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SUMMARY 

The research reported in this thesis is concerned with 

the structural weight optimization of aircraft lifting 

surfaces when subjected to the satisfaction of flutter 

requirements. 

The main text is intended primarily as an expository 

account on the work and as such it aims at introducing and 

defining the subject of research and presenting the results. 

Accordingly, the mathematics have been simplified to the 

utmost in the main text and heavy theoretical treatments are 

revealed in the appendices. 

As the aim of this work is not directed at in-depth 

studies of the physical nature of flutter nor for a 

comprehensive treatment of structural optimization, the basic 

concepts of these two subjects are touched upon in the 

beginnings of chapters II and III respectively. We concluded 

these two chapters by clarifying the class of flutter, 

constraints and design variables for which the program we 

developed is designed. We endeavored to keep the problem to 

within certain practical boundaries without loosing too much 

of either its generality or its applicability to structures 

in realistic operational environments. 

This work is illustrated with two structural examples of 

small and moderate sizes because of the limited capacity of 

the College of Aeronautics DEC VAX 11/750 mini-computer. 
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Nevertheless, all the techniques are derived with the view to 

being applied to large problems and for this reason attention 

is focused on the efficiency of such methods. In actual fact, 

firm emphasis on algorithmic efficiency is a prime necessity 

because of the prominent complexity and numerical costs of 

flutter synthesis. Hence, a sizable portion of the text 

converge to one single objective: efficiency and convergence 

of algorithms. 

One aspect never applied to flutter synthesis but with 

probably potential fallouts on efficiency and accuracy of 

this type of problem is dual theory. The dual problem 

expressed herein is non-linear, as complicated as the primal 

problem and probably not easily adapted to a numerical 

maximization scheme. Duality may be, however, rewarding in 

that it can bound the structural mass with the evident 

feature of monitoring the convergence of the algorithm. As 

far as efficiency is concerned, it may permit certain 

approximations in the analysis to be made. When the latest 

stages of the computer runs are identified by dual bounding 

a more stringent analysis may be then activated to achieve 

accuracy. 
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CHAPTER I 

PROLEGOMENA 
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Major features of today's digital computers are their 

abilities to handle massive amounts of information and to 

perform a huge number of routine instructions extremely fast. 

Yet these powerful capabilities are nonetheless considered to 

be inadequate and ought to be boosted even further in order 

to solve urgent and nagging scientific or engineering 

problems. Even Cray supercomputers that are sheer 

number-crunching machines can frustrate'many engineers. 

In parallel to the hardware revolutions, an impressive 

number of methods of design analysis and synthesis have been 

developed almost at the same pace. Improvement of the 

efficiency of these methods is continuously pursued even 

though we may shortly see a computer generation whose 

prominent characteristic will be versatility in addition to 

, an exponential, growth in speed of execution and memory 

capacity. 

1 IMPACT OF COMPUTATIONAL METHODS IN AIRCRAFT DESIGN 

We may illustrate the 

an example the aerospace 

entire research, academic 

rely heavily upon computing. 

largest users of the one 

worldwide. 

merits of computers by taking as 

engineering community with its 

and industrial institutions which 

This specific area is one of the 

hundred or so Crays installed 

Every aircraft generation has tremendously increased the 
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time spent on wind tunnel testing because of the rising 

configuration complexity and the widening of performance 

envelopes. These factors together with other cost rises have 

resulted in a manifold cost increase of wind tunnel testing 

on any one single project. On the contrary, computer 

processing costs have declined by 20% every year in the past 

ten years, amounting to a decrease of computing costs by a 

factor of two over the last decade. Moreover, if wind tunnels 

are constrained by limits on Reynolds and Mach numbers and 

effect of wall- and support-interferences, computers are only 

restricted by size and speed. In the interest of brevity, we 

have summarized an article of "Aviation Week and Space 

Technology" (August 29,1983, pp. 50-72) in Fig. I. 1. 

complexity of equations 

viscous 
Reynolds 
averaged ,,,, 

scid 
inear 

0 

inviscid 
linearized 

A 
IBM 360/67 CDC 7600 Cray-1 

1965 1970 1975 
complexity 

of geometry 

wing-body quite complete 

oirfoil 

complete configuration 
configuration including 

propulsion any 
vortex effect 

Fig. I. 1 Widenining over the years of the 

complexity of the problems that can be computed 
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It can be seen that over the years the relative 

reduction in computational costs and the "inflation of 

computer muscles" have spurred the examination of either more 

complex physics or more complex geometries. Nowadays, 

computational codes are enthusiastically used by airframe 

manufacturers to economically study several configurations 

before the start of most wind tunnel test programs. An 

analogy to computational fluid dynamics in aerodynamic design 

is finite element methods in structural design: no ground or 

flight structural testing of large components are being 

performed without prior finite element analyses. 

Another asset of computers is that they can reveal 

details that testing can hardly or may not produce such as 

boundary layer behavior, separation of drag into its 

different components, localized stresses around a crack tip 

and many other applications. Such particular studies are 

leading to a better understanding of these different problems 

and consequently better designs can be achieved. 

2 LIMITATIONS OF COMPUTERS 

We do not wish to dwell too much on the benefits of 

computational simulation. However, neither are we 

deliberately trying to ignore the need for testing to backup 

or sometimes refine numerical results. The above short 

paragraphs are intended to merely show the strength of 

computers as illustrated by their growing use in areas where 

more traditional tools have prevailed. Our aim now is to 
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concern ourselves with placing the limitations of these 

electronic machines into perspective so that the necessity of 

efficiency and convergence of computational methods becomes 

apparent. For this purpose, we reproduced in Fig. 1.2 a graph 

from the aforementioned magazine. This figure shows the 

difference between engineering and research in terms of 

computing needs. 

MINIMUM REQUIREMENT FOR 
104 I COMPUTATIONAL AERODYNAMICS 

(3-0 REYNOLDS AVERAGED N-S EQUATIONS) 

103 
a o 

ILLIAC IV, CRAY I, CYBER 205 

W 102 
(CURRENT SUPERCOMPUTERS) 

W 
a 

Z 
10 

CDC 7600 

o 
W 

ENGINEERING ( RESEARCH > 1 APPLICATIONS APPLICATIONS 
IBM 

w I 360-67 
U. LL. W 10-1 

hr day week mo 

10-2 
10-1 1 10 102 103 104 10S 106 

COMPUTATION TIME. min 

Source: Aviation Week and Space Technology (August 29,1983, page 72) 

Fig. 1 .2 

Engineering problems require a much greater performance 

from computers than research work for two reasons. Firstly, 

better spatial resolutions are necessary for engineering 

purposes. In other words, realistic problems which are 

usually large and have complicated geometric contours should 

be modeled by bigger and finer aerodynamic and structural 
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grid meshings. Some programming codes which can tackle 

extremely complex phenomena are readily available. However, 

they are rarely applied to real size problems because of 

computer capacity restrictions. 

Secondly, a few design options are usually studied-at 

least on a trial-an-error basis so that the most adequate can 

be selected. Due to the complexity of today's engineering 

problems, the selection of the changes to be made from one 

option to the other will depend very much upon the intuition 

and artistry of the individual. A more rational way to seek 

the best design solution is to automate and consequently ease 

the choice of design changes by using optimization codes. 

However, in a number of situations that are characterized by 

either complexity or size, or both, the cost of an analysis 

is far from being moderate and hence modifications and 

reanalyses to search for an optimum will be prohibitely 

expensive. 

In view of the foregoing, we can infer that economic 

reasons and desires to solve exceedingly more challenging 

problems is stimulating not only the development of more 

powerful and cheaper to run computing machines but also the 

development of equally imperative efficient algorithms. 

Nevertheless, the point of emphasis is that the development 

of efficient hardware and software is most of all dictated by 

engineering needs to establish the best of all possible 

designs by combining analysis and optimization. 
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3 DESIGN PHILOSOPHIES FOR FLUTTER PREVENTION 

In the past, the prevention of flutter has relied 

heavily on "rules of thumb" methods. It has been a practice 

of conventional design procedures to focus firstly and mostly 

on the strength of the aircraft. To comply with aeroelastic 

mandates and regulations from aviation authorities, 

rudimentary flutter checks are then carried out using 

empirical formulaes. These checks were confined, most of the 

times, to binary flutter, beam idealization of structures and 

sometimes simply to a two-dimensional "representative 

airfoil" section. If the flutter speed of the structure is 

less than the one required, the necessary corrections are 

made by stiffening and "mass-balancing" the lifting and 

control surfaces resulting in heavy designs. Obviously, the 

accuracy of these simplified theoretical analysis applied to 

. such a complex airplane behavior is very doubtful. It is 

likely that experimental observations and checks, such as 

ground resonance and flight flutter tests would lead to 

further design modifications or limitations and/or 

performance changes. 

Another technique which permits a more complete flutter 

analysis is to build scaled down models and perform wind 

tunnel tests. These models are unfortunately several orders 

of magnitude more expensive to design and build than models 

for ordinary wind tunnel tests. The reason is that flutter 

models are reduced replicas that should reproduce as 

faithfully as possible not only the external geometry of the 
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aircraft but its dynamics as well with appropriate stiffness 

and inertia distributions. This is proving to be too 

constrictive for general applications. Hence, flutter models 

have been rarely used except for relatively complex 

structures and unconventional layouts. 

0 DESIGN RUDIMENTARY CORRECTIONS 
IN STRENGTH FLUTTER 

CHECKS 

WIND-TUNNELl 1 RESULT : 
TESTS EXPENSIVE 

ýeý 

c-ý_ L_-=ä 

RESULT : 
MASS PENALT 

T) 

Fig. 1.3 Classical flutter prevention techniques 

It took two essential steps to evolve to a new concept 

of designing structures to perform adequately in an 

aeroelastic environment. 

The necessity of making 

treatment of flutter problems h, 

advent of high-speed digital 

large memory capacities and 

efficient analysis techniques 

matrices of high dimensions. 

drastic assumptions in the 

as been deemphasized with the 

computing machines featuring 

with the introduction of 

and algorithms for handling 

It became obvious that one 
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should be able to derive economically flutter solutions for 

large types of structures. Indeed, much valuable information 

about inertia and stiffness distributions, modes of 

oscillations of structures and unsteady airloads can be 

obtained by finite element methods and computational 

aerodynamics. 

As computing costs decreased and as more and more 

efficient and convergent optimization techniques appeared, it 

was realized that one should be able to design ab-initio 

structures that are optimum in terms of weight and which are 

flutter-free. 

,i 

1ý 

DIGITAL COMPUTER 

FINITE ELEMENT 
METHODS 

FLUTTER 
SOLUTIONS 

DECREASE IN 
COMPUTING COSTS 

2 

ALGORITHMS FOR 
HANDLING LARGE 

MATRICES 

COMPUTATIONAL 
AERODYNAMICS 

OPTIMIZATION 
TECHNIQUES 

II STRUCTURAL OPTIMIZATION TO 
SATISFY FLUTTER REQUIREMENTS 

DECREASE IN 
COMPUTING COSTS 

Fig. 1.4 Milestones in automated flutter design 
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This leads us to the point which provides the incentive 

of the material presented in the next chapters: "structural 

optimization to satisfy flutter requirements". 

4 IMPORTANCE OF ALGORITHMIC EFFICIENCY AND CONVERGENCE IN 

FLUTTER SYNTHESIS 

Clearly, computational methods are today preferred as 

the mean of ascertaining whether a structure may flutter or 

not in given conditions because they are both economical and 

reasonably rigorous. However, repetitive analysis to guide 

the structural weight towards an optimum while simultaneously 

satisfying flutter requirements is a more ambitious task and 

may be paid with an exorbitant price of long ( or worse 

non-convergent) computer runs. 

The flutter constrained problem inherently demands more 

effort in terms of computing resources than, for instance, 

stress or displacement constrained problems. The criticality 

of algorithmic efficiency is, therefore, more acute in the 

case of flutter synthesis. 

The enormity of the flutter synthesis task is due to the 

fact that a complete aeroelastic behavior of the structure 

must normally be determined at each step of the optimization 

routine which requires the solution of a free-vibration 

eigenvalue problem, the interconnection of structural and 

aerodynamic grids and the generation of unsteady airforces. 

The most challenging aspect resides in the peculiar nature of 
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the flutter eigenvalue problem. Its solution is defined in 

terms of complex eigenvalues - compounds of frequencies and 

damping parameters - and the corresponding complex 

eigenvectors. The dependence of the unsteady aerodynamics on 

these same frequencies imposes scanning through a whole range 

of frequencies until the starting frequencies are matched 

with the solved ones for all the flutter modes. Thus, a 

number of bulk complex aerodynamic matrices will be 

calculated. These calculations are by far the most time 

consuming in the entire design process making flutter 

synthesis emerge as a concrete example of a candidate for 

algorithmic efficiency. 

5 SCOPE OF THE WORK 

Even -though few algorithms have been proposed for the 

minimum-weight design of wing structures under flutter 

constraints, their efficiency, accuracy and reliabiltity, 

when applied to practical large wing structures has yet to be 

demonstrated. Unlike conventional minimum-weight structural 

design where commercially available and fully supported 

programs are available (STARS, Ref. 34; DOCS, Ref. 35; ... ), 

packages specifically designed for flutter synthesis are not 

forthcoming. This shows, to some extent the need for further 

exploration in the field of automated aeroelastic design. The 

object of this research as set two and a half years ago is 

centered around how to efficiently yield sensible 

minimization of the structural weight when it is subjected to 

flutter constraints. 
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There are two activities that must be looked at to 

design a program that can cope efficiently with realistic 

aircraft structures idealized by large numbers of finite 

elements and degrees of freedom: 

- the procedures used to produce the necessary numerical 

information for analysis(') and synthesis 
(2); 

- the way such 
(assembled 3''. 

procedures have been written and 

Our concern should be aimed at applying the criteria of 

algorithmic efficiency and convergence to the synthesis 

area(2). An essential prerequisite to such a task is a 

program which will perform the necessary preliminary analyses 

and compute the flutter stability points. Although programs 

for the calculation of flutter speeds exist, they have not 

been designed with a view to linking with a structural 

optimizer. It was, therefore, necessary to embark on building 

such a program laying special emphasis on efficiency of areas 

(1) and (3) as well: dynamic dimensioning of arrays and 

modular approach at the internal language level and at the 

compilation and linking levels. Use has been made of 

techniques with high efficiency and reliability such as 

eigenvalue economizer and surfaces splines. For optimization 

work, the primary interest is to assess the most critical 

speed. Hence, we opted for the American method of flutter 

solutions. For general investigations or previous to flight 



13 

flutter tests, prediction of decays at subcritical speeds are 

crucial and the British method developed by RAE may give 

better subcritical trends (Ref. 31). 

Armed with an aeroelastic program, the next task is to 

attack the problem of the efficiency of the resizing process. 

The first logical step is to identify from a literature 

survey any area that, in our viewpoint, may need further 

explorations. 

Previous work on flutter synthesis has relied on the use 

of the initial natural modes of the base design throughout 

the whole optimization process although free-vibration 

analysis should be carried out at each iteration as the sizes 

of the design variables are changed. One slight benefit of 

such an approach is that it avoids the recomputation of the 

mode shapes at each resizing step. Its potential benefit is 

that it permits the optimization routine with aerodynamic 

matrices not dependent on the mode shapes simplifying 

considerably the flutter analyses and any derivatives 

expressions. The main concern is that solutions obtained from 

such an approach may leave a lot to be desired in terms of 

satisfying the minimum flutter speed. Our proposal to 

overcome this obstacle without any sensible detriment to 

efficiency is the exploitation of dual theory. A scheme of 

this kind has not been applied before to aeroelastic 

constrained problems. 

Thus, the object of this research is, firstly, the 
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development of a program package for optimizing structures to 

satisfy flutter requirements incorporating most recent 

economical and accurate analysis techniques and, secondly, to 

provide a coherent method aimed at improving the efficiency 

of synthesis method for flutter prevention. 



CHAPTER II 

ON FLUTTER 
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1 DEFINITIONS OF FLUTTER 

In order to quantify the problem we are attacking, it is 

necessary to clarify what is meant by flutter. Unfortunately, 

no clear definition exists and, within the literature on 

aeroelasticity, several are given: 

- aeroelastic and self-excited vibration, in which the 

external source of energy is the air stream; 

- aerodynamic self-excited oscillations; 

- self-sustained oscillatory instability; 

- cyclic and high frequency oscillation of the aerofoil 

caused by a struggle between the aerodynamic forces and 

the stiffness of the surfaces; 

- dynamic instability of an elastic body in an airstream 

produced by aerodynamic forces which result from the 

deflection of the elastic body from its undeformed state; 

- dynamic aeroelastic instability; 

- dynamic instability occurring in an aircraft in flight at 

a certain speed where the elasticity of the structure 

plays an essential part in the instability; 
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- self-excited or unstable oscillation arising out of the 

simultaneous action of elastic, inertia and aerodynamic 

lift forces upon a mass or a system of masses; 

- oscillatory instability arising from the condition where 

one degree of freedom is driven at resonance by a second 

degree of freedom, both oscillating at the same frequency; 

- unstable divergent 

aerodynamic forces. 

motion or vibration caused by 

While it may be an exaggeration to say that such 

definitions render flutter even more obscure, it is admitted 

that one has to resort to simple examples rather than to 

dictionary types of definitions in order to gain some insight 

into the flutter mechanism. 

2 INTRODUCTION TO FLUTTER 

The most popular, because very instructive, way for 

introducing the subject of flutter is a flat plate in which 

bending and torsion stiffnesses are idealized by springs and 

with the further simplifying assumption of steady 

aerodynamics. Pines (Ref. 38,1958) used this system to give 

an elementary, but remarkable, description of how certain 

parameters such as the relative positions of centre of 

gravity, elastic axis and aerodynamic centres can have 

salutary or detrimental effects on a classical class of 

flutter commonly referred to as "binary bending-torsion" 
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flutter. The outstanding feature of this example is its 

pedagogic simplicity because it does not demand too great a 

prior knowledge of the physics and mathematics needed to 

study the behavior of this instability. Since then, the flat 

plate has stimulated widespread interest in the academic 

institutions. A remarkable result, inferred from this 

rudimentary example, is that the flat plate would not 

encounter classical flutter if the centre of gravity is ahead 

of the elastic axis. 

Bisplinghoff and Ashley (see bibliography: Principles of 

Aeroelasticity, page 264) and Dowell, et al. (see 

bibliography: A Modern Course on Aeroelasticity, pp. 76-89) 

extended the study of the flat plate with the use of a 

slightly more respectable approximation of quasi-steady 

aerodynamics. 

An alternative but somewhat more systematic attempt to 

probe into the nature of flutter is through the energy 

exchange of the whole aeroelastic system. Elastic and inertia 

forces caused by stiffness and mass distributions are both 

conservative forces and the result is that they do zero net 

work on the system. In other words, they do neither feed into 

nor extract energy from the system during a cycle of 

oscillation. If flutter is a self-excited instability that 

can maintain itself without the help of any external source 

of energy, then there remains the question of how the 

oscillations can persist and be amplified to structural 

failure. Under certain circumstances involving diversified 
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parameters, namely reduced frequency (ratio of frequency to 

velocity), Mach number, phase lag between deflection and its 

aerodynamic reaction or between flexural and torsional wing 

oscillations..., energy may be drawn from the airstream by 

the structure. Depending on whether the energy absorbed is 

smaller or higher than dissipated through damping, the 

amplitude of oscillations may die out or remain and diverge. 

A practical demonstration on flutter and the associated 

energy exchange can be made by means of the "flutter engine". 

This is an apparatus that consists of a rigid airfoil allowed 

to pitch and roll freely at its root (Ref. 14). The energy 

pumped from the airstream by the airfoil is imparted through 

connecting rods and cranks to a flywheel which is then forced 

to rotate. 

3 BRIEF REVIEW OF BIBLIOGRAPHY 

The bibliography, currently available in English and 

dealing with aeroelasticity in general and' flutter in 

particular, is listed herein. It-begins with the excellent 

text book of Bisplinghoff (in collaboration with Ashley and 

Halfman), first published in 1955 and representing a 

pioneering compilation of what was known on and applied to 

the study of aeroelasticity. Most technical papers on flutter 

have this book in their lists of references and it is being 

pointed out whenever the V-g solution (see appendix A) is 

mentioned although the V-g solution method can be traced as 

far back as 1942 and is attributed by Ref. 32 (page 1.1-2) to 
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the Air Material Command (USA). Another valuable contribution 

to the general understanding of aeroelasticity is the book by 

Fung also published in 1955. A recent book on the same field 

by Dowell, et al., titled "A modern course in 

aeroelasticity", is, however, preferably recommended because 

it is very educational (chapters 1 and 2 on static and 

dynamic aeroelasticity) and contains a wealth of up-dated 

information specially on non-steady aerodynamics and 

aeroelaticity of rotorcrafts and an authoritative account on 

stall flutter. "Aeroelasticity of plates and shells (Dowell 

only)" represents the most extensive document of the very 

special case of aeroelasticity of panels. Other additional 

books listed in the bibliography are there to do justice to 

other authors' share to the comprehension of aeroelastic 

phenomena. These are also recommended though to a much lesser 

degree. 

All the aforementioned books do not represent a complete 

survey of the subject. Thus, the profusion of papers or 

articles referred to by these books or consistently published 

in the relevant journals (Journal of Aircraft, AIAA Journal, 

Journal of Sound and Vibration... ) must be consulted if 

specific areas of interest require further explanation. 

