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Global Search Algorithms in surface structure determination 

using photoelectron diffraction 

 
D.A. Duncan, J.I.J. Choi, and D.P. Woodruff 

Physics Department, University of Warwick, Coventry, CV4 7AL, UK 

 

Abstract 

Three different algorithms to effect global searches of the variable-parameter 

hyperspace are compared for application to the determination of surface structure 

using the technique of scanned-energy mode photoelectron diffraction (PhD). 

Specifically, a new method not previously used in any surface science methods, 

the swarm-intelligence-based particle swarm optimisation (PSO) method, is 

presented and its results compared with implementations of fast simulated 

annealing (FSA) and a genetic algorithm (GA). These three techniques have been 

applied to experimental data from three adsorption structures that had previously 

been solved by standard trial-and-error methods, namely H2O on TiO2(110), SO2 

on Ni(111) and CN on Cu(111). The performance of the three algorithms is 

compared to the results of a purely random sampling of the structural parameter 

hyperspace. For all three adsorbate systems, the PSO out-performs the other 

techniques as a fitting routine, although for two of the three systems studied the 

advantage relative to the GA and random sampling approaches is modest. The 

implementation of FSA failed to achieve acceptable fits in these tests. 

 

Keywords: Particle Swarm Optimisation, Genetic Algorithm, Fast Simulated 

Annealing, Surface Structure, Photoelectron Diffraction 
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1. Introduction 

Scanned-energy mode photoelectron diffraction (PhD) provides a means of 

determining the structure of adsorbates on well-characterised single-crystal 

surfaces in a fully quantitative fashion [1

 

]. The method exploits the coherent 

interference of the directly-emitted component of a photoelectron wavefield, 

emitted from a core level of an atom in an adsorbate species, with other 

components of the same wavefield that are elastically scattered from the 

surrounding (mainly substrate) atoms. By varying the incident photon energy, and 

hence the photoelectron kinetic energy and its associated wavelength, the 

scattering paths switch in and out of phase with the directly emitted electron 

wavefield, causing modulations in the detected intensity in any specific direction. 

Because of the strong multiple scattering resulting from the large elastic scattering 

cross-section of low-energy electrons from atoms, and the associated phase shifts 

that are dependent on atomic species, energy, and scattering angle, direct inversion 

of the data to obtain accurate structural information is not possible. Instead, these 

PhD modulation spectra, measured in multiple directions, must be compared with 

the results of multiple scattering simulations for a range of structural models, 

adjusting the model until good agreement is achieved between experimental and 

simulated spectra. This ‘trial-and-error’ approach is a general feature of almost all 

surface structural methods, and the detailed approach for PhD is very similar to 

that of quantitative LEED (low energy electron diffraction), a method based on the 

same low-energy electron scattering processes. 

A key feature of the ‘trial-and-error’ approach to structure determination by any 

method is the use of an objective measure of the level of agreement between 

theory and experiment. In PhD a reliability- (or R-) factor, based on a normalised 

value of the differences between the squares of the measured and simulated 

modulation amplitudes [1], is defined such that a value of 0.0 corresponds to 

perfect agreement, a value of 1.0 corresponds to no correlation between theory and 

experiment, and a value of 2.0 to anti-correlation [2]. The process of structure 

determination can therefore be considered as an R-factor minimisation problem. 

We have previously implemented automated structure optimisation routines based 



 3 

on gradients in the R-factor parameter hyperspace, and such methods prove very 

effective in refining models that already contain the main features of the correct 

structure. Identifying the most promising regions of the multidimensional 

parameter hyperspace, however, is a problem that may be addressed by some form 

of global search algorithm. 

 

So far the only attempt to apply global search algorithms to PhD appears to be that 

of Viana et al. [3] using a genetic algorithm, with applications to structure 

determinations for Pd on Au(111) [4], for the termination of the SrTiO3(100) 

surface [5], and for chromium oxide on Pd(111) [6].Rather more exploration of 

such methods has been undertaken in LEED, including applications of genetic 

algorithms [7] and fast simulated annealing [8, 9 7], amongst other techniques [ , 

10, 11

 

]. 

