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COMPACT AND STABLE DISCONTINUOUS GALERKIN
METHODS FOR CONVECTION-DIFFUSION PROBLEMS∗

S. BRDAR† , A. DEDNER‡ , AND R. KLÖFKORN†

Abstract. We present a new scheme, the compact discontinuous Galerkin 2 (CDG2) method,
for solving nonlinear convection-diffusion problems together with a detailed comparison to other
well-accepted DG methods. The new CDG2 method is similar to the CDG method that was recently
introduced in the work of Perraire and Persson for elliptic problems. One main feature of the CDG2
method is the compactness of the stencil which includes only neighboring elements, even for higher
order approximation. Theoretical results showing coercivity and stability of CDG2 and CDG for
the Poisson and the heat equation are given, providing computable bounds on any free parameters
in the scheme. In numerical tests for an elliptic problem, a scalar convection-diffusion equation,
and for the compressible Navier–Stokes equations, we demonstrate that the CDG2 method slightly
outperforms similar methods in terms of L2-accuracy and CPU time.

Key words. discontinuous Galerkin, higher order discretization, stability, convection-diffusion,
compressible Navier–Stokes
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1. Introduction. In this paper we introduce the compact discontinuous Ga-
lerkin 2 (CDG2) method for solving nonlinear convection-diffusion problems. The
CDG2 method belongs to the group of the discontinuous Galerkin (DG) methods
which were proposed and analyzed for the first time in the 1970s for solving partial
differential equations. In particular, in 1973 for solving neutron transport equations
of hyperbolic type by Reed and Hill [37]. In the work of Cockburn, Shu, and their
collaborators the DG method has undergone a major development which has resulted
in a series of papers, for example, [11, 12] for nonlinear hyperbolic conservation laws.
The advantages of these methods over some other higher order finite element (FE)
methods like Lagrange methods or higher order finite volume (FV) methods like ENO
or WENO schemes include, for example, the following:

• Robust design of higher order function spaces due to the fact that higher
order is achieved by choosing polynomial degree locally on each grid element.

• Easy implementation on nonconforming unstructured meshes with hanging
nodes. These meshes are well suited for local grid adaptation, a desirable
feature for resolving multiscale character of different problems.

• Locality of the method as a result of discontinuous numerical solutions, where
the discontinuity occurs only in the intersection of grid elements. For the first
order partial differential equations a DG spatial operator of arbitrary higher
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A264 S. BRDAR, A. DEDNER, AND R. KLÖFKORN

order requires only information from direct neighbors. This is a key feature
for efficient computation on today’s multicore parallel architectures.

Various versions of the DG method to solve elliptic problems have emerged over
the years, and it is interesting to mention the work [2] which unifies several of them
in an abstract framework and provides analysis of their accuracy and stability for
Poisson’s equation.

Two of the methods mentioned in [2] which satisfy the properties stated above
are the interior penalty (IP) (introduced in [18]) or Bassi-Rebay 2 (BR2) (introduced
in [4, 5]). More recently the compact discontinuous Galerkin (CDG) method was
introduced in [36].

The IP scheme with different stabilization terms is analyzed for the two-dimensional
(2D) compressible nonlinear Navier–Stokes equations in the work of Hartmann and
Houston [27]. Additional stabilization of the IP method is based on the penalization
of jumps of the numerical solution across grid interfaces which has to take into account
the order of the method. Estimates of the penalization parameters for one-dimensional
parabolic problems are presented in [34], for 2D elliptic problems in [1, 19, 20], and for
2D compressible nonlinear Navier–Stokes equations in [26]. In [22, 38] the problem of
estimating the penalty coefficient, in case of simplified diffusion term, is transformed
into a problem of finding an estimate for a series of inequalities between different
norms. The BR2 method is compared with IP in [27] (see also the references therein).
The stabilization of the BR2 method, as well as for the CDG and the CDG2 meth-
ods, is based on special lifting operators. This approach may come at a considerable
computational cost, since the lifting operators need to be computed on both grid
elements which share an interface. The advantage of CDG and CDG2 over BR2 is
exactly at this point, as they require the evaluation of one lifting operator on only
one side of each interface. In the context of nonlinear problems this is even more
important since one might consider a matrix free implementation of these methods.
Calculations of these liftings add a nonnegligible part to the computational cost of
the scheme especially on general quadrilateral and hexahedral grids.

The rest of this paper is organized as follows. In section 2, we describe the CDG2,
CDG, BR2, and IP methods in a suitable form for the stability analysis carried out
in section 3. Here, the analysis of the coercivity in the case of Poisson’s equations
and L2-stability in the case of a linear heat equation is carried out for CDG and
CDG2. In section 4, we highlight implementation details. Most notably we use the
stability estimate for the CDG2 method to derive a special switching function which
improved the performance of the method considerably. Practical results, including
comparisons of the new CDG2 method with CDG, IP, and BR2, are presented in
section 5. Conclusions are drawn in section 6.

2. DG formulation for convection-diffusion equations. In this section we
will derive the primal DG formulation for general nonlinear convection-diffusion-
reaction equations of the form

∂tu+∇ ·
(
f(u)−A(u)∇u

)
= s(u) in Ω× (0, tend),

u = gD on ∂Ω× [0, tend),(2.1)

u(0, ·) = u0 in Ω,

where u : Ω× [0, tend] → R, A : R → R
d×d, f : R → R

d, s : R → R, and Ω ⊂ R
d is a

bounded subset with polygonal (for d = 2, or polyhedral for d = 3) boundary.
In this paper we focus, in particular, on the discretization of the diffusion term

in (2.1). To this end we first consider the discretization of a linear elliptic problem
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with variable coefficients which will serve as a building block for the discretization of
(2.1) discussed in section 2.2. The discretization is described for a 2D problem, but
it is straightforward to extend it to three space dimensions.

2.1. Elliptic problems. In order to derive the discretization of the diffusion
term in (2.1) we consider the following elliptic problem in R

d, d = 2, of the form

−∇ · (A(x)∇u(x)) = s(x) x ∈ Ω,(2.2)

u = gD on ∂Ω,

where Ω ⊂ R
d is a bounded polygonal area, A ∈ L∞(Ω,Rd×d) a positive definite

diffusion matrix, and s ∈ L2(Ω).

We are interested in deriving a discrete primal formulation for (2.2) of the form

(2.3) B(uh, ϕ) =

∫
Ω

sϕ ∀ϕ ∈ Vh .

The discrete solution uh is in the piecewise polynomial space Vh = V 1
h with

V l
h = {v ∈ L2(Ω,Rl) : v|K ∈ [Pk(K)]l} for some l ∈ N

defined for a given partition Th = {K} of Ω into polygons K. The space V l is
contained in the function space

V l = {v ∈ L2(Ω,Rl) : v|K ∈ [H2(K)]l} .