4 FORMS OF FLUTTER PHENOMENA OF INTEREST TO THE AIRCRAFT 

DESIGNER 

A host of instabilities in systems such as aircraft, 

helicopter rotors, air deflectors or spoilers on automobiles, 
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turbomachinery, pipes, electrical power transmission cables, 
towers, chimneys, bridges, flags, venetian blind slats... can 
be identified as flutter. We are concerned here not so much 

with exhaustive- coverage and treatment on all the flutter 

problems encountered in everyday life. This paragraph has 

been instead restricted to a basic classification of the 

flutter phenomena of particular interest to the aircraft 

designer. 

The text is enhanced with a suite of figures. These 

illustrations do need few clarifications and they are given 
below. 

. 
Investigations of the stability of a system can be made 

by assuming that the generalized motions are damped harmonic 

functions 
of the form 

iwt 
(-wit) 

{q} _- 
ist 

a-i 

(+i)t 
{q}e e {q}e {q}e = 

(11.4.1) 

{q} vector of generalized coordinates 

{q) vector of complex amplitudes 

S complex frequency 

W is Re(s) 

Wi = Im(s) 

Formally, we recall that w is the circular frequency of 

oscillation 
and that wi is a measure of the true damping. The 

sign of wi determines whether the motion is stable or 
unstable. If wi is positive, the system is stable. If wi is 
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negative, then the motion diverges exponentially with time 

and the system flutters. 

Alternatively, stability may be looked at through the 

mathematical concept of artificial damping (more about this 

in appendix A). Negative artificial damping shows that the 

structure is not fluttering in a specific mode and it 

represents the amount of fictious damping that must be 

substracted from the system to make it undergo neutrally 

stable oscillations in that mode. When one of the modes of 

vibration of the structure becomes unstable, artificial 

damping of that mode is positive which can be seen as the 

amount of fictious damping that must be added to the system 

to force it to undergo neutrally stable oscillations. 

Now, we proceed to enumerate the types of flutter 

encountered by aircraft structures. 

4.1 "Zero frequency" flutter 

This is generally known as divergence and is usually 

dealt with in static aeroelasticity. Although the nature of 

divergence is entirely different from that of flutter, it can 

be as well investigated as a special single-degree-of-freedom 

flutter. Fig. II. 1 is to show that this steady state 

instability occurs when one of the values of s has a zero 

real part and a negative imaginary part. 

Out-of-phase structural and aerodynamic damping forces 
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are less amenable to reliable theoretical treatment than the 

in-phase forces. Since divergence can be considered to be a 

time-independent instability, these damping forces together 

with the inertia forces can be excluded making divergence 

emerge as a simple and well predicted aeroelastic problem. 

The theory is generally reliable even when divergence becomes 

of acute practical importance such as in forward swept wings. 

TIME DOMAIN FRE JD CY DOMAIN 

w, real part of frequency 

orsion divergence 
bendin 

V, speed 

wi, imaginary part of frequency 

m 

t, time 
divergence 

torsion 

g, artificial damping 

divergence. 

'torsion 

bending 

V, speed 

V, speed 

Fig. II. 1 Divergence in time and frequency domains 

4.2 "Coalescence", "merging frequency" or "coupled-mode" 

flutter 

Broadly speaking, the characteristics of this class of 

flutter is that two or more distinct types of structural 

deformation are converging towards oscillating at the same 

frequency as the flutter condition is approached. The onset 

of this dynamic instability happens when one of the imaginary 

14. 
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parts of s changes sign from a positive value to a negative 

value. however, in contrast to divergence the real parts of s 

do not vanish (see Fig. 11.2). 

TIME DOMAIN 

t, time 

FREQUENCY DOMAIN 

w, real part of frequency 

II flutter 
V, speed 

wi, imaginary part of frequency 

V, speed 

flutter 

?I 

g, artificial damping 
/ i 

flutter- 

V, speed 

Fig. 11.2 Coalescence flutter in time and 

frequency domains 

"Coupled-mode" flutter is quite - but not crucially - 

sensitive to out-of-phase damping forces. In fact, 

reasonably good results can sometimes be obtained by 

neglecting structural damping and by making yet another 

drastic assumption of quasi-steady aerodynamics. 

4.3 Stall or stalling flutter 

This class of flutter can be treated as prominently 

involving just one degree of freedom, say torsion or bending. 

However, this not universally true as stall flutter in more 
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than one degree of freedom may occur under certain 

circumstances adding a further complication to this already 

non-linear problem. 

TIME DOMAIN 

displacement I, say torsion 

t, time 

FREQUENCY Dc, PJN 

w, real part of frequency 

i, say torsion 

II 

V, speed 

wi, imaginary part of frequency 

1 n' 

flutter 
V, speed 

I, say torsion 

Fig. 11.3 Stall flutter in time and frequency domains 

Examination of Fig. 11.3 shows that stall flutter 

exhibits the destabilization of a very lightly damped mode 

(usually torsion). This sensitivity towards such trivial 

damping forces coupled with the uncertainty surrounding the 

out-of-phase load predictions, on the one hand, and the 

notable aerodynamic non-linearity, on the other hand, are the 

two factors that make stall flutter difficult to approach 

an ytically. Experimental or semi-empirical methods appear 

to be he only solution techniques for the foreseeable 

future. 

Stall flutter can be a serious concern only for designs 

of airfoils expected to operate in very high angle of attack 

conditions. 
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4.4 Transonic buzz 

Like divergence, this can be considered as a 

one-degree-of-freedom type of flutter. It is traditionally 

called aileron buzz. However, it is not confined to ailerons 

only but to trailing-edge controls in general. It is even 

possible for clean airfoils to undergo transonic buzz. This 

latter peculiar form of transonic buzz is caused by shock 

waves oscillations, specially in high aspect ratio wings, and 

inducing torsional vibrations of the airfoil. The problem of 

control buzz is somewhat similar but involves oscillations of 

shock waves on the upper and lower airfoil surfaces and 

oscillations of a control surface. 

4.5 Panel flutter 

As with the airframe as a whole, aircraft skins may 

locally suffer sustained and sometimes destructive vibrations 

very much similar to overall structural flutter. 

Simplistic theoretical approaches (see both books of 

Dowell in bibliography list) supported by experimental 

evidence (Ref. 17) show that the different aspects of the 

aeroelasticity of plates and shells can be basically grouped 

into divergence and coupled-mode flutter. The divergence type 

of instability resembles the classic form of buckling but is 

influenced by the aeroelastic feedback of the airstream 

whereas the coupled-mode type is characterized by the coming 

together of buckle wave frequencies. 
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4.6 Other types of flutter 

Airframe distortions are the result of mutual structural 

and aerodynamic interactions and this problem is dealt with 

under the interdisciplinary heading of aeroelasticity. At 

supersonic speeds, aerodynamic heating may introduce thermal 

stresses and deformations and deteriorations of mechanical 

properties. If kinetic heating is important, the study of 

flutter must be extended to the broader field of 

aerothermoelasticity. 

Other topics, not included in the survey of flutter 

outlined above, are those related to rotary-wing and 

propeller whirl flutter. It is possible to conceive of 

conditions wherein any amalgam of different sorts of flutter 

and thermal effects interacts on the structure. 

5 FLUTTER PHENOMENON CONSIDERED IN THIS WORK 

To obviate certain difficulties and problems such as 

unavailability of adequate theoretical modeling, lack of time 

or of financial resources, we found it necessary to confine 

the flutter phenomenon considered in this treatise to within 

certain boundaries. These restrictions are in a way fairly 

academic, though they are in no way affecting the generality 

of certain results or the validity of certain conclusions 

drawn throughout this work. In some instances, these sets of 

simplifying assumptions do not prevent the computer code 
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developed to be applied to practical real-life problems. 

5.1 Operational envelope 

There is no an all-embracing aerodynamic code that can 

assess unsteady airloads at any Mach number. The one we are 

using is exclusively for airflows that have subsonic velocity 

all around the airfoil. 

5.2 Tie 

Well established linearized mathematical analysis on 

which "coalescence" flutter relies cannot be expected to be 

of any validity for aeroelastic phenomena such as stall and 

buzz flutter or any other type of flutter that exhibit flow 

separation. This latter category of flutter is characterized 

by highly non-linear behavior. There is as yet no adequate 

theory which can investigate unsteady aerodynamics or assess 

the value of the airloads with any reasonable accuracy for 

these flutter phenomena. Thus, state-of-the-art of 

computational aerodynamics restricts the scope of the present 

work to the classical form of flutter in which frequencies of 

oscillations are merging towards the same value to render one 

mode unstable. Whenever the term "flutter" is henceforth 

mentioned the "coupled-mode" type is implied unless otherwise 

specified. 

Incidentally, the skin thickness on which panel flutter 

may be triggered off is so small in subsonic flight that it 
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is not of any practicality (Ref. 17). Panel flutter is, 

therefore, assumed not to be a source of concern in our case. 

However, if for any reason, structural integrity is governed 

by panel flutter rather than strength, the skin thickness 

required to prevent panel flutter from occurring may be used 

as a minimum gauge. 

5.3 Interference and coupling effects 

The aerodynamic interference between adjacent wings and 

bodies and the inertia and elastic coupling between the major 

aircraft parts can sometimes be so marked as to make the 

modeling of at least a group of components a prerequisite of 

any sensible flutter analysis. For instance, a T-tail 

arrangement cannot be reduced to two flutter analyses of 

disconnected fin and tailplane. A lot of skepticism must be 

displayed towards flutter results that separate the wing from 

its close-coupled canard, the fully retracted variable 

geometry wing from the empennage... 

The aerodynamic code that computes the unsteady airloads 

for our optimization purposes does not incorporate 

interference effects. Thus, we are limited to consider only 

flutter of isolated lifting planforms. 

5.4 External stores 

Because the aerodynamic code is exclusively for clean 

surfaces, external stores (powerplants, fuel tanks, 



30 

missiles... ) are precluded from our analysis although their 

effects upon airloads and frequencies and modes of 

oscillations can modify- appreciably the flutter 

characteristics of a wing. 

1 5.5 Thermal effect 

Aerodynamic thermal 

subsonic regime we are 

problems are therefore 

work. 

effects are insignificant for the 

considering. Aerothermoelasticity 

not of practical concern for this 

6 AEROSERVOELASTICITY 

The historical trend of the aircraft industry has been 

towards more and more flexible structural components whose 

member sizes are very likely to be designed to meet stiffness 

rather than static strength requirements. This highlights how 

potentially significant it is to investigate ways of 

efficiently distributing the structural mass while preventing 

aeroelastic distortions beyond acceptable limits. Optimum 

distribution of mass and optimum orientation of stiffness 

such as allowed by advanced composite materials form the 

passive control technique of aeroelastic deformations. 

Equipping the aircraft with an active control system is 

the other avenue towards tightly managing the aeroelastic 

behavior of the vehicle. It is done by actuating the control 

surfaces or by shaping the airfoil (wing with variable 
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camber) through feedback signals from acceleration, velocity 

and displacement sensors on the structure. Extensive research 

in this technique is nowadays paving the way to 

. aeroservoelasticity, a fascinating subtopic of 

aeroelasticity. 

The use of servo-systems to artificially remove 

aeroelastic instabilities can be at times more rewarding in 

terms of weight savings and mission flexibility gains than 

the optimum alteration of the structural members. This is 

definitely the case for aging aircrafts that need to have 

their aeroelastic performance stretched during an upgrading 

program. Moreover, modern military aircrafts experience 

during their service life new combinations or introductions 

of external stores, armaments and electronic pods. If one of 

these arrangements brings in a flutter problem, it appears 

that provision of an active flutter suppression system would 

be a more appropriate solution than severing or bridging 

across major structural members. 

Ref. 55- reports the case of the Rockwell Forward Swept 

Wing design, probably the oneýthat entered the competition 

for building a demonstrator. Because this configuration is 

particularly prone to divergence, the initial attention 

focused on exploring the wing as cantilevered. A problem of a 

coupling between the rigid body mode and a wing bending mode 

remained unnoticed until after the design was frozen. It was 

then discovered that the flutter speed caused by this 

coupling was much lower than the divergence speed for which 
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the wing was optimized. Changes in sweep angle, aspect ratio, 

thickness-to-chord ratio, skin thickness and Young modulus of 

the fibers of the composite materials were investigated as 

parameters to raise the flutter speed. Each of these 

palliatives either degraded other design performances or did 

not increase the flutter speed enough to move it outside the 

operational envelope. The only feasible solution to this 

design dead-lock was to enhance the aircraft with an active 

control system to suppress this unstable mode coupling. 

Finally, one can propose active controls (automatic 

suppression of aeroelastic instabilities) as a redundant 

technique to the passive control (aeroealstic tailoring of 

the structure). This could prove very valuable as an extra 

safeguard in case of a damage to the structure of a combat 

aircraft or in designs where explosive flutter onsets are 

predicted. 

The conclusion that may be drawn in this section is that 

it may be delusive to believe that structural optimization is 

the best answer to satisfy aeroelastic constraints. There are 

instances where active controls may complement or sometimes 

supplant structural optimization and may achieve better 

cost-effective design solutions with less weight and 

performance penalties. 



CHAPTER III 

ON STRUCTURAL OPTIMIZATION 
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In contemporary life, the manufacture of complex 

products or the bringing to fruition of an important project 

will definitely be the result of a compromise between 

numerous factors. Each compromise represents a balance 

between sets of conflicting demands some of which are 

rational and hence can be more or less easily represented by 

mathematical models and others which are subjective and can 

hardly be defined in terms of heuristic formalisms. Lift to 

drag ratio, strength of a structure, manufacturing costs, 

mass, speed, etc... fall in the first category. Whereas 

aesthetic, market appeal, public or trade unions reactions, 

social changes, fashion, etc... fall in the second category. 

To strive for the realization of the best or the optimum 

product is a trait of human nature. This can be motivated by 

any combination of a desire for perfection, a search for 

prestige, economical necessities, competition drives... It is 

obvious that this definition of an optimum is too abstract. 

In addition, such optimae cannot be achieved if all the 

relevant factors affecting every aspect of the project are 

required to be taken simultaneously into consideration. 

Therefore, one has to decompose the work into a series of 

more specific tasks. Some of these tasks can be separately 

optimized but may demand massive mathematical and numerical 

effort. In a number of situations, some other tasks could be 

very much a matter of individual judgment and art. 

In view of this, our interest will be limited to the 
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dimensioning aspect of structures when subjected to loading 

and design restrictions that can be clearly identified and 

quantified. This is traditionaly known as structural 

optimization. Before embarking on this subject, it may be 

essential to state clearly at this point the definitions of 

some specific words from amongst the rich structural 

optimization terminology. 

1 OBJECTIVE FUNCTION IN STRUCTURAL OPTIMIZATION 

Within the optimization process is defined a function 

called objective or cost function whose minimum or maximum 

value must be sought. By far the most important design 

objective for the aircraft engineer is lightness because of 

the dominant effect that weight has on the performance of air 

and spacecrafts. So, in the field of aircraft and spacecraft 

structural synthesis, the objective function is the mass or 

weight of the vehicle. 

Unlike some authors, we will refer to this function only 

as objective function rather than cost function, for weight 

is not necessarily representative of cost and in some 

instances any reduction of weight beyond a certain limit may 

inevitably result in a sudden and exponential rise of the 

cost of a vehicle. 

2 DESIGN VARIABLES IN STRUCTURAL OPTIMIZATION 

By describing the idealized structural system by a 
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finite set of parameters-one can define the variables that 

compose the objective function. Amongst these parameters, 

there are those that are, a priori, prescribed and not 

altered by the algorithm of optimization. The rest, that is 

those that are modified in the process, are called design 

variables. 

The design variables can define (in ascending order of 

difficulty they would pose if taken into account in the 

optimization process): -(i) the dimensions of the elements of 

the structure; (ii) the geometry (configuration) of the 

structure; (iii) the material types used in the structure; 

(iv) the topology of the structure. 

2.1 Dimensional design variables 

These may be thicknesses (of membranes or plates), 

cross-sectional areas (of bars, rods or beams), moments of 

inertia, or even individual element masses or volumes. 

Engineering standards imposes that only certain discrete 

values can be taken by these design variables. However, in 

practice, they are usually assumed to be continuous. 

2.2 Configurational or geometrical design variables 

The geometry of the structure such as lengths, areas, or 

angles between elements can affect significantly the final 

mass. For instance, one approach to satisfying divergence 

speed requirement on forward swept wings is to reduce the 
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wing wash-in by increasing the flexural and/or torsional 

stiffnesses and this will lead to an increase in wing and 

aircraft weights. If the orientation of the stringers of a 

wing relatively to the longitudinal axis of the aircraft is 

made variable in the design process, aeroelastic divergence 

on forward swept wings can be overcome with a minimum weight 

penalty because stringers set a at certain optimum angle can 

favorably couple bending and twisting modes. Refinement can 

be carried out even further by tailoring composite materials. 

These materials, while having superior specific strength and 

stiffness properties when compared to conventional aircraft 

metals, possess strength and stiffness that are predominantly 

uni-directional. Deformation of a wing can be controlled by 

proper selection of ply angle and laminate thickness 

distribution. This is referred to as anisotropic 

aeroelasticity or aeroelastic tailoring and is having a 

drastic impact on aircraft design no matter whether the wing 

is swept fore or aft. 

2.3 Material design variables 

Although the mass of a structure can be appreciably 

improved with a proper choice of materials, the use of 

material as a design variable seems not to have received much 

attention. This may be due to the fact that material types 

are selected by experience-for each major item of a structure 

and that any algorithm including the feature of material 

choice would be too complex. However, as more and more new 

materials are certified by airworthiness authorities, it 
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would be worth looking at ways of optimizing structures with 

material as one of the variable factors. 

2.4 Topological design variables 

These may describe the number, spatial sequence and 

mutual connectivity of members and joints. We can anticipate 

in this category modifications in the discretized structure 

such as the replacement of elements by other element types 

which may be connected differently. In construction terms, 

the choice can be about braced, stressed skins or sandwich 

designs. 

3 CONSTRAINTS 

After having adopted an objective function and having 

selected the variables composing it, one is left with the 

task of quantifying the performance that we require from the 

structure. In optimization terminology, the constraints 

describe a set of imposed restrictions or limitations on 

certain quantities so that the structure can assume its role 

in its operational environment. 

Side constraints usually refer to upper and lower limits 

on certain quantities. Gauge constraints are side constraints 

" on the dimensions of the elements of the structure as laid 

down by manufacturing requirements. 

Behavior constraints are so called because they refer to 
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the structural response such as stresses, local and global 

instability, deflections, frequencies, flutter, divergence... 

4 SOLUTION METHODS 

The numerical problem of structural optimization can be 

summarized as the search of values of design variables so as 

formally achieve minimization of the objective function (mass 

or weight) while at the same time satisfying associated 

conditions of minimum/maximum gauge constraints and of 

diverse behavior constraints. Numerous methods are available 

to solve this problem. Our intention in this section is not 

to produce an exhaustive comparative essay on these methods. 

Instead, we will aim at giving a brief classification of and 

general commentaries on these solution techniques. 

The first impression that one has when reading early 

literature on structural optimization is that solution 

methods are classified into two conflicting schools of 

teaching that were developed in parallel streams and in 

almost dogmatic ways: indirect and direct methods. 

The indirect or optimality criteria (OC) methods 

attempt, through recursive relations, to drive the initial 

design towards the satisfaction of intuitive or strict 

optimality criteria. In buckling constrained designs, the 

intuitive definition of structural efficiency was that local 

buckling of the sheet panel should occur at the same stress 

level as over-all buckling. In stress constrained designs, 
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the intuitive approach is inspired by a "fully-stressed" 

philosophy. In flutter constrained designs, the intuitive 

criteria is similar and requires that the strain energy 

density is uniform throughout the structure in its deformed 

flutter mode. The interest in intuitive optimality criteria 

has been fading out since MP (mathematical programming) have 

brought to light that in the design space optimum weights are 

not necessarily fully-stressed (Schmit, Ref. 44,1960). 

Another important criticism of this approach is that it is 

potentially hazardous in the case of buckling constraints. 

The collapse of the so-called least-weight design 

(simultaneous mode failure) is a sudden explosive snap of the 

structure and is very sensitive to initial imperfections as 

observed by Koiter and Skaloud (Ref. 7,1962). The alternate 

rigorous OC are derived mathematically from the equations 

governing the optimization problem. These OC are valid only 

at the optimum and it is imperative to convert them into 

recurrence relations which might on occasions diverge away 

from any optimum solution. 

The direct methods or MP based methods work directly to 

minimize the objective function. As opposed to OC techniques, 

MP techniques are more versatile design tools and possess far 

wider practical applications. The main drawback, however, is 

that the cost of MP optimization may be very expensive even 

for moderately sized finite element models. 

The MP procedure is the most laborious but most commonly 

converges to at least a near optimum design whereas the OC 
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procedure usually entails least labor but does not guarantee 

convergence. These led the protagonists of both approaches to 

separately redouble their efforts in overcoming the MP 

computational burdens and the risks of OC impasses. However, 

it was soon discovered that the attributes of each of these 

techniques can be exploited simultaneously and mixed-approach 

programs that combine both procedures into one single program 

were introduced. In many practical applications, it was found 

that the FSD (fully-stressed-design) approach can be used in 

the initial few iterations to speed up convergence to 

pseudo-optimum points and then one can proceed from there to 

the search of a true optimum (Ref. 34 and 35). In the program 

described in Ref. 47, gross overall material distribution of 

the fuselage is tackled with an FSD concept and the component 

design of panels consisting of skins and stringers is handled 

with greater care by an MP concept. 

Apart from the differences in computational 

performances, OC or MP based methods should merge to one 

unique and natural goal: satisfaction of the Kuhn-Tucker 

conditions of optimality. This viewpoint has recently been 

propounded by Fleury and Sander (Ref. 16) when they 

conclusively reconciled the mathematics behind the two 

approaches (see also Ref. 15-and chapter 10 of the book in 

the bibliography list edited by Morris). 

