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Abstract 
Multidisciplinary product development in collaborative networks is a typical working condition for nowadays 
engineers. After describing the main deficits and dangers of such development situations a modelling 
approach using the Systems Modelling Language (SysML) is shown. The approach focuses on the 
generation of a requirements model as a basis for discussion and analysis of the real project aims. A short 
and simplified example from the field of parallel robots illustrates the approach. 
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1 INTRODUCTION 
The multidisciplinary development of complex products is 
often performed in collaborative networks. Thence, the 
system is decomposed into smaller and manageable 
subsystems (or subtasks). Ideally, these subsystems can 
be handled independently. It is a big challenge to keep the 
subsystems consistent, because boundaries are diffuse 
and changes can have an effect on several subsystems at 
the same time. A goal-oriented approach should consider 
all important system views during the product lifecycle.  
Requirements are seen as the core of a successful 
product development. All steps of the development 
process and every subsystem should support the initial 
goals. A requirements model is shown that uses the 
Systems Modelling Language (SysML) as a basis. SysML 
is a widely known standard e.g. in software development, 
electronics, and automation. A SysML model is able to 
integrate several different model elements (e.g. scenarios, 
functions structures, mechanical structures, and 
manufacturing processes). These elements can be 
visualised and documented. Based on a classification of 
requirements and relations (both qualitative and 
quantitative) a semiautomatic analysis is possible that 
helps detecting goal conflicts and estimating change 
impact. 
The benefit of the method is shown for high dynamic 
parallel robots. Parallel robots are mechatronic, typically 
customised products. Every task at each customer is 
unique. Thus, the need for a domain integrating method 
that supports modular systems was the main motivation 
for this work. 

2 PRODUCT DEVELOPMENT IN COLLABORATIVE 
NETWORKS 

In this work, a collaborative network is seen as a group of 
organisationally and locally separated companies or 
departments that work together on the development of a 
special product. 
One aim of product development in collaborative networks 
is to use the specific expertise of different enterprises in 

diverse domains to generate a domain-spanning product 
[1], e.g. mechatronic products like robots, cars, or 
airplanes. Especially, small and medium sized enterprises 
(SME) cannot provide high expertises in many different 
domains. On the other hand, a small company can be 
expert and world market leader in a delimited area. 
Another aim of product development in collaborative 
networks is to decrease the time-to-market by 
parallelization of work packages. A well-known strategy is 
simultaneous or concurrent engineering. According to [2] 
simultaneous engineering leads to 30-60% less costs, 30-
90% shorter development time, and 30-87% increase of 
quality. 
Along with these advantages, collaborative networks 
bring some difficulties and dangers. The most concerning 
aspects of often-cited difficulties and dangers are 
summarized and presented from the following seven 
viewpoints.  
2.1 Communication between development partners 
The more distant the different sites are the higher will be 
the effort for communication [3] (e.g. travel, 
communication techniques) and if no clear code of 
behaviour is defined, there will be efficiency losses [3]. 
Different spoken languages and different cultural 
backgrounds fortify the effects [4]. 
Thence, it is important to define a common language as a 
basis for effective communication. This is necessary at 
least at those high levels of abstraction (e.g. requirements 
clarification), where many different partners are involved.  
2.2 Exchange of information 
According to Zanker [5] the storage, selection, and 
processing of information and the management of 
knowledge are the main weak points. It is not always 
clear to every project member whether he works with a 
valid version of the dataset. In addition, different data 
formats have to be converted with losses or cannot be 
handled by every project member [3]. 
Interfaces are badly defined and no rules for information 
exchange are specified [2, 3]. If rules are set, it often 
leads to a higher amount of time spent learning special 
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notations or project-specific procedures. Some product 
specific approaches (e.g. [6]) were made to assist a 
project-(data-)coordinator to assure a consistent 
exchange of model data and make it more time-efficient. 
However, a development environment has often to be 
adapted to new technologies. This would lead to problems 
if the possibility for such extensions was not considered 
during programming. 
2.3 Division of labour 
A big danger for efficiency losses is a bad clarification of 
project goals [4]. The goals must be clear to every project 
member and the completion of every subtask should be a 
step towards the fulfilment of a goal. 
A bad disjunction of subtasks leads to extra work [4, 5]. 
Moreover, responsibilities for results are not fixed and not 
controlled [5]. A single member of the project team is not 
able to overview the whole system, thence is not aware of 
weak points and cannot imagine the importance for the 
whole system [3, 5]. Once established it is difficult to 
change the distribution of subtasks. The organisational 
effort for coordination of work and maintenance of 
interfaces is comparably high [5]. 
2.4 Combination and integration of results 
Often there is no continuous and no systematic workflow 
present, thus the right results are not available at the right 
moment [5]. Interfaces are often inexpedient in type and 
number [5]. Thence, “optimal” results of subtasks 
(according to the first set of requirements) are integrated 
and form a suboptimal total system. 
The documentation of decisions and results is often seen 
as a bothersome duty. If any, project members document 
results at the end of a project or in a way that is just clear 
for the person who created it. If personnel and boundary 
conditions change, decisions cannot be retraced and in a 
worst case situation work has to start over. 
2.5 Human behaviour and human relations 
Communication between human beings is seen as the 
main factor to avoid errors, but the more the distance the 
less is the likelihood of communication. New techniques 
try to virtually reduce this distance (e.g. videoconferences, 
application sharing). Nevertheless, some project members 
are inexperienced or too narrow-minded for using 
methods and new techniques of communication. In 
addition, design engineers see themselves as creative 
inventors, which might lead to internal resistance against 
the use of methods [3, 4].  
Besides efficiency losses due to different cultures and 
structures in the different companies [3, 5], each partner 
follows different aims and strategies [3, 5]. If partners do 
not trust each other, this will lead to “inside-the-box-
thinking” of employees, i.e. holding back of information 
[3, 4, 5]. 

