

On the Potential of Function-Behavior-State (FBS) Methodology
for the Integration of Modeling Tools

A. A. Alvarez Cabrera, M. S. Erden, T. Tomiyama

Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology,
Mekelweg 2, Delft, 2628 CD, The Netherlands

{a.a.alvarezcabrera, m.s.erden, t.tomiyama}@tudelft.nl

Abstract
Current mechatronic products tend to be very complex systems. A design team is necessary to develop
such products, and appropriate modeling and design support tools are essential to aid the design team. The
Automatic Generation of Control Software for Mechatronic Systems project aims to develop a set of
prototype tools and a framework to integrate available modeling tools, aiming to support the generation of
control software for mechatronic machines. The project contemplates functional modeling as part of this
framework. This paper considers the Function-Behavior-State (FBS) model as a base for the functional
model, and discusses its potential regarding integration of modeling tools.

Keywords:
Function modeling, function behavior state, model integration, mechatronic systems design

1 INTRODUCTION
Development of mechatronic products brings new
challenges for design because modern mechatronic
systems tend to be complex by nature. The design of such
systems requires the participation of experts from several
domains that cooperate to solve problems from the point
of view of their specialties. Appropriate modeling and
design support tools are essential to deal with system
complexity, and one alternative for support is to
accomplish modeling tool integration.
The project of Automatic Generation of Control Software
for Mechatronic Systems aims to develop a set of
prototype tools and a framework (see Figure 1) to allow
seamless integration among available modeling tools, so
that an interdisciplinary product development team can
(almost) automatically generate control software for
mechatronic machines. The project considers functional
modeling and reasoning from model information (i.e.,
qualitative reasoning [1]) as mechanisms to reach the goal
of model integration (encircled in clear dash-dot lines in
the figure), and to endow the set of models with the
necessary information to generate control software.
Implementing these aspects seeks to cope with
complexity by providing a base for a complete system
model in the most abstract levels, where attaining
common understanding is more practical.
Use of functional models can be advantageous for several
reasons. First, they provide a way of representing the
intention of the designers of the system, both for design
and for use. Secondly, but not less important, functions
can represent a system at several levels of detail, which
allows to change the level of abstraction in which the
model is seen while preserving, what we could call, the
consistency of the model (i.e., the model can still
represent the whole system while showing more detail
where required). Additionally, functions can model
indistinctively hardware, software, and systems from
different domains. In a sense, functional models get very
close to represent the architecture of a system. The
importance of modeling functions for machine and
process design was already recognized in works of
Rodenacker [2] and Pahl and Beitz [3]. There, design is

seen as a process of transformation and mapping of
information from abstract concepts (i.e., functions and
requirements) to concrete descriptions of physical
systems, that later will allow manufacturing a system.
Thus, design cannot be done without the existence of
these abstract concepts that specify what the system is
expected to do. Careful documentation and modeling of
the functional description is then as necessary as it is for
any other information related to the design.

Figure 1: Architecture of the proposed control software

generation framework. Black dash-lined blocks
correspond to existing, commercial modeling tools [4].

This paper considers the Function-Behavior-State (FBS)
model [5] as a base for the functional model description in
the proposed framework, and discusses the potential of
such model regarding integration of modeling tools.

CIRP Design Conference 2009

li2106
Text Box
Proceedings of the 19th CIRP Design Conference – Competitive Design, Cranfield University, 30-31 March 2009, pp412

The FBS model was designed to be part of an integrated
framework but it was not intended to be the backbone for
the integration activity, and thus, some adaptation is
necessary. Some advantages that lead to the choice of
FBS are that it:
• Clearly separates design intention and objective

relations between components.
• Is built to support qualitative reasoning activities.
• Has been already implemented in a software tool and

tested to some extent (cf. FBS modeler in [6]).
Another important reason to support the choice of FBS is
that FBS differs from most system models developed at
an early stage of design which are not aimed to prescribe
how the systems actually behave [7]. Instead, FBS also
pretends to simulate the behavior of the system from an
objective point of view.
Section 2 exposes some basic concepts regarding model
integration. Sections 3 and 4 recapitulate the literature
about the FBS modeler and other tools that appear in its
implementations. The discussion about the potential
applications of FBS for model integration and proposals to
do this can be found under section 5. Section 6 presents
the general integration approach using FBS. Finally,
section 7 describes the current progress of this research
with the help of a practical example and mentions the next
steps to work at. Section 8 presents the conclusions.

2 MODEL INTEGRATION REQUIRMENTS
An integrated modeling paradigm that gives the designers
a proper view of the system as a whole in several levels of
abstraction, and that keeps track of the current state of
design is fundamental to attain an integrated design that
can cope with the problems brought by complexity [4].
To establish some common grounds for the integration of
models, literature proposes some basic requirements:
1. It is necessary to separate the modeler from the solver

in order to deal with the definitional integration (i.e. of
the models) and the procedural integration (i.e.
integration of the solvers) processes separately [8].

2. Definitional integration becomes possible as models
can be represented in a common language. A
conversion of external models to a common language
is necessary [8].

3. Procedural integration may be more suitable for
situations where the models and their associated
solvers are of diverse nature [8].