In view of this changed perspective, it might now be 

argued that one may cover the large spectrum of solutions 

techniques - in a three-category classification: primal, 
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transformation and dual techniques. 

" The two papers by Belegundu and Arora (Ref. 4 and 5, 

1985) testify this new strong viewpoint. The intention of 

these authors was to present an analytical and numerical 

comparison on solution techniques applicable to structural 

optimization and their work identified: 

(a) recursive quadratic programming; 

(b) method of Bard and Greenstadt; 

(c) sequential linear programming; 

(d) gradient projection; 

(e) reduced gradient; 

(f) feasible directions; 

(g) projection methods; 

(h) and also optimality criteria; 

(i) sequential unconstrained minimization 

techniques (penalty functions and 

barrier functions); 

(j) multiplier (or augmented Lagrangian) 

methods. 

primal 

techniques 

transformation 

techniques 

For completeness, however, their comparative study 

should have included dual techniques. The auxiliary dual 

problem is to maximize the Lagrangian function in which the 

Lagrange multipliers have the röle of dual variables. One 

aspect of dual theory put into perspective by Bartholomew 

(Ref. 2) is that of dual bounding of the structural weight 

which can be favorably used to monitor the convergence of the 
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solution method. This provides a more reliable cut-off 

criterion when compared to the termination criterion that 

specifies limits on the difference between certain quantities 

on two successive iterations or somewhat arbitrary criterion 

such as stopping the program after the completion of a 

maximum permissible number of iterations. 

Finally, to supplement this overall view, we must 

digress here to present an alternative way of thinking that 

might have important repercussions on automated design: 

namely knowledge-based expert systems (KBES). KBES is claimed 

to be capable of addressing challenging tasks that need 

specialized knowledge and expertise gained only through long 

experience. Possibly one of the justifications for the 

integration of KBES in structural optimization is that some 

design problems are ill-structured for classical algorithmic 

solutions. For instance, including material into the set of 

design variables is probably one typical example of such 

problems. 

5 STRUCTURAL OPTIMIZATION WITH FLUTTER CONSTRAINTS 

5.1 Situation of the problem in the overall design process 

After the phase of defining the need for a product and 

the performance required from it, the structural design 

process whether partly or entirely automated follows a 

pattern of three chronological stages: 
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- the conceptual or early preliminary design stage which 

consists of carrying out approximate analysis and 

comparisons possibly with statistical data to select a 

potential baseline configuration that may be expected to 

be most promising in satisfying few key constraints (cost, 

performance... ); 

- the intermediary design stage with more elaborate analyses 

in order to compile information on the worst loading cases 

over the entire operational envelope; 

- the detailed design stage in which the proportioning of 

all structural components is finally made. 

Z ýmm 

. wý ýwo m4r4h, 

DEFINITION 
CONCEPTUAL ANALYSIS DETAILED 

PHASE DESIGN DESIGN DESIGN 
STAGE STAGE STAGE 

Nl- ý. 
N_ -V loor 

- 10- STRUCTURAL DESIGN PROCESS 

Fig. III. 1 Structural design process 

Undoubtedly, in an effort to steer the final product 

to within close bounds of the best solution while 

maintaining design feasibility and satisfactory levels of 

safety, "reliability", "affordability", "serviceability", 

"... bility": 

- there will be, within each design stage, localized 
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synthesis loops to achieve optimum solutions related to 

each design stage; 

- major and minor cycles of redesign will occur as the 

structural design process is forced to loop around the 

conceptual-analysis-detailed stages (Fig. III. 1). 

In most applications, the complexity of the project will 

partition each design stage level into sub-design stages. For 

instance, the detailed design stage where the context of this 

work is located must be subdivided into a convenient series 

of hierarchically performed design tasks. Such a breakdown is 

inevitable if this stage is to encompass the multitude and 

diversified constraints that govern the proportioning of the 

components, i. e, constraints on stresses, deflections, 

frequencies, flutter instability, divergence, response to 

atmospheric turbulences, post-buckling response, crippling, 

gauges... 

A proposed breakdown of the detailed design stage may be 

as depicted in Fig. 111.2 (see the following page) where an 

overall mass distribution of the structure is made based on 

some controlling constraints (load-carrying capacity, 

overall buckling, flutter instability, divergence... ) 

followed by the consideration of secondary constraints (local 

buckling, crippling, bearing strength, panel flutter, 

connections... ) which set out the structural subcomponent 

sizes. 
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The complexity of the structural design process does not 

stop here. It may be imperative to decompose the structure 

into several substructures. It is of course the lifting 

surfaces which are the substructure concerned herein. 

A shortcoming of the afore-described detailed design 

process is that there is no guarantee of ideal solutions that 

are assured of meeting the original specifications and 

fulfill all the" preassigned roles as set in the definition 

phase. The pronounced sensitivity of aircraft general 

performances to any increase of weight makes the 

establishment of designs and the release of drawings on the 

sole basis of structural optimization no longer sufficient. 

Concurrent with this, active control systems must be 

introduced as a means of alleviating loads or suppressing 

aeroelastic instabilities. They must be included if there are 

sound economic reasons and if they can improve the aircraft 

performance when the distribution of structural weight 

inhibits it. 

To attain the ultimate objective of an optimum solution, 

the philosophy of designing structures must strike a good 

balance between over-all mass distributions and interacting 

servo-mechanisms in the form of active controls. However, 

structural optimization is underlying the approach of this 

research work and therefore, we will purposely refrain from 

making any more allusion to aeroservoelasticity, load 

alleviation or to active flutter suppression. 
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5.2 Type of design variables 

Although the weight of aircraft is sensitive to the 

material types used in building the structure, we will not 

commit ourselves to consider material as a design variable 

because this does not lend itself easily to traditional 

automated design. Moreover, for convenience (see § iV. 2.3), 

materials will be supposed to be only isotropic even though 

multilayered filamentary composites offer much broaden 

latitude than metals in meeting strength and stiffness 

requirements independently of one another. This eliminates 

the need to take ply orientation angles and ply thicknesses 

as design variables. 

To simplify the problem even further and on account of 

what has already been said in S 11.5.4, spanwise and 

chordwise locations for massive items such as engines will 

not be' treated as design variables albeit the decisive part 

that engine position takes on removing undesirable 

wing-flutter. Perhaps, the strongest argument in favor of 

such an omission is that engine locations are fixed at the 

much earlier stage of conceptual design where the most 

apposite wing-engine layout in terms of flutter and in terms 

of other performance indexes (aerodynamics, thrust... ) are 

appreciated. 

Hence, we limit ourselves to the simplest case where 

only the dimensions of the elements composing the structure 
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are taken as design variables and their modification 

during the process of optimization is not discrete but 

continuous. 

5.3 Types of constraints 

Relatively 

displacement cc 

effort devoted 

are placed on 

investigations 

this research 

strength. 

to structural optimization with 

)nstraints, there has been a much 

to minimum-weight design wherein 

aeroelastic instabilities. As mi 

are needed in this field, the 

is nested around aeroelasticity 

strength or 

more modest 

constraints 

ore thorough 

interest of 

rather than 

In appendix D, the equation of motion is introduced in 

lieu of the flutter speed constraint. This behavior equality 

constraint as shown in the next section (Eq. 111.5.4.1) 

embraces both flutter and divergence. The method as developed 

is therefore applicable to both aeroelastic instabilities. 

The word divergence was, nevertheless, omitted from the title 

of this thesis because we are not considering anisotropic 

materials that must be included in any relevant work on 

divergence. 

The inequality equations in Eq. 111.5.4.1 enforce 

minimum-gauge dimensions on the structural members and are 

the second type of constraints considered. Strictly 

speaking, these minimum-gauge limits incorporate both 

structural members sized by strength or by practical 
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manufacturing considerations 

the least (see Fig. 111.2). 

depending on whichever is 

5.4 Mathematical formulation 

Taking the mass of the structure as the objective 

function the structural optimization problem with aeroelastic 

and gauge constraints can be formulated in mathematical 

jargon as (see appendix D): 

N 
minimize m- m0 + E1 mjxj 

(III. 5.4.1) 

subject to [Fl(-q} _ {0} 

and to xj > xj j=1,..., N 

with 

m total mass of the structure 

m0 mass of fixed structural items 

m mass per unit length (for bar elements) or per unit 

area (for quadrilateral or triangular elements) of 

jth variable element 

xj jth design variable 

N number of design variables 

[F] flutter matrix 

{q} aeroelastic eigenvector 

xj jth minimum gauge constraints; minimum value imposed 

on jth design variable 



CHAPTER IV 

PROGRAM APPRAISAL 
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1 GENERAL LAYOUT. 

In this section, we present the FORTRAN-based program 

that has been developed on VAX minicomputers. But, prior to 

any narrative description, it may be helpful and instructive 

to visualize, in a block diagram, the general layout of the 

modules that make up the system for the design optimization 

of lifting surface structures subjected to flutter 

constraints. 

ANALYSIS 

E 
X 
E 
C 
U 
T 
I 
V 
E 

FINITE 
ELEMENT 

EIGENVALUE 
ECONOMIZER 

D 
A 
T 
A 

SYNTHESIS 

SURFACE 
SPLINES 

UNSTEADY 
AIRLOADS 

FLUTTER 
SOLUTIONS 

OPTIMIZATION 

Fig. iV. 1 Morphology of the program developed 

B 
A 
S 
E 

As highlighted by the above diagram, the program has 

been fragmented into a chain of modules. This modular 

organization was found to be crucial for the optimization 

scheme in the sense that it permits flexibility in scheduling 
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the succession of analyses to be performed. Moreover, by 

virtue of this architecture, it would be possible to 

independently carry out any analyses without having recourse 

to the whole process. 

2 GENERAL DESCRIPTION OF THE MODULES 

2.1 Executive 

The complexities associated with blending all the 

modules to perform optimization are hidden from the reader 

and are greatly simplified and displayed under the 

"executive" heading. The "executive" can be virtually seen as 

the block that monitors the order of execution of the 

analyses and the looping operation where the results of all 

analyses are used by the optimization algorithm to make 

rational adjustments to the structure until an optimum design 

is reached. 

2.2 Data transfer 

It is clear that, in any kind of program of the 

character and size described in the previous paragraphs, 

there is an abundance of data flowing between the numerous 

routines. Thus, some kind of management is necessary to 

handle the voluminous amount of data and this must be 

embedded in the pre- and post-processors of each sub-program 

with some'form of data interface. 
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Considering that, in our case, there is no simple 

sequential execution of the analyses, it would be ineffective 

to directly transfer between the different program segments 

the large arrays generated. Thus, to keep the merits of a 

modular designed program, the bulk of data needed to be 

communicated is exchanged via a common Data Base. 

Another, but less sophisticated form of data access, is 

carried out through various COMMON blocks. The data allocated 

to these areas is kept to minimal levels and is chiefly for 

small data items or for variables that control the 

information between the routines. 

2.3 Finite element 

FINEL is a general purpose program developed in the 

Imperial College of Science and Technology, London, which 

uses the well-known finite element method of analysis to 

solve certain engineering problems (Ref. 24,25 and 26). In 

our context, FINEL is asked to perform only two tasks: first 

to generate the structural grid and secondly to integrate and 

assemble the consistent inertia and stiffness matrices. 

Although FINEL is less complete and capable than other 

finite element programs readily available in the Cranfield 

Institute of technology, it, has been selected because 

privileged access to the source file and not simply to object 

or execution files is possible. This allowed us to carry out 

on FINEL alterations, improvements or adaptations to suit our 
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ends. Nevertheless, this advantage has been counterbalanced 

by the sparse element library and by the lack of support from 

the Imperial College of Science and Technology. 

A rather restrictive condition on the use of FINEL is 

that material must be isotropic. It was, nevertheless, judged 

wiser to guard against departing from the main topic of the 

work by not rewriting the FINEL code to accept anisotropic 

materials. 

2.4 Eigenvalue economizer 

By stating that the displacement field of the fluttering 

structure may be decomposed into a limited number of mode 

shapes, the solutions of the free vibration problem are 

required to serve a dual purpose: first, to find out the 

unsteady airloads that are functions of the mode shapes and, 

second, to construe the flutter equation whose solutions is 

sought by the optimization process. 

In an attempt to simplify the expression of the unsteady 

airloads, it is further assumed that only transverse (out of 

the plane of the lifting planform) modes of oscillations play 

a role in the flutter mechanism. 

The "eigenvalue economizer" subprogram has been written 

to accommodate four jobs and begins by retrieving from the 

Data Base the global mass and stiffness matrices already 

prepared by FINEL. It then reduces these matrices by 
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automatically discriminating the master degrees of freedom 

(out-of-plane) from the slave degrees of freedom (inplane). 

Finally, it culminates by obtaining the solution of the 

reduced eigenvalue problem and consequently to the 

reproduction in the Data Base of the transverse mode shapes 

and their associated natural frequencies. 

2.5 Surface splines 

This module is responsible, but only at the very first 

iteration run, for the generation of the points of the two 

aerodynamic grid and the storing of their coordinates in the 

Data Base. Those grid points which model the aerodynamic 

planform do not coincide with the locations of the structural 

grid nodes despite that structural and aerodynamic analyses 

are both based upon a finite element approach. The mismatch 

between structural and aerodynamic grids may be due to 

various reasons of which one deserve formal mention. 

The discretization of the wing structure is essentially 

an exercise of engineering judgment and experience. Topology, 

abrupt changes in geometrical and material properties, types 

of elements chosen to idealize the structure... are matters 

which are addressed in laying out a structural mesh. On the 

other hand, only the grading of the aerodynamic mesh from 

coarse to fine tends to depend on individual judgment and 

relies on an intuitive trade-off between computational 

accuracy and computational effort. Putting aside this human 

intervention, it is the aerodynamic theory that forces the 
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geometry of the grid to follow a regular-pattern even for 

rather complex vehicles. For instance, the positions of the 

nodes of the aerodynamic panels are uniquely defined in 

Dr. Davies' work (Ref. 11 and 12) because they are enforced 

by analytical equations. This pragmatic procedure of 

subdividing the lifting surface into aerodynamic finite 

elements is dictated by convenience: it is to judiciously 

facilitate the numerical evaluation of certain terms of the 

unsteady airforces. 

As the formulation of the unsteady airloads is, amongst 

other factors, dependent upon the deformation shape of the 

lifting surface, the "surface splines" module has provision 

to generate deflections and slopes of the surface at any 

aerodynamic grid point. It achieves this by applying splining 

techniques on the structural mode shapes computed by the 

previously described routine. 

2.6 Unsteady airloads 

The aerodynamic loading on the lifting surfaces in 

unsteady motion is obtained using the program WLST1 from RAE 

(Farnborough, UK) developed by Dr. Davies who both released 

the source code and assisted in its implementation. The 

procedure upon which this code is based uses a development of 

the lifting surface theory of Multhopp type (Ref. 12). 

WLST1 has been programmed in ICL 1900 FORTRAN and this 

entailed the rewriting of several statements so that it could 
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be accepted by more modern compilers and run on DEC VAX 

machines. To gain a higher degree of accuracy, the program 

has been refined with DOUBLE PRECISION statements. The code 

was further reformulated by the deletion of the READ/WRITE 

statements. The passing of data to and from WLST1 is now 

achieved by means of COMMON blocks or the Data Base depending 

on the size of storage needed. 

The sharp constraint of the fixed dimensioned arrays in 

WLST1 has been relaxed with the implementation of dynamic 

dimensioning. This feature has been incorporated in all the 

subroutines and real and integer vectors or matrices are, 

when needed, expanded into strings and placed into one single 

vector array. As far as editing programs is concerned, this 

is rather laborious and increases the risk of making errors 

because, in each major routine, pointers must be set to 

identify the locations of each vector and each matrix in the 

working array and checks must be made not to exceed the 

allowable space. Nevertheless, dynamic sizing is worth the 

effort, because it permits the operation of the whole program 

with minimum core storage requirements and keeps computing 

costs down. 

2.7 Flutter solutions 

When all ingredients (inertia and stiffness matrices, 

natural frequencies and modes of oscillations and unsteady 

airloads) are made available, what is missing is a tool for 

setting up and solving the modal flutter equation. 
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The "flutter solutions" module concludes the repertoire 

of analysis blocks. Because WLST1 gives unsteady loads for 

steady-state harmonic motions, the flutter solutions can be 

obtained in the frequency domain rather than in the time 

domain. Hence, the role of this module is to deduce the 

aeroelastic stability by using the traditional American 

method also known as k or V-g method. 

2.8 Optimization 

As outlined above, the program bulges with a whole range 

of subprograms which are grouped to cover the analysis 

aspect. The other aspect, the synthesis side of the program, 

is represented by one single module that attempts to proceed 

to the satisfaction of an optimality criterion and hence to 

achieve the computation of a minimum weight design while not 

violating the flutter constraint. 

3 GENERAL DISCUSSIONS 

We have attempted to describe above some salient 

features of the program developed. We now proceed to show two 

other major aspects. 

Certain members sizes of fixed structural regions can be 

kept as invariant at user request. The rest of structural 

components that compose the set of design variables may be 

reduced by any choice of design variable linking imposed by 
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fabrication requirements or suggested by heuristic judgment. 

The linked design variables do not need to have the same 

size, e. g, different bar elements of the same design variable 

may have different lengths. This is also allowed for in the 

assessment of the weight status. 

Not represented in the diagram (Fig. IV. 1) but still 

fitting well within the flutter-optimization framework is a 

module that was written to give the derivative expressions of 

several quantities relatively to the design variables or to 

the reduced frequency. 

By way of a conclusion to this chapter, we may note 

that, because of the problems encountered with FINEL and 

WLST1 and because the work presented herein is not 

particularly well suited to be performed on mini-computers, 

there was a restriction in the range of problems that were 

treated. However, the routines presented in the previous 

section are relatively well-structured and thoroughly 

debugged such that subsequent transfer to larger capacity 

computers should allow the solution of more extensive design 

problems. 



CHAPTER V 

ILLUSTRATIVE EXAMPLES 



62 

Our, current purposes is to implement the program to 

typical planforms and illustrate, with numerical results, the 

different techniques applied. Two demonstration problems are 

used and their physical descriptions along with their 

finite-element modeling are presented below. Only half of 

each structure is needed because symmetry can be exploited. 

1 RECTANGULAR-PLANFORM WING 

As a first simple numerical application, we consider 

a rectangular-planform wing which was introduced by 

Rudisill and Bathia (Ref. 42) and has been studied by many 

other authors. This has an aspect ratio of 7.2, a 

thickness-to-chord ratio of 8%, and is represented in 

Fig. V. 1. The structural box is divided by ribs into three 

equal-length bays. In each bay, the cover sheets, spar webs 

and rib are idealized by quadrilateral in-plane elements and 

the spar booms by pin-jointed bar elements. The 

finite-element model of the structure is shown in Fig. V. 2 

and is assumed to be rigidly fixed at the root. Tables V. 1 

and V. 2 give the generated mesh-coordinates and the element 

numbering. 

2 SWEPT TAILPLANE 

This second problem is a more realistic configuration 

with a leading-edge sweep angle of 25°, a taper ratio of 1.58 

and has more structural components and degrees of freedom 
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than the previous example. Fig. V. 3 illustrates the 

dimensions and the geometry pertinent to grid generation. As 

above, the basic structural idealization is once again a 

representation of the spars, ribs and skin covers with 

quadrilateral elements and the spar booms with bar elements 

(Fig. V. 4). This structure is assumed to be cantilevered and 

the eight nodes at the tailplane-body intersection are 

completely fixed. The generated mesh-coordinates and the 

element topology are tabulated respectively in tables V. 3 

and V. 4 

3 OTHER PARAMETERS 

Other parameters considered are cited below and taken to 

be the same for both examples although provision is made in 

the program so that any other values can be incorporated into 

the input data stream. 