As part of our ongoing programme of application of the PhD method we have 

recently implemented a rather different approach using particle swarm 

optimisation (PSO) [12,13], a more recently-developed heuristic algorithm that 

has  rarely been exploited in the physical sciences. We have used this method to 

aid in the determination of the structure of three adsorption systems that have 

already been published, namely C3H3 on Pd(111) [14], uracil on Cu(110) [15], and 

cytosine on Cu(110) [16

3

]. However, none of these publications describe the 

associated methodology. Here we present such a description, together with a 

comparison, with some alternative methods, of the results of its application to 

three data sets from previously-published experiments. Specifically, we compare 

the PSO results with those obtained by applying implementations of  two more-

established global search algorithms, namely a genetic algorithm [ ] (GA) and fast 

simulated annealing (FSA) [8]. The performance of these three algorithms is also 

compared with that of a purely random sampling of the parameter hyperspace. We 

should stress that our primary purpose here is to describe the details of the new 

PSO method and provide illustrations of its efficacy in surface structure 

determination by PhD. The comparison with the results of other more established 

methods provides some kind of benchmark by with its effectiveness can be judged, 
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but it is important to recognise that these quantitative comparisons are specific to 

the implementations of the different algorithms used here.  

 

The three heuristic algorithms considered here share a common general strategy in 

that each proposes a structure* whose fitness is then calculated, before new 

structures are generated stochastically. The techniques vary in how the new 

structures are generated and in the criterion used for accepting them. In the tests 

described here experimental PhD spectra are compared with the results of 

multiple-scattering calculations, performed for each proposed structure, using 

computer codes originally developed by Fritzsche [17,18,19,20

1

]. These codes 

have recently been parallelised to exploit the increased availability of high 

performance computing. Our standard PhD R-factor [ ] was used to determine the 

fitness of each structure. 

 

Note that while global search methods are designed to provide a means to find 

regions of parameter space corresponding to the lowest R-factor value (the best fit 

between theory and experiment), this purely mathematical procedure must be 

tempered by physical information. For example, it is perfectly possible for the best 

fit to correspond to physically unreasonable values of the associated parameters, 

such as interatomic distances that are too short or (if between bonded atoms) too 

long; previous examples of this effect in photoelectron diffraction have already 

been discussed (e.g. [14,21

 

]).  In applying the global search algorithms, therefore, 

it is important to impose physically reasonable constraints on the trialled 

structures. 

2. Stochastic Algorithms 

 

In the implementations of all three algorithms (as well as the random sampling) 

that were used in this study, there are several parameters that were kept constant. 

Specifically each algorithm was computed for 40 "individuals" (each with specific 

                                                 
* more generally, in the vocabulary of global search algorithms, this would be described as ‘a 
coordinate in hyperspace’, but here we explicitly refer to this as a ‘structure’ to avoid confusion 
with the spatial coordinates associated with the different structural parameters. 
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location in the variable hyperspace (X(i)) defining a particular structural model), 

and each of these individuals performed 20 iterations per calculation, while ten 

such calculations were performed for each algorithm, so 8000 structures were 

investigated using each algorithm. In the case of the fast simulated annealing and 

the random sampling, in which no information is shared between individuals, the 

population is arbitrary, but this constant number was used for each algorithm in 

order to make the calculations more comparable. However, the population size 

will have a significant effect on both the genetic algorithm and PSO calculations 

presented in this study. Generally, for both techniques, a larger population will 

provide a better sampling of the variable hyperspace at the cost of poorer 

dissemination of good structures through the population and longer computational 

times. A population of 40 individuals was chosen in order to provide a reasonably 

large population. In all cases the initial structures for the search were chosen 

randomly from the variable hyperspace. The random number generator used was 

the intrinsic FORTRAN command, with the seed chosen by summation of the rank 

number of each individual (from 0 to 39) and the hour, minute, and second that the 

calculation was started.  