2.6 Use of methods and tools 
Especially in multidisciplinary product development for 
complex products a huge variety of different methods and 
tools is used [7]. Different companies apply different 
methods for the same type of problem. Furthermore, 
experts often use their favourite tools (e.g. the use of a 
specific CAD-system sometimes seems to be a 
“philosophical” rather than a technical/economical 
question). 
It follows that project members use methods wrong, not 
adapted to the actual problem or not at all [4]. If methods 
are used a broad number and variety of methods are 
used that cannot be handled easily [4]. 
Van Beek and Tomiyama [8] state that the integration of 
different methods is the main challenge. Some 
approaches (e.g. [6, 9]) already showed that it is possible 
to create integrated development environments. 
However, these are limited to the predefined set of 
implemented methods. Furthermore, special formalisms 
are used to apply the methods. 
Following an idea stated in [10], Figure 1 shows the 
benefit of formalism as a curve over the degree of 
formalism. Apparently, the maximum benefit lies in 
between a too low and a too high degree of formalism. It 
is clear that the run of the curve highly depends on the 
type of project. The narrower the boundary conditions (i.e. 
number of domains, project members involved) the more 
moves the curve to the left. Thence, Figure 1 shows a 
useful area of formalism located around the optimum of 
the described curve. Figure 2 shows a similar approach of 
[11] now distinguishing between the effort for exchange 
and standardization of information. A minimum effort 
(though a maximum benefit) is reached in between 
recommendations and norms as a measure for 
standardization grade. However, if the norm exists and is 
well known, the effort for that standardization will not 
count for the actual project. 
2.7 Organizational aspects 
Limited resources, time pressure, dynamic boundary 
conditions, and goal conflicts affect performance and 
productivity [4]. Decision making processes and 
managing of development goals are main weak points [5], 
i.e. definition of goals and if necessary their adjustment 
due to changing environments. 
Due to hierarchy (e.g. steering committee, project 
management, and work team), domain (e.g. mechanics, 
electronics, software) and place (e.g. different companies/ 
departments, different sites) a number of somehow 
independent “islands of knowledge” emerge. Each island 
uses a specific subset of the whole project knowledge 
and is often not sufficiently connected to others [3]. 
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Figure 1: Benefit of formalism, related to [10]. 
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The organisation of a collaborative multidisciplinary 
project for the development of complex products needs a 
big effort in planning before the project starts. Main points 
that have to be considered are scheduled time and cost 
frames. Also the development risk and the possibility of 
changes (e.g. of customer wishes, laws, available 
technologies) are main influencing factors for the success 
of a project. A very comprehensive summary is given in 
[12]. Here, the key elements of successful operational 
design coordination are identified as coherence, 
communication, task management, schedule 
management, resource management, and real-time 
support.  

