
Requirements Models for
Collaborative Product Development

C. Stechert1, H.-J. Franke1

1Institute for Engineering Design,
Technische Universität Braunschweig, Germany

Abstract
Multidisciplinary product development in collaborative networks is a typical working condition for nowadays
engineers. After describing the main deficits and dangers of such development situations a modelling
approach using the Systems Modelling Language (SysML) is shown. The approach focuses on the
generation of a requirements model as a basis for discussion and analysis of the real project aims. A short
and simplified example from the field of parallel robots illustrates the approach.

Keywords:
Requirements management, collaborative networks, design methodology, parallel robots

1 INTRODUCTION
The multidisciplinary development of complex products is
often performed in collaborative networks. Thence, the
system is decomposed into smaller and manageable
subsystems (or subtasks). Ideally, these subsystems can
be handled independently. It is a big challenge to keep the
subsystems consistent, because boundaries are diffuse
and changes can have an effect on several subsystems at
the same time. A goal-oriented approach should consider
all important system views during the product lifecycle.
Requirements are seen as the core of a successful
product development. All steps of the development
process and every subsystem should support the initial
goals. A requirements model is shown that uses the
Systems Modelling Language (SysML) as a basis. SysML
is a widely known standard e.g. in software development,
electronics, and automation. A SysML model is able to
integrate several different model elements (e.g. scenarios,
functions structures, mechanical structures, and
manufacturing processes). These elements can be
visualised and documented. Based on a classification of
requirements and relations (both qualitative and
quantitative) a semiautomatic analysis is possible that
helps detecting goal conflicts and estimating change
impact.
The benefit of the method is shown for high dynamic
parallel robots. Parallel robots are mechatronic, typically
customised products. Every task at each customer is
unique. Thus, the need for a domain integrating method
that supports modular systems was the main motivation
for this work.

2 PRODUCT DEVELOPMENT IN COLLABORATIVE
NETWORKS

In this work, a collaborative network is seen as a group of
organisationally and locally separated companies or
departments that work together on the development of a
special product.
One aim of product development in collaborative networks
is to use the specific expertise of different enterprises in

diverse domains to generate a domain-spanning product
[1], e.g. mechatronic products like robots, cars, or
airplanes. Especially, small and medium sized enterprises
(SME) cannot provide high expertises in many different
domains. On the other hand, a small company can be
expert and world market leader in a delimited area.
Another aim of product development in collaborative
networks is to decrease the time-to-market by
parallelization of work packages. A well-known strategy is
simultaneous or concurrent engineering. According to [2]
simultaneous engineering leads to 30-60% less costs, 30-
90% shorter development time, and 30-87% increase of
quality.
Along with these advantages, collaborative networks
bring some difficulties and dangers. The most concerning
aspects of often-cited difficulties and dangers are
summarized and presented from the following seven
viewpoints.
2.1 Communication between development partners
The more distant the different sites are the higher will be
the effort for communication [3] (e.g. travel,
communication techniques) and if no clear code of
behaviour is defined, there will be efficiency losses [3].
Different spoken languages and different cultural
backgrounds fortify the effects [4].
Thence, it is important to define a common language as a
basis for effective communication. This is necessary at
least at those high levels of abstraction (e.g. requirements
clarification), where many different partners are involved.
2.2 Exchange of information
According to Zanker [5] the storage, selection, and
processing of information and the management of
knowledge are the main weak points. It is not always
clear to every project member whether he works with a
valid version of the dataset. In addition, different data
formats have to be converted with losses or cannot be
handled by every project member [3].
Interfaces are badly defined and no rules for information
exchange are specified [2, 3]. If rules are set, it often
leads to a higher amount of time spent learning special

CIRP Design Conference 2009

li2106
Text Box
Proceedings of the 19th CIRP Design Conference – Competitive Design, Cranfield University, 30-31 March 2009, pp24