 

2.1. Fast Simulated Annealing(FSA) 

Simulated annealing is inspired by the experimental technique of heating a crystal 

with the objective of improving crystallographic order. Increased thermal energy 

increases the probability that displaced atoms may overcome the barrier that 

allows them to escape their local energetic minima, and to adopt the structure 

corresponding to their global energetic minima. In traditional simulated annealing 

each variable is randomly displaced at each iteration, the size of the displacement 

being governed by a normal distribution. The width of this distribution is set by 

the "temperature" of the system. In the case of fast simulated annealing, a 

Lorentzian distribution replaces the normal distribution, 

( )FSAPTikiX .tan.).()( π=∆ ,       (1) 

where ΔX(i) is the displacement in variable i, T is the "temperature" of the system, 

k(i) is the weighting of variable i, and PFSA is a random value between -0.5 and 0.5. 

The weighting of the variable is based on an estimation of the sensitivity of the 
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experimental technique (PhD in our case) to the variable. Replacing the normal 

distribution by a Lorentzian distribution allows longer jumps in the variable 

hyperspace, which will increase the probability of tunnelling into neighbouring 

minima of the R-factor in the parameter hyperspace (see Fig. 1).  

 

To determine whether or not a new structure is accepted, the Metropolis criterion 

is used [8]. If the fitness is better (i.e. if the R-factor is lower), then the new 

structure is always accepted. If the fitness is worse (R-factor is higher) then the 

new structure is randomly accepted or rejected according to the "temperature" of 

the system, based on a Boltzmann factor, 








 ∆
−=

T
R

Z facexp ,        (2) 

where ΔRfac is the change in  R-factor. The value of Z is compared with a random 

number generated between 0 and 1. If this number is less than Z, this "worse" fit is 

accepted, and the individual moves "up" in the R-factor well. 

 

After each iteration the temperature of the system is decreased such that 

N
T

T 0= ,         (3) 

where N is the iteration number and T0 is the initial temperature. Therefore, as the 

calculation proceeds, fewer structures with higher R-factors will be accepted. Note 

that it is application of this equation to the temperature decrease that is associated 

with the “fast” adjective in FSA; in “normal” simulated annealing temperature is 

decreased in a more linear manner. 

 

2.2. Genetic Algorithm(GA) 

Genetic algorithms are inspired by the evolutionary model of the survival of the 

fittest, in which the fittest members of the current generation are more likely to 

produce descendents in the next generation. Specifically, pairs of individuals are 

randomly chosen (often, as in this study, weighted by their fitness) to produce the 

individuals for the next iteration. Each chosen pair produces two "children" by 

randomly crossing over their coordinates. This crossover can be done in various 
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ways [22

( ) 2..)( 1
inPerfiX σ−=∆

]; in the present study a uniform crossover was used, as illustrated in Fig. 

2. After crossover, the algorithm allows for the possibility that each individual of 

the new generation may be mutated; this reduces the probability that the code 

converges prematurely. In the present study, two types of mutation were possible. 

The first, which produces a mutation rate of 1% for each variable, has an 

associated Gaussian broadening. If the variable is selected for mutation, then it is 

changed by: 

,       (4) 

where Pn is a random number between 0 and 1, σ is the average separation each 

individual has on the first iteration, and erf--1 is the inverse error function, 

calculated from the Taylor series: 

( ) ∑
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In this study the first 100 terms of this expansion were used to obtain an 

acceptable value for the inverse error function. 

 

The second mutation, which has a mutation rate of 0.1% for each variable, 

changes the variable to a random position in the search field. After mutation, the 

final step of each iteration is to choose which individuals of the current generation 

will survive to mate in the next generation, a process generally referred to as 

elitism. In the present study, only the structure corresponding to the lowest overall 

R-factor was allowed to survive to successive generations (note that the individual 

that “discovered” this best fitting structure will test a different structure). 