The material constants are that of aluminum: 

Young modulus E= 69000 MN/m2 

Poisson's ratio v 0.3 

material density p= 2816 kg/m3 

The first six transverse mode shapes are used for modal 

analysis to define the generalized flutter equation. The 

effect of the number of mode shapes on both flutter analysis 

parameters and optimization parameters is shown in tables V. 5 

and V. 6. There is little discernible differences between the 
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use of six and much higher numbers of modes of vibration and 
it appears that higher than six modes cannot be expected to 

emulate the results appreciably to justify the 

extra-computational effort. 
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Table V1 Generated mesh coordinates for 

rectang ular-planform win g 

Nodal 
pofet x-coordinate y-coordinate z-coordinate in m in m in m 

1 
2 0.254 0.000 -0.0508 
3 0.254 1.524 -0.0508 
4 0.254 3.048 -0.0508 5 0.254 4.572 -0.0508 
6 0.254 0.000 0.0508 
7 0.254 1.524 0.0508 
8 0.254 3.048 0.0508 
9 0.254 4.572 0.0508 

10 0.889 0.000 -0.0508 11 0.889 1.524 -0.0508 12 0.889 3.048 -0.0508 13 0.889 4.572 -0.0508 14 0.889 0.000 0.0508 
15 0.889 1.524 0.0508 
16 0.889 3.048 0.0508 

0.889 4.572 0.0508 
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Table V. 2 Element topology for rectangular- lanform wing 

Element 
No Nodal point Element 

type 

1 1 2 Pin-jointed bar element 2 2 3 Pin-jointed bar element 3 3 4 Pin-jointed bar element 4 1 2 5 6 Quadrilateral in-plane element 5 2 3 6 7 Quadrilateral in-plane element 6 3 4 7 8 Quadrilateral in-plane element 7 5 6 Pin-jointed bar element 8 6 7 Pin-jointed bar element 9 7 8 Pin-jointed bar element 10 1 2 9 10 Quadrilateral in-plane element 11 2 3 10 11 Quadrilateral in-plane element 12 3 4 11 12 Quadrilateral in-plane element 13 5 6 13 14 Quadrilateral in-plane element 14 6 7 14 15 Quadrilateral in-plane element 15 7 8 15 16 Quadrilateral in-plane element 16 9 10 Pin-jointed bar element 17 10 11 - Pin-jointed bar element 18 11 12 Pin-jointed bar element 19 9 10 13 14 Quadrilateral in-plane element 20 10 11 14 15 Quadrilateral in-plane element 21 11 12 15 16 Quadrilateral in-plane element 22 13 14 Pin-jointed bar element 23 14 15 Pin-jointed bar element 24 15 16 Pin-jointed bar element 25 2 6 10 14 Quadrilateral in-plane element 26 3 7 11 15 Quadrilateral in-plane element 27 4 8 12 16 Quadrilateral in-plane element 

ýýý 

a 

6. sk. '^ 

f. 5! Gý'. 

s . wýf ýc 

'r 005 
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Fig. V. 3 Swept tailplane 
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31 

Fig. V. 4 Finite-element idealization of swept tailplane 
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Table V. 3 Generated mesh coordinates for swept tailplane 

Nodal 
point 

x-coordinate 
in m 

y-coordinate 
in m 

z-coordinate 
in m 

1 0.2540 0.0000 0.1270 
2 0.2540 0.0000 -0.1270 3 0.8128 0.0000 0.2032 
4 0.8128 0.0000 -0.2032 5 1.5748 0.0000 0.1524 
6 1.5748 0.0000 -0.1524 7 2.2606 0.0000 0.0508 
8 2.2606 0.0000 -0.0508 9 0.7901 1.2192 0.1108 

10 0.7901 1.2192 -0.1108 11 1.2157 1.0570 0.1807 
12 1.2157 1.0570 -0.1807 13 1.8235 0.8253 0.1392 
14 1.8235 0.8253 -0.1392 15 2.4187 0.6886 0.0471 
16 2.4187 0.6886 -0.0471 17 1.2592 2.2860 0.0966 
18 1.2592 2.2860 -0.0966 19 1.6302 2.1445 0.1576 
20 1.6302 2.1445 -0.1576 21 2.1602 1.9425 0.1214 
22 2.1602 1.9425 -0.1214 23 2.6792 1.8234 0.0411 
24 2.6792 1.8234 -0.0411 25 1.7953 3.5052 0.0804 
26 1.7953 3.5052 -0.0804 27 2.1489 3.5052 0.1286 
28 2.1489 3.5052 -0.1286 29 2.6312 3.5052 0.0964 
30 2.6312 3.5052 -0.0964 31 3.0653 3.5052 0.0322 
32 3.0653 3.5052 -0.0322 
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Element 
No 

Nodal points Element 
type 

1 2 1 10 9 Quadrilateral in-plane element 2 4 3 12 11 Quadrilateral in-plane element 3 6 5 14 13 Quadrilateral in-plane element 
4 8 7 16 15 Quadrilateral in-plane element 
5 1 3 9 11 Quadrilateral in-plane element 
6 2 4 10 12 Quadrilateral in-plane element 
7 3 5 11 13 Quadrilateral in-plane element 
8 4 6 12 14 Quadrilateral in-plane element 
9 5 7 13 15 Quadrilateral in-plane element 10 6 8 14 16 Quadrilateral in-plane element 11 1 9 Pin-jointed bar element 

12 2 10 Pin-jointed bar element 13 3 11 Pin-jointed bar element 14 4 12 Pin-jointed bar element 15 5 13 Pin-jointed bar element 16 6 14 Pin-jointed bar element 17 7 15 Pin-jointed bar element 18 8 16 Pin-jointed bar element 19 10 9 12 11 Quadrilateral in-plane element 20 12 11 14 13 Quadrilateral in-plane element 21 14 13 16 15 Quadrilateral in-plane element 22 10 9 18 17 Quadrilateral in-plane element 23 12 11 20 19 Quadrilateral in-plane element 24 14 13 22 21 Quadrilateral in-plane element 25 16 15 24 23 Quadrilateral in-plane element 26 9 11 17 19 Quadrilateral in-plane element 27 10 12 18 20 Quadrilateral in-plane element 28 11 13 19 21 Quadrilateral in-plane element 29 12 14 20 22 Quadrilateral in-plane element 30 13 15 21 23 Quadrilateral in-plane element 31 14 16 22 24 Quadrilateral in-plane element 32 9 17 Pin-jointed bar element 33 10 18 Pin-jointed bar element 34 11 19 Pin-jointed bar element 35 12 20 Pin-jointed bar element 36 13 21 Pin-jointed bar element 37 14 22 Pin-jointed bar element 38 15 23 Pin-jointed bar element 39 16 24 Pin-jointed bar element 40 18 17 20 19 Quadrilateral in-plane element 41 20 19 22 21 Quadrilateral in-plane element 42 22 21 24 23 Quadrilateral in-plane element 43 18 17 26 25 Quadrilateral in-plane element 44 20 19 28 27 Quadrilateral in-plane element 45 22 21 30 29 Quadrilateral in-plane element 46 24 23 32 31 Quadrilateral in-plane element 47 17 19 25 27 Quadrilateral in-plane element 48 18 20 26 28 Quadrilateral in-plane element 49 19 21 27 29 Quadrilateral in-plane element 50 20 22 28 30 Quadrilateral in-plane element 51 21 23 29 31 Quadrilateral in-plane element 52 22 24 30 32 Quadrilateral in-plane element 53 17 25 Pin-jointed bar element 54 18 26 Pin-jointed bar element 55 19 27 Pin-jointed bar element 56 20 28 Pin-jointed bar element 57 21 29 Pin-jointed bar element 58 
59 

22 30 Pin-jointed bar element 23 31 Pin-jointed bar element 60 24 32 Pin-jointed bar element 61 26 25 28 27 Quadrilateral in-plane element 62 28 27 30 29 Quadrilateral in-plane element 63 30 29 32 31 Quadrilateral in-plane element 

Table V. 4 Element topology for swept tailplane 
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CHAPTER VI 

EIGENVALUE ECONOMIZER 
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It may be assumed that flutter of aircraft lifting 

planforms predominantly involves deflections normal to the 

surface. This is a rather drastic but nevertheless useful 

simplification that makes the evaluation of the already 

complex unsteady airloads somewhat more approachable. owing 

to the fact that airfoil sections are much stiffer in the 

chordwise direction, this assumption may be quite apposite. 

There is a growing interest for the extension of 

unsteady theory to include in-plane oscillations. This 

interest seems to be aroused much more for the exploration of 

rotary-wing flutter rather than fixed wing flutter (Ref. 27, 

28 and 29). The motion of a helicopter blade cannot be 

conveniently regarded as consisting of only transverse (out 

of the plane of rotation) modes of oscillations and lead-lag 

(in the plane of rotation) oscillations are not to be 

ignored. 

1 CONDENSATION OF THE EIGENVALUE PROBLEM 

In the course of setting up the flutter equation 

(appendix A), modalization or modal analysis is desirable for 

economical solutions of this complex eigenvalue equation. 

This in turn requires performing a dynamic analysis on the 

structure. 

The. truncation of the degrees of freedom of the flutter 

problem to produce fewer freedoms suggests implementing the 
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"eigenvalue economizer" technique. This technique, sometimes 

referred to as dynamic condensation, retains only a small 

number of the nodal displacements called masters which, for 

our purposes, are the transverse degrees of freedom in the 

z-direction. By convention, the flow is in the positive 

x-direction of the Cartesian coordinate system, the y-axis is 

along the wing (or lifting surface) and the z-axis is out of 

the wing plane (see Fig. V. 1, V. 2, V. 3 and V. 4). The 

remaining inplane degrees of freedom (in the x- and 

y-directions) are called slaves and are removed by condensing 

the mass and stiffness matrices. 

The original eigenvalue problem, 

[ (K) - 
(N)2N1 ]{} 

= {0} 

when partitioned would take the form 

1C Kmm JC Kms JC Mmm ]C 
Mms {} 

m 

I 
Ksm ,L 

Kss ]C 
Msm 

IC 
Mss , ", 

S) 

(VI. 1.2) 

[K] stiffness matrix 

[M] mass or inertia matrix 

(N)2 
eigenvalue 

wN circular natural frequency 

{Z} mode shape 

{0m, MS respectively master and slave mode shapes 
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After the appropriate transformation (Eq. A. 7 and A. 9), 

one can derive the reduced stiffness and mass matrices as 

complex combinations of stiffness and mass matrices 

[ 
Kr 

][ 
Kmm 

][ 
Kms 

]L 
Kss 

]-1 [ 
Ksm 

] 

[ 
Mr 

,=[ 
Mmm 

[Nm][Kss] 
s 

-1 [Ksm] 

[K][K]-1 [Msm] 

+L Kms 
][ 

Kss 
]- r 

Mss 
]L 

Kss J-1 L 
Ksm J 

(Vi. 1.4) 

[ 
Kr ], [ 

Mr 
] 

reduced stiffness and reduced mass 

matrices 

The condensed eigenvalue system can now be stated as 

1 
Kr 

,- (ON )2 [ 
Mr 

]]m {0} (VI. 1.5) 

2 RESULTS 

The quadrilateral and bar elements used to model the two 

types of structures considered permits three transational 

degrees of freedom at each node. With the root nodes fixed, 

the total number of degrees of freedom is 36 for the 

rectangular-planform wing and 72 for the swept tailplane 

which are then condensed to respectively 12 and 24 degrees of 

freedom normal to the planforms. 
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The results of the condensed eigenvalue problem for both 

structural examples are compared with that of the full 

eigenvalue problem. A perusal of table VI. 1 through to table 

vI. 8 highlights the good agreement between the results of the 

two eigenvalue problems for at least the first six master 

modes which is adequate for flutter work (see § V. 3). The 

reduced eigenvalue problem generates spurious modes and 

frequencies but only for much higher modes. Tables VI. 1 

and VI. 5 show also that the lowest mode shapes of typical 

aircraft lifting surfaces are dominated by transverse modes 

of vibration. 

Comparison of computer times needed to get the mode 

shapes with subspace iteration and with eigenvalue economizer 

show that, if six natural vibration modes are required, the 

CPU time is nearly as much as sixteen times higher for 

subspace iteration: 

-- the CPU time of the subspace iteration method applied to 

the non-reduced problem, when six modes are required but 

twelve are computed to achieve good convergence and 

reasonable accuracy on the first six, is one minute and 

fifty five seconds; 

- the CPU time of the eigenvalue economizer technique is 

just seven seconds for twelve computed natural modes. 

The above CPU times are those required by a 

DEC VAX 11/750 for the "rectangular-planform wing" example. 
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The CPU time ratio of sixteen is not surprising because the 

time needed to solve an eigenvalue problem of size N is 

usually approximately proportional to N3. Moreover, the ratio 

of CPU times should in actual fact be higher than sixteen. 

This is because of two reasons: 

-- amongst the lowest selected modes, few modes will be 

inplane modes and as such do not contribute in the 

formulation of the unsteady aerodynamic coefficients; 

- for very large and detailed finite element models of 

realistic structures, subspace iteration method would be 

applied to the "master-and-slaves" condensed problem also. 

It is worth noting that another advantage of reducing 

the problem through eigenvalue condensation is that the space 

necessary for storing frequencies and associated eigenvectors 

is three times less than for the original full problem. 
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Table VI. 1 Natural frequencies of the 

rectangular-planform wing 

As 

0 

Beeten*uL r-ýlenlen . ieý 

---l 

t3. Nnt t]eýrnt 
Me. ". Nns+ent 

H. 17, If, 32.11 and 24 1.290.70"3 81 

ý. s. f. If. 30 and 31 3.031.1Ö 1. 

30,23.17.11,34, Is. 36.1$ and 37 1,036.10,3   

i' 

Mode 
Frequency in Hz 

Full Eigenvalue 
problem economizer 

1 10.78 10.78 
2 28.67 28.67 
3 37.00 
4 69.20 69.20 
5 104.2 104.2 
6 165.9 
7 190.5 190.5 
8 222.9 223.0 
9 273.4 

10 378.0 
11 791.7 685.9 
12 855.7 
13 889.8 
14 1093. 
15 1159. 
16 1233. 
17 1244. 
18 1296. 
19 13 47. 
20 1413. 
21 1600. 
22 1606. 
23 1634. 
24 1775. 
25 2423. 
26 2571. 
27 2700. 
28 2833. 
29 2905. 3083. 
30 3137. 3580. 
31 4305. 4257. 
32 4430. 
33 4451. 
34 4500. 4588. 
35 4652. 4698. 
36 4817. 

ý" 

* Predominantly in-plane modes 
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Table VI. 5 Natural frequencies of swept tailplane 

33 

'N 

I_pt e. uotw 

ýlýwt Il"Mýt 
M. "l.. mans 

11, U. H. ", is, to. 17 ad 14 34.1.16"S 82 

il, II, N. If, N. 17, IS .yH 1I. l. 18'4 .1 

i7. N, 61 WR ll. 9.18'6 .l 

3.. M f f. f. 1f'1 " 

Sf, 1f. 17.11. lf. 
N, 11. ". 7.15'1" 

u, N. 1/, s1, sl, u, f}q/u 11) 

lh le, 31,31,31,14 w is ". 4$5'1 . 

Mode 
Frequency in Hz 

Subspace Eigenvalue 
iteration economizer 

1 35.39 35.39 
2 111.6 
3 118.5 118.6 
4 177.2 177.2 
5 308.0 308.2 
6 355.7 
7 393.1 
8 448.2 448.3 
9 565.0 565.4 

10 575.5 575.9 
11 750.5 751.4 
12 804.7 
13 836.4 842.1 
14 953.4 955.0 
15 983.3 
16 1098. 1097. 
17 1100. 1104. 
18 1354. 
19 1394. 
20 1409. 
21 1481. 1490. 
22 1554. 
23 1700. 
24 1743. 
25 1810. 
26 1907. 
27 2000. 
28 2024. 
29 2153. 
30 2181. 
31 2281. 
32 2324. 
33 2398. 
34 2529. 
35 2641. 
36 2648. 
37 2756. 2736. 
38 2775. 
39 2867. 
40 2997. 
41 3089. 
42 3145. 
43 3219. 
44 3478. 
45 3560. 3567. 

* Predominantly in-plane modes 
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CHAPTER VII 

CONTRIBUTIONS TO FLUTTER SYNTHESIS 
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1 SURVEY OF OTHER PEOPLE'S CONTRIBUTIONS TO FLUTTER 

SYNTHESIS 

Although work on flutter synthesis has been limited when 

compared to other behavioral related synthesis work, the 

processus of weight minimization subjected to flutter speed 

constraints, like any other structural optimization problem, 

is amenable to direct minimization and to methods that 

attempt to satisfy optimality criteria in an indirect 

recursive fashion. 

Prior to 1969, it seems that the research into the 

optimum structural design with dynamic requirements was 

confined to natural frequency constraints, perhaps, awaiting 

the consolidation of the theory of nonstationary aerodynamics 

and further developments in theoretical structural dynamics 

and in the digital computer. One of the earliest contribution 

was made by Turner (Ref. 53,1969) who first employed 

Lagrange multipliers to find the relative proportions of 

selected elements in an aircraft structure to achieve a 

specified flutter speed. 

This was followed two years later by the formulation of 

the equations that give the partial derivatives of the 

flutter velocity and of the frequency with respect to 

structural parameters (Rudisill and Bathia, Ref. 42). These 

authors were then able to incorporate this into a combination 

of direct searches for the minimum weight of a box beam. In 
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this approach, whenever there is a deficiency in the flutter 

speed, a velocity-gradient move is made to step the 

parameters towards the direction of maximum increase in 

flutter speed. A mass-gradient routine moves the design in 

the direction of the maximum reduction in the structural mass 

whenever it is desired to decrease the flutter velocity. The 

velocity-gradient-projection searchs to find a design having 

relatively maximum flutter speed on 'a constant mass 

hyperplane. 

In another attack on the problem, Gwin, McIntosh and 

Taylor employed the rates of changes of the flutter speed 

constraint and information on the rates of changes of the 

objective function as part of a feasible-direction method 

(Ref. 20,1972; followed by Ref. 21,1973). 

In what can be seen as a brute approach equivalent 

to its stress constrained counterpart, the familiar FSD 

concept, Siegel (Ref. 46,1972) presented an intuitive 

resizing algorithm based on the criterion that the strain 

energy per unit volume in every structural component should 

be constant throughout the deformed structure in the 

critical flutter mode. Using the classical linear recurrence 

relation 

xjk+l) Cjk). Xýk)_ (VII. 1.1) 

he devised the redesign factor reproduced below. In our 

notation, it shows that 
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1/2 

V2 
(e 

V) 

(k) 

Cýk) r (VII. 1.2) 
Vk) (eavav)(k) 

Cj redesign factor for jth design variable 

xj jth design variable 

k iteration counter 

Vr required speed 

Vf flutter speed 

(ev) 
strain energy density of jth design variable 

(eavav) 
average of 

(ev) 

7, 
that exceeds 

(eav) 

(eav) 
average of all 

(e 
V) 

In requiring that the design variables do not fall below 

the minimum specified gauges, Siegel performed his recursive 

relation over a selection of elements whose strain energy is 

above the average 
(eav) 

of all 
(ev) 

, thus, permitting only 

incremental structural changes but with the major drawback 

that' some elements may become too large too early in the 

design process. Siegel claims both accuracy which is 

suprising and unprecedented rapid computation which is, very 

probable. 

Rudisill and Bathia complemented their earlier first 
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order derivatives with second order derivatives of the 

flutter velocity (Ref. 43,1972). Their intention was to 

improve the move distance in the velocity-gradient-projection 

search which was performed previously by trial. These authors 

take credit for their finding of analytical expressions for 

first and second flutter parameters derivatives. 

Pines and Newman (Ref. 39,1973) gave a major thrust to 

indirect methods by deriving optimality criteria straight 

from the equations governing the flutter optimization 

problem. Their OC are somewhat akin to that of Siegel and 

hence can be correlated to pseudo-strain-energy densities. 

Their work has shortcomings because of their assumption of 

quasi-steady aerodynamics. 

Haftka and Yates (Ref. 23,1974) started the debate on 

the efficiency of using continuously updated natural modes or 

using the fixed-mode method. The fixed-mode approach is one 

in which the primitive natural modes of the original 

structure are kept unchanged when setting up the generalized 

equation of motion. This assumption is also maintained whilst 

generating the unsteady airloads during the whole design 

process 'despite 'the' fact-that the structure is being 

constantly -resized. - Updating the modes requires the 

systematic adjustment of the natural modes at each structural 

redesign step. An unexpected conclusion was that "the main 

computational penalty in using continually updated natural 

vibration modes in the design process lies in the 

recalculation of the modes*rather than in-the recalculation 
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of the generalized aerodynamic forces". It may be pointed out 

that this, may not be true if inplane degrees of freedom are 

obviated with a dynamic condensation of the free-vibration 

problem. 

The first and may be the only direct comparison of MP 

and 0C approaches to flutter was performed by Haftka and 

Starnes in 1974 (Ref. 22). These authors acknowledge that 

they could not and would not attempt the overwhelming task of 

evaluating all MP techniques. Rather, they limit their study 

to a single MP procedure where the design constraints are 

introduced by means of an interior penalty function in a 

sequential Unconstrained Minimization` Technique. They 

employed the same iterative resizing algorithm (Eq. VII. 1.1 

and VII. 1.2) for both a rigorous OC and the intuitive OC of 

Siegel. But instead of resizing only elements whose strain 

energies are above the average, they included all design 

variables in the resizing scheme- and imposed the 

minimum-gauge value on any that violated the minimum side 

constraints. - Their results show an extremely favorable 

comparison of the rigorous OC with the MP methods. The 

performance of the rigorous OC is unambiguously quicker: more 

than twice as fast for a structure with-a number of six 

design variables; more than eleven times as fast for a 

structure with fifty one design variables. It was also noted 

that intuitive OC are not consistently reliable in terms of 

the nearness to the optimum although they proved. to be useful 
in some cases. 
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In the review and assessment paper of Stroud (Ref. 48, 

1974), the work of all its predecessors have been examined. 

Stroud used a hypothetical two-dimensional space to aid in 

visualizing the gradient techniques and try to give reasons 

of the deficiency of convergence of-each technique. This 

paper is recommended for consultation if a deeper and more 

elaborate discussion is needed. 

Rather than dealing- with a speed ratio (Eq. VII. 1.2) 

McIntosh and Ashley. (Ref. 1) created a very similar iterative 

scheme but based on the artificial damping (see appendix D, 

Eq. D. 27b). When they compared their resizing technique to 

two other slightly more complex OC based techniques (Ref. 45 

and 48), the ratio of CPU times is 1.4 in -favor of 

McIntosh-Ashley's work. 

in summary, several major contributions to optimization 

of structures to attain a required flutter speed have been 

enumerated to indicate the two traditional facets of solution 

methods. Attention is now directed towards the current work 

and its motivation. 

2 MOTIVATIONS OF THIS WORK 

The paper by Ashley and McIntosh (1978) cited above 

seems to exhaust the- list on flutter synthesis work. From 

1978, there appears -to-be, a void*in the contributions to 

flutter synthesis and no current thinking in the area of 

automated aeroelastic design can be identified. However, it 
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cannot be said that flutter synthesis has matured and many 

aspects still need further attention. 

The first point is that the assessment of the adequacy 

and practicality of the techniques has been achieved through 

discussion rather than'by an extensive numerical study. The 

enormity of the aeroelastic constrained problem have probably 

hindered numerical comparisons such as that given in Ref. 5 

for stress and displacement constrained problems. In this 

paper, Belegundu and Arora used three evaluation criteria, 

accuracy, reliability and efficiency, in testing different 

techniques to'different problems so as to reach some kind of 

global judgment on the "best" method. As the ratio of running 

times of one technique written by two programmers could be as 

high as 13/1 (see bibliography on finite element methods, 

book by Cook, page 401), the task of direct comparisons of 

flutter optimization techniques would need the programming of 

all techniques available by the same person and their running 

on the same machine for the same wide spectrum of structures. 