notations or project-specific procedures. Some product
specific approaches (e.g. [6]) were made to assist a
project-(data-)coordinator to assure a consistent
exchange of model data and make it more time-efficient.
However, a development environment has often to be
adapted to new technologies. This would lead to problems
if the possibility for such extensions was not considered
during programming.
2.3 Division of labour
A big danger for efficiency losses is a bad clarification of
project goals [4]. The goals must be clear to every project
member and the completion of every subtask should be a
step towards the fulfilment of a goal.
A bad disjunction of subtasks leads to extra work [4, 5].
Moreover, responsibilities for results are not fixed and not
controlled [5]. A single member of the project team is not
able to overview the whole system, thence is not aware of
weak points and cannot imagine the importance for the
whole system [3, 5]. Once established it is difficult to
change the distribution of subtasks. The organisational
effort for coordination of work and maintenance of
interfaces is comparably high [5].
2.4 Combination and integration of results
Often there is no continuous and no systematic workflow
present, thus the right results are not available at the right
moment [5]. Interfaces are often inexpedient in type and
number [5]. Thence, “optimal” results of subtasks
(according to the first set of requirements) are integrated
and form a suboptimal total system.
The documentation of decisions and results is often seen
as a bothersome duty. If any, project members document
results at the end of a project or in a way that is just clear
for the person who created it. If personnel and boundary
conditions change, decisions cannot be retraced and in a
worst case situation work has to start over.
2.5 Human behaviour and human relations
Communication between human beings is seen as the
main factor to avoid errors, but the more the distance the
less is the likelihood of communication. New techniques
try to virtually reduce this distance (e.g. videoconferences,
application sharing). Nevertheless, some project members
are inexperienced or too narrow-minded for using
methods and new techniques of communication. In
addition, design engineers see themselves as creative
inventors, which might lead to internal resistance against
the use of methods [3, 4].
Besides efficiency losses due to different cultures and
structures in the different companies [3, 5], each partner
follows different aims and strategies [3, 5]. If partners do
not trust each other, this will lead to “inside-the-box-
thinking” of employees, i.e. holding back of information
[3, 4, 5].

2.6 Use of methods and tools
Especially in multidisciplinary product development for
complex products a huge variety of different methods and
tools is used [7]. Different companies apply different
methods for the same type of problem. Furthermore,
experts often use their favourite tools (e.g. the use of a
specific CAD-system sometimes seems to be a
“philosophical” rather than a technical/economical
question).
It follows that project members use methods wrong, not
adapted to the actual problem or not at all [4]. If methods
are used a broad number and variety of methods are
used that cannot be handled easily [4].
Van Beek and Tomiyama [8] state that the integration of
different methods is the main challenge. Some
approaches (e.g. [6, 9]) already showed that it is possible
to create integrated development environments.
However, these are limited to the predefined set of
implemented methods. Furthermore, special formalisms
are used to apply the methods.
Following an idea stated in [10], Figure 1 shows the
benefit of formalism as a curve over the degree of
formalism. Apparently, the maximum benefit lies in
between a too low and a too high degree of formalism. It
is clear that the run of the curve highly depends on the
type of project. The narrower the boundary conditions (i.e.
number of domains, project members involved) the more
moves the curve to the left. Thence, Figure 1 shows a
useful area of formalism located around the optimum of
the described curve. Figure 2 shows a similar approach of
[11] now distinguishing between the effort for exchange
and standardization of information. A minimum effort
(though a maximum benefit) is reached in between
recommendations and norms as a measure for
standardization grade. However, if the norm exists and is
well known, the effort for that standardization will not
count for the actual project.
2.7 Organizational aspects
Limited resources, time pressure, dynamic boundary
conditions, and goal conflicts affect performance and
productivity [4]. Decision making processes and
managing of development goals are main weak points [5],
i.e. definition of goals and if necessary their adjustment
due to changing environments.
Due to hierarchy (e.g. steering committee, project
management, and work team), domain (e.g. mechanics,
electronics, software) and place (e.g. different companies/
departments, different sites) a number of somehow
independent “islands of knowledge” emerge. Each island
uses a specific subset of the whole project knowledge
and is often not sufficiently connected to others [3].

benefit of
formalism

degree of
formalism

useful area
of formalism

Figure 1: Benefit of formalism, related to [10].

effort

standardization
grade

total effort
for exchange

recommendations norms

effort
for exchange

effort for
standardization

Figure 2: Effort for exchange/porting depending on

standardization grade, [11].

The organisation of a collaborative multidisciplinary
project for the development of complex products needs a
big effort in planning before the project starts. Main points
that have to be considered are scheduled time and cost
frames. Also the development risk and the possibility of
changes (e.g. of customer wishes, laws, available
technologies) are main influencing factors for the success
of a project. A very comprehensive summary is given in
[12]. Here, the key elements of successful operational
design coordination are identified as coherence,
communication, task management, schedule
management, resource management, and real-time
support.