4. It is necessary to detect correspondence of variables
between models. This seeks to minimize necessary
human intervention in the detailed levels of the model
integration process. Typing schemes offer an
alternative to aid in this process [8].

5. Graphical user interfaces and views are crucial to
provide model integration support [8].

6. One shared database that contains all the data of the
integrated models quickly becomes a bottleneck [9].

7. Modularity, from the point of view of reusability, and
the use of model libraries helps to speed up the
modeling and verification processes [10].

3 FBS FUNCTION MODELING
FBS is a function modeling scheme created to support
conceptual design in computer aided design (CAD)
systems [5]. FBS aims to build a functional concept
ontology [11]. Most components of the FBS model are
based on a process ontology known as Qualitative
Process Theory (QPT) [12].

As specified in [11], process ontologies focus on the
effects of processes over the attributes of entities, and
functional concept ontologies look to develop models of
devices from the subjective perspective of humans.
An FBS model (see Figure 2) can be divided in three
parts: (1) the functions layer, (2) the behaviors layer, and
(3) the states layer. Each layer is connected to the next
one to form a framework that describes the functionality of
a system and how to attain such functionality. Behavior
and state representations are based on QPT. All the
objects are stored in a knowledge base, which is briefly
described in section 4.2. The next part of this section
contains a brief description of the concepts and main
ideas of FBS [5], [13]- [15].

Functional Hierarchy

State Level

F-B Relationships

View
B-S Relationships

Super-Level Sub-Level

Behavior Level

Figure 2: Scheme of FBS model [14]

Paper Weight

Paper

Mass: 1 kg

Volume: 100 cm3

Density: 10 g/cm3

Has
attribute

Has
attribute
Has

attribute
Relation: On

Figure 3: State of paper weight (adapted from [14])

3.1 State
To define state, first the concept of entity must be
introduced. An entity corresponds to an object like a solid,
a gear, or a single tooth of a gear. The choice for an entity
depends on the level of detail being modeled. Entities
possess attributes that describe them. Lastly, entities are
connected to other entities by relations.
For modeling proposes, in FBS states and entities are
treated simultaneously. A state is defined as “a set of
attributes and relations between entities”, and thus a state
cannot be described without the use of entities. Figure 3
depicts a state, showing several attributes of the entity
“Paper Weight” and how it relates to the entity “Paper”.

3.2 Behavior
First it is necessary to define physical phenomena in
order to ease the explanation of behavior in FBS.
Physical phenomena link a group of entities and their
relations to physical laws (e.g., first law of Newton) that
regulate the changes of attributes and states. These
changes are called state transitions. An example of a
physical phenomenon is “linear motion”, which connects
an entity (e.g., a solid body) and its attributes to a law
(e.g., F m a=). Physical phenomena are knowledge
elements that contain the Behavior-State (B-S)
connections among the classes of the objects. Physical
phenomena become active or inactive according to a set
of enabling conditions specified by the presence of a set
of entities, attributes, and relations.
Behaviors constitute objective representations of what a
system does. A behavior is defined in FBS as “a
sequence of state transitions over time”.

To model behavior it is possible to directly instantiate
physical phenomena or groups of them. These
instantiations are called physical features. Causality
between involved physical phenomena can also be
specified inside a physical feature. Another modeling
option is to specify a behavior as a state transition table.
Then an additional tool (described in section 4.1)
searches and proposes candidate physical features that
are able to obtain such state transitions.

3.3 Function
The definition of function tends to vary in the field of
functional modeling, but many authors agree that the
function is subjective in nature and carries the intention of
design or use [11], [16]. In FBS, function is defined as “a
description of behavior abstracted by human through
recognition of the behavior in order to utilize the behavior.”
Since the function is abstracted from the behavior, the
function alone is not meaningful for representing the
system. Therefore, in FBS a function is represented by a
tuple of function symbol and behavior that can realize the
function. Function-Behavior (F-B) relations are established
when a function is connected to a physical feature.
The function symbol is a text that describes the function in
the form of “to do something.” No further restrictions or
guidelines are necessary to describe the function at this
level because the function symbol itself is just intended for
human recognition.
Functions form a hierarchical structure that results from
the decomposition of general functions into more specific
subfunctions, forming a function tree [17]. Decomposition
of functions is classified as either causal decomposition
(i.e., into subfunctions whose execution is causally
related) or task decomposition (i.e., the subfunctions can
be executed independently from each other).
When several functions and F-B relations have been
placed in the model, the designer can proceed to connect
the entities of different physical features that represent the
same object. This is referred as unification of entities.

4 EXISTING DEVELOPMENTS RELATED TO FBS
The FBS modeling scheme proposes a framework to
model functions. Even though these models are useful by
themselves, other methods and tools appear along the
development of FBS implementations. These tools are
complementary to the FBS modeler and aim to make use
of the advantages of the functional model. This section
introduces some of the tools that relate more strongly to
the model integration goal.