This task is obviously considered to be onerous to be 

undertaken in this modest work. We have in mind a more 

limited perception in that we shall select the method that is 

most suitable for our purposes. We shall, then, attempt to 

give an objective assessment on its validity and 

applicability and try to identify any possible pitfalls on 

its implementation as a practical -means of- optimizing 

structures to fulfill aeroelastic requirements. 

The second point is that so much discussion. has centered 
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on fixed-versus-updated modes in the published literature 

that we are impelled to single out this specific area as the 

one deserving further investigation in this treatise. 

Considering not only the analytical but also the 

computational difficulties, all the aforementioned 

publications, apart from those by Haftka, et al., have been 

contempted with a fixed-mode approach and their algorithms 

are solely leaning on not updating the modes. 

A problem may, however, be encountered-with a fixed mode 

approach to the point where refinements to this matter can be 

regarded as the necessary requirements to ensure consistently 

reliable results with automated flutter design. 

A fixed mode approach suffers from a major drawback when 

viewed from a design feasibility angle: it often happens that 

seemingly optimum designs obtained by such an approach may 

turn out to be violating the minimum imposed flutter speed. 

This has been mentioned by different authors and, for 

instance, as much as a 7% intrusion into the unstable region 

is reported in Ref. 48. The required flutter speed should be 

at least 1.2 (for commercial aircrafts) or 1.15 (for military 

aircrafts) the design speed as imposed by the aviation 

authorities. With a 7% error, the flutter margins would be 

reduced to 1.13 and 1.08 respectively. Bearing in mind any 

possible errors introduced by the theoretical idealization, 

this 'violation of the required flutter speed may not be 

acceptable for safety reasons and might be rejected by any 

certification test'. if this is the- case', permanent 



98 

remodalization based on the vibration modes of the current 

configuration should be of paramount necessity. The authors 

referenced herein made suggestions on two possible ways to 

may be overcome the flaws of "fixed-mode" method and the 

computational burdens of "continous-mode-updating" method: 

- use of a large number of the original modes to better 

describe the changing structure. 

- occasional recalculation of the mode shapes (called 

"periodically-updated-mode" hereafter). 

Inasmuch as the order of the problem increases with the 

number of modes, the resources required to execute flutter 

solutions will be much higher if a large number of original 

modes is utilized. Moreover, the degree of improvement to the 

fixed-mode method made possible with an increase in the 

number of modes has yet to be proven. Anyhow, this formula 

would not apply if' only transverse modes are used, higher 

than six modes cannot be expected to ameliorate sensibly the 

idealization of the deformed structure (see chapter VI, 

tables VI. 4 and VI. 8). 

On the other hand, the "periodically; -updated-modes" 

method has been advocated but so far never applied. Questions 

which must be addressed are how rarely it must be performed 

to be attractive in" terms of CPU times and how often to 

reduce to acceptable levels the percentage by which flutter 

speed drifts into the unfeasible region. 
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The second step of this research is motivated by the 

formulation of the dual aeroelastic problem. The progressive 

estimation of lower bounds on the feasible weight provided by 

the dual problem is a powerful monitoring tool and a formal 

convergence test (Ref. 2). In our opinion, as the problem 

converges, dual monitoring could have other beneficial uses 

specific to flutter synthesis in particular: 

-- use of fixed modes until a substantial reduction is 

achieved in the dual gap where the strategy is changed to 

mode updating; 

-- use of a small number of natural vibration modes and 

increase this number as the dual gap decreases. 

If dual bounding can be used to trigger the switching to 

"mode updating" at minimal computational cost, the solution 

will be an improvement on what have been accepted in two 

respects: first, satisfaction of the minimum flutter speed as 

opposed to a strict fixed-mode approach and second, no 

computational penalty when compared to a continuous modal 

analysis. 

3 SELECTION OF AN ALGORITHM' 

A key feature for a selection is that the algorithm 

should operate in the feasible design space in order to be 

complemented by a dual monitoring scheme. Another tacit 
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understanding is that the dual problem should be extracting 

most if not all of its information from the primal problem so 

that little extra-computational effort would be needed. 

Recalling the short survey of S VII. 1, the algorithm of 

Ref. 1 appears to have the least computing'run times amid all 

other primal algorithms. The reasons for this are not only 

because it is an OC based algorithm but also because stable 

flutter modes are pruned down from local informations on the 

artificial dampings in lieu of full V-g solutions as demanded 

by some of the other algorithms. 

Mcintosh-Ashley redesign 

Eq. D. 27b) reads 

(k) 

(k) 
(v) 
e 

Ci (k) 

Ceav, 

el 

Cj redesign factor 

g artificial damping 

factor 

C1 + g(k)Je2 

el, e2 resizing exponents 

(see appendix D, 

(VII. 3.1) 

(eav) 
average of all 

(ev) 

7 
for active design variables 

The pseudo-energy density terms, (ev) 
, are required to 

have, at the optimum, the same value for the active set of 

design variables 
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(ev) 
- p11. 

Re (X)H"3XF1"{q} -1 
JJJ 

for bar elements 

or 

(ev) 

p1Ai 
Re (X)l-, (F]. 

(q) 
ij( ax i 

for quadrilateral or triangular elements 

(VII. 3.2) 

pj density of the structural material of jth design 

variable 

lj total length of all the elements composing the jth 

design variable 

Aj total area of all the elements composing the jth 

design variable 

{)'}H obtained from adjoint flutter equation, viz., 

[F]T{Xc} _ (0) 

(Xc) adjoint aeroelastic eigenvector 

With reference to proceeding in the feasible design 

space, the factor (l+g) in Eq. VII. 3.1 ensures that the 

design variables are raised whenever the artificial damping 

is positive. 

4 DUAL MONITORING 

A dual aeroelastic. problem designed specifically to 

bound the primal mass is shown in appendix F (Eq. F. 8) to 

have the following form 
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N 

1 
maximize m0 +E mi xý + Ag 

mj + A"a <0 

subject to 
and to 

A>0 

ei r= Ja (VII. 4.1) 

where 

A Lagrange multiplier 

Ja set of indices representing the active design 

variables 

The derivatives of the artificial damping in Eq. VII. 4.1 

obey the following equation (see appendix E, Eq. 43b) 

1 CL - 
D 

3-R3 + 
T'3 

+ V'I41 - Vv*I51 x 

L- 
2-R + 2] - 

ý"I2 

] 

D. 
W3. 

R3 _ . I3 + VýR41 - Vv. R51 x 

1 
-I17 + ý"R2ý + W2ýI2. 

j-1,., N 

(vII. 4.2) 
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with 

w circular frequency of harmonic oscillation 

b reference length of the lifting surface 

V flight velocity 

v reduced frequency as defined in Eq. A. 26 

and 

01 
D 

(W3 
"R3 + 

W3"I3 
+ 70I41 - Vv "I51 

[_II3] 

2 ia b 2b 1 ( 
T + 

W3 
R3 " - 

W3 
13 - + V"R41 " Vv R51 " " 

W2 
R3 

(VII. 4.3) 

The rest of the terms - R1,, 111R2, I2j ' R3,131 R41, 
33 

1411 R51 and 1 51 - are given respectively by Eq. E. 35, E. 36, 

E. 37a, E. 37b, E. 41a, E. 41b, E. 42a and E. 42b. These terms 

needed for evaluating Eq. VII. 4.2 and VII. 4.3 and the dual 

bound may look too complex to be obtained at minimal cost. 

However, most, if not all, primal flutter algorithms already 

provide solutions of the aeroelastic eigenvector {q} and the 

adjoint aeroelastic eigenvector (Xc) which is required in the 

OC formulation or is necessary to eliminate the troublesome 

derivatives of {q} for gradient methods. Therefore, a closer 

look at these terms shows that the inclusion of the dual 

bounding involves: 

- the extra estimation of the derivatives of the generalized 

aerodynamic matrix with respect to the reduced frequency; 
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- few multiplications of small order matrices by the 

aeroelastic eigenvector (q) and by the adjoint aeroelastic 
H 

eigenvector (X) . 

A redeeming feature is that [Q] is rendered invariant of 

the design variables by the fixed-mode method. Therefore, [Q] 

can be evaluated for few values of v and estimated by 

interpolation for any other values during the reduced 

frequency scanning. The same can be applied to R(Q to 

efficiently evaluate 
a. 

Finally, the dual problem expressed above for the 

purpose of detecting the convergence is not just convenient 

for our work. It can be used in conjunction with any primal 

problem operating in the feasible design space. 

5 RESULTS 

The algorithm was tested for both flutter-free 

and flutter prone lifting surfaces. The results are 

summarized in the tables and figures at the end of this 

chapter. 

Beginning with table VII. 1, the case of the 

rectangular-planform wing, we observe that with a required 

flutter speed of 250 m/s, the program was able to reduce the 

weight by 64.59 kg. The complete flutter solutions of the 



105 

initial design are sketched in Fig. VII. 1. The flutter 

solutions of the final design were also carried out. The 

flutter mode number two remained the critical branch for the 

final design and is sketched in Fig. VII. 1. 

The iteration history (table VII. 2) shows the stability 

of the active-passive set of design variables. In Fig. VII. 2, 

the favorable monotonic weight reduction is enhanced. It can 

be seen that in the very first two iterations about 40% of 

the structural weight is removed. 

Solutions of the dual -mass were obtained with a hand 

calculator and are also reproduced in Fig. VII. 2. The 

progressive reduction in the duality gap demonstrates the 

attractiveness of such a technique for augmenting the 

accuracy of flutter synthesis. 

In the case of the swept tailplane, the base design 

has a slight hump mode, branch 6 in Fig. VII. 3, which is 

greatly exaggerated to highlight the hump. This mode 

exhibits a positive value of g of 0.00065. This trivial 

value is assumed not to be critical by certification 

standards. We, nevertheless, ran the program for the swept 

tailplane to create freedom from positive artificial damping. 

The optimization routine succeeded in moving the hump 

mode within the boundaries of the stable region. The 

design progress for the swept tailplane is shown in 

table VII. 3. 
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6 POTENTIAL PROBLEM OF THE ROUTINE 

From many other different settings of "design variables" 

identities, the optimization routine was able to consistently 

converge to the same final active-passive set. However, one 

peculiar case which exhibited a non-convergent numerical 

performance was identified. This is discussed since it 

illustrates a potential problem of the procedure. Artificial 

damping at velocities somewhat above the divergence speed is 

not defined for an unstable mode which exhibits divergence 

(see Fig. II. 1). If the first instability to appear is a 

divergence rather than flutter, the recursive relation will 

not be able to extract information on the damping parameter 

above this speed and will consequently reach a cul-de-sac. 

This problem will arise for any identical algorithm that 

works with the damping parameter. 

Strangely, this has not been noted elsewhere in the 

literature, which may suggest that other authors are 

implicitly accepting that their algorithms are solely for 

flutter instabilities. It is our opinion that it would be 

utterly absurd to independently optimize for flutter and for 

static divergence. These two closely connected aeroelastic 

phenomena must be embodied in one single aeroelastic 

optimization process. 

As a means of circumventing the numerical impasse, it is 

proposed that, whenever a design point is identified as 

having a divergence speed lower than the minimum operational 
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speed, the recursive relation used in our program 

(Eq. VII. 3.1) is superseded by Eq. VII. 1.2. Another solution 

is to adopt Eq. VII. 1.2 from the outset. 
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Artificial 
damping, g 

base design 

----- optimum design 

0. 

o. 

0. 

-0. i 

-o. 

-0. 

-0. 

So 

lýý 
12 

flutter speed of base design 

flutter speed of optimum design Speed of 
flight, 

60.96 121.92 182.88 ui., ýt V in m/s 

_ý 
5 _,, -5 

3,4 

Altitude 1372 " 

Fig. VII. 1 Full "V-g" solutions of the initial design 

and critical "V-g" branch of the final design 
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Mass in kg 

teration number 

0.05 Convergence 0! 025 cut-off parameter, c 

Relative CPU time 

40.9$ l. ý9% Reduction in structural mass 

Altitude, 1372 " 

ýy 
Y 

12 

Fig. VII. 2 Primal and dual mass (rectangular- lanform wing) 
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Artificial 
damping, g 

0. 

o. 

0. 

-0. 

-o, 

-o, 

-0 

31 

A titud. t 3000   

ý; 

e 

Speed of 
flight, 

V in m/s 

Fig. VII. 3 Full "V-g" solutions for the swept tailplane 
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Design u. m. nt v. riabl. linkages 

1 

2 

3 

5 

6 

7 

e 

9 
10 

11 

12 

13 

14 

15 

16 

17 

is 

19 

20 

21 

22 

23 

21 

25 

26 

27 

26 

29 

30 

31 

32 

33 

31 

2 

S and 6 

7 and 6 

9 and 10 

11 and 12 

13 and 14 

1S and 16 

17 and 16 

19 

20 

21 

22 

23 

24 

25 

26 and 27 

26 and 29 

30 and 31 

32 and 33 

31 and 35 

36 and 37 

36 and 39 

40 

41 

42 

43 

44 

15 

46 

47 and 45 

49 and SO 

51 and 52 

53 and S4 

55 and 56 

S7 aid 59 

59 and 60 

61 

62 

63 

EASE DF51QI 7wN S OPTIM. l1 DSSIGN 

Starting 
dissension 

Minimum 
dimension 

final 
dimension 

0.90.40 3 (Pat. ) 0.90ß0'3 0.90$0-3 (pas. ) 

0.9040-3 (pss. ) 0.90.10'3 0.90s10'3 (pas. ) 

0.90.10 73 (pu. ) 0.90.1073 0.90,10'3 (pas. ) 

0.90x10-3 (pss. ) 0.9040"3 0.90.10 3 (pas. ) 

0.70K1Ö 3 (pas. ) 0.70,50'3 0.70,10'3 (pss. ) 

0.7046-3 (pas. ) 0.70.10'3 0.70.1073 (pss. ) 

0.7040'3 (pss. ) 0.704073 0.7040'3 (pas. ) 

34.1044 (pas. ) 34.10$0"6 31.1040"6 (Pee. ) 

31.10406 (pss. ) 34.1040"6 31.10810- pas. ) 

31.1040-4 (pss. ) 34.10.10 6 34.10 104 (pas. ) 

31.1040-6 (pas. ) 31.10.10"6 31.1040"6 (pas. ) 

0.5040-3 (pas. ) 0.5040'3 0.50.10'3 (pas. ) 

0.5040-3 (pss. ) 0.50.10'3 0.50x10-3 (pss. ) 

O. S0.30'3 (ps. ) O. SOa10'1 0.50.10'3 (pas. ) 

0.5040'3 (pss. ) 0.5040 0.5040'3 (pas. ) 

0.50.10'3 (pas. ) 0.50x10'1 0.5040'3 (pas. ) 

4.50x10"3 (pas. ) 0. SOa10'3 0.50»10'3 (pas. ) 

0.50x10'3 (pas. ) O. S0410'3 0.50.0 3 (pas. ) 

0.70x10'3 (pas. ) 0.70.10'3 0.70.10'3 (pss. ) 

0.70810 (pss. ) 0.7040'3 0.7040'3 (pas. ) 

0.7040'3 (pas. ) 0.70.16-3 0.70x10'3 (ps. ) 

25.4040 (pas. ) 25.1040'6 25.1040,4 (pss. ) 

25.10406 (pas. ) 25.40.10'5 25.10.10'4 (pas. ) 

25.40406 (pss. ) 25.4040'6 25.10404 (pas. ) 

25.10.10-4 (ps. ) 25.1040 4 25.4040-6 (pss. ) 

0. S0K10'3 (Pat. ) 0. S0K10'3 1.5140'3 (act. ) 

0. S0s10'3 (pas. ) 0.50x10 3 0.50.10'3 (pas. ) 

O. 5040'3 (pa. ) 0.50x10 3 O. S0410'3 (Pas. ) 

12.30.10'3 (aet. ) 0.50.10"3 0.50.10'3 (pas. ) 

12.30s10'3 (act. ) 0.50.10'3 0.50.10 (pss. ) 

12.304073 tact. ) 0.5040'3 0.5040 (pas. ) 

12.30x10-3 (set. ) 0.50.10'3 0.50x10'3 (pss. ) 

0.70x10'3 (pa. ) 0.70$03 0.7040'3 (pas. ) 

0.70.10'3 (pss. ) 0.704071 0.7046"' (pss. ) 

0.7040'3 (pss. ) 0.70.10'3 0.7040'1 (pas. ) 

25.90'1O (pas. ) 25.90x30'4 25.90.10'4 (pas. ) 

25.9040'6 (Pas. ) 25.9040'4 25.90.10'4 1ps. ) 

25.90404 (pes. ) 25.904ß'S 25.90«10'6 (ps. ) 

25.90M1ß'6 (ps. ) 25.90«10,4 15.90.10'6 (pss. ) 

0.50.10'3 (pas. ) 0.50.10'3 2.5640'1 fact. ) 

0.50+10-3 (pas. ) 5.5040-3 4.50+10'3 (W") 

0.50a10'3 (pas. ) 0.50.10'3 J ß. 50d0'3 Ips. ) 

Mesh man 

44.76 kg 77.12 kg 

1 

a 

.2 

a 

.2 

a 

Table VII. 3 Design progress of the swept tailplane 
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CHECKS AND DEBUGGING 
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Because the flutter optimization program is extremely 

complex, a systematic programme of error checking and 

"debugging" has been followed. This is becoming an essential 

aspect of developing usable software and it is the author's 

belief that modern computer-based PhD's should produce this 

type of software. 

1 FINITE ELEMENTS 

Mass and stiffness matrices of individual elements and 

of simple structures were printed and checked with those 

obtained by a conventional hand calculator. 

2 EIGENVALUE ECONOMIZER 

Excellent correlation between the reduced and full 

"free-vibration eigenvalue" problems has been established in 

chapter VI (see tables VI. 1 up to VI. 8). 

3 SURFACE SPLINES 

Satisfactory agreement between plots of mode shapes at 

points on structural grid and on aerodynamic grids were 

observed. 

4 UNSTEADY AIRLOADS 

After the modifications were performed on the "unsteady 



116 

aerodynamic" module, the test problems of Ref. 11 were run to 

verify that no bugs were introduced as a result of our 

repeated intrusion into the source code. 

5 FLUTTER SOLUTIONS 

Difficulties arouse in the debugging phase- of this 

analysis as we were unable to duplicate other people's 

flutter speed predictions apart from that of Ref. 1 because 

not all parameters about the structural member sizes and 

flight conditions were produced by the authors to permit 

comparison. 

Fig. VIIi. l displays the "V-g" plots obtained by our 

program for the rectangular-planform wing for the same flight 

conditions and structural mass distribution as that of 

Ref. 1. A flutter point is produced at 237 m/s and a 

divergence point at 250m/s. 

In an attempt to 

module, resort was made 

by courtesy of Herr 

unstable modes of our 

reproduced in one single 

enhance the comparisons. 

further validate this major analysis 

to a NASTRAN run which was performed 

D. Sensburg in MBB at Munich. All the 

program, NASTRAN and Ref. 1 are 

figure (Fig. VIII. 2) in an effort to 

In Ref. 1, only the critical flutter mode is given and 

its speed compares favorably with that obtained here (2.8% 

error). Whilst there is just a slight difference between 
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NASTRAN and our divergence mode, it is disturbing to observe 

a much higher difference of 15.6% on the flutter speeds. This 

has been a source of consternation and, in seeking for an 

explanation, it was noted that NASTRAN employs only three 

modes in the modal analysis. Whilst It is tempting to accept 

this as an explanation, it seems unlikely that this on its 

own can justify the large flutter prediction gap. We, 

therefore, checked also the free-vibration eigensolutions - 

the only preliminary results provided in the NASTRAN outputs 

for consistency with our work. As far as plots of 

eigenvectors are concerned, the classification and the shape 

of the modes were the same as the one given by our program. 

There were, however, unusually large discrepancies in the 

comparison of the eigenvalues (see table VIII. 1). Our 

eigenvalues have been confirmed by two other finite-element 

packages, LUSAS and PAFEC, for the rectangular-planform wing, 

swept tailplane as well as for many other types of 

structures. The apparent errors of NASTRAN should not remain 

unexplained and consultation of the NASTRAN theoretical 

manual (Ref. 32,5 5) suggests that they can be attributed to 

the non-compatibility of the NASTRAN rod elements and the 

NASTRAN quadrilateral elements. 

6 DERIVATIVES 

The results of the derivatives of the artificial damping 

and of the frequency agree reasonably well with those 

calculated using a finite-difference scheme. 
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Artificial 
damping, g 

o. 

o. 

o. 

-o. 

-0. 

-0. 

