 28, 32], hierarchal clus-
ter analysis (HCA) [17], and artificial neural net-
works (ANN) [33] have been applied to biological
tissue. For further details on multivariate techniques
for image analysis of Raman datasets, the reader is
referred to the following references [34, 35].

Hayden et al. investigated the effects of sampling
parameters for Raman line images using PCA, de-
monstrating that improved results were obtained
using the higher magnification, concluding that this
was due to an increased dataset size [31]. Work has
also been carried out elsewhere to investigate the
effects of reducing the acquisition time (from 30 s
to 3 s) with Raman mapping of pharmaceutical
beads analysed using principal component analysis
as a pre-processing noise reduction method [21]. In
this and a previous study [22], Sasic et al. used the re-
lative standard deviation (RSD) to compare maps
with varying degrees of noise within the raw spectra,
but the effect of varying the size of the dataset was
not considered. Since the performance of multivari-
ate techniques improves with increased dataset size,
the number of spectra within a map is an important
variable to consider and this is the first paper to in-
vestigate the effects of this with Raman mapping.
Krafft et al. also demonstrated that PCA could be
used to evaluate low SNR data acquired from map-
ping single cells [16]. However, the focus of this paper
was on the recovery of biochemical information
rather than the implications of reducing the total
mapping time. To date, little work has been carried
out to investigate the effect of reducing the total map-
ping time on the data obtained from biological tissue
samples.

It is well known that larger datasets improve the
performance of multivariate techniques, and in parti-
cular PCA can be used to remove noise from large
Raman datasets [35]. Subsequently it was hypothe-
sised that using PCA sufficient diagnostic informa-
tion, for screening out non-relevant samples, could
be extracted from low SNR spectra providing that
the dataset was sufficiently large. Therefore the SNR
was monitored for a range of maps methodically ac-
quired with various combinations of acquisition time
and spatial resolution parameters (step size). This
paper presents the results of this investigation and
attempts to demonstrate that the total mapping time

for oesophageal biopsies can potentially be reduced
to a clinically practicable timescale.

This is the first paper reporting rapid Raman map-
ping of biological tissue. Raman maps containing lar-
ger numbers of spectra (100 000þ spectra) of biologi-
cal tissue are presented. There is only one paper in
the literature reporting Raman mapping of oesopha-
geal tissue [14], in which maps contained approxi-
mately 2000 spectra, therefore, this paper presents a
significant improvement over map size and image
quality (total number of spectra and spatial resolu-
tion) due to an increase in the size of the spectral da-
taset. In combination with principal component ana-
lysis, this enables the elucidation of pathology
dependent biochemical information. This is also the
first paper to demonstrate that Raman mapping times
for biopsies has reduced sufficiently to enable the
technique to be used as a histological screening tool.

2. Experimental

2.1. Sample collection and preparation

Informed consent was obtained from patients under-
going routine upper gastrointestinal endoscopic sur-
veillance of Barrett’s oesophagus. Ethical approval
for this study was obtained from Gloucestershire Lo-
cal Ethics Committee. In this study, three samples
from three different patients have been mapped.

Tissue samples were snap frozen in liquid nitro-
gen. A 20 mm frozen section was cut onto a calcium
fluoride substrate for Raman spectral mapping. The
thickness of the mapping section was chosen to max-
imise Raman scattered photons from the tissue sec-
tion. A contiguous 7 mm section was obtained and
stained with H&E for diagnosis by an expert gastro-
intestinal registry pathologist (Prof. Neil Shepherd).
Due to the heterogeneous nature of the samples the
pathologist annotated each sample with the various
pathologies, classifying the regions as normal squa-
mous, Barrett’s, low grade dysplasia (LGD), high
grade dysplasia (HGD) and adenocarcinoma. In-
flammation, connective tissue (smooth muscle and fi-
brous tissue), oesophageal glands and ducts were
also identified. Biopsy samples are typically 1–2 mm
in diameter.

2.2. Raman spectral measurement

Typically, the core of the StreamLine instrument is
a Renishaw inVia Raman microscope, although in
these experiments the maps were acquired using a
customised Renishaw Raman System 1000 spec-
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trometer coupled to a microscope fitted with a Leica
�50 long working distance objective (NA 0.5). A
diode laser with a wavelength of 830 nm was used
with 70 mW at the sample (270 mW at source). A
grating with 300 lines/mm was used to disperse the
scattered light which was measured with a deep de-
pletion charged couple device (CCD) detector.

Repeated maps were carried out on tissue sec-
tions, methodically varying the spectral acquisition
time and step size. There are several variables to
take into consideration – for a constant area map, a
higher resolution map (i.e. smaller step size) results
in a larger number of spectra compared to a lower
resolution map (i.e. larger step size) of the same
area. The total number of spectra is an important
consideration since the size of the dataset has an im-
pact on the reliability of any multivariate analysis
used. However, for a lower spatial resolution map
the total number of spectra is reduced, thus the ac-
quisition time can be increased to obtain higher
quality spectra in the same overall time scale. The
quality of the spectral dataset is also an important
factor when attempting to identify subtle biochem-
ical changes using multivariate techniques.

Acquisition times ranged from 0.1–20 s as sum-
marised in Table 1. For each acquisition time, the
step size was also varied between 7.4–25.3 mm. The
total mapping time was limited to a maximum of
24 h since longer maps were not practicable. The to-
tal number of spectra in each map varied between
0.9 � 104 and 10 � 104. The approximate mapping
time using standard point mapping (using the Ren-
sishaw system) was calculated based on a CCD read-
out and XY translation delay of 1.65 s per spectrum

(1.2 s per step reported by Schlucker et al. [29]). This
value was determined by running a map (traditional
point map mode) with an acquisition time of 0.1 s,
step size of 6 mm and calculating the delay according
to actual map time minus the best case scenario map
time (i.e. number of spectra multiplied by the acqui-
sition time) and dividing this by the total number of
spectra in the map. To account for the difference in
Raman signal intensity for the rapid Raman spectra
compared to point mapping (which varies with step
size, in a similar manner to line mapping), the acqui-
sition time used in the estimate of the overall point
mapping time was scaled by a factor equal to the
step-size divided by the length of the laser line. In-

Table 1 Summary of mapping parameters for repeated maps. Maps A–D are for a constant step size of 25.3 mm, maps
E–H are for a constant step size of 7.4 mm, maps C, I, J and F are for a constant acquisition time of 1.7 s. Overall
mapping times are shown along with estimated mapping times for traditional point mapping (only applicable to the
Renishaw system).