In addition to Vh = V 1
h we also use the abbreviation Σh = V d

h , V = V 1, and Σ = V d

in the following.

To derive the bilinear form B we need to introduce some standard notation
(see [2]). By Γi we denote the family of all interior intersections e of grid elements
K+

e ,K−
e ∈ Th, where e = K−

e ∩K+
e and positive Hausdorff measure in R

d−1. We re-
strict ourselves to conforming grids, so that an intersection e can be only a whole edge
of an element K±

e . Additionally, let Γ be the family of all intersections e ⊂ ∂K, where

K ∈ Th. For each intersection e we define the local mesh width he = |e|
max{|K−

e |,|K+
e |} .

For e ∈ Γi, ϕ ∈ V , and τ ∈ Σ we introduce operators [·]e, {·}e, {{·}}e, and [[·]]e as

[[ϕ]]e = ϕ|K−
e
nK−

e
+ ϕ|K+

e
nK+

e
, {ϕ}e =

1

2
(ϕ|K−

e
+ ϕ|K+

e
),

[τ ]e = τ |K−
e
· nK−

e
+ τ |K+

e
· nK+

e
, {{τ}}e =

1

2
(τ |K−

e
+ τ |K+

e
),

and for a boundary intersection e ⊂ ∂Ω as

[[ϕ]]e = (ϕ− g′D)n, {ϕ}e = ϕ,

[τ ]e = τ · n, {{τ}}e = τ ,

where g′D = gD in case [[·]]e acts on uh; otherwise g′D = 0. Note that instead of the
arithmetic averages {·}e, {{·}}e one could also use, for example, weighted harmonic
averages as suggested in [10, 17, 20] and other papers. This, however, is outside of
the scope of this paper.
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Following the derivation of the DG primal formulation found in [2] we obtain, for

given numerical fluxes û and Â, both mapping uh to [L2(Γ)]d, the flux based bilinear
form

B(uh, ϕ) :=

∫
Ω

(A∇uh) · ∇ϕ−
∑
e∈Γi

∫
e

[AT∇ϕ]e{uh − û}e

−
∑
e∈Γ

(∫
e

{{AT∇ϕ}}e · [[uh]]e + Â · [[ϕ]]e
)
.

(2.4)

The method is completely described once the physical parameter functions A, s,
and g are known and appropriate numerical fluxes have been chosen. To define the
numerical diffusion fluxes, let us define two kinds of lifting operators re : [L

2(e)]d → Σh

and le : L
2(e) → Σh, for every e ∈ Γ, with∫

Ω

re(ξ) · τ = −
∫
e

ξ · {{τ}}e,
∫
Ω

le(φ) · τ = −
∫
e

φ[τ ]e(2.5)

for all τ ∈ Σh, ξ ∈ [L2(e)]d, and φ ∈ L2(e). For our convenience we define Le(u) :=
re([[u]]e)+ le(βe · [[u]]e) on e ∈ Γ. The parameter β (in the literature frequently C12) is
called the switch function. We assume in the following that for an interior intersection
e with neighboring element K+

e ,K−
e we have

(2.6) βe =
1

2
nK−

e
= −1

2
nK+

e
,

while on the boundary we set βe = nKe/2 for CDG2 and βe = 0 for the other methods.
Here, nKe is the outer unit normal of Ke on intersection e. Different choices for βe

have been suggested (e.g., in [2, 13, 36]). We will discuss two definitions for βe in
section 4, one of which is motivated by our coercivity estimate. Note that the meaning
of K+

e ,K−
e is fixed once a switching function has been chosen.

For a given switch function βe we call e an outflow intersection of a grid element
K if e ⊂ ∂K and nK · βe > 0. Notice that this definition tells us that K = K−

e . The
number of all outflow intersections of K is denoted by Nout

K , whereas the maximal
number of outflow intersections for one grid element is denoted by Nout

Th
, i.e.,

(2.7) Nout
K = #{e ∈ Γ : ne · βe > 0 and e ⊂ ∂K} , Nout

Th
= max

K∈Th

Nout
K .

In addition we denote by NK the total number of interfaces of K and we define

(2.8) NTh
:= max

K∈Th

NK .

In Table 1 we show the numerical diffusion fluxes û and Â considered in this
paper. The numerical fluxes on the boundary are also prescribed in the table based
on the definition of the operators [·]e, [[·]]e, {·}e, and {{·}}e on the boundary. The only
exception to this is that û = gD on a boundary intersection.

Remark 1. The term A in the penalty term δe(u) plays an important role in
case of a strongly nonlinear system of equations, like in the case of the Navier–Stokes
system. The absence of this term leads to insufficient numerical diffusion resulting
in suboptimal convergence rates. The stability of the IP method is especially prone
to changes of the stability coefficient η (see [27]) whereas the CDG and the CDG2
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Table 1

Numerical diffusion fluxes on an interface e for all methods considered in this paper. For
simplicity we write u instead of uh and use the abbreviations d(u) = A∇hu, je(u) = ALe(u), and
δe(u) =

η
he

{{A}}e[[u]]e with η ≥ 0 and χ ≥ 0.

Method û Â

IP {u}e {{d(u)}}e − δe(u)

BR2 {u}e {{d(u)}}e
+χ{{Are([[u]]e)}}e

CDG {u}e − βe · [[u]]e {{d(u)}}e − δe(u) + βe[d(u)]e

+χ
({{je(u)}}e + βe[je(u)]e

)

CDG2 {u}e {{d(u)}}e − δe(u)

+χ
({{je(u)}}e + βe[je(u)]e

)

methods are shown to be completely immune to changes of η (see section 3). Note
that η is denoted with C11 in other papers, e.g., in [13, 36]. Also note the slight
difference in the definition of the flux for the CDG method compared to [36], where
the method was introduced with χ = 1. Similarly, BR2 was introduced in [4, 5] with
χ = 3 for triangular grids, but we leave the constant χ free, so that we can take
different grid types (triangular, quadrilateral, tetrahedral etc.) into account.

2.2. Convection-diffusion-reaction equations. In this section we briefly dis-
cuss a discrete formulation for equations of the form (2.1) based on the diffusion
discretization presented in the previous section:∫

Ω

ϕ∂tuh = BCDR(uh, ϕ) ∀ϕ ∈ Vh .(2.9)

The bilinear form is BCDR(uh, ϕ) := −B(u, ϕ) + BCR(u, ϕ) with B given by (2.4),
where this time uh in (2.4) is time-dependent and A depends on uh, and

(2.10) BCR(u, ϕ) =

∫
Ω

f(u) · ∇ϕ−
∑
e∈Γ

∫
e

f̂(u) · [[ϕ]]e +
∫
Ω

ϕs(u) ∀ϕ ∈ Vh.