 

2.3. Particle Swarm Optimisation (PSO) 

Particle swarm optimisation is inspired by the search patterns employed by 

swarming species, the individual members of the swarm sharing information to 

guide the collective towards the "best" area. Specifically, in PSO, each individual 

has memory. It remembers the best fitness that it has achieved (X(i)l), and the best 

fitness that it has been informed of (X(i)g). These two sets of information (the best 

locally found structure, and the best globally found structure) are then used to 

determine the location in the variable hyperspace that the individual will occupy in 
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the next iteration: 

gggllliXppiX idXPcidXPcVPcV )(..)(.... )()( ++= ,   (6) 

)()()( iXiXidX ll −= ,       (7) 

)()()( iXiXidX gg −= ,       (8) 

where VX(i) is how much variable i is going to change by in the next iteration (the 

velocity of the particle), X(i) is the current location on hyperspace (i.e. the current 

set of structural parameter values) of the individual, X(i)l is the location in 

hyperspace of the best structure the individual has found so far, and X(i)g is the 

location in hyperspace of the best structure that the individual has been informed 

of. The c prefactors are weighting factors which will be discussed below, while the 

P prefactors take random values between zero and one.  

 

The first term of equation 6 can be thought of as the momentum of the individual, 

and determines the tendency of the individual to continue searching in the region it 

currently occupies. If the weighting of this term is too high the population will 

simply diverge and randomly sample the variable hyperspace, but if it is too low 

the population may prematurely converge on a local minimum. Typically, values 

of cp<1 prevent the system from diverging, and a value of 0.7 was used in this 

study [12].  

 

The second term of equation 6 determines the tendency of the individual to return 

towards the best structure that it has found and is generally given equal weighting 

to the third term of equation 6, which defines the tendency of the individual to 

move towards the best structure it has been informed of. As the best location that 

has been found is not necessarily the global minimum, the balancing of these two 

“best” locations allows a more thorough search of the parameter space around 

multiple minima. There are two considerations defining appropriate choice of the 

values of cl and cg. One is that it is important to use a value greater than unity, so 

that there is no preference to explore only the "near side" of the best minima that 

have been found. However, it is also important that the system does not take steps 

over the variable hyperspace that are too large, otherwise the search will 
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effectively become completely random. In the present study, a value of 1.9 was 

used for both cl and cg, allowing a significant overshoot of the best minima that 

have been found to occur, but no steps were allowed that were greater than ¼ of 

the difference between the maximum and the minimum values allowed for that 

coordinate [12]. The calculation was also prevented from going beyond preset 

maximum and minimum values for each coordinate; if the application of equation 

6 took a coordinate outside these preset limits, the coordinate was instead set to 

relevant limiting value. 

 

The significant property of the PSO approach, referred to above, is how 

information passes between individuals after each iteration. Each individual is 

informed by K other particles of the best minima they have found. Which 

individuals act as informants is chosen randomly. An informant is not necessarily 

informed by this informee, so any given individual could act as an informant to 

less than, or more than, K individuals. A large value of K may cause the PSO to 

converge prematurely, but if the value of K is too small, the knowledge of the best 

areas for optimisation will not be spread effectively through the population. In this 

study a value of K=3 was used [12].  

  

 

2.4. Random Sampling 

The random sampling algorithm was implemented, not only to act as a baseline 

comparison for the other methods, but also to provide a relative measure of the 

difficulty of achieving good structural solutions for the model systems used in this 

study. It may be expected to have comparable success to a grid search of the same 

volume of variable hyperspace using the same number of sampling points.  

 

Specifically, at every iteration, each individual randomly chooses its location in 

the variable hyperspace by: 

[ ] )()()(.)( minminmax iXiXiXPiX rand +−= , 

where Prand is a random number between 0 and 1, while Xmax(i)  and Xmin(i) are the 

maximum and  minimum value allowed for the structural parameter i. Note that 
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this method was also used to chose the initial structures for all three of the 

algorithms described above. 

 

3 .  M o d e l  S y s t e m s  

 

Experimental data from three model adsorption systems were used to test the 

efficacy of the fitting algorithms. The three systems chosen, as outlined below, 

provide examples of problems having different degrees of complexity and 

difficulty. In part this arises from the intrinsic differences in their complexity, in 

part from a qualitative assessment of the PhD modulation spectra. In PhD, the 

highest-symmetry local adsorption sites of the emitter atoms with respect to the 

underlying substrate generally lead to the strongest PhD modulations, notably 

along emitter-nearest-neighbour 180° backscattering directions [1]. For low-

symmetry emitter sites, domain averaging of inequivalent nearest-neighbour 

backscattering directions leads to weaker modulations. Weak modulations are 

therefore generally indicative of low-symmetry sites, making the structural 

problem intrinsically more difficult; this is exacerbated by the reduced reliability 

of both experimental data and theoretical simulations as the modulations become 

weaker. 