Map ID Step size (mm) Acquisition time (s) Total number of spectra Total mapping time (h)

Rapid mapping Point mapping
(actual) (estimated)

A 25.3 0.1 0.9 � 104 0.1 4.2
B 25.3 0.5 0.9 � 104 0.5 4.7
C 25.3 1.7 0.9 � 104 1.5 6.5
D 25.3 20 0.9 � 104 17 29.0

E 7.4 0.5 10 � 104 2.0 49.6
F 7.4 1.7 10 � 104 6.3 55.2
G 7.4 3.0 10 � 104 11 60.4
H 7.4 5.0 10 � 104 19 70.8

C 25.3 1.7 0.9 � 104 1.5 6.5
I 15.8 1.7 2 � 104 2.8 13.9
J 10.6 1.7 5 � 104 4.0 27.3
F 7.4 1.7 10 � 104 6.3 55.2

Figure 3 (online colour at: www.biophotonics-journal.org)
Annotated H&E (restained) section of the contiguous sec-
tion to the frozen section used in the repeated mapping
studies a) Maps A–J – sample containing areas of smooth
muscle (SM) and fibrous connective tissue (FT) are identi-
fied and b) Maps I–V – sample containing circumferential
normal squamous epithelium (Nsq) and fibrous connective
tissue (FT).
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cluding this scaling factor ensured that the advantage
of rapid Raman mapping was not overestimated.

Signal to noise (SNR) measurements were car-
ried out on spectra measured on a relatively homo-
geneous tissue sample containing connective tissue
and smooth muscle as diagnosed by an expert
pathologist (Figure 3). Further SNR and relative
standard deviation (RSD) measurements were made
using a sample containing circumferential normal
squamous epithelium. To determine the optimum
mapping parameters, the step size (and thus total
number of spectra) was varied from 9.5–31.7 mm
whilst optimizing the acquisition time to maintain a
constant total mapping time of 4.5 h (as detailed in
Table 2).

2.3. Data analysis

Data analysis was carried out using Matlab and the
PLS toolbox (Eigenvector Technologies, Manson,
Washington, USA). Saturated spectra and cosmic
rays were removed by replacement with the nearest
neighbour. Principal components (PCs) were calcu-
lated and pseudocolour PC score maps were gener-
ated. Any remaining cosmic rays appearing in the
score maps were blanked out and the PCs recalcu-
lated so as not to distort the loads. The relative stand-
ard deviation (RSD) (the ratio between the stand-
ard deviation and the mean at a given peak position
[21]) measured at the 1000 cm�1 phenylalanine peak,
expressed as a percentage, was used as a measure of
the SNR to enable comparison between the different
maps. This technique was adopted since the SNR of
the raw spectra was low making it difficult to deter-
mine accurately. The focus of the laser causes varia-
tion in the spectral intensity and SNR at the edge of
the sample and in areas where the calcium fluoride
substrate has been measured. To overcome this, a re-
gion 1/16th of the total map area was selected over
the region of connective tissue for the RSD measure-
ments. The area was kept constant for all maps to en-
able direct comparison. The RSD calculations were
performed on normalised data to give an indication

of SNR variation only. Spectra with saturations and
cosmic rays were not included in the RSD calcula-
tions. Although not directly attributable to the ac-
quired spectra, the ‘signal to noise ratio’ (‘SNR’) of
the principal component loads was also calculated at
the 932 cm�1 peak (the strongest peak in the 5th PC
load) to provide a relative comparison between the
loadings for the different mapping parameters. This
was done for the fifth principal component only. The
fifth PC was chosen since the pseudocolour score
map provided good correlation with the morphology
of the H&E sections which was underpinned by good
correlation biochemically with the PC load.

3. Results and discussion

Figure 3 shows the H&E stained section, contiguous
to the sample used in maps A–J, illustrating regions of
fibrous connective tissue (FT) and smooth muscle
(SM). The contiguous section to the sample used in
maps I–V is also shown illustrating circumferential
normal squamous (NSq) and fibrous connective tis-
sue.

3.1. Signal to noise variation in repeated
maps

Figure 4 shows pseudocolour score maps (PC5 for
maps B–D, F–H and PC9 for maps A and E). Maps
A–D were measured with varying acquisition time
whilst maintaining a constant mapped area and step
size of 25.3 mm. Maps E–H show each of the various
acquisition times whilst maintaining a constant
mapped area and a step size of 7.4 mm. Maps C, I, J
and F (Figure 5) show maps acquired with a constant
acquisition time of 1.7 s with various step sizes. The
fifth PC load (PC9 for map A and E) exhibits oppos-
ing positive and negative peaks consistent with the
difference between actin and collagen spectra, which
is consistent with the biochemical signatures of
smooth muscle and connective tissue respectively,

Table 2 Maps I–V are repeated maps of the sample with parameters adjusted to maintain a constant total mapping time
of 4.5 h. Overall mapping times are shown along with estimated mapping time for traditional point mapping.

Map ID Step size (mm) Acquisition time (s) Total number of spectra Total mapping time (h)

Rapid mapping Point mapping

I 9.5 2.4 4 � 104 4.5 23.6
II 12.7 3.0 2 � 104 4.5 15.7
III 19.0 4.7 1 � 104 4.5 9.6
IV 25.3 8.2 0.6 � 104 4.5 9.1
V 31.7 9.0 0.4 � 104 4.5 7.4
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which is consistent with pathology identified in the
H&E sections (see online supporting evidence S1).
For maps A and E, PC 9 exhibited the same mor-
phological appearance and similar loads and as a
consequence were used instead of PC 5. PCs 1–4
(scores and loads not shown, but available online
with the supporting evidence S2) describe the differ-
ence between tissue and calcium fluoride substrate,
small regions of luminescence, and protein distribu-
tion. Fibrous connective tissue and smooth muscle
are in fact very similar biochemically and as a result
this was a good test of detecting very subtle bio-

chemical changes. Further biochemical analysis will
be published elsewhere but it is evident that it is
possible to detect gross biochemical changes.

Figure 6 shows typical raw spectra from maps
with acquisition times of 0.5 s, 1.7 s and 20 s exhibit-
ing the quality of the raw spectra within the maps.
The values for the RSD of the raw spectra calculated
at the peak at 1000 cm�1 are shown in Table 3. They
clearly demonstrate that the RSD reduces with in-
creasing acquisition time as expected. For Map D, an
RSD value of 2 was considered as a benchmark
since the 20 s acquisition time provided a reasonable

Figure 4 (online colour at:
www.biophotonics-journal.org)
Fifth principal component pseudo-
colour score map and corresponding
principal component load (Maps A
and E display ninth PC). Maps A–D
are for a constant step size of
25.3 mm with increasing acquisition
time from left to right of 0.1, 0.5, 1.7
and 20.0 s. The total mapping time is
shown in brackets for comparison.
Maps E-H are repeated maps using
a step size of 7.4 mm with increasing
acquisition time from left to right of
0.5, 1.7, 3 and 5 s.