The first two summands in (2.10) correspond to the discretization of the convection
term and the last summand to the discretization of the reaction term. In the DG
context the discretization of the convective terms is well studied, e.g., in [11, 12]
and many other papers; possibly a stabilization is required in convection dominated
cases as discussed in [15] and references therein. Other stabilization techniques such as
entropy viscosity (cf. [25]) or artificial viscosity methods (e.g., [23]) require a diffusion

discretization as presented in the previous section. The convective numerical flux f̂(u)
can be any appropriate numerical flux known for standard FV methods, e.g., presented
in textbooks [32, 39] on the subject.

3. Theoretical results. In this section we derive coercivity results for the dif-
ferent methods for elliptic problems presented in the previous section. The coercivity
results are expressed with respect to the grid-dependent norm:

|||v|||2 =
∑

K∈Th

|v|21,K +
∑
e∈Γ

‖re([[v]]e)‖2Ω

for v ∈ Vh +H1
0 (Ω) ∩H2(Ω). This is the same norm used in [8].
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For the method presented in the previous section the following theorem can be
proven. The results for the IP and BR2 methods can be found in the literature,
e.g., [2]. The new results are the proofs for the CDG and CDG2 methods.

Theorem 2 (coercivity estimate). Let Th be a conforming grid on Ω such that
there is an affine mapping from a fixed reference element K̂ to each K ∈ Th1 and let
βe be as in (2.6). Consider the problem (2.2) with A = const and g = 0. For the
bilinear form B given in (2.4) the inequality

B(u, u) ≥ C|||u|||2 ∀u ∈ Vh

holds for some C > 0 if one of the following conditions is fulfilled:

(a) η is chosen sufficiently large and χ ≥ 0 (for IP, CDG, and CDG2),
(b) η ≥ 0 and χ > χ0, where

1. χ0 = NTh
for the BR2 method,

2. χ0 = Nout
Th

for the CDG method, and
3. for the CDG2 method

χ0 =
NTh

4

(
1 + ν(β)

)
,

with ν(β) = maxe∈Γi{|K−
e |/|K+

e |} and K−
e , K+

e determined by β.

The mesh-dependent constants Nout
Th

and NTh
used to define χ0 are given in (2.7) and

(2.8), respectively.

The first part of this theorem is a simple extension of the proof found in [2] and was
also mentioned for the original CDG method, i.e., with χ = 1 in [36]. The generalized
estimate for the coercivity coefficient of the BR2 method is an easy consequence of
the discussion in [2, 8]. Therefore, we focus on the results for the CDG and the CDG2
methods. The proof is given in section 3.2.

Before we proceed with the proof of Theorem 2 in section 3.2, we need to summa-
rize some properties of the lifting operators that we require for the proof. In the fol-
lowing we will use the abbreviations L(u) =

∑
e∈Γ Le(u) and r(u) =

∑
e∈Γ re([[u]]e).

3.1. Properties of the lifting operators. In the following we assume that the
conditions stated in Theorem 2 are satisfied. The following lemmas summarize some
simple observations.

Lemma 3. Let βe be chosen as in (2.6) and e ∈ Γi. Then for u ∈ Vh it holds that

(3.1) supp re([[u]]e) = K+
e ∪K−

e and suppLe(u) = K−
e .

Furthermore, Le(u) = 2re([[u]]e) on K−
e .

For e ∈ Γ \ Γi we have Le(u) = re([[u]]e) for the CDG method and Le(u) =
2re([[u]]e) for the CDG2 method.

1This is, for example, the case for simplex or Cartesian grids.
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Proof. The result for re follows from the definition. For the second part we denote
with τ+

e the restriction of a function τ ∈ Σ on K+
e . Similarly τ−

e = τ |K−
e
. Then∫

Ω

Le(φ)|K+
e
· τ =

∫
Ω

Le(φ) · τ e|K+
e
= −

∫
e

[[φ]]e · {{τ+
e }}e −

∫
e

βe · [[φ]]e[τ+
e ]e

= −
∫
e

[[φ]]e ·
(
1

2
τ+
e + βe · nK+

e
τ+
e

)
= −

∫
e

[[φ]]e ·
(
1

2
τ+
e − 1

2
τ+
e

)
= 0 .

(3.2)

Similarly one can show that
∫
Ω
L−

e (φ) ·τ = 2
∫
Ω
r−
e ([[φ]]e) ·τ for any τ ∈ Σ from which

the other equality in the lemma follows directly.
For e on the boundary we have for CDG2 that βe is defined as in the interior, so

that the result stated above also holds in this case. For the CDG method βe = 0 and
this gives us Le(u) = re([[u]]e).

The key ingredient in the proof of Theorem 2 is the following lemma, which relates
re(·)|K−

e
and re(·)|K+

e
.

Lemma 4. Let Th be as in the Theorem 2, βe as in (2.6), and e ∈ Γi. Then there
exists a positive constant αe such that

(3.3) αe‖re([[u]]e)‖2K−
e
= ‖re([[u]]e)‖2K+

e
∀u ∈ Vh.

Moreover, we have αe = |K−
e |/|K+

e |.
If we define for all e ∈ Γ \ Γi αe = 3 (CDG) and αe = 0 (CDG2), we have

(3.4) ‖Le(u)‖2Ω =
4

1 + αe
‖re([[u]]e)‖2Ω

for all e ∈ Γ.
Proof. In the following we use the abbreviation re = re([[u]]e). Consider the

affine mappings Fe−, Fe+ of the reference element K̂ to K−
e , K+

e , respectively, such
that F−1

e+ (e) = F−1
e− (e) and with an orientation such that for all i ∈ 1, N (N =

dim Σh(K
−
e ) = dim Σh(K

+
e ))

τ̂ i ◦ F−1
e+ (x) = τ̂ i ◦ F−1

e− (x) ∀x ∈ e,

for some orthonormal basis {τ̂ i}i=1,N of Σh(K̂). Consequently, {τ±
i = τ̂ i◦F−1

e± }i=1,N

is an orthogonal basis of Σh(K
±
e ) such that τ−

i = τ+
i =: τ e,i on e. By setting τ±

i to
zero outside of K± we obtain functions in Σh. Let us introduce the notation

r±
e =

{
re on K±

e ,

0 elsewhere.

We can now represent r−
e , r

+
e on K±

e in the basis {τ±
i }, i.e., r±

e =
∑N

i=1 r
±
e,iτ

±
i , and

we introduce

	be = −1

2

[∫
e

[[u]]e · τ e,i

]
i=1,N

, 	r±
e =

[
r±e,i

]
i=1,N

, M±
e =

[∫
K±

e

τ±
i · τ±

j

]
i,j=1,N

.