-o, 

-0, 

Rectangular-plantor  wing 

U 

~ýýyr 

Element Element 
No. dimensions 

1.2.3,7,8.9.16,17,16.22,23 and 24 1.290810-3  2 

4. S. 6,19,20 and 21 2.032.10-3 2 

10,11,12,13,14,15.25,26 and 27 1.016.. 10-3 a 

Altitude: 1372 " 

Fig. VIII. i Full "V-g" plots of the rectan ular- lanform 

wing as produced by our 
_program 
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Artificial 
damping, g 

flutter mode given by our program 
-"- divergence mode given by our program 0.2 
----- McIntosh-Ashley's flutter mode 
""""""""" NASTRAN flutter mode 
- """ - NASTRAN divergence mode 

ýS N 

Speed of 
flight, 

60.96 121.92 182.88 V in m/s 

iý 

_o. \. i 

-0- 
Rectangular"planfora ring 

Llaaant Element 
No. dimensions 

2,3,7. E, 9.16.17,16,22,23 and 24 1.290x10-3 U2 

4.5,6,29,20 and 21 2.032,10,3 a 

10.11,12,13,14,15,25,26 and 27 1.016.10-3   

\yr 
Altitud. i 1372   

13 

Fig. VIII. 2 Critical modes as given by Ref. 1, NASTRAN 

and our program for the rectangular-planform wing 
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Table VIII. 1 Comparison of natural frequencies as obtained 

by our program, LUSAS and by NASTRAN 

Mode 
Natural frequencies in Hz 

our 
program 

LUSAS+ NASTRAN 

1 10.78 10.84 6.42 

2 28.67 26.86 25.03 

3 37.00* 37.14* 33.78* 

4 69.20 71.94 38.31 

5 104.20 100.73 

Neunqul. t-plantote ring 

L1e. ent sleuent 
No. d3oensions 

1,2.1,7.6,9, U. 17,11,22,23 and 24 1.290. u10,1 .l 

4.1.6.19,20 and 21 2.012x10-1 a 
10,11.12.11,14,15,25,26 and 27 1.016.10,1 9 

I 

12 

* Inplane mode 
+ Developed by: Finite Element Analysis Ltd. 25 Holborn 

viaduct. London EC1A 2BP. England 



CHAPTER IX 

CONCLUSIONS AND OUTLOOK 
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1 PROGRAM UPDATES 

The program represents a further step towards the 

development of a flutter synthesis package. Since the variety 

of applications and the design environment of this program 

have been cited elsewhere in the main text, it is appropriate 

at this stage to indicate its limits. Some guidelines for 

further extensions or modifications are presented in this 

section. 

The FINEL (finite elements package) version used in the 

development of our program does not offer a bewildering 

choice of finite elements. In the course of the work, 

elementary linear elements such as pin-jointed element (bar), 

quadrilateral in-plane element (membrane) or triangular 

in-plane element (membrane) were added to the very limited 

FINEL element library. Further expansions of the 

finite-element library are of paramount importance. It is 

also hoped that FINEL will be extended to the idealization of 

composite materials thereby leading to the possibility of 

broadening the aeroelastic capability of the program to 

static divergence. 

As with stress constrained problems, it may be 

beneficial to augment the program with a feature which allows 

designing first with an intuitive flutter criterion to within 

the vicinity of the optimum and then refine the solution with 

a stricter technique. Although this opportunity has not been 
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exploited, we would expect it to bring in realistic 

improvements to the overall program performance. 

Finally, in the following, we make passing reference to 

necessary changes to orient the program towards general use: 

-- data dumped in the Data Base should be saved so that 

restarts of jobs could be made possible; 

-- drastic improvements of the format presentation and 

arrangement of the input data should be made; 

-- a more elaborate data pre-processor than the one already 

built in must be provided to carry out extensive checks of 

the data so as to diagnose beforehand potential 

unscheduled program stops. 

2 CONCLUSIONS 

The time spent in developing the program exacerbated the 

quantity and diversity of the results we would have hoped to 

conclusively achieve in the specific field of flutter 

synthesis. One area of lengthy activity and preparations that 

we could not fully exploit is the dual bounding technique. 

The question of how substantial is the contribution of such a 

method towards the efficiency of flutter optimization should 

not be left unanswered. To this end, the first subsequent 

work on the program should be to add a straightforward and 

simple routine for automatically bounding the weight and 
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another routine that interpolates [Q) and its derivatives 

relatively to v for any values of v when the fixed-mode 

method is used. CPU times should be then made available 

comparing the fixed-mode method with dual bounding and the 

continuous-mode-updating method. 

It has been one of the conclusions of other 

investigators that CPU times tend to corroborate OC as a 

technique well suited to flutter constrained problems. 

Extreme caution should be exercised, however, towards any 

premature conclusion about their reliability. It must be said 

that even MP techniques experience non-convergence for 

certain types of flutter problems (Ref. 48). With all the 

risks involved in flutter synthesis, it is our point of view 

that dual bounding must be incorporated regardless whether a 

fixed-mode or an updated-mode method is employed. On the top 

of the advantages that are specific to flutter synthesis, 

dual bounding provides a proper management of the resizing 

process and deals with the elusive nature of automated 

flutter design in probably the most satisfactory available 

way. 
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The flutter equation which is used throughout the main 

text and appendices differs slightly in its form from those 

used by others. Therefore, a decision was taken to proceed in 

this appendix by showing how this generalized equation of 

motion is derived so that any further work on this equation 

does not require elaborate explanation. The terms utilized in 

this equation are unequivocally defined in this appendix. 

In formulating the flutter equation of a system, the 

extraordinarly valuable principle of Lagrange's equation and 

concept of generalized coordinates are often used. A detailed 

description of these is left to classical books in mechanics. 

It is, however, of interest to recall that the Lagrangian 

function is given by 

L=T-U (A. 1) 

where T is the system kinetic energy and np is the system 

potential energy. We are concerned here with the case where 

elastic stiffness is predominant and we will refer to III, as 

strain energy. 

For a non-conservative discrete system of order n, the 

Lagrangian differential equations of motion take the form 

dt tagiJ lagiJ + laq. ) = 4i (A. 2) 

qi ith generalized coordinate 

time differentiation, 
aqi 

qi 
at 
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Qi ith generalized aerodynamic force 

R dissipation energy (structural damping) 

For structures modelled by finite elements with a finite 

number of degrees of freedom, the different energy terms can 

be expressed as follows 

T 
2{Ü}T[MJ{Ü} 

np = 2{U}T[K]{U} 

R= 2{Ü}T[C]{U} 

[M] mass or inertia matrix of order rxr 

[K] stiffness matrix of order rxr 

[C] structural damping matrix of order rxr 

{U} _ [U(x, y, z, t)} 

(A. 3a) 

(A. 3b) 

{U} is the vector of nodal displacements and depends on 

the spatial cartesian coordinates x, y and z of the nodes of 

the finite element mesh and on the time t. {U} describes the 

r discret freedoms of the system. 

The dissipation through structural damping can be 

rewritten by entering the expression of the damping matrix 

[C] (see appendix B, Eq. B. 1) into Eq. A. 3b. Hence, 

R1W (ü}T[K]{U} (A. 3c) 

We now proceed to the special case of flutter of 

aircraft lifting surfaces. If the x- and y-axis define the 
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plane of the lifting surface and the z-axis is the 

out-of-plane axis, the structure can be reasonably assumed to 

vibrate principally in the direction of the z-axis. This is 

tantamount to retaining only transverse degrees of freedom 

(displacement parallel to the z-axis). The static 

force-displacement equations, [K]JU}={P}, can be used to 

derive the relationship between the out-of-plane and in-plane 

degrees of freedom. After assuming that no loads are applied 

to the in-plane degrees of freedom and after a proper 

separation and rearrangement of the degrees of freedom, these 

equations become 

} C 
Kmm 

]I[K 
ms 

l (w} IN 
J 

(A. 4) 

{u} [K] ýC Kss 
] t(v)fl {0} 

C Kmm order -pxp 

Ksm ] 
order qxp 

C Kms ] 
order pxq; 

C Kms 1sC Ksm 

C Kss 1 
order qxq 

{w} vector of p nodal displacements in the z-direction; 

out-of-plane or transverse displacements of the 

nodes of the structure 

{u} 
vector of q nodal displacements in the x- and {v} 

y-direction (not necessarily separated); in-plane 

displacements of the nodes of the structure 

{P} load vector; order p 
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r=p+q 

p number of out-of-plane degrees of freedom 

q number of in-plane degrees of freedom (not related to 

and not to be confused with the generalized 

coordinate qi) 

q should be twice p; however, this is not always valid as the 

ratio of m and p is dependent on the number and directions of 

the restraints imposed on the structure. 

From the lower partition of Eq. A. 4, we find 

[ Ksm ](wl 
+[ Kss 1 

{v} (0) (A. 5) 

leading to 

{u} -1 t{v} --I Kss ]I Ksm ] {w} (A. 6 ) 

Eq. A. 6 can be used to yield the following equation 

giving a coordinate transformation relationship 

01 14 
{w} lil 

{U} _---_--------- {w} s [Tj {w} 

{u} 
{v} Kss 

]_l[ 
Ksm 

(A. 7) 

1J identity matrix of order pxp 

[T] transformation matrix; order rxp 
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With the transformation matrix shown in Eq. A. 7, the 

energy terms (Eq. A. 3a and A. 3c) can be restated as 
14 

T= 
2{w}TIT]TIM] IT]{w} 

H= 
2{w}TIT]T[K][T]{w} (A. 8) 

R=22 {w}TIT]T(K)[T]{w} 

Let 

Mr 1= (T)T[M] [T] 
(A. 9) 

C Kr ]= (T]T[K] (T] 

[ 
Kr Mr 

] 
reduced stiffness and reduced mass 

matrices; order pxp 

The new equations for the system kinetic, potential and 

dissipation energies are therefore 

T=2 {w} T[ Mr 
] {w} 

HP .. {w}T [ 
Kr 

] {w} (A. 10) 

R29 {w}T[ Kr 
] {w} 

Any general vibratory motion of an elastic system having 

small deflections from an equilibrium configuration can be 

expressed as a linear combination of the various mode shapes 

(natural modes of undamped free vibrations). This is the 

familiar procedure of modal superposition. Thus, the 

transverse displacement field of the structure can be given 
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by the following 

wl ý1 Z1 

w2 Z2 C2 

wp Zp 
m1 

cP 
m2 % 

q1 

C2 q2 

mp qP 

P 
{w} =b E1 {Z}mlgi = b[ Cm ]{q) 

{w(x, y, z, t)) = b. Icm(x, 
y, z)I. {q(t)} 

(A. 11) 

b typical (reference) length of the lifting planform 

{Z}m shape of ith out-of-plane mode of oscillation of 
i 

the structure (ith out-of-plane mode shape) 

pxp modal matrix whose columns are the 

out-of-plane mode shapes 

{q} weighting vector of order p or vector of modal 

amplitudes 

The typical length by which the second member of 

Eq. A. 11 is multiplied is there simply to render the 

weighting vector (q) non-dimensional. It may not be 

superfluous as well to note that the amplitudes of the 

components of the weighting vector express how each natural 

mode is contributing in appropriate proportion in the 

vibration motion. 

The basic concept behind the use of mode superposition 
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is to create a new set of uncoupled equations. For the 

specific case of flutter, this concept of transforming the 

problem into a set of uncoupled single-degree-of-freedom 

systems cannot be easily applied because of the aerodynamic 

matrix. However, the benefit we will gain for carrying out 

this linear transformation is to artificially reduce the size 

of physical degrees of freedom and hence the number of the 

equations. 

For high-order systems such as aircraft structures, it 

is not necessary nor practical to retain all the mode shapes. 

The modal matrix can be truncated and the resulting limited 

number of eigenvectors - corresponding with the lowest 

natural frequencies - can approximate the vibrating 

structure with sufficient precision. This leads to 

reformulating Eq. A. 11 into 

W1 

W2 

w3 b 

w P 

C2 ý2 

C3 Z3 

p m1 p m2 

C2 

ý... ý 
p3 

mit 

ql 

q2 

qn 

with p»n 

n 
{w} =bE {Q 

mgi = b[ Sm ]{q} (A. 12) 
1l 

where in this case 
[ Cm ] and {q} are respectively of order 

pxn and n because only n mode shapes are kept. 
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Unlike the components of {U} and {w} which have physical 

meanings such as rotations or translations, the components of 

{q} are abstract quantities and hence are called generalized 

displacements or coordinates. 

The expression for the Lagrangian function becomes 

(see Eq. A. 1, A10 and A. 12) 

L= 
Zb2{q}T[ C. ]T[ 

Mr 
][Z. ]((1} 

2b2 {q}T 
l cm IT 

L Kr 1[ Cm ]{q} 

(A. 13) 

In a similar way, the dissipation through structural 

damping can be found 

Eq. A. 10 
R2w b2ý9}T ]T[ 

Kr 
mti E4. A. 12 

(A. 14) 

Because of the assumption of out-of-plane vibrations, 

the mode shapes are obtained by solving the reduced free 

vibration problem as stated below 

I 
Kr 

]- (wN)2 [ 
Mr Mm = {0} 

(cN)2 
eigenvalue 

wN circular natural frequency 

I 
Kr 

] 
and 

[ 
Mr 

] 
as above 

(A. 15) 
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{C}m out-of-plane mode shape of the structure 

The eigenvectors [Qm are orthogonal with respect to the 

real symmetric reduced stiffness and inertia matrices. They 

can be normalized with respect to the inertia matrix so that 

10 
mi 

[ 
Mr 

11CIm. Sid 
i 

'o l, ] = 1,... 1P (A. 16) 

where 

1 if i=j 

0 if i#j 

Sij Kronecker delta 

(A. 17) 

it is also evident from Eq. A. 15 that as a consequence of 

Eq. A. 16 

]fQ 
- 

(Ni)26ij Idd 1,..., P 
J 

(A. 18) 

(Ni)2 ith eigenvalue corresponding to ith out-of-plane 

mode shape 

With the use of the modal matrix instead of the mode 

shapes, Eq. A. 16 and A. 18 appear as 

Eq. A. 16 T(r 

m1L Mr 
IL c] =ý 1J 

Eq. A. 17 *T2 (A. 19) 

Eq. A. 18 LmL Kr JL 
Cm WN 
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1 identity matrix; in this context, it is of order 

nxn if M is of order pxn 

r 
wN 

J 
spectral matrix; Diagonal matrix of squared 

natural frequencies or eigenvalues; order nxn 

The final expression of the Lagrangian function would 

show 

Eq. A. 13 
aL- 2b2{q}T[ 1{q} - 2b2{q}Tr wN 

j{q} 

Eq. A. 19 

(A. 20) 

Similarly, for the dissipation energy 

Eq. A. 14 
R=2w b2 {q}T [ 

WN 
] {q} (A. 21) 

Eq. A. 19 

Finally, differentiations of Eq. A. 20 and A. 21 according to 

Eq. A. 2 yields 

ll 
1 

ýJ 
{q} + 

['J{q1 
+ w[ WN 

J {q})b2 = (Q} (A. 22) 

with (Q} being the vector that groups all n generalized 

aerodynamic forces (Eq. A. 2). 

Next, we turn our attention to the Qi terms in Eq. A. 2 

or {Q} in Eq. A. 22 which are forces of aerodynamic origin 

caused by the perturbation of the flow surrounding the 

fluttering structure. Altogether, these forces are the source 

of inertia, damping and stiffness airloads. Inertia forces 
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are significant only for incompressible flow, otherwise they 

are generally negligibly small, and hence, are ignored. 

Unlike mass and stiffness matrices that possess properties of 

symmetry, sparseness and "bandiness", aerodynamic matrices 

are complex - due to phase lags between motions and 

forces -, non-symmetric and fully populated. Owing to this 

fact, pre- and post-multiplication by the mode shapes to 

perform modal analysis (referred to above as mode 

superposition) is rather cumbersome in terms of computer 

storage and handling. These forces are, therefore, obtained 

directly as generalized airloads which, by definition, can be 

evaluated from the expression of virtual work (appendix C). 

For motion other than steady-state harmonic, there is as 

yet no satisfactory formulation on unsteady aerodynamics. The 

generalized aerodynamic vector (Q) is, as tacitly agreed in 

appendix C, correct only when the motion is sinusoidal. For 

this reason, we seek solutions to Eq. A. 22 of the form 

{q} = ýq}eialt (A. 23) 

{q} vector of complex amplitudes or quantities defining 

amount of harmonic constituents in {q} 

w circular frequency of harmonic oscillation (real) 

Differentiating the vector {q} relatively to time gives 

{q} = iw{q}elwt 

{q} a -w2{q}eiwt 

(A. 24) 
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In virtue of Eq. A. 23, A. 24 and C. 14a, Eq. A. 22 can be 

updated to 

1 
w21 11+ wN + lg1 wN 

1 jqI = pCo V2b[Q]{9} 

(A. 25) 

If we let 

Vb (A. 26) 

and 

Q= 
1±ig (A. 27) 

W2 

Eq. A. 25 can be further manipulated into the desired form of 

the generalized equation of motion governing the aeroelastic 

behavior 

3 
1J- S2[ wN 

J+p. b2 [Ql {q} - {0} (A. 28a) 
v 

1J generalized inertia matrix; order nxn 

wN 
J 

generalized stiffness matrix; order nxn 

[Q) matrix of generalized airforce coefficients; 

order nxn 

complex eigenvalue (aeroelastic eigenvalue) as 
r 

defined by Eq. A. 27 

g structural damping factor or artificial damping 
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w circular frequency of harmonic oscillation 

p0, air density in the uniform flow far upstream of the 

lifting planform 

b reference length of the lifting surface 

v reduced frequency as defined by Eq. A. 26 

V flight velocity 

If the original modes of the base design are used 

throughout the optimization process, the generalized inertia 

and stiffness matrices in Eq. A. 28a take the more general 

form as shown below 

3 ,- 9[ KG + p. 
b2 (4] {q} {0} (A. 28b) 1 MG 

[ MG ] generalized inertia matrix; order nxn 

[ KG ] generalized stiffness matrix; order nxn 

It is gratifying to observe that by assuming transverse 

oscillations, the large number of degrees of freedom 

necessary to model practical lifting structures has been 

roughly divided by three. Then by cleverly using modal 

analysis, this number has been further reduced to a much 

lesser and more reasonable number of n degrees of freedom 

representing the order of the complex eigenvalue problem 

(Eq. A. 28a and A. 28b). 

By way of conclusion, it may be worthwhile to make some 
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general comments on why g is referred to as artificial 

damping. The conventional approach to flutter analysis 

-- dictated by the limited knowledge on unsteady aerodynamic 

loads - consists of assuming neutral stability from the 

outset. The validity of the flutter equation derived in this 

appendix is for airfoils oscillating with steady amplitudes 

(pure sinusoidal motions), e. g, any of the n equations 

forming Eq. A. 28a or A. 28b is correct at a critical flutter 

speed. Hence, the structural damping factor g have a physical 

significance only at critical flutter points, that is, at 

neutral stability between converging and diverging 

oscillations. At other points, the perturbed airfoil motions 

will decay or diverge and in such circumstances g is no more 

than a mathematical artifice. When constructing plots of g by 

varying the speed, g can be interpreted as a qualitative 

measure of stability; in a stable system, g is a negative 

number and can be seen as representing the amount of negative 

fictious- damping that must be applied to the system to force 

it to undergo neutrally stable oscillations; likewise, in an 

unstable system, g is a positive number that can be thought 

as the amount of positive fictious damping that must be 

applied to the system to bring it into neutral stability. 
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Damping in flutter calculations plays a substantial part 

in the accuracy of the results. The two main sources of 

damping are: 

aerodynamic damping caused by the flapping of the 

structure through the air (see appendix C). 

r--- structural damping arising from hysteresis in the material 

and from frictions at joints and connections between the 

different aircraft components. 

While natural damping inherent in a material is 

relatively small, the energy dissipation in a structure due 

to joint interface slip can give rise to relatively 

appreciable dampings. Analyzing the damping of a structural 

assembly is not an easy task. It is important to consider not 

only the material composing the structure but also the way 

the structure is constructed. Riveted and bolted structures 

possess more damping than one which uses largely integrally 

machined components. Moreover, with age the loosening of 

bolts and joints may well change the damping propriety of the 

structure. 

This latter trait gives some insight into the difficulty 

of any attempt to derive an expression to model dissipation 

through structural damping. Thus certain simplistic 

assumptions must be made regarding these energy-loss 

mechanisms. One popular scheme is the complex stiffness 
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concept which consists of introducing the loss as a fraction 

of the stiffness and which permits the damping to be 

orthogonal and the modes to decouple in the equations 

governing the motion. 

The following is excerpted from Ref. 33 (page 212) but 

with slight variations in the notation to ensure consistency 

throughout this work: 

"Another type of damping results from 
internal friction in deformable 
bodies and is associated with the 
so-called hysteresis loop during 
cyclic stress. Such damping is 
commonly referred to as structural 
damping. It turns out that in the 
case of harmonic external excitation 
one can devise an analogy whereby 
structural damping can be treated as 
if it were viscous (... ). Indeed, if 
the excitation... is of the form 

fq(t)} = {q}eiwt 

where {q} is a constant vector and w 
is the frequency of excitation and 
if the system is known to possess 
structural damping, then... the 
damping matrix has the form 

[c] = ýlw[Dl 

so that structural damping is 
inversely proportional to the 
excitation frequency. The matrix 
(1/nw)[D] is known as the hysteretic 
damping matrix. 

It is customary to assume that 
the hysteretic damping matrix is 
proportional to the stiffness matrix, 
or 

(D) = ng(K] 

where g is a structural damping 
factor. " 
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This will result in a structural damping matrix of the 

form 

(C] -w (K] (B. 1) 
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To begin with, we recall that the structure has been 

already assumed to displace in a linear combination of a 

limited number of mode shapes (see Eq. A. 12). The 

displacement Z(X, Y, t) of a point (X, Y) on the lifting surface 

at time t is therefore given by the relation 

n 
Z(X,, Y, t) =b &i(X, Y)gi(t) (C. 1) 

i=1 

Z(X, Y, t) out-of-plane displacement of a point (X, Y) on 

the aerodynamic planform 

b typical or reference length of the planform 

&i(X, Y) deflection of the aerodynamic planform at a 

point (X, Y) due to ith structural mode shape 

n number of mode shapes considered 

qi(t) ith generalized coordinate 

The difference between {Z}m, as introduced in appendix A 

and ýi(X, Y) used above is that {ý}m denotes a mode shape of 

the structure defined at structural grid nodes whereas ýi 

denotes a deflection at a point (X, Y) in the aerodynamic 

planform caused by that same mode shape. Obviously, some kind 

of interpolation scheme is necessary to derive deflection 

shapes at the aerodynamic grid points from deflection shapes 

at structural grid points. 