Figure 5 (online colour at:
www.biophotonics-journal.org)
Fifth principal component pseudo-
colour score map and correspond-
ing principal component load for
maps C, I, J and F all with a constant
acquisition time of 1.7 s with de-
creasing step size (thus increasing
total number of spectra) from left to
right of 25.3, 15.8, 10.6 and 7.4 mm.

Figure 6 Typical raw spectra with
an acquisition time of a) 0.5 s, b)
1.7 s and c) 20.0 s taken from map
B, C and D respectively.
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SNR of the raw spectra. The relative ‘SNR’ values
measured at the 932 cm�1 peak of the principal com-
ponent loads are also shown in Table 3. The corre-
sponding ‘SNR’ for PC 5 load of map D was also
high (>50) as expected. Similarly high ‘SNR’ values
for the loads were achieved with shorter acquisition
times provided the total number of spectra was large
enough. As expected the relative ‘SNR’ of the load-
ings also increased with increasing number of total
spectra with maps C, I, J and F. with the ‘SNR’ in-
creasing from 12 to 44.

Figure 7 shows maps acquired with a constant
mapping time of 4.5 h. From left to right, maps I–V
were acquired with increasing acquisition time and
step size detailed in Table 2. There is good correla-
tion with the pathology indicated on the H&E sec-
tion with circumferential normal squamous identified
by the negative peaks of the 5th PC load. Visually,
the degradation in the spatial resolution is evident
whilst there is little difference between the PC loads.
The RSD and ‘SNR’ results are shown in Table 3,
which demonstrates a slight decrease in the RSD as
the acquisition time and step size are increased. This
was mirrored for the previous set of maps (C, I, J
and F), all acquired with an acquisition time of 1.7 s,
illustrating that this increase in RSD is not linked to
the reduction in spectral acquisition time, but more
likely due to the number of spectra contained in the
area sampled for the RSD calculation. The ‘SNR’ of
the loads remains approximately constant. It should
be noted that the ‘SNR’ values are not directly com-
parable with maps A–J since they have been meas-
ured on different samples obtained from two pa-
tients.

3.2. Comparison with point mapping

The ratio of the estimated point map time and over-
all mapping time for the rapid Raman maps, for var-
ious mapping parameters, is shown in Table 4. This
illustrates the large reduction in mapping time
achievable with rapid Raman mapping when com-
pared to point mapping using a standard Renishaw
Raman spectrometer.

3.3. Discussion

There is a clear advantage of increasing the number
of spectra within the map in terms of the perfor-
mance of multivariate techniques. In this study, lar-
ger datasets were achieved by increasing the spatial
resolution but this would also be achieved by map-
ping a larger sample at lower spatial resolution. Fac-

Table 3 Summary of the RSD for normalised spectra (one
16th of the total mapped area) within each map measured
at the 1000 cm�1 peak and ‘SNR’ for the fifth principal
component loading (PC9 for maps A and E) measured at
the 932 cm�1 peak. Total mapping time (in hours) is
shown in brackets next to the map ID for comparison.

Map ID RSD
(normalised data)

PC (5th)
load ‘SNR’

A (0.1 h) 16 <2
B (0.5 h) 7 4
C (1.5 h) 4 12
D (17 h) 2 >50

E (2 h) 11 8
F (6.3 h) 6 44
G (11 h) 5 >50
H (19 h) 4 >50

C (1.5 h) 4 12
I (2.8 h) 4 14
J (4 h) 5 28
F (6.3 h) 6 44

I (4.5 h) 6 8
II (4.5 h) 5 10
III (4.5 h) 4 10
IV (4.5 h) 4 8
V (4.5 h) 4 11

SNR and RSD results are not comparable between maps
A–J and I–V due to different samples and corresponding
PC loads.

Figure 7 (online colour at:
www.biophotonics-journal.org)
Fifth principal component pseudo-
colour score map and correspond-
ing principal component load for
maps I–V (left to right) all ac-
quired with parameters adjusted to
give a total mapping time of 4.5 h.
See Table 2 for parameter details.
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tors limiting the size of the dataset include the 32-bit
operating system addressable memory restriction
and Matlab’s requirement for the entire matrix to be
held in a contiguous block. In the case of this study,
memory restrictions limited the spatial resolution
achievable for mapping the entire biopsy sample
since smaller step sizes would have generated exces-
sively large datasets (mapping the sample shown in
Figures 3, 4 with 1.1 mm step size would result in ex-
cess of 5 � 106 spectra).

3.4. Relative standard deviation (RSD)
and signal to noise ratio (SNR) variation

From Figures 4 and 5, for all maps shown except A
and E, it is evident that the fifth PC load represents
similar tissue features (in this example tentatively
attributed to collagen which is abundant in fibrous
connective tissue and actin which is abundant in
smooth muscle – see supporting evidence S1) in
each of the repeated maps despite the variation in
the number of spectra and acquisition time. For

map A, noise dominated the ninth principal compo-
nent load, although tissue peaks can be approxi-
mated. Considering map E, these spectral features
appeared further down the PC loads at the 9th PC
component.

For all maps except for D, for which an acquisi-
tion time of 20 s was used, the SNR of the raw
spectra was very low (results not tabulated). There-
fore the RSD measure was used to allow compari-
son. Ideally a high SNR would be desirable to en-
sure that subtle biochemical changes are detected
but from these results it is evident that PCA is
powerful enough to extract gross biochemical infor-
mation even with a very low SNR. The RSD calcu-
lations on the normalised data (Table 3) illustrate
the reduction in noise with increased acquisition
time. The lowest RSD, as expected, was for the
longest acquisition time of 20 s for map D. In gener-
al, this was mirrored on the raw data without nor-
malisation (results not shown), although RSD va-
lues tended to be higher than expected for larger
maps indicating a larger variance, likely to be
caused by the presence of luminescent spectra and
cosmic rays highlighting the difficulty in ‘cleaning
up’ large datasets. This could also be caused by fo-
cusing issues across the sample area.

The relative ‘SNR’ values calculated for the PC
loadings showed improved performance with longer
acquisition times, in particular in the case of maps D
and H for which the apparent noise was negligible
with respect to the 932 cm�1 peak within the load.

As expected, the relative ‘SNR’ of the loadings
also increased with increasing number of total spec-
tra with maps C, I, J and F. An additional advantage
of improved resolution is improved recognition of
morphological features, which will make this techni-
que more acceptable to the histopathologist.