By definition of the lifting operators (2.5) we compute

(3.5)

∫
K±

e

r±e · τ±
i =

∫
Ω

re · τ±
i = −

∫
e

[[u]]e · {{τ±
i }}e = −1

2

∫
e

[[u]]e · τ e,i = 	be,i .
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Consequently, we have

	r±
e = (M±

e )−1	be .

Since
∫
K±(r

±
e )

2 = 	r±
e ·M±

e 	r±
e we conclude that

‖re‖2K±
e
= (M±

e )−1	be · 	be =
1

|K±
e |

|	be|2 .

For the last equality we used the fact that we are working with an orthonormal set of
basis functions so that the mass matrix satisfies M±

e = |K±|I, where I is the identity

matrix in R
N×N . Thus we can choose αe =

|K−
e |

|K+
e | in (3.3). To show (3.4) we notice

first that ‖re‖2K−
e

= (1 + αe)
−1‖re‖2Ω, since ‖re‖2Ω = ‖re‖2K−

e
+ ‖re‖2K+

e
. Now, it is

easy to see from Lemma 3 that (3.4) is fulfilled.
Note that although we used an orthonormal basis function in the proof of Lemma 4,

the coercivity result does not depend on this choice. Also note that the assumption of
Lemma 4 requires that the grid is conforming and that each grid element is an affine
mapping of a same reference element. These grids include, for example, simplicial
grids, Cartesian grids, or a grid whose elements are parallelograms in two dimensions,
or parallelepipeds in three dimensions.

Finally, our analysis requires the following estimate on the lifting operator re,
with a proof in [8].

Lemma 5 (see Brezzi et al. [8]). There is a positive constant C2 independent of
he and u such that

‖re([[u]]e)‖2Ω ≤ C2h
−1
e ‖[[u]]e‖2e

for each u ∈ Vh and for each e ∈ Γ.

3.2. Proof of Theorem 2 for the CDG and CDG2 methods. To carry out

the proof of Theorem 2 we first rewrite the bilinear form using parameters β1, L̃e,
and δ̃e and assuming A ≡ 1:

B(uh, ϕ) =

∫
Ω

∇uh · ∇ϕ+ χ
∑
e∈Γ

∫
Ω

L̃e(ϕ) · L̃e(uh)

+
∑
e∈Γ

∫
e

({{∇ϕ}}e · [[uh]]e + {{∇uh}}e · [[ϕ]]e)

+ β1

∑
e∈Γi

∫
e

βe ·
(
[∇uh]e[[ϕ]]e + [∇ϕ]e[[uh]]e

)
−
∑
e∈Γ

∫
e

δ̃e(uh) · [[ϕ]]e ∀ϕ ∈ Vh .

(3.6)

We have β1 = 1 for CDG, and β1 = 0 for all other methods, L̃e is zero for IP, equal

to Le for CDG, CDG2, and L̃e( · ) = re([[ · ]]e) for BR2, and finally δ̃e = δe for IP,
CDG, CDG2 and zero for BR2.

First we prove the coercivity result for the CDG method.
Proof (for the CDG method). We note that the bilinear form of the CDG method

can be written in the following form:

(3.7) B(u, u) = ‖∇u+L(u)‖2Ω − ‖L(u)‖2Ω + χ
∑
e∈Γ

‖Le(u)‖2Ω +
∑
e∈Γ

η

he
‖[[uh]]e‖2e .
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Since Le = 0 on all K where e is an inflow edge, we have

(3.8) ‖L(u)‖2Ω ≤ Nout
Th

∑
e∈Γ

‖Le(u)‖2Ω .

For any ε ∈ (0, 1) we obtain

‖∇u+L(u)‖2Ω ≥
∑

K∈Th

(1− ε)|u|21,K + (1 − ε−1)‖L(u)‖2Ω ,

which follows from the Cauchy–Schwarz inequality. Furthermore, from Lemma 5,
inequality (3.8), equality (3.4), and the last inequality we get

B(u, u) ≥
∑

K∈Th

(1− ε)|u|21,K +
∑
e∈Γ

(
4

1 + αe
(χ− ε−1Nout

Th
) + ηC−1

2

)
‖re‖2Ω.

If condition (a) of Theorem 2 is satisfied we can choose η large enough that the
coefficient of the second sum becomes positive. If condition (b) is satisfied, we can
choose ε so close to 1 that χ − ε−1Nout

Th
becomes positive. The positive number C

from the formulation of the theorem is now the minimal value of the positive numbers
1− ε and 4

1+αe
(χ− ε−1Nout

Th
) + ηC−1

2

We now continue with the proof for the CDG2 method.

Proof (for the CDG 2 method). In the case of the CDG2 method the bilinear form
B(u, u) can be rewritten as

B(u, u) = ‖∇u+ r(u)‖2Ω − ‖r(u)‖2Ω + χ
∑
e∈Γ

‖Le(u)‖2Ω +
∑
e∈Γ

η

he
‖[[u]]e‖2e .

Note that re(·) ≡ 0 in grid elements not having e as one edge. From that fact we
derive the inequality

(3.9) ‖r(u)‖2Ω ≤ NTh

∑
e∈Γ

‖re([[u]]e)‖2Ω .

As in the proof for the CDG method we get

‖∇u+ r(u)‖2Ω ≥
∑

K∈Th

(1− ε)|u|21,K + (1− ε−1)‖r(u)‖2Ω

for any ε ∈ (0, 1). Combining Lemma 5, inequality (3.9), and the last inequality we
obtain

B(u, u) ≥
∑

K∈Th

(1− ε)|u|21,K +
∑
e∈Γ

(
4χ

1 + αe
− ε−1NTh

+ ηC−1
2

)
‖re‖2Ω .

Note that αe = 0 for e ∈ Γ\Γi. By similar arguments as in the CDG case, we conclude
that we can choose η large enough if condition (a) of Theorem 2 is satisfied, or ε close
to 1 if condition (b) is satisfied, so that both coefficients in front of |u|1,K and ‖re‖2Ω
are positive. The positive number C from the formulation of the theorem is now the
minimal value of the positive numbers 1− ε and 4χ

1+αe
− ε−1NTh

+ ηC−1
2 .
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3.3. Further remarks. Following the discussion from [2] one can prove for
bounded, coercive, consistent, and adjoint consistent methods the following a priori
error estimate for the discrete solution of a linear elliptic problem uh ∈ Vh:

(3.10) ‖u− uh‖Ω ≤ Chk+1|u|k+1,Ω

if the exact solution u is in Hk+1(Ω)∩H1
0 (Ω). Here C is a constant and k is the poly-

nomial degree of the basis functions from Vh. All the methods studied in this paper
fall into this category. It is straightforward to see that all the methods studied here
are consistent and adjoint consistent; Theorem 2 gives conditions for their coercivity,
and boundedness can be shown using the estimates found in [2].