4.1 Qualitative Process Abduction System and
Qualitative Process Reasoner

The Qualitative Process Abduction System (QPAS) [15]
has as a goal to suggest to the designer physical features
that can achieve a behavior, taking as input a description
of the behavior (by means of a state transition table) the
designer desires. The system finds for the designer
suitable ways of attaining a certain behavior (i.e., physical
features) from a set stored in a database. QPAS also
offers a more “stepped” solution by suggesting and
instantiating physical phenomena to build a new physical
feature “on the fly”.
After a defining the FBS model, the Qualitative Process
Reasoner (QPR) [14] can simulate it qualitatively to verify
that all the phenomena in the behavior network can be
executed. With this simulation the system can detect
possible “side effects”. These side effects are physical
phenomena which are not considered in the modeled
behavior network, but that are activated by virtue of their
enabling conditions (see section 3.2). The qualitative
reasoning system is based on QPT. A simulation consists

of generating all the possible state transition sequences
(behaviors) from the model and comparing them to the
desired (modeled) state transitions.

4.2 The Pluggable Metamodel Mechanism
The pluggable metamodel mechanism [18] aims to attain
multiple model integration in design. Its implementation is
the Knowledge Intensive Engineering Framework (KIEF)
 [6]. KIEF is supported over a knowledge base that stores
concepts which include those used for the FBS model
 [13]. Objects from different modelers, like FBS or
geometric CAD systems, are mapped to the objects of the
knowledge base. This mapping is part of the knowledge
base, and constitutes part of the knowledge about the
modeler data. A metamodel of the system is built
according to the ontology of the knowledge base. KIEF
manages data transfer and consistency between
modelers. Other possibilities of KIEF include suggesting
modelers for a specific part of the model and creating
models in a specific modeler by using information from
other models. An application example of this process can
be found in [18].
Next we briefly present the concepts of the physical
concept ontology [13] that specifies how to build the
knowledge base.
• Entity: Represents an atomic physical object.
• Relation: Represents a relationship among entities to

denote static structure.
• Attribute: It is a concept attached to an entity. It takes

a value to indicate the state of the entity.
• Physical phenomenon: Designates physical laws or

rules that govern behaviors.
• Physical law: Represents a simple relationship

between attributes.
All the concepts have a name that can be used to identify
them. With the exception of the physical laws, all objects
can have supers. Supers are objects from which the
object inherits properties.

5 DISCUSSION AND PROPOSED IMPROVEMENTS
The past sections show the main features of FBS and
other tools related to it. The way in which all these tools
and concepts can be applied in order to obtain a concise
integration of models for a design process is rather
apparent, and is well documented in the references. This
section discusses some details on which the authors
consider worthy working more. It is not the purpose of this
paper to evaluate the performance of the referenced
implementations of FBS and its related tools, but to
discuss the potential of such developments with respect
to model integration and to propose improvements if
available.
The next subsections analyze aspects that, according to
the authors, have room for improvement and will increase
the value of the FBS methodology. Section 5.1 presents
a metamodel integration paradigm supported on FBS.
Sections 5.2 and 5.3 relate to the topic of behavior
simulation, and sections 5.4 and 5.5 are related to
requirements 2 and 4 in section 2. Section 5.6 relates
closely to requirements 5 and 7 in section 2.

5.1 Model integration over a metamodel
The ideas from section 4.2 revolve around mapping
objects from different models to a metamodel. In KIEF the
metamodel is built mainly by extracting information (e.g.,
connections between objects) from an FBS model. The
metamodel also contains other information related to
objects, such as physical phenomena, physical laws, and
knowledge about modelers which are not modeled in FBS
but make part of the knowledge base that FBS uses. The

proposal is to use the FBS model directly as the
metamodel on which objects of other models can be
mapped, by using the entire ontology of KIEF.
The “building blocks” of the FBS model must be detailed
enough to allow representing the objects used in other
models, but at the same time these blocks must act like
components which result practical for the user and allow
him to build a model quickly. As appears in section 7.2, at
the moment the authors are taking first steps to build an
FBS-based metamodel so the previous challenge can be
cleared in the near future.

Figure 4: Diagram of the proposed model integration

approach [4]
A rough diagram of the idea proposed here can be seen in
Figure 4 (a more extensive explanation appears in an
earlier work [4]). The FBS model is represented by the
system architecture block. The lower part of the figure
shows different stages of the design process (labeled
“Design x”), represented by a set of models. Each of these
models can correspond to single or multiple domains and
to different levels of detail. The data correspondence
between models is mapped in the metamodel and
managed by the pluggable metamodel mechanism. The
metamodel contains the necessary information to link a
coherent, high-level, model of the system and the models
mentioned before. Systems architecture is not clearly
visible in the objects that compose the system. Some
design rationale must be modeled and communicated to
the users. Functional information is used to that end also.

5.2 Qualitative reasoning
A characteristic of FBS is that it is focused towards
behavior simulation through computational means.
Parting from an initial condition, the qualitative reasoning
system generates all the state transitions reachable
through the influence of the active physical phenomena.
Because qualitative reasoning works with rather
incomplete information about the system, all qualitative
reasoning algorithms face the problem of combinatorial
explosion [1]. These algorithms implement mechanisms to
reduce the number of combinations or to filter the results.
The current implementation of QPR presents all the
results, and thus some decision or filtering mechanism is
desirable. As it is, the reasoning algorithm might, for
example, instantiate the effects of gravity over every entity
in a system. Though this is correct, in some cases the
effects of gravity are negligible compared to other
phenomena and the model grows unnecessarily. Next
section proposes a partial solution for this.