When considering the maps acquired with a con-
stant mapping time of 4.5 h (Maps I–V) it is evident
that there is little difference regarding the loads but
increased spatial resolution would be beneficial. The
advantage afforded by rapid Raman mapping is also
greater for higher resolution maps. Increased spatial
resolution would also reduce the effects of under-
sampling and the possibility of missing crucial bio-
chemical information. This would have little conse-
quence for the samples in this study, but may be-
come clinically significant for a sample containing a
focus of disease.

The section shown in Figure 3 was initially
thought to contain a region of inflammation or possi-
bly adenocarcinoma to the bottom left, but this was
inconclusive due to very poor uptake of the H&E
stain with the frozen section. Following rapid Raman
mapping, in which there was no evidence of a region
of adenocarcinoma, this section was re-stained to ob-
tain definitive diagnosis and found to only contain
smooth muscle and fibrous tissue. This highlights a

Table 4 Summary of mapping parameters and comparison
of total mapping times with traditional point mapping
times indicated by the ratio of the estimated total map
time using the point mapping technique (Renishaw sys-
tem) and the total map time using the rapid mapping
technique.

Map ID Acquisition time Ratio
(s) (estimated point map time/

actual rapid map time)

A 0.1 37.1
B 0.5 10.4
C 1.7 4.2
D 20.0 1.7

E 0.5 25.0
F 1.7 8.8
G 3.0 5.4
H 5.0 3.7

Map ID Step size Ratio
(mm) (estimated point map time/

actual rapid map time)

C 25.3 4.2
I 15.8 5.0
J 10.6 6.9
F 7.4 8.8

I 9.5 5.1
II 12.7 3.5
III 19.0 2.1
IV 25.3 2.0
V 31.7 1.6
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further potential advantage of spectroscopic diagno-
sis which could enable diagnosis of inconclusive sec-
tions based on distinguishing biochemical features.

3.5. Comparison with point mapping

From Table 4 it is evident that rapid Raman map-
ping is significantly faster than traditional point map-
ping (from the same manufacturer). As expected
there is a correlation between the step size and the
speed of the map acquisition and thus the total map-
ping time. For a step size of 25.3 mm (maps A to D)
rapid Raman mapping was approximately 3 times
faster than point mapping for long acquisition times
and up to 37 times faster for short acquisition times.
Data published previously [30] was based on best
case scenario point mapping times which signifi-
cantly underestimated overall mapping times for
short acquisition times. With a step size of 7.4 mm
(maps E to H) rapid Raman mapping was of the or-
der of 4 times faster than point mapping for longer
acquisition times (5 s) and 25 times faster for short
acquisition times (0.5 s). Due to the large number of
spectra within the dataset the advantage of rapid ac-
quisition of spectra is accentuated. Bernard et al. re-
ported a similar reduction in overall mapping time
(13 times faster, although maps were not acquired
with the same acquisition times or step size) com-
pared to traditional line mapping [26].

3.6. Future work

One option, not considered in this paper, is the po-
tential to mismatch x and y step sizes to prevent un-
der-sampling when using step sizes greater than the
width of the laser line (�7 mm for the �50 objective
used in these experiments). This is an area which
will need further investigation before optimum map-
ping protocols can be determined. Further work
must also be carried out to investigate the potential
problems associated with undersampling with
regards to missing diagnostically significant informa-
tion. The step size in this study has not be reduced
beyond that of the width of the laser line (�7 mm for
the �50 objective used in this study) due to size lim-
itations on the datasets and also to prevent over-
sampling but this is also an area for further investi-
gation since this may provide further benefits with
regards to increased spatial resolution and even lar-
ger datasets. This may be of particular interest when
mapping cells at high resolution and leads to the
possibility that biochemical changes within the tissue
can now be investigated at the cellular level across
larger areas of tissue. One consequence of this

would be the need for improvement in computa-
tional facilities. The use of 64-bit computers has in-
creased the datasets that can be managed since this
work was undertaken.

There is also potential to investigate noise reduc-
tion techniques and smoothing of the spectral data
such as those described by Sasic et al. [21].

Potential sample degradation has previously lim-
ited the maximum laser power that can be used with
biological tissue samples. However with reduced ac-
quisition times there is the potential to increase the
laser power and thus improve the signal to noise.

Before an automated screening technique can be
developed, further work is also required to develop
automated algorithms capable of identifying ‘non-re-
levant’ samples so that only diseased samples are
forwarded for diagnosis by an expert histopatholo-
gist. It will also be beneficial to reduce the thickness
of the mapped tissue sections towards the thickness
used for H&E histopathology (7 mm), although po-
tentially longer acquisition times may be required to
counteract the reduction in Raman scattered
photons with the thinner tissue section.

Each map contains a vast amount of biochemical
detail and work is ongoing to explore information
regarding the carcinogenesis process.

4. Conclusion

Rapid Raman mapping has enabled frozen tissue
sections to be mapped on a clinically practicable
timescale. The combination of large spectral datasets
(generated by rapid Raman mapping) with multi-
variate analysis provides a powerful method of ana-
lysing tissue sections. The frozen tissue samples do
not require preparation with histological stains, pro-
viding a significant advantage over current techni-
ques. Frozen samples can be stored and subse-
quently stained if required. Furthermore, the process
lends itself to automation using computed algorithms
which removes the subjective element of histological
diagnosis. Potentially a rapid pre-scan could be car-
ried out at relatively low resolution with low SNR.
Subsequent detailed high quality maps can then be
acquired on regions of interest. In combination with
multivariate classification models, there is the poten-
tial for the automated screening out of non-relevant
samples, with those deemed as abnormal going on
for diagnosis by an expert histopathologist. Conse-
quently this would reduce the burden of ‘non-rele-
vant’ samples which currently swamp the system and
allow more time for analysis of the critically diseased
samples.