From the coercivity results one can conclude the L2-stability estimate d
dt

∫
Ω u2 ≤ 0

in the parabolic case for each method. The stability proof for the case that both
convection and diffusion terms are present can be treated as described, for example,
in [13] under suitable conditions on the numerical flux f̂ . The arguments found there
demonstrate that it suffices to concentrate on the diffusion part.

In the case of the CDG2 method the switch function can be chosen such that
χ0 =

NTh

2 , independent of the underlying grid as we will show in the following section.
This observation turns out to be crucial, because choosing the smallest lifting and
stability factor which guarantee stability leads to the most efficient method.

We conclude this section with the observation that on some special meshes, i.e.,
Cartesian meshes as well as triangular meshes created out of Cartesian meshes by
dividing each quadrilateral into two triangles, the BR2 and CDG2 methods coincide
when applied to linear problems.

Corollary 6 (BR2 and CDG2 on special meshes). Consider the setting of
Theorem 2. The methods BR2 and CDG2 coincide on grids Th with |K1| = |K2| and
equal shape for all K1,K2 ∈ Th if χBR2 = 2χCDG2 and δe(u) ≡ 0.

Proof. This result is a consequence of observing that in this situation
∫
ΩLe(u) ·

Le(ϕ) = 4
∫
K−

e
re([[u]]e) ·re([[ϕ]]e) and

∫
Ω
re([[u]]e) ·re([[ϕ]]e) = 2

∫
K−

e
re([[u]]e) ·re([[ϕ]]e)

holds. The last equality follows from
∫
K+

e
re([[u]]e) ·re([[ϕ]]e) =

∫
K−

e
re([[u]]e) ·re([[ϕ]]e)

as can be shown using change of variables since there exists an affine mapping F of
K+

e into K−
e such that re([[u]]e)(x) = re([[u]]e)(F (x)), re([[ϕ]]e)(x) = re([[ϕ]]e)(F (x)),

and |det(D(F (x))/Dx)| = 1 for all x ∈ K+
e . Thus for the two methods the term∫

Ω
L̃e(ϕ) · L̃e(uh) in (3.6) differs only by a factor of 2.

4. Implementation. In this section we provide some details on our implemen-
tation of the compact DG methods presented in this paper, focusing once again on
the CDG and CDG2 methods. Our implementation is part of the Dune-Fem mod-
ule [16], which is based on the free software environment Dune [6, 7]. Dune-Fem

provides a range of different methods for solving general systems of nonlinear partial
differential equations on parallel, locally adapted grids.

Employing the DG method for the spatial discretization of a convection-diffusion-
reaction equation leads to∫

Ω

ϕ∂tuh = BCDR(uh, ϕ) ∀ϕ ∈ Vh(4.1)

for the semi-discrete function uh with uh(t, ·) ∈ Vh. The bilinear form BCDR is
described in section 2.2. Writing uh(t, x) =

∑
i ui(t)ϕi(x), where {ϕi}i forms a basis

of Vh, we arrive at a system of ODEs

U ′(t) = M−1b(t), where U = (ui)i , b(t) =
(
BCDR(uh(t, ·), ϕi)

)
i



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPACT AND STABLE DG METHODS A273

and M is the mass matrix
( ∫

Ω
ϕiϕj

)
i,j
. Thus solving the system of evolution equa-

tions requires computing the bilinear form BCDR(uh(t, ·), ϕi), the inverse of the mass
matrix, and solving the resulting system of ODEs.

4.1. Spatial discretization. In the Dune-Fem framework either Lagrange
type basis functions or orthonormal basis functions are available to build the discrete
space Vh. For the work presented here we have used an orthonormal basis, so that
the mass matrix is diagonal. All our numerical experiments have shown that taking
η = 0 in the CDG and CDG2 methods leads to the best results if χ is taken according
to Theorem 2 part (b). Therefore we will only present details of the implementation
for the schemes with η = 0.

Assuming now that the test function ϕ = ϕi has support on only one element K
of the grid Th and denoting with uK the restriction of uh to K, B given in (2.4) takes
on a much simpler form. We use the definition of the jump and average operators and
the unified formulation of the fluxes found at the beginning of section 3.2 to arrive at

BCDR(uh, ϕ) = −
∫
K

(f(uK) · ∇ϕ+ sE(uK)ϕ) +

∫
e⊂∂K

f̂(u) · neϕ

+

∫
K

(A(uK)∇uK · ∇ϕ− sI(uK)ϕ)−
∫
e⊂∂K

Â(u) · neϕ

−
∫
e⊂∂K∩Γi

(
1

2
+ β1βe · ne

)
A(uK)[[u]]e · ∇ϕ

−
∫
e⊂∂K∩∂Ω

(uK − gD)A(uK)ne · ∇ϕ

=: BE(uh, ϕ) +BI(uh, ϕ) ,

(4.2)

with β1 = 1 for CDG and 0 for all other methods. In BE we combine the first two
integrals which discretize the convection forces and a part of the source term sE .
The second term BI contains the diffusion and the remaining part of the source term
denoted with sI = s − sE . This splitting is used to employ a semi-implicit (IMEX)
ODE solver as described later in this section.

It remains to study the implementation of the convective flux f̂ and the flux Â for
the diffusion in the primal formulation (2.4). For the convection we use the Rusanov
flux described, for example, in [39]. Using (3.2) we obtain the following representation

for the diffusion flux Â(u):

(4.3) Â(u) =

⎧⎪⎨⎪⎩
{{A(u)∇u+ χ

(
A(u)re([[u]]e)

)
}}e BR2,(

A(u)∇u + 2χA(u)re([[u]]e)
)
|K−

e
CDG,

{{A(u)∇u}}e + 2χ
(
A(u)re([[u]]e)

)
|K−

e
CDG2.

Hence we see that for the BR2 method, as well as for the CDG, CDG2 methods, we
need only compute the lifting re. While for the BR2 method re must be computed on
both elements K−

e ,K+
e , for the CDG and CDG2 we have to compute the lifting only

on K−
e depending on the switch function βe. To compute re on K−

e or on K+
e we can

make use of the fact that we are using orthonormal basis functions. Thus the degrees of
freedom (ri)i defining re([[u]]e) on K are easily computed through ri = − 1

2

∫
e[[u]]e · τ i,

where (τ i)i is an orthonormal basis of Pk(K)d. The lifting required for the CDG and
CDG2 methods therefore involves only the computation of a single integral over each
intersection e ∈ Γi and can be computed while the flux Â over that intersection is
evaluated.
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It remains to fix the switch βe for each interior edge e ∈ Γi. One suggestion,
which is widely used in the literature [13, 2, 36], is the upwind switch

(4.4) βe =
1

2
sgn(nKe ·w)nKe .