The form in which theoretical unsteady aerodynamic 

forces can be evaluated accounts only for flow phenomena 

around airfoils with steady-state harmonic oscillations as 
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imposed by means of the following formulae 

ql(t) = gI(W)eiwt (C. 2) 
I 

qi(w) ith complex amplitude or quantity defining amount 

of harmonic constituent in qi(t) 

w circular frequency of harmonic oscillation (real) 

If at time t the lifting surface goes through an 

incremental virtual displacement SZ, the variation SW or 

virtual work done by the applied airforces is given as 

SW ff 
L(x, y, t). SZ(x, y). dxdy (C. 3) 

S 

SW virtual work 

ff 
integration over the aerodynamic planform of area S 

S 

L(x, y, t) net aerodynamic pressure acting at time t at a 

point (x, y) on an element of the planform with 

area dxdy; aerodynamic loading distribution 

SZ(x, y) virtual displacement 

dxdy differential area 

From Eq. C. 1, the virtual displacement can be expanded 

as follows 

n 
SZ(x, Y) ¢b &i(x, Y)Sgi (C. 4) 

i=1 

Eq. C. 3 n 
0 SW ab aqi if L(x, Yºt)Ei(x, Y)dxdy 

Eq. C. 4 i=1 s 
(C. 5) 
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In an infinitesimal virtual displacement, the virtual 

work can be alternatively expressed in terms of generalized 

forces and displacements 

n 
SW =E Qi(t)Sgi 

1=1 
(C. 6) 

Qi(t) generalized aerodynamic force in the ith mode of 

oscillation at time t 

From Eq. C. 5 and C. 6 and through mere identification, we 

may establish the relation giving the generalized force 

Q1(t) =b 
if L(x, y, t)ýi(x, y)dxdy 1,..., n 

S (C. 7) 

Next, we follow Ref. 10 and 11 in which the normal 

pressure force per unit area, called the aerodynamic loading, 

at the point (x, y) of the planform at time t in the jth 

harmonic oscillation býj(x, y)e1Wt is defined as 

L(x, Y, t) = p0v2 1i(x, y; v, M.. )eiwt (C. 8) 

L(x, y, t) aerodynamic loading in the jth harmonic 

oscillation 

pm air density in the uniform flow far upstream of the 

lifting surface 

V speed of the main airstream (flight speed); it is in 

the positive x-direction 
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Rj(x, y; v, M. ) loading function corresponding to the jth 

harmonic oscillation 

v reduced frequency; v= Wb 
v 

Mý free-stream Mach number; Mý =V a 

a speed of sound in the uniform flow far upstream of 

the lifting surface 

For our weighted modes of oscillation b& j(x, y)gj(w)eiwt 

ýj = 1,..., n), the aerodynamic loadings take the form 

Ii(XºY; v, M,, )qi (W)eiWt - 1,..., n Li (X, Y, t) = pcov 
2 

(C. 9) 

Assumption of small amplitude of 

the linearisation of the governing equat 

the lifting surface. Accordingly, 

superposition holds and the total 

L(x, y, t) can be assumed to consist of a 

from each mode 

oscillations permits 

ion of the flow about 

the principle of 

aerodynamic loading 

sum of contributions 

L(x, y, t) = p, V2 
n 

71 1j(X, Y; v, M,, )q, (w)eiWt (C. 10) 

Substitution of Eq. C. 10 back into Eq. C. 7 leads to 

n 
Q1(t) = p. V2b Z q, (w)eiwt if 

1(xfy)ti(x, yiv, Mý)dxdy 
j-1 

if 
S 

im1,..., n 

(C. 11) 
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Following Ref. 10, we use the dimensionless quantity 

to denote a generalized airforce coefficient and rewrite 

the above expression into the alternative form 

n 
Ql(t) = p. V2b3 7 Qij(v, M. )q](W)eiwt 

j-1 

i-1,..., n 

(C. 12) 

Eq. C. 11 a 

Qjj(v, mm) 

where 

Qlj (v, MCO) 
l2 ýj(x, y)kj(x, Y%v, M. )dxdy 
b 

s 
ij, j - le.... n 

(C. 13) 

generalized airforce coefficient as computed 

by the program of Ref. 11 

In matrix notation 

Eq. C. 12 a 
{Q(t)} 

= a, V2b3 
[Q(M)] 1qW)e iwt 

(C. 14a) 
or 

Eq. C. 2 {Q(t)} 
= pCoV2b3 

[o('vr)] 
q(t) 

Eq. C. 12 
(C. 14b) 

{Q} vector of n generalized aerodynamic forces 

(Q] matrix of generalized airforce coefficients; 

order nxn 

{q} vector of n generalized coordinate 

In the literature, it is commonly considered that the 
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generalized airforce coefficients are functions of the 
reduced frequency and of the Mach number because only these 
tc'o parameters need to be varied in order to perform flutter 
solutions. By virtue of the optimization process where the 
structure is constantly resized and, obviously, its 

oscillatory behavior modified, the generalized aiforce 
coefficients are dependent on the mode shapes as well 

Qij(v'Mco) Q1 (v, M0, {&}) (C. 15) 

s 

a 

'y 
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Consider that the structure is idealized by bar, 

triangular and quadrilateral elements. The total structural 

mass is the sum of non-variable and variable structural items 

N 
m= MO + E1 mjxj (D. 1) 

m total mass of the structure 

mo mass of fixed structural items 

mj mass per unit length (for bar elements) or per unit 

area (for quadrilateral or triangular elements) of 

jth variable element 

xj jth design variable 

N number of design variables 

If pj designates the density of the structural material 

of the jth variable element, then 

mj = pj. li for bar elements (D. 2a) 

mi pj. Ai for quadr. or triang. elements (D. 2b) 

1i length along the bar element 

Aj surface of the quadrilateral or triangular element 

For bar elements, xj is the cross-sectional area of the jth 

element and for quadrilateral or triangular elements, xj is 

the thickness of the jth element. 

The structural optimization problem with a constraint on 

the flutter speed and constraints on manufacturing gauges is 

to 
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N 
minimize m= m0 + 71 mjxj 

(D. 3) 
subject to Vf > Vr 

and to xj > xj j=1,..., N 

Vf flutter speed 

Vr required speed 

xj jth minimum gauge constraints; minimum value imposed 

on jth design variable 

Rewriting the flutter equation (Eq. A. 28a or A. 28b) into 

the condensed form 

[F]{q} = {0} 

[F] flutter matrix 

(D. 4a) 

When the modes are updated during the resizing process, 

the flutter matrix is obtained from 

QQ { 
wN 

a+ 
aý 

b2 [4l (D. 4b) 

and when the modes of the original structure are used 

throughout the design process, it is obtained from 

(F) II MG ] g[ KG ]+ 
Pý 

b2 14 J (D. 4c) 

Introducing Eq. D. 4a at the critical flutter mode to 

replace the constraint on the flutter speed in the 
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optimization problem (Eq. D. 3) yields 

N 
minimize m= m0 + 71 mjxj 

subject to [F1() _ (0) 

and to xj > xj j=1,..., N 

(D. 5) 

But, if we let superscripts ' and " identify the real 

part and imaginary part of a complex quantity, then 

Eq. D. 4a a 
[tF'] 

+ i[F"]] {qº} + i{q"} (0) 

(D. 6) 

The matrix of generalized airforce coefficients is 

complex and is computed by WLST1 (Ref. 10,11 and 12) as 

IQ] - (Q, ) + i'(Q"] (D. 7) 

[Q'] real part of [Q] 

v[Q"] imaginary part of [Q] 

The real and imaginary part of the flutter matrix are 

given by the following relations when the modes are updated 

I 
[F'] =1- 

12 
w2 + pý 2 

[4'1 
Eq. A. 27 wv 

Eq. D. 4b a and 

Eq. D. 7 3 
[F ýýl g ý` 

wN 
1+ 

pub [ Q� ý 

(D. 8a) 
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and by the following relations when the modes are not updated 

Eq. A. 27 

Eq. D. 4c 

Eq. D. 7 

(D. 8b) 

The single complex equality constraint in Eq. D. 5 

represents therefore two constraints. Thus, the constrained 

minimization problem above (Eq. D. 5) is equivalent to 

N 
minimize m= m0 + E1 mjxj 

[F'j{qº} - [F"}{q"} a {0) 

subject to and 

[F"]{qº} + [F']{q"} a {0} 

and to xj> 

(D. 9) 

Considering that the side constraints can be treated 

separately on a trial-and-error basis, let X be the set of 

the primal points satisfying the constraints on the gauges 

X {x} : (x) E EN; xi > xjp ja1,..., N 

F, 
L 

MG 
1 

W2 

[ 
KG 

1 

b3 
+ pa 

v2 
(Q' 

and 

3 
(F ") __ -g--_ 

[KG1+ 
p(0 

b[Q tl 12 

(D. 10) 
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{x} vector grouping all design variables 

EN N dimensional euclidean space 

In summary, then, our structural optimization problem is 

N 
minimize m= m0 +E1 mjxj m({x}) 

tt {x} Ex 

[F']{qº} - [F"]{q"} - {0} 

subject to and 

[F"]{qº} + [F']{q") a {0} 

(D. 11) 

In developing optimality criteria, the normally adopted 

approach is to seek a stationary point of the Lagrangian. As 

indicated before it 

multipliers with the 

function takes the form 

is not necessary to enforce Lagrangian 

side constraints and the Lagrangian 

{X, }T [F']{ql} - 

+ }xtt)T [F"](9'} + (F']{-q"} 

(D. 12a) 

or 

_= m+ {Xº}T[Fº]{qº} - {Xº}T[F"){qty} 

+ {X"}T[F"]{qº} + {, \"}T[F']{q"} 

(D. 12b) 
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in which {X'} and {X"} are vectors of Lagrangian multipliers 

(vector of dual variables) associated with the behavior 

constraint on flutter. 

Let 

{X) - {X, } + i(X") (D. 13) 

Eq. D. 12b 

Eq. D. 13 

m+ ReC{X}H[F]{q}1 (D. 14) 

where superscript H denotes the hermitian transpose, e. g, 

{ý}H =_ {ýý}T a {X, }T - i{X"}T (D. 15) 

and superscript c denotes the complex conjugate. 

Following McIntosh and Ashley (Ref. 1), the necessary 

conditions that a point is an optimal solution are the 

vanishing of the partial derivatives of the Lagrangian 

relatively to the parameter 9 and to the elements of the 

vector parameters (X'), {X"}, {qº}, {q"} and (x) 

a92 = Re 
[{x}H a[F)"tq} 

a0 (D. 16a) 

[F]{q} _ {0} (D. 16b) 

{X}H(F] 
T= 

[F]T {X}H 
T 

(F]T{Xd} _ {0} (D. 160 
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äý 
m+ Re 

(F]. [q) =0j=,..., N 
77 

(D. 16d) 

Predecessors to McIntosh and Ashley (Haftka and Starnes, 

Ref. 22, and Pines and Newman, Ref. 39) derived Eq. D. 16a 

but relatively to the flutter frequency w. However, McIntosh 

and Ashley take their derivates relative to 2 as equivalent 

to the vanishing of the variation of the Lagrangian with 

respect to w at the constraint boundary where g-0. 

Eq. D. 16b represents the original flutter constraint 

whereas Eq. D. 16c identifies 
{{X1} 

- i{X"} as the adjoint 

flutter eigenvector and represents the adjoint flutter 

equation. Very similar forms to Eq. D. 16d have been used by 

all these authors as the optimality criterion (the difference 

reside in that we used the definition of the hermitian of a 

complex matrix to present the Lagrangian and the optimality 

criterion in much more elegant mathematical forms). We are 

going to follow most of the references and adopt a fixed mode 

approach in which the mode shapes of the original structure 

are kept unchanged throughout the redesign cycle. This 

renders the generalized aerodynamic forces independent of the 

modes shapes and hence not dependent on the elements of the 

vector of design variables {x). Therefore 

a(F] a[M] a(Kj 
1,..., N (D. 17) axe - axe ' ý'axi 
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The use of linear elements implies the linear dependence 

of stiffness and inertia properties on the design variables. 

N 
Im] 1 

N8 
,+ Z1 [ 

Mj 
]xj (D. 18a) 

i= 

N 
[KJ K0, + ý1 [ 

Kj 
1xß (D. 18b) 

[ MO J 
contributions of fixed structural items to the 

inertia matrix 

[ KO ] 
contributions of fixed structural items to the 

stiffness matrix 

Mj , jth elemental inertia matrix or changes in 

inertia per unit length or area of the jth 

variable element 

[ Kj ] jth elemental stiffness matrix or changes in 

stiffness per unit length or area of the jth 

variable element 

If nodal displacements (like in Ref. 22) are used in the 

flutter equation the partial derivatives of [F] with respect 

to xj are 

Eq. D. 17 

Eq. D. 18a 
a(F) a[ M] 

J 
S? 

[ K. J]=..., N 
x 

Eq. D. 18b 
(D. 19a) 
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McIntosh and Ashley (Ref. 1), although using modal 

amplitudes as generalized coordinates, take the derivatives 

of [F] with respect to xj as below 

a(F] _[ Mj ]- Q[ Kj ]j=1,..., N (D. 19b) 

The second expression (Eq. D. 19b) looks very much 

similar to Eq. D. 19a although modal analysis has been 

performed on the flutter equation. We need to clarify this 

point not only for McIntosh-Ashley's work but for ours 

because we are also using the "modal superposition". 

Moreover, our adoption of the "eigenvalue economizer" 

technique will need a further step of explanation. The 

derivatives of [F] are not as straightforward as when nodal 

displacements are utilized and we should start with the 

formulation of the generalized inertia and stiffness matrices 

1C ]T[[ 
=1 

]xj][ 

(D. 20a) 

[KG] (0) IT ( 
K0 

1+ N( ]X7 
,r 

0) 

lLJ 
ýL=, 1 ll 

(D. 20b) 

[ C(O) } 
modal matrix of the original structure; matrix 

whose columns are the full mode shapes of the 

original structure 

When modal amplitudes are utilized as generalized 
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coordinates, Eq. D. 17 should read 

3(Fl 
- ax[ MG 

J 2'8x [ 
KG 

J 

JJJ 
j= it ..., N 

(D. 21a) 

with 

exý MG If ý(0' I TC MJ ][ ýI J 

.[ 
KG , 

=C 4(0) IT 
x[ 

K] 
lL 

ý(0) 
J 27 

Unless the terms in Eq. D. 19b, [ Mi I 

j 1,... IN 

(D. 21b) 

1ý. ""'N 

(D. 21c) 

and 
[ Kj ],, 

are 

implicitly assumed by McIntosh and Ashley to be generalized 

matrices as shown in Eq. D. 21b and D. 21c, Eq. D. 19b does not 

hold if modal analysis is performed on the equation of 

motion. It is worth noting that Eq. D. 21b and D. 21c are 

constant expressions throughout the design process. 

Utilizing master degrees of freedom only (refer back to 

appendix A), Eq. D. 21b and Eq. D. 21c should be reformulated 

as 

ax[ MG C O, IT[T]T[ 
Mj ]T[ C(O) 

7 

_ II JTl MJL j 
1 

(D. 22a) 



D-12 

ax 
j KG Imo, ]TT[ Kj 

]T]I 
l 

Zmo, 
J 

J 

j 
_ý Z(0) IT [ K7 if L(O) 1 

j 1,.... N 

(D. 22b) 

[ Imo) I 
modal matrix whose columns are the master mode 

shapes of the original structure 

In view of the fact that C Mj ] 
and 

[ Kj 
] 

are very 

sparse matrices, the program stores in the data base only the 

few non-zero terms. Because of this dominance of zero terms 

and because the full eigenvector consists of a master 

eigenvector and relatively negligible terms composing the 

slave parts of the eigenvector (§ VI. 2), the derivatives of 

the generalized inertia and stiffness matrices can be, 

without noticeable errors, assumed to be 

8x[ Imo) [jM. 1r cmOý 

ýJL 1 

ax[ KG 
JL 

Z(O) IT[ 
j 

J[ 
Cm( 0, 

J 

[ Ri 1 
and 

[ Fi I 
are the same as 

(D. 23a) 

(D. 23b) 

[Ni] 
and [I<i I 

but the terms in the x- and y-directions are deleted by 

simply removing complete lines and columns. 
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Eq. D. 23a and 

of the program run 

subroutine that p 

elemental inertia 

modal matrix was 

matrices are still 

D. 23b are evaluated only once at the start 

before the optimization routine. A special 

erforms pre- and post-multiplication of the 

and stiffness matrices with the "master" 

written taking into account that these 

full of zero terms despite the elimination 

of lines in the x- and y-directions. 

During the resizing process some design variables may 

become passive, i. e, equal to the specified lower limits on 

the design variables that reflects fabrication 

considerations. Eq. D. 16d in such a case is valid only for 

the active set of design variables. Therefore, we introduce 

the set of indices defined below 

Ja "- 
fj=,..., 

N . 

Ja set of indices 

variables only 

xý > xi (D. 24) 

representing the active design 

The optimality criterion in Eq. D. 16d can be rewritten 

in a slightly different form as follows 

(ev) 
-m Re {x}H- ä-x- {q} _ -1 jE Ja 

777 
(D. 25) 

Of interest, but of lesser rigor is the intuitive OC of 

Ref, 46 which assumes that the most efficient distribution 

of structural mass is the one which exhibits a uniform strain 

energy per volume throughout the structure when it is 
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deformed in the critical flutter mode. Eq. D. 25 resembles 

somewhat that intuitive OC and, hence, can be regarded as a 

form of "energy density" terms. 

Taking into account that some design variables are bar 

elements and some are quadrilateral or triangular elements, 

the final form of these "energy density" terms is 

t' je Ja, 

Eq. D. 25 

Eq. D. 2a 

Eq. D. 2b 

4 

(ev) 
pll 

Re 
xF)'{q} _ -1 

J77J 

for bar elements 

and 

(ems, 
pA 

Re {ý}H'axFý'{q} a -1 
JJJ 

for quadrilateral or 

triangular elements 

(D. 26) 

with any design variable linking, 1i and Ai would represent 

the total length or area of all the elements composing the 

design variable. 

A recurrence relation proposed by Ref. 1 and based 

on this criterion is 

xjk+l) a Cjk). Xjk) (D. 27a) 
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with 

where 

a c1 (ev) 
`k, 

(k) (eav) 

el 

Cj redesign factor 

(cay) 
average of all 

variables) 

k iteration counter 

(1 
+ g(k))e2 (D. 27b) 

ýev) jE Ja (all active design 

el, e2 resizing exponents 

g artificial damping 
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Analytical equations of the partial derivatives of the 

flutter velocity and of the frequency with respect to a set 

design variables were first derived by Rudisill and Bathia 

(Ref. 42; see also Ref. 45). In this appendix, we follow 

similar methods to give expressions for the partial 

derivatives of artificial damping and frequency. Moreover, we 

will extend the derivations to the design procedure with a 

continuous mode updating. 

To aid assimilation and avoid repetitive reference to 

previous appendices, we reproduce the simplified form of the 

equation of motion (Eq. D. 4a) 

[F]{q} s {0} (E. la) 

Some of the equations associated with the flutter 

equation are also reproduced below (see Eq. D. 4b, D. 4c, D. 7, 

A. 26, A. 27, D. 6, D. 13, D. 16c, D. 19a, D. 23a, D. 23b and C. 15) 

(Fl 1- Stý WN 
a+ 

pý 
b2 (4) 

(F) =L MG 
I S? C 

KG 
I+ 

P( 2 [Q I 

IQ] = IQ'] + iv(Q") 

wb av 

1 when the modes 

3 are updated 

(E. ib) 

when the modes 

are not updated 

(E. 1c) 

(E. 2) 

(E. 3) 
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J+iq 
2 (E. 4) sý 

{q} _ {qº} + i{q"} (E. 5) 

{X} a {Xº} + i(X") (E. 6) 

{X}H[F] = {0)T (E. 7) 

aim] 
aI Mj (E. 8) 

ax i 

a[K] 
s[ Kj 

,j1,..., 
N (E. 9) 

J 

2x .ý 
MG -[ ßm0, ,T[M'J[ Imo ýJ 

J 

ax. CKGJ Cým0' JTCK7 JC4m0' 1 

IM] Z [M({x})) 

[K) _ [K({x})] 

(E. 10) 

j 1,..., N 

(E. 11) 

(E. 12) 

(E. 13) 

The optimization process is carried out at a fixed 

altitude and at a fixed speed, hence p and M., are constant 

and 

IQ] _- IQ(v, M) ] (E. 14) 

The full free-vibration problem for each eigen-pair 
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(wNi)2 
and {Z}i is 

[(K] 
- 

(Ni)2lMJ]1i {0} 

and the normalization equation is 

{Z}i(M11cli =1 

i=1,..., r (E. 15) 

(E. 16) 

It is useful to start with the differentiation of the 

full free-vibration eigenvalue problem that is expressed 

above (Eq. E. 15) 

x 

{[K] 

- 
(NI)2N]1i] {O} 

J 

i 1,..., r and j=1,..., N 

" (E. 17a) 

l2 

,ý 
d[K] 

_d( 
IWNi) 

. (M) _ 
fW 

Ni) . 
d(MJ Z ldxj dx. l dx}i 

JJ 

- 
(Ni)2M1]. d}i 

+ dx ° {0} 

and j 11 ..., N 

(E. 17b) 

Premultiplication of Eq. E. 17b by the transpose of the 

eigenvector, {ý}i, yields 
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{Z}T d[K] d co Ni)2 
dxdx(NJ2, Mhl 

dx mi 
7 

+ Mi [K) - 
(w. 

i)2[M) -ddX}1 
7a 

{0} 

i=1,.... r and ja1,..., N 

(E. 17c) 

d (WNJ 2 

aT 
d[ 

_ý{ d-x-- {Z}i 
}dx(Nl)2. d1 

(W. J m dxj 

i=1,..., r and j 09 1,..., N 

(E. 17d) 

Because [K] and [M] are symmetric matrices 

T 

{ý}1I(K] (Ni)21M3 
a 

[(KIT 
' 

(Ni)2NT]cj 

[[K] 
- 

(wNi)21M] 
{Z}i - {0} 

i. 11 
(E. 17e) 

`> {ZIT [K] - 
(W 12 T 

1 NiJ [M] {0} i=1,..., r 

(E. 17f) 
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Taking into account Eq. E. 17f, we rewrite Eq. E. 17d as 

T d[K) ()2d[M]l 

d 
INi J2 

dxi WNi dxi 

dxi 
{C}i[Ml{C}i 

and j 1,..., N 

(E. 17g) 

Eq. E. 17g 

Eq. E. 16 
a 

Eq. E. 8 

Eq. E. 9 

I d(wNJ 2 
M. -K dx7 ((ON i)2,, j 

and j-..., N 

(E. 17h) 

Knowing that [ Mi ] 
and 

[ Kj ] 
are very sparse matrices 

and that {C}i consists of master terms and relatively 

negligible terms composing the slave part of the eigenvector, 

we can assume that 

(WNJ 2=TM. 