A large amount of work will be needed to de-
velop a comprehensive database of biochemical in-
formation before Raman mapping can be used in
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the clinical environment. Also the progression to
supervised multivariate classification may require
further evaluation and Bhargava has demonstrated
that there was a relation between the SNR of IR
absorption spectra and classification accuracy,
although a combination of univariate and multivari-
ate techniques were used as an alternative to PCA
[36]. Rapid Raman mapping provides a method of
acquiring such data which will enable verification of
this technique on a timescale that was previously
not possible. Raman spectral mapping has histori-
cally been significantly slower than the complimen-
tary technique of IR absorption spectroscopy and a
rigorous comparison of the two techniques is now
required.
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Surveillance programs to detect pre-cancers in the oesophagus generate large numbers of tissue 

samples. Rapid Raman mapping has the potential application for automated histopathology, by 10 

providing an adjunct to the histopathologist by screening out normal samples. Linear discriminant 

analysis (LDA) is suggested as a potential chemometric technique for automated classification of 

Raman tissue maps. This paper investigates the effect of tissue classification based on Raman maps 

acquired with different lateral spatial resolution using LDA as a means of comparison. Model 

performances of 94.4% (79.4-99.0% sensitivity  and 95.0-99.8% specificity and 93.7% (87.3-15 

99.9% sensitivity  and 95.2-100% specificity ) were obtained for LDA models generated using 8.4 

µm and 2.1 µm step sizes respectively. Initial results suggest that high lateral spatial resolution is 

not necessarily required for classifying tissue pathologies but the advantage of additional 

morphological information is advantageous and could facilitate separation of sub tissue groups in 

the future. 20 

Introduction 

Clinical motivation 

The current gold standard for diagnosing oesophageal pre-

cancers and cancers is endoscopic biopsy followed by 

histological staining with Haematoxylin and Eosin (H&E). 25 

Surveillance programs to detect pre-cancers in the oesophagus 

generate large numbers of tissues samples which places a 

strain on histology resources. There are also inadequacies 

associated with the histopathology diagnosis, namely that the 

technique is subjective and morphologically based.1 30 

 Raman spectroscopy is an inelastic scattering technique 

which effectively provides a biochemical fingerprint that 

allows the classification of different tissue types and 

pathologies. Consequently, the technique has the potential to 

provide automated, objective and reproducible diagnosis of 35 

tissue pathologies. Our group and others have shown that the 

technique is a promising method to distinguish normal, 

precancerous and cancerous changes in unstained oesophageal 

tissue using a laboratory based Raman system.2,3  Applications 

in other tissues have been reported including the cervix,4 40 

bronchus,5 colon,6 breast,7 and brain.8  The technique also has 

the potential to be used in vivo.9The main text of the article 

should appear here. Headings and subheadings should be 

formatted using the relevant button from the “Styles” toolbar. 

Raman spectral mapping 45 

Raman has been shown previously to separate out 9 

pathologies based on multivariate classification models.2 This 

paper develops the idea of using the combination of 

multivariate analytical techniques and rapid Raman spectral 

mapping as a potential technique for automated 50 

histopathology. In previous publications, we have shown that 

technological advances have reduced Raman mapping times to 

a level which has made implementation in a clinical 

environment a future possibility and Raman spectroscopic 

mapping could potentially be used as an aid to the 55 

histopathologist.10,11 One question which remained 

unanswered was whether or not the potential additional 

information gained from high (lateral) spatial resolution 

Raman mapping would be a useful adjunct for the 

histopathologist.   60 

 Raman has the potential for high lateral spatial resolution 

mapping (micrometer to sub micron level).12 However, 

applications on biological tissue sections have been limited 

due to the size of these spectral datasets (and mapped areas) 

due to lengthy overall mapping times.  65 

 FT-IR imaging has provided an alternative with 

biochemical information provided by many studies of 

biological tissue.13,14 Other studies have used both Raman and 

FR-IR as complimentary techniques.15,16 The spatial 

resolution of laboratory based FT-IR systems however is 70 

difraction limited,17 and at mid-IR wavelengths this can cause 

problems with signal to noise in the low wavenumber region 

of the spectrum with apertures smaller than 10-15µm. Higher 

lateral spatial resolutions can be achieved with synchrotron 

sources,18 and attenuated total reflection (ATR), whereby a 75 

high refractive index crystal enables light to contact the 

sample at relatively smaller spot size. However, there are still 

issues due to the fact that contact is required between the ATR 

crystal and the sample over the whole field of interest.  

 Spatial resolution is considered to be one of the most 80 

critical measurement parameters in spectroscopic imaging.17 



 

2  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

However, an in depth quantification of the lateral spatial 

resolution is beyond the scope of this paper, but for the 

purposes of this study it is sufficient to use the step size as a 

rough indication of the relative lateral spatial resolution that 

can be achieved. For further information, the reader is referred 5 

to the aforementioned publications.  

 In previous studies by the authors using rapid Raman 

mapping, the step size was not reduced beyond 7.4µm 

(approximately the width of the line focused laser line using 

the x50 objective), due to limitations caused by the dataset 10 

size and also to prevent over-sampling. Improvements in 

programming, software and computer power have since 

enabled larger datasets to be handled. From one perspective 

this has increased the total areas which can be mapped and 

also increased the spatial resolution which could be utilised. 15 

The detrimental effects of under-sampling are clear with the 

possibility of missing an area of focal disease. This paper 

explores this and demonstrates the potential for mapping with 

high lateral spatial resolution. The limitation of the system is 

a 1.1 µm step size using a x50 objective, and since the 20 

advantage of StreamLine™ (outlined elsewhere11) is greater 

for smaller step sizes, large datasets (of the order of hundreds 

of thousands of spectra) can be generated in a practicable time 

frame.  

 Many studies have reported the use of principal component 25 

analysis (PCA) for Raman imaging purposes. This paper 

extends the multivariate analysis to include PC fed linear 

discriminant analysis (LDA), which is not only proposed as a 

potential multivariate technique for future automation of 

Raman histopathology, but it is also used as a tool for 30 

comparing maps acquired with different mapping parameters. 

Other multivariate techniques have been used for Raman and 

IR imaging such as cluster analysis and but the drawback of 

this  is the high computational requirements.13 Artificial 

neural networks (ANN) has also been used as a supervised 35 

classification method,19 but comparison of these with LDA is 

beyond the scope of this paper.    

Materials and Methods 

Sample collection and preparation  

Informed consent was obtained from patients undergoing 40 

routine upper gastrointestinal endoscopy and surgical 

resection. Gloucestershire Local Ethics committee granted 

ethical approval for this study.  

 Fresh tissue samples were immediately snap frozen in 

liquid nitrogen and stored in a -80°C freezer until 45 

measurements were carried out. For each sample, a 15 µm 

frozen section was cut onto a calcium fluoride substrate for 

Raman spectral mapping. The thickness of the mapping 

section was chosen to maximise Raman scattered photons 

from the tissue section (whilst not taking the section beyond 50 

1-2 cells thick). A contiguous 7 µm section was obtained and 

stained with H&E for diagnosis by an expert gastrointestinal 

registry pathologist. The diagnosis was verified on the 

mapped section H&E (on CaF) by a second histopathologist. 

Regions of connective tissue (smooth muscle (SM) and 55 

fibrous connective tissue (FCT)), normal squamous (NSq), 

Barrett’s (BO), low grade dysplasia (LGD), high grade 

dysplasia (HGD) and adenocarcinoma (Ad) were identified.  