3 MODELLING THE PRODUCT
As mentioned earlier the development of a product makes
use of a variety of different models or “partialmodels” that
describe a specific view on the whole system. Two
definitions of model are cited below:
“Models express relations between real conditions in an
abstract form. As a copy of reality models own
simplifications that on the one hand cause a loss of
realness, but on the other hand bring transparency and
controllability of real relations.” [13]
“Model is a purpose-dependent, finite, simplified, but still
adequate representation of whatever is modelled, allowing
us to abstract from its unimportant properties and details
and to concentrate only on the most specific and most
important traits.” [11]
Both definitions contain the aspects of abstraction and
simplification to bring transparency and to concentrate on
the most important characteristics. Additionally, Ort [13]
states that models bring controllability of real relations:
We cannot control what we do not understand.
3.1 Requirements on models
According to [11] a model should represent the subject to
be modelled, ignore unimportant details (abstraction), and
allow a pragmatic usage. The purposes are to support
and improve the understanding of the matter and build a
common basis for discussion and information exchange.
Moreover, models should allow comparison of different
solutions as well as analysis and prediction of behaviour
and characteristics of the system to be designed. The
organisation of a model should contain its structure and
architecture. Furthermore, interactions between
components, component interdependencies, and
important external relations should be taken into account.
One important aspect of a model is its representation,
especially the visualization of its contents. Salustri et al.
[14] mentions “there is relatively little use of diagrammatic
visualization of qualitative information in the early stages
of designing”, although designers are seen as “visual
thinkers”. Within this context two principles are stated [14]:
• Simplicity is power.
• Diagrams augment cognition.
A model of the designed product is always some kind of
documentation, too. It documents the actual state of work,
allows for discussions, and gives a basis for presentations
to e.g. stakeholders. If personnel changes during the
project the documentation should help the new project
member to acquaint himself with the topic. For follow-up
projects, the rationales for decisions are helpful for the
development of a new product or for reconfiguration of the
product in operation.
The necessary degree of formalism depends on the
project and its state. The more creativity is demanded the
more would formalism hinder. For instance, in the early

phases a good designer would start with a freehand
sketch rather than using a CAD system for his very first
ideas. On the other hand, in later phases a formalized
workshop drawing or a detailed 3D-CAD model is
necessary to exchange the generated information in a
commonly understandable language and to transfer
information to other models, e.g. FEM. Many product
development processes thus suggest a from-rough-to-
detailed approach. The model should just be as detailed
as necessary to provide a commonly understandable
basis for all persons who might get in touch with this
model. Wherever more detailed aspects are needed, a
submodel for a subset of project members should be
generated.
3.2 SysML
The Systems Modelling Language (SysML) is an
approach to model a product on different levels of
abstraction and with different viewpoints. It is a widely
known notation within the fields of software development,
electronic design, automation, and (in parts of)
mechanical engineering.
SysML uses parts of UML (Unified Modelling Language)
and special extension for systems modelling (e.g.
requirements diagrams). Commercial and open source
modelling tools support UML and SysML profiles. OMG
SysML v1.0 was issued as Available Specification in
September 2007 [15] and provides a common basis, so a
better exchangeability, to describe requirements, as well
as structure (e.g. blocks, packages, constraints) and
behaviour (e.g. activities, use cases). So far, SysML
mainly focuses on the needs of software and electric
development, but new profiles containing new classes
and stereotypes can be generated for customisation. All
relations can be visualised in diagrams and formatted to
desired views. Moreover, view-specific lists (e.g.
requirements lists) and matrices (e.g. Design Structure
Matrix (DSM), traceability tables) can be generated.
Since UML and SysML are widely known and taught at
universities, most project members do not have to learn a
new and complex modelling language. It can be assumed
that this leads to a higher acceptance than for completely
new notations. Of course, some new and project-specific
elements have to be integrated. In [16] functions
structures and in [17] an airplane structure is described
with UML class diagrams. This shows that existing
methods can be flexibly integrated and handled with the
existing tools.
Commercial tools already provide a variety of useful
functions. For instance, view specific requirements lists
and traceability matrices can be generated from the
model and then used e.g. in standard office software.
Macros can be programmed to extend the functionalities.
Client-server architecture allows the collaborative work
with the model at different sites and security procedures
are already implemented in the software. The principles
of versioning (coming from software development) allow a
simultaneous collaborative work on the models.
One drawback of commercial software is the limited
access via defined interfaces and the possible change of
these interfaces with a new version. Another is the cost of
licenses, which is important especially for SME. One
possibility to overcome these is open-source software
that however brings other disadvantages with them.
3.3 The requirements model
In a collaborative network, as in every major development
process the system has to be decomposed into a smaller,
manageable, and at the same time consistent set of