3 MODELLING THE PRODUCT 
As mentioned earlier the development of a product makes 
use of a variety of different models or “partialmodels” that 
describe a specific view on the whole system. Two 
definitions of model are cited below: 
“Models express relations between real conditions in an 
abstract form. As a copy of reality models own 
simplifications that on the one hand cause a loss of 
realness, but on the other hand bring transparency and 
controllability of real relations.” [13] 
“Model is a purpose-dependent, finite, simplified, but still 
adequate representation of whatever is modelled, allowing 
us to abstract from its unimportant properties and details 
and to concentrate only on the most specific and most 
important traits.” [11] 
Both definitions contain the aspects of abstraction and 
simplification to bring transparency and to concentrate on 
the most important characteristics. Additionally, Ort [13] 
states that models bring controllability of real relations: 
We cannot control what we do not understand. 
3.1 Requirements on models 
According to [11] a model should represent the subject to 
be modelled, ignore unimportant details (abstraction), and 
allow a pragmatic usage. The purposes are to support 
and improve the understanding of the matter and build a 
common basis for discussion and information exchange. 
Moreover, models should allow comparison of different 
solutions as well as analysis and prediction of behaviour 
and characteristics of the system to be designed. The 
organisation of a model should contain its structure and 
architecture. Furthermore, interactions between 
components, component interdependencies, and 
important external relations should be taken into account. 
One important aspect of a model is its representation, 
especially the visualization of its contents. Salustri et al. 
[14] mentions “there is relatively little use of diagrammatic 
visualization of qualitative information in the early stages 
of designing”, although designers are seen as “visual 
thinkers”. Within this context two principles are stated [14]: 
• Simplicity is power. 
• Diagrams augment cognition. 
A model of the designed product is always some kind of 
documentation, too. It documents the actual state of work, 
allows for discussions, and gives a basis for presentations 
to e.g. stakeholders. If personnel changes during the 
project the documentation should help the new project 
member to acquaint himself with the topic. For follow-up 
projects, the rationales for decisions are helpful for the 
development of a new product or for reconfiguration of the 
product in operation. 
The necessary degree of formalism depends on the 
project and its state. The more creativity is demanded the 
more would formalism hinder. For instance, in the early 

phases a good designer would start with a freehand 
sketch rather than using a CAD system for his very first 
ideas. On the other hand, in later phases a formalized 
workshop drawing or a detailed 3D-CAD model is 
necessary to exchange the generated information in a 
commonly understandable language and to transfer 
information to other models, e.g. FEM. Many product 
development processes thus suggest a from-rough-to-
detailed approach. The model should just be as detailed 
as necessary to provide a commonly understandable 
basis for all persons who might get in touch with this 
model. Wherever more detailed aspects are needed, a 
submodel for a subset of project members should be 
generated. 
3.2 SysML 
The Systems Modelling Language (SysML) is an 
approach to model a product on different levels of 
abstraction and with different viewpoints. It is a widely 
known notation within the fields of software development, 
electronic design, automation, and (in parts of) 
mechanical engineering. 
SysML uses parts of UML (Unified Modelling Language) 
and special extension for systems modelling (e.g. 
requirements diagrams). Commercial and open source 
modelling tools support UML and SysML profiles. OMG 
SysML v1.0 was issued as Available Specification in 
September 2007 [15] and provides a common basis, so a 
better exchangeability, to describe requirements, as well 
as structure (e.g. blocks, packages, constraints) and 
behaviour (e.g. activities, use cases). So far, SysML 
mainly focuses on the needs of software and electric 
development, but new profiles containing new classes 
and stereotypes can be generated for customisation. All 
relations can be visualised in diagrams and formatted to 
desired views. Moreover, view-specific lists (e.g. 
requirements lists) and matrices (e.g. Design Structure 
Matrix (DSM), traceability tables) can be generated. 
Since UML and SysML are widely known and taught at 
universities, most project members do not have to learn a 
new and complex modelling language. It can be assumed 
that this leads to a higher acceptance than for completely 
new notations. Of course, some new and project-specific 
elements have to be integrated. In [16] functions 
structures and in [17] an airplane structure is described 
with UML class diagrams. This shows that existing 
methods can be flexibly integrated and handled with the 
existing tools. 
Commercial tools already provide a variety of useful 
functions. For instance, view specific requirements lists 
and traceability matrices can be generated from the 
model and then used e.g. in standard office software. 
Macros can be programmed to extend the functionalities. 
Client-server architecture allows the collaborative work 
with the model at different sites and security procedures 
are already implemented in the software. The principles 
of versioning (coming from software development) allow a 
simultaneous collaborative work on the models.  
One drawback of commercial software is the limited 
access via defined interfaces and the possible change of 
these interfaces with a new version. Another is the cost of 
licenses, which is important especially for SME. One 
possibility to overcome these is open-source software 
that however brings other disadvantages with them. 
3.3 The requirements model 
In a collaborative network, as in every major development 
process the system has to be decomposed into a smaller, 
manageable, and at the same time consistent set of  
 



 
Figure 3: Requirements and constraints for the parallel robot HEXA (schematic overview). 