Biopsy samples are typically 1-2 mm in diameter.  

 Mapped samples were also stained with H&E following 60 

Raman mapping to enable better correlation with 

morphological features. 

 Two samples from two different patients have been mapped 

in this study.  

Raman spectral measurement 65 

Raman maps were acquired using a customised Renishaw 

Raman System 1000 spectrometer with StreamLine 

technology (Renishaw Plc. Wotton-under-Edge, 

Gloucestershire, UK). In brief, the system comprises an NIR 

diode laser (830nm), a Leica microscope with a Leica x50 70 

(NA 0.5) long working distance objective was used to focus 

(line focussed) and collect the Raman scattered photons. A 

metal oxide edge filter was used to remove the elastically 

scattered light and a grating with 300 lines/mm was used to 

disperse the inelastically scattered light which was measured 75 

with a deep depletion charged coupled device (CCD) detector.   

 An initial rapid pre-scan was carried out using a crude step 

size (26.4µm) and short acquisition time (0.5s). Further maps 

were acquired with step size of 8.4, 4.2 and 2.1µm with a 15 s 

acquisition time (to achieve spectra with good signal to noise 80 

ratio). It was decided that it was optimum to generate the 

tissue classification model using good quality spectra. 

Data Analysis 

Cosmic rays were removed by interpolating between the data 

points either side of the cosmic ray peak. Saturated spectra 85 

were also removed. Subsequently each map dataset was 

normalised and mean-centred. Principal component analysis 

(PCA) was carried out in Matlab using the PLS toolbox 

(Eigenvector Technologies, Manson, Washington, USA). Any 

remaining cosmic rays which were still evident were in the PC 90 

loads were blanked out, removed the calculation and PCs re-

generated. Pseudocolour PC score maps were then plotted. 

The pixels of the Raman map were colour coded with the 

upper and lower extremes of the PC scores and those pixels 

falling into the central range of the scores were left 95 

transparent to enable the images to be overlaid. This 

represented the pixels/spectra with the most significant 

contributions from the positive and negative aspects of the PC 

loads, respectively. The corresponding PC loads were colour 

coded accordingly to enable correlation of biochemical 100 

constituents from peaks within the PC loads with 

morphological information from the pseudocolour PC score 

image.  

 To compare the different step size maps, PC fed LDA was 

carried out (using the first 10 PCs). Spectra were classified as 105 

either calcium fluoride (CaF2), tissue border (TB), high grade 

dysplasia (HGD), fibrous connective tissue (FCT) and 

luminescence (Lum). For the remaining spectra, for which 

their grouping was ambiguous (either due to the fact that there  
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Fig. 1 Sample 1 a) White light image and mapped area b) mapped tissue section stained with H&E (on CaF2) c) contiguous 7µm H&E stained section 

 

 
Fig. 2 Example of how PC images are overlaid. (psuedocolour PC 2 scores image and corresponding PC load for the 2.1 µm map) 5 

is not a distinct boundary between tissue or the spectra found 

to have overlapping PC load contributions) were classed as 

unknown.  

 Two PC fed LDA models were generated for each map. The 

first with the unknown group included as a separate group to 10 

investigate misclassifications within the LDA. For the second 

model, the unknown group was excluded from the model and 

subsequently projected onto the classification model as an 

independent test set.   

 As a first step toward automated histopathology, bulk tissue 15 

discrimination was tested i.e. discrimination between 

connective tissue and glandular (HGD) tissue. In the future 

separation of further sub tissue types may be possible. 

Results 

Principal component imaging 20 

The results from one sample (Sample 1) is presented in detail, 

with the results from a second (Sample 2) sample added to 

demonstrate the technique can be used to identify other 

pathology groups. Figure 1 shows the white light montage 

image of Sample 1, acquired using a x2.5 objective. The small 25 

box indicates the region containing high grade dysplasia  

(HGD) and fibrous connective tissue (FCT) which was 

mapped repeatedly. It was noted that the regions between the 

HGD glands were also FCT. The H&E stained CaF2 image 

(i.e. the mapped tissue section) and contiguous section stained 30 

with H&E for histology purposes are also shown.  

 Figure 2 shows PC2 as an example of a psuedocolour PC 

score images and corresponding PC load. The extremes of the 

colour bar represented by a single colour, with the central 

portion remaining transparent. This allows the PC images to 35 

be overlaid, as shown in Figure 3, in which PCs 1-5 are shown 

overlaid with corresponding PC loads colour coded 

accordingly. 

 The biochemical information contained within the PC loads 

is shown to be similar (for the two maps acquired with 8.4 and 40 

2.1 µm). Although the two different regions of tissue can be 

identified in both maps, it is much easier to identify 

morphological structure in the smaller step size map as 

glandular features and this further supports the presence of 

HGD. 45 

Linear discriminant analysis (LDA) 

Initially, six group LDA models were generated (see Table 1 

for detailed). For the 8.4 µm map, the overall training 
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Fig.3 Pseudocolour PC score images overlaid for the 8.4 µm and the 2.1 µm step size map. PC loads are shown with corresponding colour coding 

 

Table 1 Classification performance of the training (including the ‘unknown’ group) dataset of the LDA model (8.4 µm and 2.1 µm step sizes, 15s 

acquisition time) 5 

  CaF2 TB FCT HGD Lum Unknown 
% correctly 

classified 

CaF2 354 27 0 0 0 0 94.4 
TB 62 111 3 0 0 13 82.7 

FCT 0 0 920 1 0 79 99.3 
HGD 1 67 234 2608 0 752 88.0 
Lum 0 1 13 0 140 13 96.3 

8.4 µm 

Unknown 7 185 796 544 6 2655 71.7 
         

CaF2 5713 371 0 0 0 0 93.9 
TB 150 1386 13 0 0 1 89.4 

FCT 0 3 5145 0 0 252 95.3 
HGD 0 41 2952 52864 424 14322 74.9 
Lum 0 3 0 0 4070 0 99.9 

2.1 µm 

Unknown 2100 1528 13533 14152 5046 32151 46.9 

 

performance of the LDA model was 70.1% although the 

overall performance is degraded by the large number of 

misclassifications in the ‘unknown’ group (see data analysis 

for explanation) and also the CaF2 group. Sensitivity and 10 

specificity were 58.7–92.9% and 88.1–99.9% respectively. 

The number of spectra within each group and the percentage 

correctly classified by the LDA model is summarised in Table 

1. 