 

 

From the point of view of the PhD technique, the data from molecular H2O 

adsorbed on TiO2(110) [23

[110]

]correspond to the simplest situation. The H atoms are 

such weak electron scatterers that they are effectively invisible to the technique, so 

the structural problem is only to identify the O atom adsorption site using O 1s 

PhD data. Moreover, the experimental data show relatively strong (±40%) 

modulations in one (normal) emission direction, indicating a high-symmetry (atop) 

adsorption site.  The original published analysis of the data did find the oxygen 

atom of the water (Ow) to be directly atop the five-fold coordinated surface Ti 

atoms (Fig 3), with a Ti-Ow bond length of 2.21±0.02Å, but also found four 

different substrate surface relaxations to be significant, involving displacements 

perpendicular to the surface (∆z), and parallel to the surface in the  direction 
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(∆x). Specifically, the z coordinate of the five-fold coordinated Ti atom, the x and z 

coordinates of the first layer planar O atoms, and the z coordinate of the bridging 

O atom below the five-fold coordinated Ti atom, were all found to differ from 

those of an ideal bulk-terminated solid.  In the present study these five structural 

parameters, namely the Ti-Ow bondlength and the four significant coordinate 

changes noted above, were therefore allowed to vary. 

 

The second system tested, adsorption of SO2 on Ni(111), originally solved by  

Knight et al. [21], is more complex. In this case PhD data from both S 2p and O 1s 

emission were recorded, showing modulation amplitudes of ±20% or less. 

However, the molecular adsorption geometry is believed to retain some of the 

symmetry of the molecule and the underlying surface, specifically with the 

molecule and surface sharing a mirror plane. In the original analysis of these data 

Knight et al. explored two such models, one in which the mirror plane of the 

molecule coincides with a true <211> mirror plane of the complete (111) 

substrate, the other in which the molecular mirror plane lies in a <110> azimuth 

that corresponds to a mirror plane of the outermost metal layer alone. The former 

geometry was found to be preferred, with the molecule approximately centred over 

hollow sites, with equal occupation of the hcp and fcc hollow sites, directly above 

second and third layer Ni atoms, respectively (Fig 3). In the present test of the 

global search algorithms only structures consistent with this correspondence of 

molecule and substrate mirror plane, and co-occupation of the two hollow sites, 

were investigated. In these searches a total of 10 parameters were allowed to vary, 

specifically the inner potential, the vibrational amplitude of the adsorbate, the z 

coordinate of the molecule above the surface, the displacement of the sulphur 

group along the <211> azimuth, the S-O bondlength, the O-S-O bond angle, the 

difference in the z coordinates of the S and O atoms, the difference in z 

coordinates of the molecule above the fcc and hcp hollows. 

 

Data from CN on Cu(111), presented in a study by Polcik et al. [24], provide a 

particularly challenging test of any structural search procedure. Both C 1s and N 

1s PhD modulation spectra were measured, but these all show very weak 
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modulations (≤±10%), consistent with the CN adsorption geometry completely 

lacking any point-group symmetry.  The original analysis of Polcik et al. led to the 

conclusion that the CN species adsorbs in an asymmetric off-atop geometry (Fig 

3). Additional experimental data (notably near-edge X-ray absorption fine 

structure) shows the adsorbed molecule to be intact with the C-N axis 

approximately parallel to the surface, while the fact that the PhD spectra from the 

constituent C and N atoms show similar periodicity and modulation amplitudes 

indicate that they are likely to be in similar sites. We have therefore constrained 

the trialled structures to those in which the molecular axis is approximately 

parallel to the surface, with the distance between the C and N atoms being 

comparable to that of the gas phase cyanide species. Eleven parameters were 

allowed to vary; these were the three Cartesian coordinates of the centre of the 

molecule, the C-N bondlength, the azimuthal and tilt angles of the molecular axis 

relative to the surface, the relaxation of the first layer of Cu atoms, the inner 

potential, and the (isotropic) vibrational amplitudes of the C, N and the Cu atom 

that is nearest the C and N atoms. 