The upwind vector w ∈ R
d is chosen a priori (i.e., before each time step), so that

w · n �= 0 for the normal n to ∂K for all K ∈ Th. Thus K−
e is chosen to be the

element adjacent to e with nK−
e
·w > 0.

Our suggestion is motivated by the coercivity estimate for the CDG2 method.

According to Theorem 2, the CDG2 method is stable provided χ >
NTh

4

(
1 + ν(β)

)
.

The efficiency of the method is severely influenced by the magnitude of χ, larger
values increasing the condition number of the system matrix. Thus it is advantageous
to render ν(β) = maxe∈Γi{|K−

e |/|K+
e |} as small as possible. This can be achieved by

using the area switch

(4.5) βe =
1

2
nK∗

e
,

where K∗
e is the element adjacent to e with the smaller area. Thus |K−

e | ≤ |K+
e | and

consequently ν(β) ≤ 1.

4.2. Temporal discretization. Using the splitting defined in (4.2) together
with the method of lines described above leads to a system of ODEs

(4.6) U ′(t) = FE(U(t), t) + FI(U(t), t),

where U(t) = (ui(t))i is the vector of degrees of freedom for the unknown function
uh(t, x) =

∑
i ui(t)ϕi(x) and the components of FE and FI are M−1BE(uh(t, ·), ϕi)

and M−1BI(uh(t, ·), ϕi), respectively. To avoid the strong time step restriction im-
posed by the diffusion and stiff sources (combined into sI), we want to use an implicit
method for these terms, while allowing for time exact simulation of the convection
forces, through an explicit treatment of these terms.

For the numerical examples we use IMEX Runge–Kutta methods of order k + 1,
where k is the polynomial order of the basis functions used to construct Vh. For
k = 1 we use the IMEX-SSP2(2,2,2); details on the corresponding Butcher array can
be found in [35]. A detailed convergence analysis for the IMEX-SSP2(2,2,2) and a
DG method for convection-diffusion equations is carried out in [9]. For k = 2 we use
the method YZ(3,3) presented in [40], and for k = 3 we use the IERK(4,5) presented
in [33].

Using these methods the time step ΔtE is merely restricted by the CFL condition.
Note that fully implicit methods could also be used, in which case the bilinear form
is not split into two parts.

Implicit methods naturally lead to large systems of nonlinear equations, increasing
in size if higher order Runge–Kutta methods are used. In our implementation we
reduce the size by using diagonally implicit methods, but nevertheless the resulting
nonlinear algebraic system is large and difficult to solve. To avoid the computation of
the Jacobian of the function FI we use a matrix free Newton solver. Since our time
step is restricted by the convection forces, the number of iterations required for the
nonlinear and the subsequent linear solver is small. Hence, the data from the previous
time step is a good starting point for the iteration and matrix free implementations
are, in general, less expensive compared to setting up matrices.
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In each step of the Newton iteration a linear system of the form DFn
I δ

n = −Fn
I ,

where Fn
I = FI(U

n, t) required the evaluation of the bilinear form BI . This linear sys-
tem is solved using a CG type method (BiCG-stab or GMRES for nonsymmetric A).
Instead of using the exact Jacobian we use a one sided approximation to DFn

I . Since
the iterative solvers used require only the implementation of the application of the
linear operator DFn

I to given vectors v1, . . . , vS , we can use the following approxima-
tion DFn

I v
s = 1

εn (FI(U
n + εnvs)− Fn

I ). Thus only one application of the bilinear
form is required in each iteration step s = 1, . . . , S of the linear solver. The step size

εn is computed following the suggestions found in [31]: ε = εdbl
1+|Un|
|v|2 .

4.3. Choice of parameters in the CDG and CDG2 methods. In contrast
to the IP method, CDG is quite robust with respect to the choice of the penalty
parameter η. As was already pointed out in [36], the original CDG method (taking
χ = 1) is very stable even with η = 0 at least on 2D triangular grids. In this case,
we have not been able to construct examples where the system matrix has negative
eigenvalues, at least in the case of the Laplace operator. Only when used to discretize
the operator −∇·

(
A(x)∇u(x)

)
, we found problems with stability in some cases, which

could be solved by a slight increase of either η or χ. A second case, where we observed
negative eigenvalues even for the Laplace operator when taking the CDG method in
its original formulation, was on some quadrilateral grids.

The three-dimensional (3D) setting was not tested in [36] and here we did en-
counter problems even for the Laplace equation when using the CDG method with
χ = 1. For Test Case 1 of the 3D Benchmark on Discretization Schemes for Anisotropic
Diffusion Problems on General Grids (cf. [21]) using mesh tet.0.msh, we discovered
that with χ = 1 the minimal eigenvalue of the stiffness matrix was −12.167 so that
the bilinear form B is not coercive in this case. This example demonstrates the ne-
cessity of using a constant χ > 1. In numerical experiments we discovered that χ can
be chosen smaller than the bounds given in Theorem 2. However, these values differ
from method to method, from problem to problem, and from grid to grid. For those
reasons we choose for the CDG, CDG2, and BR2 methods χ = χ0 in all numerical
experiments presented in section 5.

For our comparison with the much simpler IP method, we choose the parameter
η on each e ∈ Γ as suggested in [1]:

(4.7) ηe =
1

2
max
K∈Th

e∈∂K

k(k + 1)λA
max

∑
e′∈∂K

Λe′ |e′|2
|e|2 ∀e ∈ Γ.

Here k is the polynomial order of the basis functions and λA
max denotes the largest

eigenvalue of the diffusion matrix A. Λe = 1/2 if e ∈ Γi, Λe = 1 if e is part of the
Dirichlet boundary, and Λe = 0 for Neumann boundaries. In [1] it is shown that
choosing ηe

he
in the stability term with he defined in section 2.1 results in coercivity

for the IP method on triangular grids in two space dimensions. Alternative choices of
the parameter ηe are, for example, given in [19, 20].

5. Numerical results. In order to obtain some insight into the qualitative char-
acteristics of the CDG2 method, we will compare CDG2 with the other methods
mentioned in Table 1. In particular we will consider numerical examples for scalar
equations—starting with Poisson’s equation to measure the condition of the system
matrices and continuing with the heat equation to compare runtime efficiency of the
schemes. Finally we conclude this section with results for the nonlinear compressible
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Navier–Stokes system. Further models for which we have employed these methods
include flow problems with detailed chemical reaction and free surface shallow water
flow.