 For the 2.1 µm map, the overall training performance of the 15 

LDA model was 64.9%. As with the 8.4 µm  model, the 

majority of the misclassified samples are from the ‘unknown’ 

group (as expected) which consequently skews the overall 

performance value. There are also misclassification of FCT 

spectra (predicted as ‘unknown’s) and some discrepancies 20 

with CaF2 and tissue border. Table 1 shows the number of 

spectra within each LDA classification group. Sensitivity and 

specificity were 46.9 - 99.9% and 83.4 - 98.9% respectively, 

but again, these values are skewed by the large number of 

misclassifications within the ‘unknown’ group. 25 

 Figure 4 illustrates the model performance spatially to 

provide further insight. Figures 4a and 4c identify spectra 

(pixels) which are misclassified by the LDA model for the 8.4 

µm and 2.1 µm maps respectively.  In Figures 4b and 4d, these 

misclassified spectra (pixels) are colour coded according to 30 

the group in which the LDA model classifies them for the 8.4 

µm and 2.1 µm maps respectively. This additional spatial 

information provides an insight into whether or not the LDA 

prediction is sensible which can potentially provide useful 

information regarding initial group. 35 

 In the 2.1 µm map PC image (Figure 3), the FCT appears to 

extend into regions between HGD glands. In the LDA 

pathology classification, although over 25000 spectra are  
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Fig. 4 Pseudocolour LDA pathology images for the  8.4 µm (a-b) and 2.1 µm (c-d) maps colour coded with pathology. Figures 4a) and 4c) show the 

locations of the misclassified spectra/pixels, whilst Figures 4b) and 4d) show the predicted pathology according to the LDA model for each of the 

misclassified spectra. 

misclassified as FCT, this is not within the inter glandular 5 

regions which appear to remain as “unknown” (white) and 

luminescence. This is likely to be due to initial choice of LDA 

groups for which the LDA process would try to separate the 

groups, but it could possibly be due to a biochemical 

difference in the FCT depending on the location of the tissue. 10 

This issue is addressed in the next section in which the 

‘unknown’ group is extracted from the model and used as an 

independent test set. There is also the possibility there is 

spatial and spectral averaging of nearby HGD and further 

work is required to verify the actual spatial resolution 15 

achieved with rapid Raman mapping systems.  

 The central portions of the glands appear to be 

misclassified as FCT, but again it is likely that a separate 

group would be required to account for these gland lumens 

which are likely to contain glandular mucin secretions etc. 20 

from the goblet cells. This may be an important classification 

for diagnosis, but further work is required.  

 Luminescence also appears to be very structural within the 

tissue. Mostly, within the regions of FCT. The location of the 

luminescence within the FCT is more evident with the small 25 

step size map, highlighting the potential importance of high 

lateral spatial resolution mapping.  

 Including spectra acquired from calcium fluoride in the 

mean centring process is possibly not the optimum method, 

but it was concluded that calcium fluoride/other substrate 30 

would be an important constituent with any model since any 

discrepancy with substrate impurities may lead to 

misclassifications. This may also be important for regions of 

thin tissue which may contain contributions from both 

substrate and tissue. Further work will be needed to 35 

investigate this. 

 Projecting the ‘unknown’ group as an independent test set 

Figure 5 shows the pseudocolour LDA image for the model 

generated excluding the ‘unknown’ group as a separate test set 

and later projecting these onto the model. Both the 8.4 µm and  40 
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Fig. 5 Projection of the test set onto the LDA model (generated excluding the ‘unknown’ group which was kept aside as a test set) for the 8.4 µm (a-c) and 

2.1 µm (d-f) maps. Figures a) and d) illustrate tissue classification of the training set by the LDA model according to tissue pathology colour code with 

misclassifications as black pixels and the test set identified as white pixels. Figures b) and e) illustrate the predicted classification group of the 

misclassified spectra within the training set according to the LDA model and figure c) and f) show the projected test set results according to the 5 

classification by the LDA model. Caption 

 

 
Fig. 6 Projection of the larger test set (to account for tissue margins) onto the LDA model (generated excluding the test set) for the 8.4 µm (a-c) and 2.1 

µm (d-f) maps. Figures  a) and d) illustrate tissue classification by the LDA model according to tissue pathology colour code with misclassifications as 10 

black pixels with the test set identified as white pixels. Figures b) and e) illustrate the predicted classification group of the misclassified spectra according 

to the LDA model and figure c) and f) show the projected test set results according to the classification by the LDA model.  
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Fig. 7 LDA model trained with a small region of normal squamous (green) fibrous connective tissue (yellow) and CaF2  (grey). 

 

 5 

Fig. 8 Classification model generated based on a training set taken from two samples (Sample 1 and 2 combined to one map) Sample 1 is the sample 

containing HGD and FCT and sample 2 contains FCT and NSq. a) shows the training set performance with correctly classified spectra classified according 

to pathology colour code with misclassified spectra highlighted as black pixels, b) illustrates the groups into which the misclassified spectra are predicted 

and c) illustrate the predicted classification for the test dataset (previously white pixels)   

the 2.1 µm maps are comparable, with spectral predictions 10 

consistent with morphological features and location in the 

image. 

 The overall performance of the training set models 

improved from 70.1% to 94.4% (79.4-99.0% sensitivity  and 

95.0-99.8% specificity ) for the 8.4 µm step size model and 15 

from 64.9% to 93.7%  (87.3-99.9% sensitivity  and 95.2-100% 

specificity ) when the unknown group was excluded as the test 

dataset. 

 As with previous LDA models which included the 

‘unknown’ group, FCT appears to extend in between the 20 

glandular features of the HGD. Previously, this was only 

2.1µm map, but using in Figure 5 this is also evident in the 8.4 

µm map. The centre of some of the glandular HGD structures 

are classified as FCT (especially evident in the small step size 

map). This is likely to be incorrect, and as discussed 25 

previously, a further group, tentatively attributed to mucin, 

may need to be added to the model to account for such 

regions. However, there is also the possibility that FCT, which 

is relatively transparent, is misclassified as tissue border since 

it comprises a lesser contribution from tissue spectral features 30 

and more CaF2 due to spectral mixing with substrate spectra. 

Further work is needed to investigate the origins of these 

misclassifications.  

 The projection model also suggests that regions of 

luminescence are within FCT surrounds the regions of 35 

luminescence.  

 To further investigate the projection of test dataset (and the 

presence of luminescence within the FCT), the LDA model 

was recalculated with fewer spectra in the training dataset. An 

additional ‘unknown’ margin around each pathology group 40 

was defined and allocated to the test dataset i.e. each region of 

luminescence was surrounded by a region of test set 

pixels/spectra. Similarly, the region between HGD and FCT 

was blocked out and allocated to the test set. Results indicate 

more strongly that luminescence is structural within the FCT. 45 

Pixels at the edge of the tissue and also the gland centres are 

also projected to be FCT, reiterating the need for an additional 

group within the model. The results are shown in Figure 6. 