Figure 3: Requirements and constraints for the parallel robot HEXA (schematic overview).

subsystems (subtasks). The requirements model is the
core that forces the development process to fulfil the initial
customer needs, the companies’ strategic aims, and other
constraints, e.g. arising from laws and regulations.
Figure 3 illustrates this thinking approach as a schematic
overview for a parallel robot of type HEXA (six DoF).
The requirements model is one of the first models of the
product. However, it is not complete a priori. The further
the product development process advances, the more
requirements evolve. This is due to the augmentation of
knowledge. The better the understanding of the matter is
the more detailed requirements are specified and the
better will the idea of boundary conditions be.
Furthermore, after each made decision (e.g. choosing a
solution or design principle) new requirements evolve. For
instance, the decision “rack should be welded” leads to
requirements like “use steel profiles”. The decision “rack
should be casted” would lead to very different
requirements like “allow for big radii”.
Experience points out that for typical projects around 50%
of the requirements evolve after the “clarification of task”
phase. Figure 4 is taken from [18], who analysed
interdisciplinary product development. In the first phases
the intensity of a conscious clarification of requirements is
high, but decreases to a very low amount within the first
third of the project. The documentation of requirements

time

intensity
clarification

of requirements

number of documented
requirements

number of specified
requirements

number of necessary
requirements

Figure 4: Qualitative display of requirements clarification

during a project, according to [18]

does not advance after this phase. Nevertheless,
requirements are specified also in later phases, but not
documented. However, the number of necessary
requirements is higher during all phases. In [19] a holistic
approach of requirements management within a PLM
context is demanded.
This paper focuses on four aspects concerning the
requirements model: Surroundings, structure, relations,
and analysis.
Surroundings
One of the first steps in the development process is to
analyze the product surroundings in order to recognise
the important requirements (e.g. [20]). Here, the whole
product lifecycle has to be taken into account including
different scenarios (e.g. [21, 22, 23]) or use cases, with all
related actors, surrounding environment and possible
disturbances. Furthermore, the different product views
from different domains have to be considered and those
requirements generated by later development steps (e.g.
simulation, manufacturing) should be gathered. A
systematic documentation helps to identify and to use the
collected requirements and constraints. It further shows
which requirements derive from what surrounding
elements. If several requirements from different domains
cause trouble according to the same surrounding
elements it might be interesting to think of extending the
system boundaries.
Structure
For a better accessibility, information should be structured
[24, 25]. Requirements can be structured in a hierarchy
such as goal, target, system requirement, and subsystem
requirement. Furthermore, they can be allocated to a
domain and to a purpose in the development process.
Getting more concrete requirements can be allocated to
their concerning subsystems. In addition to well-
established attributes (wish / minimum / fixed, source) it
makes sense to assign certainty and change probability.

Relations
Model elements are related to each other. In earlier work
[26] a basic classification for relations was suggested
according to development steps, granularity, support,
direction, linking, and quantifiability. The systematic
integration of relations into the model helps designers
understanding the matter and be aware of interfaces to
other disciplines. During synthesis steps, getting aware of
relations might lead to new model elements. In [18] this
was shown for an interdisciplinary development in the field
of medical apparatuses. In addition, the modelling of
relations is the basis for the analysis of the model,
discussed below.
Analysis
One important aspect during the development of complex
products is to detect goal conflicts both in early qualitative
and later quantitative phases. The earlier one gets aware
of possible goal conflicts the higher will be the benefit.
This means not just to reject possible solutions early, but
also to be aware of problems that might occur in later
phases and be prepared for their solution.
Often goal conflicts do not appear on abstract level, but
due to decisions on a more concrete level. On these
levels, goals are described as (technical) requirements
and allocated to the total system or to components.
Parameters of some components are already established.
As the system is subdivided into many different
subsystems of different domains and diffuse boundaries, it
is difficult to trace relations without systematic assistance.
Hence, the traceability is important to follow the traces
from the requirements model through a number of more or
less concrete partial models and back.
In addition, the impact a certain change will have on the
whole system can be estimated by following these traces.
If a boundary condition changes during the development,
the analysis shows the effected areas of the product. It

Figure 5: Requirements and surroundings for a new robot

in the hierarchical explorer view.