 

4. Results and Discussion 

 

A comparison of the progress of the three fitting algorithms, and the random 

sampling, in finding structures of lower R-factor in successive iterations, is shown 

in Fig. 4 for each of the three models systems. These results are the average of 10 

separate calculations, with the error bars indicating the standard error of the mean 

for each iteration. The implementation of FSA tested here clearly performs very 

poorly, being substantially inferior to random sampling for all three test systems. 

A possible reason is that when the temperature is high the FSA algorithm accepts 

almost any step, making it (in essence) a fairly random local search, but when the 

temperature is low the step sizes become (too) small. As a result it seems that the 

problem is not that the calculation becomes trapped in local R-factor minima, but 

rather that it fails to get close to the bottom of any minimum. Tests with a range of 

starting temperatures failed to find any value that led to acceptable convergence. 

By contrast, an application of a FSA algorithm to determine the surface structure 
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of Ag(111), Ag(110) and CdTe(110) using quantitative LEED data was found to 

be effective [8, 9]. However, one result of this earlier study was that the 

convergence was initially slow when the number of structural parameters to be 

fitted was increased; as such, it is possible that our tests used too small a number 

of iterations to see the true benefit of this approach. 

 

Of the other two fitting algorithms, the PSO achieves the lowest R-factors for all 

the model systems, although its advantage over GA is marginal for TiO2(110)/H2O 

and modest for the Cu(111)/CN system. PSO outperforms the random sampling 

for all three model systems, while GA marginally fails to achieve this for the 

Cu(111)/CN system. The Cu(111)/CN system was identified as the most complex 

problem to solve, with the largest number of fitting parameters and an expectation 

that even the best R-factor minimum will be shallow in the variable hyperspace; as 

such, the limitation of 20 iterations (800 trialled models) used here is unlikely to 

be sufficient to find the bottom of the global minimum. The fact that both the PSO 

and GA implementations show a slight downwards gradient at the end of the test 

supports this view. Indeed, in our previous application of the PSO algorithm to aid 

the solution of PhD structure determination [14,15,16] we have always used more 

than 20 iterations to achieve more reliable convergence, but this smaller number of 

iterations appears sufficient to show the general trends of the different methods. 

 

While the results of Fig. 4 provide information as to which algorithm finds the 

lowest R-factor in the smallest amount of computational time, a further important 

question is whether the structures corresponding to the lowest R-factor values are 

the correct structure. Have the searches identified the region of variable parameter 

hyperspace corresponding to the true global minimum, and have they located the 

bottom of this global minimum? The first of these two questions is the most 

important one. A steepest gradient search will locate the true R-factor far more 

quickly that any of these algorithms if it is started within the global minimum, and 

in our previous applications of the PSO algorithm [14,15,16] we have used such a 

gradient search to refine structures identified using PSO. However, if a gradient 

search is initiated with a structure corresponding to a local minimum, it will not 
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escape this minimum. The important question is therefore whether the global 

search algorithms have located the correct region of parameter space 

corresponding to the global minimum for each system, or have only converged on 

local minima.  

 

In addition to the R-factor values obtained during the progress of the different 

search algorithms, Fig. 4 also shows, as a horizontal (pink) line, the value of the R-

factors obtained in the original structure determination of each of the model 

systems. It is notable that for all three systems this value is lower than that 

achieved in any of the search methods, providing further support for the idea that 

the original analyses (that included structural optimisations using a gradient search 

algorithm) did identify the true structures. We may therefore ask how similar are 

the best structures found by the different global search algorithms (after 20 

iterations) to these ‘true’ structures. In performing structure determinations using 

the PhD technique, the ultimate precision of the method can be determined by 

calculating the variance of the (minimum) value of the R-factor found for the best-

fit structure, var(Rmin). This variance depends on the size of the data set used in the 

analysis and the value of the lowest R-factor [25

 

]. Any structure that leads to a 

value of the R-factor less than (Rmin+var(Rmin)) is regarded as falling within the 

limits of precision, and therefore an acceptable solution, and simple calculations 

allow one to define error estimates for each of the structural parameters.  