5.3 Function specification and ontology
The use of FBS for the function symbol (i.e., the name of
the function) is restricted to have an object that can be
identified by the user and to which we can link the

behavior information. The function symbol itself carries no
meaning in the knowledge base, and the design intention
is transmitted to the computer as the framework of
connected concepts from the knowledge base.
The function symbol itself carries the most abstract part of
the design intention in a function. The proposal is to
describe the function symbol in terms of a predefined
vocabulary that carries a meaning for the reasoning
algorithms in the computer. Then, the algorithm can use
such information to guide QPR towards the phenomena
of interest. This does not solve the entire problem of
combinatory explosion, but it may contribute to eliminate
a good amount of spurious behaviors. In this way, we
approach a natural-language-like functional represen-
tation [16] with a more formal background for “functional
primitives” [19] to facilitate its application in an algorithm.
The basic idea is to identify the phenomena of interest as
those that manipulate the main kind of energy specified
by the function symbol, which in principle should be the
biggest portion of energy flowing through the system, and
therefore, the most representative in behaviors.
As an example of a restricted vocabulary to support
function modeling in software, here we consider the work
of [20], also mentioned by Chandrasekaran [19]. Although
this particular ontology was developed from the device
perspective of functional modeling [11], the vocabulary
can describe a very broad variety of functions. It can be
used in the verb-object format and also supports other
constructions for functions symbols.

5.4 Function decomposition
Function decomposition is an essential part of the FBS
model [14]. Nonetheless, the scope of function
decomposition in FBS is more closely related to the ability
of the algorithm to suggest physical features which are
causally dependent than to give general guidelines about
how a function must be decomposed.
Functional decomposition is in itself one of the core
activities of the design process. A designer decomposes
the required functions arriving to more concrete
descriptions in every step. Having guidelines to perform
such a crucial activity looks to formalize it so that it can be
represented in a model in a reproducible way and to
justify the decomposition choice to certain extent. The
current problem can be pictured easily when performing a
functional description of an existing system such as a
permanent magnet DC motor. In this exercise,
discrepancies appear even when the same person
performs the functional decomposition of the same
system several times (see left part of Figure 7, after the
references). A reason for this is that a particular point of
view can be used to decompose a function. On top of
that, decomposing functions while remaining in the
functional domain is very hard in practice, because at
each level of decomposition some concreteness must be
added [21], and this points towards a particular solution.
In the case of some of the device centered function
models [22]- [24], functional decomposition is achieved by
following internally the “flows” that a function processes,
in a similar way to how functional block diagrams are
created [17]. This decomposition approach is not
applicable to FBS because its supporting ontology does
not take functions, but processes, as the objects
responsible for changes.
The authors propose to use a functional decomposition
approach similar to the “zigzagging” presented in the
axiomatic design theory [21], where the design
parameters help to guide the decomposition process. For
each function a corresponding behavior is assigned. As
explained in section 3.2, behavior is carried out by
physical features. Physical features carry information

about the involved processes (i.e., physical phenomena)
and structure (i.e., entities and relations). Like this, it can
be seen that the model contains functional and design
parameter domains similar to those used in the zigzagging
decomposition process of axiomatic design. The idea is to
use this method to guide the functional decomposition
process, and not to consider the details related to the
independence axiom of the axiomatic design theory.
Looking back at the example in Figure 7, we see that both
decompositions can be realized with a different choice of
physical features (Figure 7 right), but in the case of the
second decomposition the function “ConvertElectric
EnergyToRotationalMechanicalEnergy” would be realized
by the physical feature “IdealDCMotor” that contains less
detail of what happens inside the motor at the second
level of the decomposition (it uses the proportional relation
between current and torque). The choice of a particular
decomposition depends on the models used to represent
its features.

5.5 Multiple level modeling and model consistency
Simultaneous modeling at several levels of detail is one of
the potential uses that the authors see in functional
models. By analyzing a function tree it is easy to identify
how functions (or the interpretation we make of them)
have the property of describing a consistent model of a
system while at the same time more detail can be
presented for some parts.
Here, a consistent model is understood as one that
represents the modeled system without leaving any
“holes” or unexplained parts in it. For example, a
consistent model for a stepper motor might include a
detailed dynamic model of the motor, geometric
representations, and a “black box” controller model, while
other consistent model can detail the controller structure
and treat the physical part of the motor as a transfer
function (which can be considered almost as a black box).
Though the tendency of some users of the FBS modeler
is to associate functions to physical features only for
functions which are not further decomposed into
subfunctions [25], FBS does not impose this restriction.
The proposal is to use the F-B relations and the mapping
suggested by the pluggable metamodel mechanism at
different levels of detail (i.e., different levels of function
hierarchy) so that a user can build and view a consistent
model of the whole system while looking in detail some
parts of the model.