thus helps to decide on how and where to adapt the
actual concepts or to start all over again.
If in dynamic environments one knows the (un)certainty of
a specific requirement it is possible to plan the
development process efficiently (e.g. focus on the certain
aspects and leave uncertain areas solution independent
as long as possible).
According to [10] a system is characterised by a bigger
number of relations between system elements within the
system boundaries than outside them. The subsystems of
a product are to be developed as independently as
possible. This approach might lead to modular systems
with redundant structures, i.e. synergetic effects are not
used and the same problem is solved twice, because
module interfaces are generated just because of
departmental or domain separation. In addition, the
development of modular systems often focuses on just
one aspect of the product (e.g. assembly). The
requirements model describes early the real aims of the
modularity and by analysing the relations modules can be
separated more purposefully.

4 PARALLEL ROBOTIC SYSTEMS FOR HANDLING
AND ASSEMBLY

Within the Collaborative Research Centre 562 “Robotic
Systems for Handling and Assembly – High Dynamic
Parallel Structures with Adaptronic Components”
concepts for design and modelling of parallel robots for
high operating speeds, accelerations and accuracy are
developed. Due to the use of closed kinematic chains,
parallel robots feature relatively small moved masses
(drives are mainly placed in the rack) and high stiffness.
In comparison with serial mechanisms, they offer higher
dynamics and high accuracy, especially when new and
optimized structure components (e.g. adaptive joints [27]
and rods [28]) are used. The disadvantages compared to
serial robots are mainly a small ratio of workspace to
installation area and the existence of singularities within
the workspace. Thence, new design, analysis, and control
methods were developed to overcome these drawbacks.
As a mechatronic product, several disciplines and many
different partial models [7] are necessary to set the robot
in operation. This results in relatively complex products
with complex relations.
As by now, no parallel robots are sold as mass products
but customized to the needs of a special customer. The
re-use of knowledge, thence the configuration through a
modular concept and an effective change management
through a systematic holistic view are helpful to provide
the desired fast time-to-market as well as high quality and
optimal products to the customer needs.
The developed SysML-based requirements model
reduces the abovementioned difficulties of collaborative
product development providing transparency,
communicability, exchangeability, and coherence. The
following examples illustrate the approach.
Figure 5 shows in the explorer view the packages of a
model for a project “New Robot”. Besides the SysML and
UML profiles, one can see the packages “Requirements”
and “Surrounding”. The requirements are hierarchically
distinguished into “Goals”, “Targets”, and “Technical
Requirements”. “Surrounding” documents the “product
environments” and “Use Cases”. For instance, one use
case in the product lifecycle phase “Use” describes the
handling of muffins. This use case leads amongst others
to a refinement of the requirements “workspace” and
“payload” (see Figure 6). For each customer a unique use
case has to be developed, considering the specialties of

assembling
cell phones

handling
sausages

«goal»
cycle time

«target»
high dynamic

«requirement»
acceleration

«requirement»
speed

«requirement»
workspace

«requirement»
payload

handling
muffins

«constraint»
velocity

v²max = 2 amax lmax

«block»
drive

«block»
kinematic chain

«requirement»
damping

«target»
high accuracy

«goal»
quality

«constraint»
power

Pdrive = M

«requirement»
transmission rate

«block»
middleware

Figure 6: Goal oriented view on the product, excerpt of an extended requirements diagram based on SysML.

that specific surrounding. For instance, the number and
arrangement of conveyor belts, the size and weight of the
objects, and the following planned manipulation steps
have to be considered. It might be that the surroundings
show synergetic or parasitic effects. For instance, if a
mechanism could help to orient the objects in a way that
the robot needs one DoF less, the whole systems could
get cheaper, especially regarding Total Cost of Ownership
(TCO), i.e. energy costs. However, the new use case
shows similarities and differences to already performed
projects.
Besides fulfilling the specific use case “Handling of
muffins” one important goal is a short cycle time. There
are a number of targets that support this goal. However,
not every is related to the development of the robot, i.e.
not within the projects boundaries. For instance prior or
following manipulation steps can decrease the cycle time
by supplying the objects in a more efficient way or by
picking them in a more flexible way (e.g. objects are

«goal»
cycle time

«target»
high dynamic

«requirement»
speed

«block»
joint

«requirement»
stiffness

«target»
high accuracy

«goal»
quality

«constraint»
contact
Fr = µ Fn

«requirement»
friction

«requirement»
clearance

«block»
drive

«block»
crank

«block»
joint

«block»
joint

«block»
rod

1

1

1

1

1

1

1

1

Figure 7: Simplified example of the hierarchical view on

requirements of components (left) and component
structure in a kinematic chain (right).