To determine how similar the best structures found by the global search algorithms 

are to the ‘true’ structures, we can therefore use the difference between the values 

of the best-found R-factor, and the R-factor for the ‘true’ structure. This is most 

appropriately defined relative to the variance in R, by the ratio ΔR/var(Rmin). 

Similarly, we can also compare the size of the deviations of the structural 

parameters from the ‘true’ structures with the estimated errors in these parameters, 

by the ratio ΔX/σX. This latter value provides a more direct indication of whether 

the global search algorithms have located the region of parameter space 

corresponding to the global minimum (which we infer, from the arguments above, 

to be at the parameter values of the originally-determined structures). These values 
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are listed in Table 1. Note that, even though the implementations of the PSO ands 

GA algorithms are fairly basic, they both appear to converge in the area of the 

‘true’ structure with a comparable level of accuracy. Both algorithms could 

probably be further optimised to solve these three specific problems more fully, 

but these two simple implementations provide acceptable results.  

 

As shown in Figure 4, and quantified in Table 1, for the Ni(111)/SO2 structure 

PSO locates a model within the variance (ΔR/var(Rmin)<1) of  the ‘correct’ 

structure, although the fact that  ΔX/σX>1 suggests that there may be some 

parameter coupling in the simulations, such that an increase in R due to a change 

in one parameter value may be compensated by a reduction due to a change in 

another. For this system GA also finds an R-factor value only slightly larger than 

the variance of the true structure, though the actual parameter values show 

significantly larger variations. Most of the other values of Table 1 reinforce the 

information provided by visual inspection of Fig. 4. For the Cu(111)/CN system 

PSO yields a model significantly closer to the ‘correct’ structure than GA, 

although only marginally better than the random sampling. For the TiO2/H2O 

system the three methods yield surprisingly similar results, although it is the 

random sampling that shows the lowest deviation from the ‘true’ structure in terms 

of the structural parameter values. 

 

4. Conclusions 

 

Three stochastic global search algorithms have been tested for application in 

energy-scanned photoelectron diffraction. In particular, we have described the 

implementation and results of a particle swarm optimisation algorithm, and 

compared its performance with that of a genetic algorithm, fast simulated 

annealing, and random sampling. In all cases the objective was to locate the 

approximate structure solution in an unbiased fashion. The use of only 20 

iterations appears to be sufficient to provide valuable information on the relative 

merits of at least three of these different approaches, but also almost certainly 

accounts for the fact that only one of the tests (PSO applied to the data from 
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Ni(111)/SO2) yielded a solution within the variance of the ‘true’ structure. In these 

tests no attempt was made to achieve final structural optimisation. When using the 

PSO in full structure determinations (e.g. [14,15,16]) a significantly larger number 

of iterations have been used. Moreover, once the global search has converged, a 

gradient search (specifically, in the structure determinations mentioned above, a 

Levenberg-Marquardt algorithm [26

 

]) is able to locate the bottom of that particular 

minimum far more quickly than any global search algorithm. The important 

requirement for the global search is thus only that it locates the R-factor well that 

contains the global minimum  

Both the PSO and GA methods have been found to be applicable to PhD surface 

structure determination, although the PSO proved better in some cases and worse 

in none. It is possible that the slightly inferior performance of the GA relative to 

PSO stems from the discrete nature of this approach. The GA is specifically 

designed for use in a discrete variable space, hopping between the different values 

that are present in the population, whereas PSO is designed for a continuous 

search space, crawling between the values that have already been calculated. The 

other significant advantage of PSO is its use of memory. The GA, apart from the 

elitism, does not actively utilise the shared knowledge of the population, whereas 

in PSO the best-found structure for each individual of the population is always 

remembered, as is the best-found structure that each member of the population has 

been informed of.  