5.6 Model and data standardization
Model and data standardization are factors that strongly
influence the use and acceptance of a system modeling
implementation. This happens because standards are
made accessible to more people by the organizations, and
also because good standards tend to fill in the needs of
industry better than other solutions. This is partially
explained by the fact that most standardizing organisms
are born from industry. The project in which the present
work is carried out is closely related to industry, and thus,
the advantages of standardization must be exploited as
much as possible, though this is almost always desirable.
FBS defines a semantic structure for the knowledge base,
but it does not define any data structure for it and it is not
restrictive in that sense. The KIEF implementation is
programmed in Smalltalk language, and the data of the
knowledge bases is specific for that implementation.
These choices were driven in part by the origins of KIEF in
the research community, where basically the developers
are the main users of the implementation.
Some mention to standards for data representation
appears in literature about the pluggable metamodel
mechanism [18]. There, STEP (ISO 10303) is mentioned

as an example of standard data representation that can
simplify retrieving data from complex products. The STEP
standard is widely used by CAD systems mainly to
exchange information about geometry, though the
standard allows representation of other information
relevant for product design such as dimensioning,
configuration management data, and assembly data.
In recent years the extensible markup language (XML)
has gained tremendous popularity. XML formatted data
can be found in a broad range of applications such as
web pages, modeling languages (e.g., UML), and
mathematical notation (e.g., MathML). The STEP
standard does not fall behind, and it is currently
implementing an XML based representation for its
application protocols (i.e., Part 28 XML). XML forfeits
characteristics such as terseness in favor of qualities like
extendibility, broad applicability, and human readability.
Apart from the data representation format, model
standardization is also desirable. As an example, most 3D
geometry modelers in CAD tools through the years have
arrived to an implicit agreement in the available
operations. This agreement is also related to the data in
the representation models. That allows a user to quickly
switch tools and still be able to produce the desired
geometry.
One standard that is gaining strength in the modeling field
is the Unified Modeling Language (UML). Though initially
and most broadly used to describe software products,
these days some of its “profiles” (which contain
restrictions as well as extensions) are used to represent
business models and real-time systems. The relatively
new profile of Systems Modeling Language (SysML) [26]
seems suitable to represent most of the information used
in systems’ design. It is also worth mentioning that part of
the developing group of SysML also belongs to the group
that develops STEP [26]. SysML has been successfully
applied as part of an integrated design platform in works
like [27] and [28].
At this point, the proposal is to implement FBS in SysML.
This will get FBS in the path of standardization for both,
data representation and modeling language.

6 INTEGRATION OF MODELING TOOLS
Gathering the ideas from section 5, we present the
general approach to implement the integration of
modeling tools using an FBS model. The function and
behavior layers of the FBS model (cf. section 3) form a
metamodel that plays the main role in integration. Till
now, the proposal mainly addresses definitional
integration. The metamodel is based on knowledge about
physical concepts. The models, being abstractions of
reality, are compatible with such concepts. Like this, a
model-independent metamodel can be established. On
the other hand, since current tool data and format are not
standard, additional knowledge about this is necessary to
integrate the tools. Using an XML compatible model aims
towards data compatibility in the future, though this format
is already supported by many tools.
The objects represented in the models are associated
with the objects in the behavior layer. For example, a
solid geometry represented in a CAD model can be
associated with a “SolidBody” entity. Attributes in the
model, like the volume of the solid, can be mapped
directly to attributes of the entity. At the attribute level, a
network of constraints is built using the laws attached to
the phenomena. This network and the state layer may be
stepping stones for procedural integration, providing
information to coordinate the manipulation of the models.
The models can represent different domains and degrees
of detail. The functional layer is related to the models

through the behavior layer. In this way, models are linked
to a layer where their differences become less relevant.
From another perspective, the functional layer also
communicates to the user the role of a model in the
design, supporting decision making. Diversity in the
models’ detail level is addressed by the hierarchical
representation of the architecture, both in the function and
behavior layers.

7 CURRENT PROGRESS AND FUTURE WORK
The first step was choosing FBS as a base for the
functional models to be used in the project, after studying
the basics of several developments related to functional
modeling that can be found in literature. The readers
should refer to [11] and [19] for a review of functional
modeling approaches, and to [29] for an overview about
functional reasoning.
Currently the authors are working to implement the
physical concept ontology of KIEF (which contains the
ontology of FBS) in SysML. This is done keeping in mind
the ideas of section 5 while paying special attention to the
model integration aspects.
To illustrate the implementation, we show part of the
model corresponding to a permanent magnet DC motor.
For the models here the authors used the commercial tool
MagicDraw UML and its SysML plug-in.

7.1 FBS in SysML
Obtaining a formal description of how to develop an FBS
model in SysML is an important first step for the
implementation of functional modeling in the framework of
the project. To properly understand the SysML objects of
the mapping the reader should refer to the SysML
specification [26]. A first proposal for such “mapping” is
presented in this section. Italicized terms in the next
paragraphs correspond to SysML terminology. Block is
the term used for classes in SysML, and thus is used
extensively. Most definitions are done at the class level,
and thus can be reused to define instances of the objects
that will be part of the actual model.
Entity: An entity can be mapped to the SysML block class
(Figure 8.a). In the model, a block for the entity is created
by specifying the blocks that correspond to its supers, and
then the details are added to the new class. Instances of
the class with specific values will be used in the model.
The example contains entities such as “rotor” “coil”, and
“shaft”, which in turn are children of the entity “Solid
Body”.
Attribute: Attributes described by numeric values (like
moment of inertia, torque, and angle) can be represented
as ValueTypes. Units and dimensions can be defined for a
ValueType (see Figure 9). For the case of attributes that
correspond to the derivative of other attributes (e.g.,
acceleration, velocity, and position) a directed association
named “derivative” can be placed from the attribute to the
derivative of the attribute (e.g., from position to velocity).
For other attributes that describe special conditions of an
entity (e.g., matter state), enumerations that contain the
set of values/string descriptions (e.g., solid, liquid) can be
defined. Attributes are placed directly in the entity classes
(the blocks) as properties (SysML uses value properties
and other kinds of properties). Values for the attributes
can be assigned to the instances.
Relation: Relations can be represented (Figure 8.b) as
association blocks that connect the involved entities
(blocks). The relations do not appear from the side of the
connected entities, but as the type of the memberEnds in
the association block. The relation holds a reference
participantProperty for each connected entity.