 It is evident that reducing the training dataset does not 
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impact on the ability to project the test set onto the 

classification model.  

An example of normal squamous epithelium 

The above process was repeated on a map (15s acquisition and 

8,4 µm step size) of Sample 2 (containing NSq and FCT), but 5 

in this case the size of the training dataset was reducted 

further still. 

 Results are shown in brief in Figure 7, which shows the 

white light image and pseudo colour LDA image, the training 

set (defined by relatively small, but distinct regions of Nsq, 10 

FCT and CaF2), H&E of the contigous section and also the 

mapped section stained with H&E (on CaF2). 

Combined maps 

To further test the LDA projection of map data onto the tissue 

classification model, the two maps (15s acquisition time  and 15 

8.4 µm step size), were combined to form a large map 

containing HGD (sample 1), FCT (from samples 1 and 2), 

NSq (sample 2) and CaF2 (from samples 1 and 2). The entire 

map was then reanalysed to investigate the feasibility of 

extending this to multiple tissue maps and tissue types.  20 

 Again, small, distinct regions of each tissue type (NSq, 

FCT and HGD) and also CaF2 were defined as the training 

dataset, with the test set defined as the remainder of the 

dataset (Figure 8a and b). Figure 8c shows the classification 

for each spectra/pixel for the test dataset projected onto the 25 

LDA model generated using the training dataset.  

 The overall accuracy of the training set classification model 

was 97.5% (98.8–100% sensitivity and 95.8 – 100% 

specificity). 

 In general, projection of the test dataset (Figure 8c) agrees 30 

with histology diagnosis (Figure 1 - sample 1, Figure 7 – 

sample 2), however there are discrepancies which occur 

within the basement membrane region of the NSq (i.e the 

border between NSq and FCT) which gets projected as HGD. 

Regions of luminscence, not previosuly identified in Sample 2 35 

are also detected within the FCT.  

 Admittedly this is not a full model containing all pathology 

groups, nor was the region of basement membrane included in 

the training dataset, but conclusions can still be drawn from 

this, since the result indicates that classification could be 40 

occurring based on biochemical signature of cell nuclei which 

are rapidly proliferating and densely packed in both HGD and 

also basement membrane regions. Furthermore, this indicates 

that misclassifications are highly likely if sub tissue classes 

are not included into the training dataset, and perhaps 45 

suggests that spatial averaging may be advantageous to avoid 

such issues. In the future, work is required to determine 

optimum number of pathology groups required for tissue 

diagnosis. 

Discussions 50 

This study has shown that high lateral spatial resolution 

mapping is not necessarily needed for histology diagnosis. 

However, high lateral spatial resolution mapping does have 

advantages. There is the advantage of acquiring a large 

number of spectra which is amplified for reduced step sizes 55 

due to the square relation between step size and number of 

pixels. The additional spatial and spectral biochemical 

information could potentially facilitate the separation of more 

pathology groups.  

 LDA is a well known and accepted technique for spectral 60 

classification, and this paper has shown its potential 

application in Raman imaging for histology diagnosis. Further 

work is still required to investigate the extent to which the 

technique can be exploited with respect to automated imaging 

and also larger sample numbers need to be included in the 65 

model. The projection of an unknown dataset onto the model 

allows validation of the model to a degree but using spatial 

information relating to morphology, but rigorous validation 

and testing will still be required when further samples are 

added to the model. Nevertheless, this is an important step in 70 

the move towards clinical implementation of vibrational 

spectroscopy for automated histopathology.   

 Although LDA model performance provides a relatively 

arbitrary method of comparison, it allows a quick and easy 

method of comparing the maps acquired with different 75 

parameters. PC fed LDA models are also able to cope with 

low signal to noise spectra, where other techniques fail. Since 

it is well known that the initial group choices are an important 

factor with LDA models, the initial grouping may play a large 

part in the model performance, but as the groups were the 80 

same in both the 8.4 and 2.1 µm models, it enabled direct 

comparison of the two maps. The use of this ‘unknown’ group 

as an independent test set to validate the model provided 

confirmation that the classification was reasonable, supported 

further by spatial information relating to morphology.  85 

 There is also the potential, as discussed above that the 

small step size map may identify more subtle biochemical 

features which may account for the larger number of 

misclassified spectra within the small (2.1 µm) step size map. 

As a result, the model performance for the small step size map 90 

could potentially be significantly better if the initial groupings 

are chosen more carefully. However, mapping at even smaller 

step sizes, may also induce greater heterogeneity in the maps, 

even from cells of the same pathology (due to sampling 

different parts of the cell within each image pixel).   95 

It remains a question of how much separation is required 

for a specific pathology application. For example if the 

ultimate aim is only to separate out normal from abnormal 

then relatively crude spatial averaging and poor signal to 

noise spectra could be used however if the aim is to separate 100 

out tissue types, pre-cancers, cancers and even predict 

prognosis then more subtle biochemical features may need to 

be resolved. It will also depend on whether the 

histopathologist is confident in spectroscopic diagnosis 

without the additional morphological information represented 105 

in the form of a pseudocolour histology image. If not then 

crude step size maps could potentially provide a rapid and 

automated method of pathology diagnosis. Taking this idea to 

the extreme, it may be sufficient simply to use an ex vivo 

probe or collect a spectrum with a low magnification 110 

objective, averaged over a large area of tissue, although work 

will need to be carried out to verify the minimum level of 

signal mixing required to detect pathology changes. A 
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combination of modalities may be advantageous, for example 

FTIR for mapping the entire sample, followed by high lateral 

spatial resolution Raman mapping of regions of interest. The 

complementary nature of FTIR and Raman is being explored 

by many groups including ours.16, 17  5 

The extent to which we attempt to separate out pathology 

information is a question of clinical need which, ultimately, 

will need to be answered by the histopathologist.  

Conclusions 

In conclusion, rapid Raman spectral mapping with LDA 10 

discrimination has the potential for automated tissue 

classification in the future. Greater numbers of samples and 

patients, to cover the likely variability in the population of 

interest, with detailed histopathology will need to be included 

into the training model. It also appears from this initial study 15 

that high lateral spatial resolution mapping is not essential for 

clinical diagnosis of bulk tissue types, but may have 

advantages in the future for discriminating further tissue 

types.  

This study has shown that LDA projection imaging process 20 

can be potentially be applied to multiple samples making it a 

suitable technique for automated histopathology in the future. 

Futhermore, spatial information from visually representing 

LDA classification as psuedocolour images can provide 

insightful information which will help to explain 25 

misclassifications based on morphological features which is 

not possible from traditional scatter plot representation.  
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