 

One surprising result of our tests is that for two of the systems (TiO2(110)/H2O 

and Cu(111)/CN) the PSO and the GA achieved results that were only marginally 

better than, or even slightly worse than, the random sampling. The results of our 

tests of the FSA approach were particularly disappointing, with this method failing 

to make substantial progress in the structural search in any of the three systems 

tested. Possible reasons for this are discussed in the previous section. 

 

Of course, it is dangerous to draw very general conclusions about the relative 

merits of the different algorithmic approaches on the basis of single 
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implementations for just three model systems. All three techniques use preset 

parameters, the values of which can have a significant effect on their efficacy. 

Specifically, in the genetic algorithm, there are two parameters that define the rate 

of mutation, and in the PSO there are the three parameters (cp, cl and cg) that 

weight the influence of the three components of Eqn. 6.  Optimisation of these 

parameters was not pursued extensively in this study due to limited computational 

resources. A different set of inputted parameters could make the GA at least as 

effective as the PSO implementation; however, an important conclusion is that this 

new PSO approach is at least comparable in efficacy to the better known and more 

widely applied genetic algorithm. 

 

In summary, our main conclusion is that at least two of these algorithms (GA and 

PSO), even in these basic implementations, can be used with good effect to search 

the variable hyperspace in PhD, and thus contribute in a useful way to the 

structural solution. A more surprising result is that an automated random sampling 

may also be valuable. 
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Table 1: Average difference between the previously-determined ‘correct’ 

structure of each system, and the structures found using the two algorithms 

(PSO and GA) and random sampling expressed as normalised differences in 

the R-factor or the coordinates, as described more fully in the text.  

 

 TiO2(110)/ H2O Ni(111)/ SO2 Cu(111)/ CN 

ΔR/var(Rmin) ΔX/σX ΔR/var(Rmin) ΔX/σX ΔR/var(Rmin) ΔX/σX 

PSO 3.0±0.1 3.7±0.5 0.80±0.02 1.5±0.1 2.2±0.1 2.3±0.2 

GA 3.7±0.1 3.2±0.4 1.6±0.1 3.9±0.4 3.0±0.1 3.4±0.3 

Random 3.3±0.2 2.3±0.3 2.6±0.1 4.1±0.5 2.5±0.1 2.5±0.2 
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Figure Captions 

 
Figure 1: The blue line shows a hypothetical variation of the R-factor with one 

variable parameter in which there are multiple mimina. Superimposed is a 

comparison of Gaussian (black dashed) and Lorentzian (red solid) distribution 

sampling. In this example, in which the current model is centred on the local 

minimum A, the Lorentzian has a longer “tail” and will thus lead to an 

increased probability that subsequent iterations may allow the search 

algorithm to tunnel more easily through to the global minimum B.  
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Figure 2: Schematic representation of crossover in genetic algorithms. The two 

chosen “parents” (a and b) produce two children (c and d). Whether child c or 

child d gains each coordinate, 1 to I, from parent a or b is chosen randomly. 

Here the coordinates of a are represented by a chequered red box, and b by blue 

vertical lines. Each coordinate of the child has an equal chance of receiving the 

coordinate from either parent, and we end up with an intermixing of the two 

parents. 
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Figure 3: Schematic diagrams (in plan and perspective views) of the structures 

previously determined by PhD  of  TiO2(110)/H2O,  Ni(111)/SO2, and  

Cu(111)/CN. Substrate metal atoms are shown as the largest spheres, while the 

radii chosen to represent other atoms increase with increasing atomic number in 

individual structures from H to C, N, O and S. Note that in the TiO2(110)/H2O 

structure the O atom of the water is shown in a different colour (shading) from 

that of the bulk substrate O atoms. 
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Figure 4: Comparison of the dependence of the lowest R-factor found on the 

number of trialled structural models for the three fitting algorithms and a 

random sampling of the variable hyperspace, for each of the substrate/adsorbate 

data sets investigated. Each value represents the average of 10 different repeats 

of the calculations with different (random) starting structures. The R-factor 

achieved in the original structure determinations [21,23,24] is shown by the 

horizontal (pink) lines at the bottom of each panel, with their variances shown as 

upper error bars.
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