Physical law: Physical laws are represented by
mathematic expressions. The idea is to store here the
qualitative relations, so that the QPR can access this
information from the metamodel. To represent this
information SysML includes a very specific object called
constraint block (Figure 8.c). With constraint blocks,
systems of equations can be built by connecting the ports
of several blocks in the parametric diagram, linking
variables between mathematic expressions. The
expressions are placed as constraints in the constraint
blocks. Also other constraint blocks can be nested inside
the constraint block as constraintProperties. The variables
that appear in the expression are defined as
constraintParameters of the constraint block. Figure 8.c
depicts a constraint relating three parameters.

PhysicalPhenomena PhisicalPhenomena[Package] bdd []

<<block>>
1DOFRotation

parts
Object : SolidBody

constraints
Equation1 : SecondLawOfNewton_Rotation

<<block>>
PhysicalPhenomenon

1DOFRotation 1DOFRotation[Block] par []

<<block>>
Object : SolidBody

<<ValueType>>
MomentOfInertia : MomentOfInertia

<<ValueType>>
ExternalTorque : Torque

<<ValueType>>
Mass : Mass

<<constraint>>
Equation1 : SecondLawOfNewton_Rotation

{T=J*alfa}

alfa : AngularAcceleration

J : MomentOfInertiaT : Torque

<<BindingConnector>>
<<BindingConnector>>

Figure 5: Physical phenomenon representation. Block

representation (above) and statements definition (bellow)
Physical phenomenon: This is one of the most complex
knowledge units in FBS. Therefore, special attention is
required to map this structure in SysML. A physical
phenomenon is also represented as a SysML block
(Figure 5). A description of the mapping for specific parts
of the physical phenomenon is next:
• Name: As all UML objects, the block has a name.
• Supers: Supers of a block are represented by a

generalization relation.
• Entities: Entities are part properties of the block, typed

by the blocks that define the entities.
• Attributes: They can be extracted directly from the

related physical laws and entities.
• Physical laws: Defined as constraint parameters.
• Statements: Constraint parameters already tell us

which attributes are involved in the physical
phenomenon, and they are connected through binding
connectors to the attributes (value properties) in the
entities (blocks).

The physical phenomenon “1DOFRotation” in Figure 5
binds attributes of “Solid Body” to their corresponding
constraint parameters in the “SecondLawOfNewton_
Rotation” physical law.
Physical feature: Physical features can be represented
as packages that contain instances of the necessary
physical phenomena, entities and relations. This limits the
use of the physical feature as an object because it
already uses instances, but allows a direct contact with

the entities inside a physical phenomenon. The feature
“ShaftCoupling” (Figure 6) contains a phenomenon
“Unification_Rotation” that associates the torque attribute
of three assembled entities (motor rotor, coupling, and
output shaft) to a constraint to computes the total torque
transmitted through the assembly.

ShaftCoupling ShaftCoupling[Package] pkg []

<<block>>
rotatingAssembly :
Unification_Rotation
Bodyi = motorRotor,
outputShaft,
coupling

<<block>>
motorRotor : Shaft

<<block>>
coupling :
SolidBody

<<block>>
outputShaft :

 Shaft

<<block>>

 : Joined

<<block>>

 : Joined

Figure 6: Physical feature representation in SysML
Function: Functions are represented by SysML activities
(Figure 7, left). Modeling of F-B relations is done by
allocating functions to the respective features. When
modeling, the physical features are placed in the model,
and unifying relations are created between entities from
different features that represent the same real object. Like
that it is possible to create a consistent model from a
group of features.

7.2 Future work
The next step is to use the implementation scheme
proposed in section 7.1. The goals of that step are to test
if real systems can be modeled with the proposed
implementation, to gradually build a knowledge base, and
to refine the required modeling steps. For the modeling
steps, special attention must be put in the way in which
the user must input information to the model.
Another aspect to investigate is the choice of appropriate
visualization methods for the model. Visualization of
models is important to facilitate understanding and appeal
of the model, which strongly influence the decision of
using a model or not using it.

8 CONCLUSIONS
FBS has good potential to work as a metamodel over
which other models can be mapped. However, the
corresponding information about the modelers must be
added. Also, more work has to be done to model
software-related aspects, as the work here has focused so
far on representation of physical objects.
Though definitive choices about the correspondence for
some elements are still to be made, the current work
proves that SysML is powerful and flexible enough for
building in it meta-models that support model integration.
About the modeling process in SysML it is possible to
conclude that, after mapping some components of the
physical concept ontology, the authors could verify the
flexibility of SysML to represent a wide variety of concepts.
Nonetheless, such flexibility can cause difficulties in the
choice of mapping for a component or term. Some
diagrams, like the parametric diagrams, become easily
cluttered when using more than ten blocks or so, and this
cannot always be avoided with packaging.