We focus on a comparison of the efficiency of the methods, i.e., we compare their
error to runtime ratio. In all numerical examples we choose the parameters η and χ
according to the theoretical bound given by Theorem 2. For the CDG, CDG2, and
BR2 methods this means that η = 0 and stability is achieved by choosing χ equal to
the bound χ0 given by Theorem 2. For the IP method the penalization coefficient η
is chosen according to (4.7).

(a) mesh1 (b) structured mesh (c) unstructured mesh

Fig. 1. Two structured and one unstructured macrotriangulation.

5.1. Elliptic problem. In the first example we consider a linear elliptic problem
of the form

−∇ · (A∇u) = 0 in Ω = [0, 1]2,

u = g on ∂Ω, A =

(
1 0
0 ε

)
.

(5.1)

If the boundary conditions are defined by g(x, y) = sin(2πx)e−2π
√

1/εy, then u ≡ g
is a solution to this problem. For the following numerical experiment we choose
ε = 103. This problem corresponds to Test 2 of the Benchmark on Anisotropic
Diffusion Problems presented at the FVCA 5 [28]. Note that for the CDG scheme
results for all test cases of the benchmark can be found in [14]. For the current 3D
Benchmark on Anisotropic Diffusion Problems results for the CDG2 method can be
found in [30].

The calculations are performed on mesh1 of the benchmark, presented in Fig-
ure 1(a). For the EOC calculation this mesh is refined by quartering all elements in
each step. The tolerance for the linear solver has been chosen sufficiently small to
obtain optimal convergence rates. The parameters for the DG methods are (according
to Theorem 2) BR2 χ = 3, CDG χ = 2, and CDG2 χ = 1.5. For the IP method the
stability coefficient has been chosen as described in (4.7). For the CDG method we
used the upwind switch and for the CDG2 method the area switch.

All methods considered show the expected convergence rate of k+1, k being the
polynomial order of the basis functions used to build Vh. Differences in terms of L2-
accuracy between BR2, CDG, and CDG2 on a fixed grid are usually lower than 5%,
but for the IP method we get up to 25% higher L2-errors. In Figure 2 we compare
L2-error and computational time required for solving the linear system. We see that
BR2 and CDG2 are the most efficient methods. This still holds when an ILU(0)
preconditioner is applied. A comparison of the CPU time for the unconditioned linear
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Fig. 2. CPU time to L2-error comparison for the elliptic problem (5.1). Left, the CPU time for
the CG solver. Right, CPU time for the CG solver and ILU(0) preconditioning is plotted. Solver
and preconditioner from PETSc [3] have been used.

Fig. 3. Condition number (left), calculated with the Krylov–Shur method implemented in SLEPc
[29], and iterations of the CG solver (right) for the Poisson equation on a triangular grid for
k = 1, 2, 3.

solver makes sense in our setting since we want to apply the methods in a matrix free
solver where the application of preconditioning is very difficult.

In Figure 3 we present the condition number which is λmax/λmin where λmax

is the largest eigenvalue of the bilinear form B and λmin the smallest eigenvalue.
The eigenvalues have been calculated using the Krylov–Shur method implemented in
the software package SLEPc [29]. As we can see, CDG2 and BR2 have the smallest
condition number followed by CDG, while IP has the largest condition number. In
this example a smaller condition number coincides with fewer iterations of the linear
solver needed to achieve a certain reduction of the error, plotted in the right part of
Figure 3. We can see that for this example the CDG2 and the BR2 methods seem
to be the best choice since they are the most accurate and efficient. In a matrix free
implementation, CDG2 could be expected to have a slight advantage over BR2 since
the evaluation of the bilinear form is more expensive for the BR2 method, where the
lifting operator re has to be evaluated twice as much as for the CDG2 method. The
approximation quality and the efficiency of the IP method are inferior to those of
BR2, CDG, and CDG2 in our example. Additionally, although for the IP method
no lifting operator has to be evaluated, the calculation of the parameter ηe in (4.7)
depends on the largest eigenvalue of the diffusion matrix A. These computations of
eigenvalues can become very difficult for nonconstant A or for nonlinear systems of
equations, e.g., the Navier–Stokes equations. On the other hand, just taking a global
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upper bound for the eigenvalue leads to an over excessive penalization, increasing the
condition number of the system matrix and thus the efficiency of the scheme.

5.2. Linear parabolic problem. In the second example we consider a 2D linear
advection-diffusion equation of the form

∂tu+∇ · (uv)− εΔu = 0 on [0, 1]2 × [0, tend],

u(·, 0) = u0 on [0, 1]2,
(5.2)

for which we can construct an exact analytical solution which we use to prescribe the
Dirichlet boundary data. We take a constant velocity v = (0.1, 0.2) and ε = 0.1. The

initial data is given by u0(x, y) =
∑N

n=1 u
n
0 (x, y) with un

0 (x, y) = (αx,n cos(γx,nπx) +
βx,n sin(γx,nπx))(αy,n cos(γy,nπy)+ βy,n sin(γy,nπy)) with N = 2 and αx = (0.6, 0.9),
αy = (1.2, 0.3), βx = (0.8, 0.2), βy = (0.4, 0.1), and γx = (2, 0.7), γy = (1, 0.5). With
this choice we have

u(t, x, y) =
N∑

n=1

e−πεt(γx,n+γy,n)un
0 (x, y) .

In Figure 4 we compare the efficiency of the different schemes by studying runtimes
and discretization errors at tend = 0.1 in the L2 norm. For this problem we show only
results for k = 2 but use two different grids. The first grid is a regular criss-cross
grid (see Figure 1(b)) obtained refining a macrogrid consisting of a Cartesian grid
where each cube element is split into two triangles. Thus each element of the grid has
the same volume so that CDG2 and BR2 are identical in this case (see Corollary 6).
This can be seen in the results since on a fixed refinement level, both CDG2 and
BR2 lead to the same error. In this case the CDG2 method is more than 10% more
efficient, due to the lower cost in evaluating the bilinear form B. IP is the least
efficient scheme, followed by CDG. The second grid is a highly unstructured grid (see
Figure 1(c)). Due to the larger value of ν(β), the CDG2 method with the upwind
switch is considerably less efficient than BR2 and in this case even less efficient than
CDG. Using the area switch leads to ν(β) ≤ 1 and the method is again the most
efficient one, outperforming BR2 again by more than 10%.
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Fig. 4. Results for the advection-diffusion problem. The L2-error on a triangular grid for k = 2
is plotted with respect to the runtime. On the left, a criss-cross grid is used, leading to theoretical
parameters of χ = 2 (CDG), χ = 3 (BR2), and χ = 1.5 (CDG2). On the right, results on the
unstructured grid are shown; the theoretical parameters for this setting are the same for all methods
except for the CDG2 method with upwind switch where we have χ = 8.4375. For the IP method the
stability coefficient has been chosen as described in (4.7).
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5.3. Nonlinear parabolic problem. As a third example we consider the time-
dependent compressible nonlinear Navier–Stokes equations