grouped relatively to each other, but not absolutely to a
fixed coordinate system; another robot picks the grouped
objects and orients them). The target “high dynamic” is
directly related to the robot and supported by the
requirements “high acceleration” and “high speed”. As a
simplified example, the triangular relationship between
acceleration, speed, and workspace can be described by
an equation considering constant acceleration at the tool
centre point (TCP). As long as the concretion level is low,
this simplified equation can just give an idea of a
reasonable area. However, it contains the danger of
prejudgement.
Another supporting requirement of “short cycle time” is
the transmission rate of the middleware (right side of
Figure 6). That means, even if the robot accelerates
pretty fast it would not necessarily lead to short cycle
times. If it had to stop and wait for new data (because of
delay in transmission), the high acceleration would gain
nothing. If the acceleration would be designed for the
special task in such a way that no waiting periods evolve,
drives could be cheaper or less energy consuming.
Developers from these different domains should thence
work together to find the optimal – goal supporting –
solution. The diagrams thus represent a common level of
knowledge of the whole system and its relations.
Moreover, the overall development goals are always
present to each developer. At the high-level
representation, a domain spanning discussion is
supported. Then in the software development domain a
more detailed view on the middleware is necessary. For
this purpose developers use e.g. sequence diagrams that
are supported by the SysML notation and modelling tools,
too.
The combination of targets “high dynamic” and “high
accuracy” lead to the requirement “damping” (see left side
of Figure 6). The kinematic structure is designed following
lightweight principles to fulfil the target “high dynamic”,
thus an internal structural damping is relatively small.
When the robot stops the structure oscillates, thus the
accuracy is affected. According to the lightweight
structure, the oscillations die out relatively slowly.
Adaptive components are able to suppress oscillations
actively [29]. The adaptive components initiate
oscillations opposite in phase, thence accelerate the die
out. Many different disciplines are now involved. The
adaptronic components (e.g. planar piezo actuators) have
to be physically integrated on the rods, a suppression

strategy must be developed, and control hard- and
software must be designed. However, this technology
leads to additional costs in development, manufacturing,
use, and recycling. The consideration of the product
surroundings show that the technology leads to big
benefits in the area of precise handling or assembly,
namely to gain better cycle times. For some other use
cases, the benefit would not justify the costs.
Figure 7 shows on its right side the decomposition of the
kinematic chain into its structural components. Regarding
the kinematic chain in relation to the aforementioned
targets, a critical component is found. A joint that supports
high accuracy should provide low clearance between
moving surfaces. Then a joint that supports high dynamics
should provide low friction. The left side of Figure 7
displays both requirements within the block “joint”,
because they are directly related to that component. The
arrows show their dependencies to the system
requirements and it is possible to follow up to the level of
goals. The constraint “contact” illustrates that for a low
clearance there is a normal force at the moving surfaces,
which generates a friction force. Hence, the smaller the
clearance the higher becomes the friction. In conventional
joints, this goal conflict is handled by finding the best
compromise [30]. The analysis of the model showed that
the concerning requirements do not have to be fulfilled at
the same time during operation, i.e. when fast moving a
low friction is needed, but when assembling the
movement is relatively slow and the low clearance is of
importance. To allow a time dependent change of joint
characteristics new joints with an active adaptability were
developed [27, 31].
In later phases sometimes changes appear. For instance,
a customer rethinks the cost target: The robot has to be
cheaper, otherwise he would back out. Analysing the
relations shows that in that case the simplest possibility is
to exchange the drives by cheaper (but less powerful)
ones. This would mainly effect the “high dynamic” target
and to a certain degree the goal “cycle time”. The model
allows generating a specific view that makes all these
relations transparent and communicable to the customer.
Then it would be up to the customer to decide, whether
the cheaper robot justifies the loss in cycle time.
One important aspect for working with models especially
in collaborative networks is the management of different
versions. Modelling software often provides a multi-user
repository that allows team members to work concurrently
with the same model. Normally a model tree is generated,
so that a trunk contains the universally valid versions. The
tip version is the actual common state of the project. The
different project members generate branches (“private
sandbox”) to extend and modify the model according to
their subtask. Versions in a branch can be merged at two
different manners. “Rebasing” means to integrate the
trunk tip version in the branch version and create a new
version in the branch. “Reconciling” means to integrate
the branch version in the trunk tip version and create a
new version in the trunk that constitutes the new common
state of the project. Whilst merging two model versions
differences can be analysed, i.e. the impact a change in
one domain had on model elements also used in another
domain are displayed. However, the project management
has to ensure a regularly merging of outcomes, an
analysis regarding redundant elements, and
communication between project members as well as
making comments and notes on the made changes. Then
it is possible to trace changes and even restore the model
to a former condition.