- dx 
[} ()2. [ 

Kj ]]tmj 

i ... ,p and j-1,.... N 

(E. 17i) 

i 
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where [ 
Mi I 

and 
[ 

Kj ] 
are the matrices [ Mj I 

and 
[ Kj ] 

with lines and columns deleted in x- and y-directions. 

Differentiating the complex eigenvaiue (Eq. E. 4), we 
obtain 

a a 
Wa asp w w2 JaX1 

axe = aX + 1" a >j 
(E. 18a) 

. 
aw 

w2 aw 
- 2wg" w ax axj axe 

a sp > 
ax - 

w4 
+ i" 

4 
w 

_2 
aw 

W3 axe +il 
W3 

Wag ._- ax 2g- aw 
ax e e 

11... rN 
(E. 18b) 

or 

2 aw 1 aW 
axe 3' ax +i 

(2g 

ax - Wax ] 1,..., N > W3 > 
(E. 18c) 

Differentiating other expressions useful for future 
derivations 

a b3 3a 
(v-2 

2 p. b3 
p2b. 

) av 
ax = pCo ax =-j1, ..., N 3 axj 

(E. 19a) 

But, from the definition of v (Eq. E. 3), the partial 
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derivatives of v with respect to xi are 

av aw b aw 
= 1ý... ýN axe a äwaxi vaxi 

Eq. E. 19a 

Eq. E. 19b 

a b3 2p, b4 9w 
axe 

v2 
- 

Vv3 axe 

(E. 19b) 

j 1,..., N 

(E. 19c) 

When the modes shapes of the original structure are kept 

unchanged, the partial derivative expressions of the 

generalized airforce coefficients [Q] with respect to xj can 

only take the following form 

a[Q] a[Q] a\' 
axe av 'axe 1,..., N (E. 20a) 

Eq. E. 20a a[Q] b a[Q] aw 
Eq. E. 19b ax V av ax j 

(E. 20b) 

Eq. E. 20b p0, b3 a[Q] pub 
4 

a[Q] aw " 2 axe vv2 T,. V- 
1l... jN 

(E. 20c) 

Now, we turn our attention to the differentiation of the 

flutter equation (Eq. E. la) 

[F]"{q} 
+ (F]. a (0} jm1,..., N ex. 

([F]{q}J 
°B ax i ax 

(E. 21) 
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To remove the terms that 

derivatives of the aeroelastic 

pre-multiply Eq. E. 21 by the 

eigenvector {X}H 

{x}H axj 
" {q} + [F] " 

äX )=0 

J 

involve the partial 

eigenvector {q}, we 

adjoint aeroelastic 

j=1,..., N 

(E. 22) 

Eq. E. 22 (Iffl. 
- lr ... jN 

Eq. E. 7 ] 
(E. 23) 

Continuing with the assumption of fixed-mode approach 

in which the mode shapes of the original structure are 

utilized despite the structure being continuously resized. 

Then, the flutter matrix is given by the expression in 

Eq. E. 1c. and its partial derivatives -- with respect to 

the design variables xj, ja 11 ..., N -- will take the 

following form 

a[F] 
- 

a[ MG 
+- 

aQ 
K- St"al 

KG 
1 

ax 8x 8x G ax. 
JJJJ 

11 

+ap 
b3 

"I4ý +p 
b3 

"3IQ) 8xß 
ý2 ý2 

8xj 

j-1,.... N 

(E. 24) 

When all the terms composing Eq. E. 24 are replaced by 
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their definitions or by expressions evaluated previously, the 

partial derivatives of the flutter matrix [F] are given 

by 

Eq. E. 24 

Eq. E. 4 

Eq. E. 18c 4 

Eq. E. 19C 

Eq. E. 20c 

a[FI al MG 
J2 aw ., 1 aw 

_ 
aý__ 

"rl ax ax j. 
+ 

w3 
ax .+13 

2g ax . 
wax 

.L 
KG 

J 
JJJJ 

l+i a KG 12p»b4 
- ---s" -" 

aw "[4J 
wa axe vv3 axe 

+ 
pc, b4 a[4)aw 
Vv2 av axe 

j= 
(E. 25) 

where 
a` xG 

and 
aL KG 

are respectively b E. 10 8xß exý given y Eq. 

and E. 11. 

In order to cast Eq. E. 23 in a much more presentable 

form, let us define 

R Re 

[Ha[ 
MG 

]"_=1... 

(E. 26a) (q) 37ý 
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I Im {X}H"3[ 
MG 

]" 
_'=1... N E. 26b 1ý axe 

{q} 7 () 

Re H" a[ KG 
]"=1... 

N (E. 27a) ax {ql 
>> 

I Im X}H" 
a[ KG 

]{}] 

a (. 27b 2{ axJ ) 
J 

R3 - Re {ý}H" r 
K,; 

]. {q} (E. 28a) 

13= Im {ý}H" 1 K� ]. {1] (E. 28b) 

R4 = Re {X}H. 1. (q) (E. 29a) 

I4 = Im {, \}H. Q)"{q} (E. 29b) 

R5 = Re ({ý}H"(Q3. {q)) (E. 30a) 

15 - Im({>, ),. [QI. fq}) (E. 30b) 

Replacing the derivatives of the flutter matrix (F1 

(Eq. E. 25) back into Eq. E. 23 and using the last 10 relations 
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(Eq. E. 26a through to E. 30b), we obtain 

01 

R+ iI +2" 
aW 

+i . 
L- 

2gaW - Wem " 
CR 

+ iI , 
1ý iý 

W3 
axe 

W3 
axe axe 33 

2-2 
pvý3b4 

. 8x 
(R5 

+ iI5) - 
1+2g. 

R2 +iIý 
JJ 

Pa, b4 
aw + 

VV2 
" 

(R4 
+i 14 " ax ,-0 

j 1,..., N 
(E. 31) 

Eq. E. 31 4 

R+ iI +2 "R " 
aW 

+i "ý9-"R " 
to 

-i "1 "R "ý-- 1ý 1ý 
W3 

3 axe 
W3 

3 axe 
W2 

3 axj 

+ i"2 z aw 
- 

! %-I 
" 

aw 
+ 

! 
--I " 

a3 
- 

1--R ýw3.3"axj 
w3 

3 axe 23 axe 2 2j 

2pcob4 aw 
- 

(A)2 
2I 1"w2"12j + 

w2"I2j Vv3 
R5axi 

2pc0b 4 
aw pob 

4 
aw pcob 

4 
aw 

- i" 
Vv3 

"I5"axj + 
Vv2 

"R4"axj + 1"Vv2 "I4"axj 0 

j-,., N 
(E. 32) 

This last single complex scalar equation can be 

decomposed into two real scalar equations with the two 

unknowns ax and 
a 

i J" 
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22- 
R+I 

pcob4 2pcob4 

_ aw 
W33 w3'3 

+ 
Vv2 

"I4 
Vv3 

15 axe 

- 
R3 . 

as 

a -Il, + ý"R2, + 2"I2. IW3W1 

a 1p. "", 

and 

22 pcob4 2pcob4 

W3"R3"13 
+ 

Vv 
"R4 

Vv3 
"R5 8x 7 

+3 . ax] Itr'] 
1 

_R1' + W. 2, _ ý12j Rg 

1 

1, """lN 
(E. 33) 

The determinant D of the above system can be found from 
the following 

,6[D 2clR 
+ 

W3-. 
I3 +p cob 

4 

. I4 -2 
p"3b4 

15 J12 "I3 Vv Vv 
10 

[a. 
R3 2 p430b4 2pcob4 

+ . I3 +- R4 R5 . 22.83 Vv Vv w 
10 

(E. 34a) 
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The solutions 
äX 

and 
a to the system represented in 

7 

Eq. E. 33 take the form 

ex D' -R1 +2' R2 
.-2- 

I2 
.. W2' 

R3 
7717 

W2I2 W2ý13 >>j 

j 11"""p 
(E. 34b) 

a 
ax 

w1 

w3. 
g3 _ 

? ý. I3 + 
pývv2b4 

"R4 
2p»vv3b4 

"R5 x 
7 

-I1] + 2ý"R27 + 
W2"I2 j 

1 12- 2 pýb4 
_ 

2p,, b4 
+ D. 3 g3 +3 'I3 + 

Vv2 
ý14 

Vy3 
'15 

22 

je 1ý... 
rN 

(E. 34c) 

To complete the derivatives evaluations, Eq. E. 34b and 
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E. 34c can be further elucidated by expanding the terms R1., 
7 

I, R2i, 12.? R3,13, R4,14 , R5 and 15 by using the 

definiting equations. Starting with R1 and 11 
Jý 

Eq. E. 26a 

Eq. E. 26b 

Eq. E. 5 

Eq. E. 6 

Eq. E. 10 

.ý 

A 
,ý 

`ý 
b 

1 

]. 

{i} +T. 
aL=. 

flax] {} 
ax {q} 

j 1,..., N 

(E. 35a) 

and 

1, {} 
ax] 

]{_q 
} {X } 

ax {q'} 

' lo ... jN 
(E. 35b) 

with 

8x. 
[ MG, Imo) IT[ 

MJ ][ S(% ) 

7J 
j-1,..., N 

(E. 35c) 

(E. 35) 



Eq. E. 27a 

Eq. E. 27b 

Eq. E. 5 

Eq. E. 6 

Eq. E. 11 

E-16 

2. ax . 

]. 
(�} {} 

ax .G1. 
{q } 

>>> 
1F..., N 

(E. 36a) 

and 

T 
axj {4 } {a } axj {q } 

j-1,..., N 

(E. 36b) 

with 

öx. 
[ 

Ký 
]=[ c(O) JT[ 

K. ýmý) 

ýJ[ J 
1N 

(E. 36c) 

(E. 36) 

Eq. E. 28a 

Eq. E. 5 

Eq. E. 6 

R3 = {X' }T" I KG ]-(qfl 
+ {, \"}T" [I 

KG J" {q1 L 

(E. 37a) 
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Eq. E. 28b 

Eq. E. 5 4 

Eq. E. 6 

I= {X'}T"` KG 
1- {X"}T"[ KG{q? } 

3l 
(E. 37b) 

The program stores in the Data B, 

to the aerodynamic forces as 
b3 

p» 2 

in order to facilitate the numerical 

aC 
we let 

axe 

ase the matrices related 

3 
IQ'] and pc» 

b [Q"]" 

evaluation of 
äX 

and 

3 
R41 = Poo 

b2 
"R4 (E. 38a) 

3 
I41 p° 

b2 
"I4 (E. 38b) 

v 

3 
R51 s pý 2 "R5 (E. 39a) 

v 

3 
51 P 

b2 
"15 (E. 39b) 

v 

As will become clear in a moment, these last four 

expressions -- defining R41,141, R51 and I51 -- permit the 

direct use of some elements involving the aerodynamic 

matrices immediately after retrieval from the Data Base 

without further manipulations. 
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We can now exploit Eq. E. 2 to note that 

f 11 

-aQv 

Eq. E. 29a 

Eq. E. 38a 

Eq. E. 40 4 

Eq. E. 5 

Eq. E. 6 

3_ 
Ra {Xý}T" 

ý 
b2 

"_ 41 "{q'} 
v 

01 IN 
3 

pIIIT. >, Co 
b 

- IQ le 1 

+ {ý"}T" p 
b3 

"3(QII 
} 

"{qý} v 8v 

b3 IQ"] o(qll) v co -V 

- 

I{XJT. 

b3 a[Q") {q�} 
v av 

_ 181Q, 
I 

°ý 

3 

v2 av ft) 

(E. 41a) 
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Eq. E. 29b 

Eq. E. 38b 

Eq. E. 40 

Eq. E. 5 

Eq. E. 6 

I {ýý}T" p 
b2 

"aä4' 
I {q" 

41 
} 

+ 
-" {x"}T" b3 

Pý ' "(4") "{q"} 

3� b 
. 

aä4 1 
"{4"} + {ý"}T" Poo 

v 

+ 

[{X, 

)T[. b3 
. _. 

at4ºº] 
"{q') v 8v 

0 

- {aýý}T" b 3" aä4 
" {§ý } 

v 

(E. 41b) 

In Eq. E. 41a and E. 41b, all the terms between the big 

square brackets are matrices related to the unsteady 

aerodynamic in forms as stored in the Data Base. This is also 

true for the ensuing two equations which display how R51 and 
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151 are obtained 

Eq. E. 30a 

Eq. E. 39a 

Eq. E. 2 

Eq. E. 5 

Eq. E. 6 

4 

3_ 
R51 = {X, }T pc 

b2 
"[4'J "{q'} 

v 

01 N 

3 
P Co 

3 

0° V 

3 

V2 

(E. 42a) 

Eq. E. 30b 

Eq. E. 39b 

Eq. E. 2 

Eq. E. 5 

Eq. E. 6 

=0 

b3 151 = {ý'}Z'" pý 2 "IQ'] "{qn} 

3_ 

01 
3 

3 
- 

I{Xtt}TpCO 
b2 

"(Qºj "{4'} Lv 

(E. 42b) 
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Let us recapitulate and write the final form of the 

partial derivatives of the artificial damping g and the 

frequency w with respect to any design variables 

for a fixed-mode approach 

8x . 
D' -R1 +2 -R2 

.-ý. 
1 

J 
2. -2-R 

JJJ 

9 R2. + 
W2ýI27. 

' 
W2.13 77 

1.10 

(E. 43a) 

01 
a32 

- 
D. Ä3. 

R3 + 
W-30,3 

+ VOI41 - Vv*151 X ax. 
7 

1_ 
-R1 + W2"R2j "12 

D. 
0 

3. R3 W3. I3 + V-R41 - VvýR51 x 

1 
. g2' + W2. I2 -11] + cj 

(E. 43b) 

(E. 43) 
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where Rand I1 are given by Eq. E. 35; R2, and 12, by 
J]]J 

Eq. E. 36; R3' 13' R41,141 R51 and 151 respectively by 

Eq. E. 37a, E. 37b, E. 41a, E. 41b, E. 42a and E. 42b; the 

determinant D by 

2D ? ý.. R3 + 
W3"I3 

+ V'141 Vv. I51 ' 
W2. 

I3 

+ 
W3. 

R3 . I3 + V-R41 Vv. R51 . 
[. 

R3] 3) 

(E. 44) 

We have hitherto made the assumption that, in setting up 

the flutter equation and in generating the unsteady 

aerodynamic forces, the mode shapes of the base design 

are kept the same at each step of the synthesis process. If 

the modes are updated with structural design changes, the 

expressions for the derivatives of g and w are the same apart 

from the following three remarks which stem from a direct 

comparison of Eq. E. lb and E. lc and from a reformulation of 

the differential of the aerodynamic matrix of generalized 

airforce coefficients. 

1st remark 

Because 
ax1 

ox j= 
t01 j=1..., N 

R1, = 11] =0j=1,..., N (E. 45) 
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2nd remark 

T. 
a[ WN 

]" 

+ X" Ta[ WN 
,I 

2. m (X' ax ax 17i 

8(wN1, 
) 22j. 

titi + (X? I T 
(Ni)2 

{ý }T ax i} 
ax 

77 

ja1,..., N 

(E. 46a) 

2 

-n ýu 
T. 

aýWNý. 
_'I 

a ýº T. a. 
-t} iq } 

2] {} { 
ax] q} ax] 

(2 
ºT `-- tý } axe 

Ta 
(WNi) 2- 

axi 

j-1,..., N 
(E. 46b) 

The l terms 
a(w. i)2 i-1... are found by diagonal ax, , , P, 

using Eq. E. 17i. 

3rd remark 

Because the simplified assumption of constant mode 

shapes is lifted, an extra term must be added to the 

variations of [Q] to account for changes in the design 
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variables. The total differentiation of [Q] yields 

d[Q] = ax4]"dxj + 
3[Q]"dv (E. 47a) 

7 

dividing by dx 

d[QI a[Q] a[Ql dv 
dxi - axe + av dxi = i. """#N (E. 47b) 

Then, the definitions of R4 and 14 (Eq. E. 29a and E. 29b) 

now become 

x a[4] -H a[4] - R4 Re b"{ý} X. "{q} + {X} " av "{q} (E. 47c) 
7 

vx IQ] H. 3[Q] - 14 = Im b"{X} "ax. "{q} + {a} 
aý "{q} (E. 47d) 

7 

If we separate the expression of the generalized matrix 

into mode-dependent and mode-independent matrices (Ref. 23), 

a14) in Eq. E. 47c and E. 47d would have terms that are ax. 

constant or null and terms related to the derivatives of the 

mode shapes, 
äX 

, and to the derivatives of the slopes, 

ax . 
IäxJ 

" 

Since the deflections and slopes at the aerodynamic 

panels are related to the values of the mode shapes at the 

structural grid by interpolation, finding the derivatives of 
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& and ay/ax with respect to the design variables xi 

is equivalent to applying interpolation formulas to the 

derivatives of {Q 
m with respect to the design variables. 

The standard technique to find the derivatives of the mode 

shapes at the structural grid (Ref. 8 and 41) is to 

differentiate the free-vibration problem (Eq. E. 17b) and the 

equation that shows the normalization of its eigenvector 

solutions (for instance Eq. E. 16). 

To sum up, the values of and 
aW 

,j,..., N, axj axj 

are evaluated for both fixed-mode and updated-mode approaches 

by the program developed. There is just one term missing in 

the "updated-mode" derivatives and it is the one represented 

by 'IQ] in Eq. E. 47c and E. 47d. With regard to this term, it 

should be noted that time did not permit its computation 

which would require drastic changes to the unsteady 

aerodynamic program, WLST1 (Ref. 10). 

As we shall see in appendix F, it is only the 

derivatives of the artificial damping g which are of primary 

interest to this research. The derivatives of the frequency 

w are, however, evaluated for the simple reason that they may 

be required for any further investigations on the field of 

flutter synthesis. Because they are composed of terms already 

calculated for HT-1 the derivatives of w do not Put any CPU 
e 

penalty on the program apart from a single FORTRAN equation 
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inserted within the loop on the design variables. 



APPENDIX F 

DUAL PROBLEM 
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Employing the artificial damping parameter as the 

behavior constraint instead of the flutter speed, the primal 

problem (Eq. D. 3) can be re-cast into the following 

alternative form 

N 
minimize m- m0 +71 mjxj 

subject to g<0 

and to xj > xj ja1,..., N 

or into 

N 
minimize ma m0 + Z1 mjxj 

subject to -g >0 

and to xi > xj j=1,..., N 

In order to bound the primal mass, 

14 

(F. 1) 

(F. 2) 

we introduce upper 
limit gauge constraints in lieu of the lower limit gauge 

constraints (infinite values may be imposed on the upper 

limits to force active design variables on the lower limits 

to be active on the upper limits). Eq. F. 2 is re-written as 

N 
minimize m- m0 + F1 mjxj 

(F. 3) 
subject to --g >0 

and to xjI xj j 1,..., N 
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or into 

N 
minimize m- m0 + 7', mjxj 

(F. 4) 
subject to -g >0 

and to xj - xj >0j1,..., N 

The Lagrangian function takes the form 

NN_ 
" m0 + m. x. + Ag Z Nj lxi xi) F. 5) 

j=i j »i 

A Lagrange multiplier associated with the behavior 

constraint 

Nj (j = 1,..., N) Lagrange multiplier associated with 

the side constraints 

The well-known kuhn-tucker conditions are represented by 

the following equations 

mi + A" a+ 
, uff -0 

7 

A>0 (F. 6) 

pj >0 

1je Ja (active design variables) 

Corresponding to the primal problem (Eq. F. 4), the 

aeroelastic dual problem (used for bounding the mass) is 

defined as 
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maximize m0 + mjxj + Ag -E Nj(xj - xj) 
J°1 i_i 

mj + A" aaX 
+ luj -0 

subject to and to 

A>0, Nj > 0; 

frj Eia 

(F. 7) 

A better formulation of Eq. F. 7 and a better bound of 

the mass can be obtained by taking into account that Nj and 

Cxj 
- xj) are always positive or at least equal to zero for 

all J. Therefore, Eq. F. 7 becomes 

N 
maximize m0 +Em. x. + Ag 

j-1 

rc 

mj + A-ag <0 

subject to 
and to 

A>0 

yJ EJa (F. 8) 