∂tu+∇ · (F (u)−A(u)∇u) = s(u) in Ω× [0, tend],(5.3)

where u = (ρ, ρv, ρe), ρ is density, ρv momentum vector, and ρe total energy. In this
section we will restrict ourselves to two dimensions for the sake of simpler notation.
The convective and diffusive fluxes are given as

F (u) =

⎡⎢⎢⎣
ρu ρw

ρu2 + p ρuw
ρuw ρw2 + p

u(ρe+ p) w(ρe + p)

⎤⎥⎥⎦ , A(u)∇u =

⎡⎢⎢⎣
0 0
τ11 τ12
τ21 τ22

Ediff
1 + κ∂xT Ediff

2 + κ∂zT

⎤⎥⎥⎦
with Ediff

1 = uτ11 + wτ21 and Ediff
2 = uτ12 + wτ22. The viscous stress tensor τ for

Newtonian fluids is defined as

(5.4) τ =

[
(2μ+ λ)∂xu+ λ∂zw μ(∂xw + ∂zu)

μ(∂xw + ∂zu) λ∂xu+ (2μ+ λ)∂zw

]
;

κ is thermal conductivity coefficient. The term κ∇T represents the heat flux according
to the Fourier’s law. In the convective and diffusive fluxes we have other unknowns
p and T , which are related to u by

(5.5) p = (γ − 1)ρ

(
e− 1

2
v2

)
, T = p/(ρRd) ,

where Rd = cp−cv is the specific gas constant of the dry air and γ = cp/cv is the ratio
of specific heat capacity at constant pressure cp and at constant volume cv. Finally,
we close the system of equations with λ = − 2

3μ and κ = cpμPr
−1, where Pr is the

Prandl number.
For this test case we choose parameters and exact solution similar to [24]:

ρ = e =
1

2
sin(π(x+ y)− t) + 2 and v = (1, 1),

with μ = 0.1, Pr = 0.72, cp = 1004, and cv = 717. The source term s in (5.3) is chosen
so that we have an analytical solution. The computational domain is Ω = [0, 2]2.

In Figure 5 we compare CDG2 with area switch with CDG and BR2 at the end-
time tend = 0.1. We use the same time integration scheme for all methods of the same
order. These time integrators have been described in section 4.2. On the left picture
of Figure 5 we observe that the CDG2 method of order 2, 3, and 4 is at least 10%
faster in terms of the CPU time than BR2 of the corresponding order, and more than
35% than CDG, whereas the difference in the L2-error is less than 4% for all methods.
We also observe that the GMRES solver, in case of the CDG method, needs 54% more
iterations for the whole simulation than in the case of CDG2 and BR2, which require
the same number of iterations.

6. Conclusions. We have presented a new method for spatial discretization of
the diffusion fluxes based on the discontinuous Galerkin (DG) approach. The new
method is derived from the compact discontinuous Galerkin (CDG) method in such
a way that inherits all positive characteristics of the CDG method, most notably its
compact stencil. For CDG2 and CDG we give new necessary conditions for coercivity
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Fig. 5. Results for Navier–Stokes equations on an unstructured triangular grid. The stabiliza-
tion parameters are η = 0 and χ according to Theorem 2.
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computation time

CDG2 (A)
BR2 (A)

CDG2 (B)
BR2 (B)

A
Scheme CPU time L2-error

CDG2 305 3.91e-07
BR2 329 3.92e-07

B
Scheme CPU time L2-error

CDG2 1790 5.47e-07
BR2 2469 5.46e-07

Fig. 6. Comparison on affine (A) and nonaffine (B) quadrilateral grids. Problem is
from section 5.2 on the quadrilateral domain with corners (0, 0), (1, 0), (1, 1), (0, 1) (A) and
(0.4, 0), (1, 0), (1, 1.4), (0.1) (B). The graph (left) contains levels 4 and 5 of the simulation cycle
and the table (right) contains the numbers of the level 5 run.

for linear problems. Furthermore, we show that these conditions can be successfully
used for nonlinear Navier–Stokes equations. Numerical examples for Poisson, linear
heat, and nonlinear Navier–Stokes equations show that CDG2 is more efficient than
CDG in terms of L2-error versus CPU time. On very regular grids the CDG2 method
is identical to the BR2 method whereas the spatial operator of the CDG2 is slightly
cheaper to evaluate.

Our results indicate that even on triangular grids using orthonormal basis func-
tions the CDG2 method is more efficient than BR2, even though in this case the
lifting operator is cheap to evaluate. In Figure 6 we show results on two quadrilateral
grids, the second one requiring nonaffine element transformations. We use a natural
extension of the bounds in Theorem 2 to define χ. Note that in this situation the
mass matrix is no longer diagonal and the lower complexity of the CDG2 method in
this case clearly leads to a more efficient method. Due to the still missing theoreti-
cal justification of bounds for the parameter values this situation still requires more
thorough testing.
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tinuous Galerkin method for nonlinear convection-diffusion problems, Numer. Math., 117
(2011), p. 251–288.
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aux, eds., TU Delft, Delft, The Netherlands, 2006.

[34] H. Liu and J. Yan, The Direct Discontinuous Galerkin (DDG) method for diffusion with
interface corrections, Commun. Comput. Phys., 8 (2010), pp. 541–564.

[35] L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyper-
bolic systems with relaxation, J. Sci. Comput., 25 (2005), pp. 129–155.

[36] J. Peraire and P.-O. Persson, The compact discontinuous Galerkin (CDG) method for el-
liptic problems, SIAM J. Sci. Comput., 30 (2008), pp. 1806–1824.

[37] W. Reed and T. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Tech-
nical Report LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, NM, 1973.

[38] V. Sobot́ıková and M. Feistauer, Effect of numerical integration in the DGFEM for non-
linear convection-diffusion problems, Numer. Methods Partial Differential Equations, 23
(2007), pp. 1368–1395.

[39] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduc-
tion, 2nd ed., Springer-Verlag, Berlin, 1999.

[40] J. J. Yoh and X. Zhong, New hybrid Runge-Kutta methods for unsteady reactive flow simu-
lation, AIAA J., 42 (2004), pp. 1593–1600.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