Another opportunity of versioning is the building of
variants. Starting from the common state version different
branches can be modelled. These branches can detail
different possible solutions to figure out the best one.
Moreover, it is possible to start from a generic model and
detail the different branches according to different
development aims, e.g. to develop two different robots for
relatively similar boundary conditions but for different
tasks.
As pointed out earlier one problem in product
development projects is an inadequate documentation of
results. Using the models as a developing tool is at the
same time a kind of documentation. It gives at least a
proper basis for generating the documentation. Modelling
software often supports a (semi)automatic document
generation. Thence, documents are generated “on the fly”
what facilitates this unloved duty of documenting.

5 CONCLUSIONS
Multidisciplinary product development in collaborative
networks is a typical working condition for nowadays
engineers. After describing the main deficits and dangers
of such development situations a modelling approach
using the Systems Modelling Language (SysML) is
shown. The approach focuses on the generation of a
requirements model as a basis for discussion and
analysis of the real project aims. Therefore, it discusses
the four aspects surrounding, structure, relations, and
analysis. A simplified example from the field of parallel
robots illustrates the approach and highlights the benefits.
The paper shows that the modelling of requirements is an
essential step in the development of complex products.
Especially in collaborative networks, it helps to
concentrate on and to communicate goals, targets, and
requirements. It assists the decision-making processes
and makes them more transparent. SysML is a known
notation, thence the effort to formalise the model is
comparably small, but gains a good exchangeability, e.g.
for remote and concurrent working. The generated
diagrams are quite easy to understand and hence
augment cognition.

6 ACKNOWLEDGMENTS
The authors gratefully thank the German research
association (DFG) for supporting the Collaborative
Research Centre SFB 562 “Robotic Systems for Handling
and Assembly – High Dynamic Parallel Structures with
Adaptronic Components”.

7 REFERENCES
[1] Franke, H.-J., Huch, B., Herrmann, C.,

Löffler, S., (ed.), 2005, Ganzheitliche Innovations-
prozesse in modularen Unternehmensnetzwerken,
Logos Verlag, Berlin.

[2] Steinmetz, O., 1993, Die Strategie der integrierten
Produktentwicklung, Vieweg Verlag, Frankfurt.

[3] Gaul, H.-D., 2001, Verteilte Produktentwicklung –
Perspektiven und Modell zur Optimierung, Verlag
Dr. Hut, München.

[4] Bender, B., 2001, Zielorientiertes
Kooperationsmanagement in der Produktent-
wicklung, Verlag Dr. Hut, München.

[5] Zanker, W., 1999, Situative Anpassung und
Neukombination von Entwicklungsmethoden,
Shaker Verlag, Aachen.

[6] Franke, H.-J., Wrege, C., Stechert, C., Pavlovic, N.,
2005, Knowledge Based Development Environment.

The 2nd International Colloquium of the
Collaborative Research Center 562, Braunschweig,
Germany, 10-11 May: 221-236.

[7] Stechert, C., Alexandrescu, I., Franke, H.-J., 2007,
Modelling of Inter-Model Relations for a Customer
Oriented Development of Complex Products. The
16th International Conference on Engineering
Design ICED 07, Paris, France, 28-30 August.

[8] van Beek, T.J., Tomiyama, T., 2008, Requirements
for Complex Systems Modelling. The 18th CIRP
Design Conference - Design Synthesis, Enschede,
The Netherlands, 7-9 April.

[9] Kläger, R., 1993, Modellierung von Produktan-
forderungen als Basis für Problemlösungsprozesse
in intelligenten Konstruktionssystemen, Shaker
Verlag, Aachen.

[10] Daenzer, W.F., Huber, F. (Ed.), 2002, Systems
Engineering - Methodik und Praxis, Verlag
industrielle Organisation, Zürich.

[11] Avgoustinov, N., 2007, Modelling in Mechanical
Engineering and Mechatronics - Towards
Autonomous Intelligent Software Models, Springer
Verlag, London.