9 ACKNOWLEDGMENTS
The authors gratefully acknowledge the support of the
Dutch Innovation Oriented Research Program ‘Integrated
Product Creation and Realization (IOP-IPCR)’ of the
Dutch Ministry of Economic Affairs.

10 REFERENCES
[1] Barr, A., Cohen, P. R., 1989, The Handbook of

Artificial Intelligence, Vol. 4. Chapter 21. Los Altos,
CA: William Kaufmann, Inc.

[2] Rodenacker, W., 1971, Methodisches Konstruieren,
Springer-Verlag, Berlin.

[3] Pahl, G., Beitz, W., 1988, Engineering design: A
systematic approach, Springer-Verlag, Berlin.

[4] Alvarez Cabrera, A. A., Erden, M. S., Foeken, M. J.,
Tomiyama, T., 2008, “High Level Model Integration
for Design of Mechatronic Systems,” proceedings of
IEEE/ASME International Conference on
Mechatronic and Embedded Systems and
Applications. Beijing, China. pp. 387-392.

[5] Tomiyama, T., Umeda, Y., 1993, “A CAD for
functional design,” in Annals of the CIRP'93, 42(1),
pp. 143-146.

[6] Tomiyama, T., Umeda, Y., Ishii, M., Yoshioka, M.,
Kirayama, T., 1996, “Knowledge systematization for
a knowledge intensive engineering framework,” WG
5.2 Workshop on Knowledge intensive CAD-1, pp.
33-52.

[7] Derelöv, M., 2008, “Qualitative modeling of potential
failures: On evaluation of conceptual design,”
Journal of Engineering Design, 19(3), pp. 201-225.

[8] Dolk, D. R., Kottemann, J. E., 1993, “Model
integration and a theory of models,” Decision
Support Systems, 9(1), pp. 51-63.

[9] Cutkosky, M. R., et al, 1993, “PACT: An experiment
in integrating concurrent engineering systems,”
Computer, 26(1), pp. 28-37.

[10] Geoffrion, A. M., 1989, “Reusing structured models
via model integration,” Proceedings of the Twenty-
Second Annual Hawaii International Conference on
System Sciences, 1989, Vol.III: Decision Support
and Knowledge Based Systems Track, pp. 601-611.

[11] Erden, M. S., Komoto, H., van Beek, T. J., D'amelio,
V., Echavarria, E., Tomiyama, T., 2008, “A review of
function modeling: Approaches and applications,“
Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 22(2), pp. 147-169.

[12] Forbus, K., 1984, “Qualitative process theory,”
Artificial Intelligence, 24(3), pp. 85-168.

[13] Yoshioka, M., Umeda, Y., Takeda, H., Shimomura,
Y., Nomaguchi, Y., Tomiyama, T., 2004, "Physical
concept ontology for the knowledge intensive
engineering framework," Adv. Eng. Inf., 18(2), pp.
69–127.

[14] Umeda, Y., Ishii, M., Yoshioka, M., Tomiyama, T.,
1996, “Supporting conceptual design based on the
function-behavior-state modeler,” AIEDAM, 10(4),
Sept. 1996, pp. 275-288.

[15] Ishii, M., Tomiyama, T., Yoshikawa, H., 1993, “A
synthetic reasoning method for conceptual design,”
IFIP World Class Manufacturing ’93, Amsterdam,
pp. 3-16.

[16] Chakrabarti, A., Bligh, T. “An approach to functional
systhesis in mechanical conceptual design. Part I:
Introduction and knowledge representation,”
Research in engineering design, 6(3), pp. 127-141.

[17] European Cooperation for Space Standardization,
1999, Space engineering – Functional analysis (E-
10-05A), (http://esapub.esrin.esa.it/pss/ecss-ct05.
htm)

[18] Yoshioka, M., Sekiya, T., Tomiyama, T., 2001, “An
integrated design object modeling environment -
pluggable metamodel mechanism -,” Turk J Elec
Engin, 9(1), pp. 43-62.

[19] Chandrasekaran, B. “Representing function:
Relating functional representation and functional
modeling research streams,” AIEDAM, 19(2), pp.
65-74.

[20] Hirtz, J., Stone, R., McAdams, D., Szykman, S.,
Wood, K., 2002, “A functional basis for engineering
design: Reconciling and evolving previous efforts,”
Res. Eng. Des., 13(2), pp. 65–82.

[21] Suh, N. P., 1990, The Principles of Design, Oxford
University Press, Oxford.

[22] Stone, R., Wood, K., 2000, “Development of a
functional basis for design,” ASME J. Mech. Des.,
122(4), pp. 359–370.

[23] National Institute of Standards and Technology,
1993, Integration definition for function modeling
(IDEF0), [online] (http://www.idef.com/pdf/idef0.pdf).

[24] Wood, W., Dong, H., Dym, C., 2004, “Integrating
functional synthesis,” AIEDAM, 19(3), pp. 183-200.