[12] Coates, G., Duffy, A.H.B., Whitfield, I., Hills, W.,
2004, Engineering management: operational design
coordination, Journal of Engineering Design, 15/5:
433-446

[13] Ort A., 1998, Entwicklungsbegleitende Kalkulation
mit Teilebibliotheken, Papierflieger, Clausthal-
Zellerfeld.

[14] Salustri, F.A., Eng, N.L., Weerasinghe, J.S., 2008,
Visualizing Information in the Early Stages of
Engineering Design, Computer-Aided Design &
Applications, 5: 1-4.

[15] The Official OMG Systems Modelling Language
(SysML) site, 2007, http://www.omgsysml.org/

[16] Johar, A., Stetter, R., 2008, A Proposal for the Use
of Diagrams of UML for Mechatronics Engineering,
The 10th International Design Conference - DESIGN
2008, Dubrovnik, Croatia, 19-22 May: 1287-1294.

[17] La Rocca, G., van Tooren, M.J.L., 2006, A modular
reconfigurable software tool to support distributed
multidisciplinary design and optimisation of complex
products, The 16th CIRP International Design
Seminar, Kananaskis, Alberta, Canada,16-19 July.

[18] Jung, C., 2006, Anforderungsklärung in
interdisziplinärer Entwicklungsumgebung, Verlag Dr.
Hut, München.

[19] Maletz, M., Blouin, J.-G., Schnedl, H., Brisson, D.,
Zamazal, K., 2007, A Holistic Approach for
Integrated Requirements Modelling in the Product
Development Process, The 17th CIRP Design
Conference - The Future of Product Development,
Berlin, Germany, 26-28 March: 197-207.

[20] Franke, H.-J., 1976, Untersuchungen zur Algo-
rithmisierbarkeit des Konstruktionsprozesses, VDI
Verlag GmbH, Düsseldorf.

[21] Anggreeni, I., van der Voort, M.C., 2008, Classifying
Scenarios in a Product Design Process: a study
towards semi-automated scenario generation, The
18th CIRP Design Conference - Design Synthesis,
Enschede, The Netherlands, 7-9 April.

[22] Brouwer, M., van der Voort, M.C., 2008, Scenarios
as a Communication Tool in the Design Process:
Examples from a Design Course, The 18th CIRP
Design Conference - Design Synthesis, Enschede,
The Netherlands, 7-9 April.

[23] Miedema, J., van der Voort, M.C., Lutters, D.,
van Houten, F.J.A.M., 2007, Synergy of Technical
Specifications, Functional Specifications and
Scenarios in Requirements Specifications, The 17th
CIRP Design Conference - The Future of Product
Development, Berlin, Germany, 26-28 March: 235-
245.

[24] Stechert, C., Franke, H.-J., 2007, Requirement-
Oriented Configuration of Parallel Robotic Systems.
The 17th CIRP Design Conference - The Future of
Product Development, Berlin, Germany, 26-28
March: 259-268.

[25] Franke, H.-J., Krusche, T., 1999, Design decisions
derived from product requirements, The 9th CIRP
Design Conference - Integration of Process
Knowledge into Design, Enschede, The
Netherlands, 24-26 March: 371-382.

[26] Stechert, C., Franke, H.-J., 2008, Managing
Requirements as the Core of Multi-Disciplinary
Product Development. The 18th CIRP Design
Conference - Design Synthesis, Enschede, The
Netherlands, 7-9 April.

[27] Stechert, C., Pavlovic, N., Franke, H.-J., 2007,
Parallel Robots with Adaptronic Components -
Design Through Different Knowledge Domains, The
12th IFToMM World Congress, Besançon, France,
17-21 June.

[28] Rose, M., Keimer, R., Breitbach, E.J.,
Campanile, L.F., 2004, Parallel Robots with
Adaptronic Components, Journal of Intelligent
Material Systems and Structures, 15/9-10: 763-769.

[29] Rose, M.; Keimer, R; Algermissen, S., 2003,
Vibration Suppression on High Speed Parallel
Robots with Adaptronic Components, The 10th
International Congress on Sound and Vibration
(ICSV), Stockholm, Sveden, 7-10 Juli.

[30] Otremba, R., 2005, Systematische Entwicklung von
Gelenken für Parallelroboter, Logos Verlag, Berlin.

[31] Pavlovic, N, Keimer, R., 2008, Improvement of
Overall Performance of Parallel Robots by Adapting
Friction of Joints Using Quasi-Statical Clearance
Adjustment, Adaptronic Congress 2008. Berlin,
Germany, 20-21 May.