[25] van Eck, D., McAdams, D., Vermaas, P., 2007,
“Functional decomposition in engineering: A survey,”
Proceedings of the ASME 2007 IDETC/CIE, Las
Vegas, Nevada, USA.

[26] Object Management Group, 1999, OMG Systems
Modeling Language (OMG SysML™), V1.0 , [online]
(http://www.omg.org/cgi-bin/apps/doc?formal/07-09-
01.pdf)

[27] Peak, R., Burkhart, R., Friedenthal, S., Wilson, M.,
Bajaj, M., Kim, I., 2007, “Simulation-based design
using SysML: Celebrating diversity by example,”
INCOSE Intl. Symposium, San Diego, [online]
(http://eislab.gatech.edu/pubs/conferences/2007-
incose-is-2-peak-diversity/2007-incose-is-2-peak-
diversity.pdf)

[28] Tactical Science Solutions Inc., 2007, Quicklook
final report, [online] (http://www.tacticalscience
solutions.com/files/05-30-07%20Quicklook%20Final
%20Report%20v1.19.pdf)

[29] Far, B. H., Elamy, A. H., 2005, “Functional
reasoning theories: Problems and perspectives,”
AIEDAM, 19(2), pp. 75-88.

Figure 7: Example of two different functional decompositions for a permanent magnet DC motor. Function trees (left) and

corresponding physical features (right)

Figure 8: SysML representations for (a) entities, (b) relations, and (c) physical laws
AttributesList[Package] Attributespkg []

UnitsAndDimensions

<<Unit>>
KilogramPerMeterSquared

<<Unit>>
dimension = MomentOfInertia

<<Unit>>
RadianPerSecond

<<Unit>>
dimension = Velocity

<<Unit>>
RadianPerSecondSquared

<<Unit>>
dimension = Acceleration

<<ValueType>>
AngularAcceleration

<<ValueType>>
unit = RadianPerSecondSquared

<<ValueType>>
MomentOfInertia

<<ValueType>>
unit = KilogramPerMeterSquared

<<ValueType>>
AngularVelocity

<<ValueType>>
unit = RadianPerSecond

<<ValueType>>
Torque

<<ValueType>>
dimension = Torque
unit = NewtonMeter

<<ValueType>>
Energy

<<ValueType>>
dimension = Energy
unit = Joule

<<enumeration>>
SurfaceGeometryKind

FemaleGeometry
MaleGeometry
Thoothed

Smooth
Rough

<<ValueType>>
dimension = Force
unit = Newton

<<ValueType>>
Force

<<ValueType>>
dimension = Mass
unit = Kilogram

<<ValueType>>
Mass

<<ValueType>>
Time

<<ValueType>>
dimension = Time
unit = Second

<<ValueType>>
AngularPosition

<<ValueType>>
unit = Radian

<<enumeration>>
MatterStateKind

Liquid
Solid

Gas

<<ValueType>>
Percentage

<<ValueType>>
Real

derivative

derivative

Figure 9: Representation of attributes and definition of units and dimensions in SysML

ContactConnected Definition[Block] bdd []

<<block>>
ContactSolid

<<block>>
ContactConnected

ContactConnected

<<block>>
<<ParticipantProperty>>

+Solid2

<<ParticipantProperty>>
+Solid1

PhysicalLawsListPhysicalLaws[Package] pkg []

<<constraint>>
SecondLawOfNewton_Rotation

{T=J*alfa}

parameters
T : Torque{unit = NewtonMeter, dimension = Torque}
J : MomentOfInertia{unit = KilogramPerMeterSquared}
alfa : AngularAcceleration{unit = RadianPerSecondSquared}

[Package] Entities Entitiespkg []

<<block>>
SolidBody

values
MomentOfInertia : MomentOfInertia{unit = KilogramPerMeterSquared}
ExternalTorque : Torque{unit = NewtonMeter, dimension = Torque}
Mass : Mass{unit = Kilogram, dimension = Mass}

<<block>>
Entity

(a) (b) (c)

Decomposition1[Package] Functionspkg []

<<activity>>
ConvertMagneticEnergyToRotationalMechanicalEnergy

<<activity>>
ConvertElectricalEnergyToMagneticEnergy

<<activity>>
TransmitRotationalMechanicalEnergy

<<activity>>
SupplyRotationalMechanicalEnergy

<<activity>>
SupplyElectricalEnergy

Decomposition2[Package] Functionspkg []

<<activity>>
ConvertMagneticEnergyToRotationalMechanicalEnergy

<<activity>>
ConvertElectricalEnergyToRotationalMechanicalEnergy

<<activity>>
ConvertElectricalEnergyToMagneticEnergy

<<activity>>
TransmitRotationalMechanicalEnergy

<<activity>>
SupplyRotationalMechanicalEnergy<<activity>>

SupplyElectricalEnergy

Decomposition1[Package] Behaviorspkg []

<<block>>
MagneticAttraction

<<block>>
TorqueGenerator

<<block>>
ShaftCoupling

<<block>>
IdealBattery

<<block>>
Coil

Decomposition2[Package] Behaviorspkg []

<<block>>
MagneticAttraction

<<block>>
TorqueGenerator

<<block>>
Electromagnet

<<block>>
ShaftCoupling

<<block>>
IdealDCMotor

<<block>>
IdealBattery