 
subsystems (subtasks). The requirements model is the 
core that forces the development process to fulfil the initial 
customer needs, the companies’ strategic aims, and other 
constraints, e.g. arising from laws and regulations. 
Figure 3 illustrates this thinking approach as a schematic 
overview for a parallel robot of type HEXA (six DoF). 
The requirements model is one of the first models of the 
product. However, it is not complete a priori. The further 
the product development process advances, the more 
requirements evolve. This is due to the augmentation of 
knowledge. The better the understanding of the matter is 
the more detailed requirements are specified and the 
better will the idea of boundary conditions be. 
Furthermore, after each made decision (e.g. choosing a 
solution or design principle) new requirements evolve. For 
instance, the decision “rack should be welded” leads to 
requirements like “use steel profiles”. The decision “rack 
should be casted” would lead to very different 
requirements like “allow for big radii”. 
Experience points out that for typical projects around 50% 
of the requirements evolve after the “clarification of task” 
phase. Figure 4 is taken from [18], who analysed 
interdisciplinary product development. In the first phases 
the intensity of a conscious clarification of requirements is 
high, but decreases to a very low amount within the first 
third of the project. The documentation of requirements  
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Figure 4: Qualitative display of requirements clarification 

during a project, according to [18] 

does not advance after this phase. Nevertheless, 
requirements are specified also in later phases, but not 
documented. However, the number of necessary 
requirements is higher during all phases. In [19] a holistic 
approach of requirements management within a PLM 
context is demanded. 
This paper focuses on four aspects concerning the 
requirements model: Surroundings, structure, relations, 
and analysis. 
Surroundings 
One of the first steps in the development process is to 
analyze the product surroundings in order to recognise 
the important requirements (e.g. [20]). Here, the whole 
product lifecycle has to be taken into account including 
different scenarios (e.g. [21, 22, 23]) or use cases, with all 
related actors, surrounding environment and possible 
disturbances. Furthermore, the different product views 
from different domains have to be considered and those 
requirements generated by later development steps (e.g. 
simulation, manufacturing) should be gathered. A 
systematic documentation helps to identify and to use the 
collected requirements and constraints. It further shows 
which requirements derive from what surrounding 
elements. If several requirements from different domains 
cause trouble according to the same surrounding 
elements it might be interesting to think of extending the 
system boundaries. 
Structure 
For a better accessibility, information should be structured 
[24, 25]. Requirements can be structured in a hierarchy 
such as goal, target, system requirement, and subsystem 
requirement. Furthermore, they can be allocated to a 
domain and to a purpose in the development process. 
Getting more concrete requirements can be allocated to 
their concerning subsystems. In addition to well-
established attributes (wish / minimum / fixed, source) it 
makes sense to assign certainty and change probability. 



Relations 
Model elements are related to each other. In earlier work 
[26] a basic classification for relations was suggested 
according to development steps, granularity, support, 
direction, linking, and quantifiability. The systematic 
integration of relations into the model helps designers 
understanding the matter and be aware of interfaces to 
other disciplines. During synthesis steps, getting aware of 
relations might lead to new model elements. In [18] this 
was shown for an interdisciplinary development in the field 
of medical apparatuses. In addition, the modelling of 
relations is the basis for the analysis of the model, 
discussed below. 
Analysis 
One important aspect during the development of complex 
products is to detect goal conflicts both in early qualitative 
and later quantitative phases. The earlier one gets aware 
of possible goal conflicts the higher will be the benefit. 
This means not just to reject possible solutions early, but 
also to be aware of problems that might occur in later 
phases and be prepared for their solution. 
Often goal conflicts do not appear on abstract level, but 
due to decisions on a more concrete level. On these 
levels, goals are described as (technical) requirements 
and allocated to the total system or to components. 
Parameters of some components are already established. 
As the system is subdivided into many different 
subsystems of different domains and diffuse boundaries, it 
is difficult to trace relations without systematic assistance. 
Hence, the traceability is important to follow the traces 
from the requirements model through a number of more or 
less concrete partial models and back. 
In addition, the impact a certain change will have on the 
whole system can be estimated by following these traces. 
If a boundary condition changes during the development, 
the analysis shows the effected areas of the product. It  
 

 
Figure 5: Requirements and surroundings for a new robot 

in the hierarchical explorer view. 

thus helps to decide on how and where to adapt the 
actual concepts or to start all over again.  
If in dynamic environments one knows the (un)certainty of 
a specific requirement it is possible to plan the 
development process efficiently (e.g. focus on the certain 
aspects and leave uncertain areas solution independent 
as long as possible). 
According to [10] a system is characterised by a bigger 
number of relations between system elements within the 
system boundaries than outside them. The subsystems of 
a product are to be developed as independently as 
possible. This approach might lead to modular systems 
with redundant structures, i.e. synergetic effects are not 
used and the same problem is solved twice, because 
module interfaces are generated just because of 
departmental or domain separation. In addition, the 
development of modular systems often focuses on just 
one aspect of the product (e.g. assembly). The 
requirements model describes early the real aims of the 
modularity and by analysing the relations modules can be 
separated more purposefully. 

4 PARALLEL ROBOTIC SYSTEMS FOR HANDLING 
AND ASSEMBLY 

Within the Collaborative Research Centre 562 “Robotic 
Systems for Handling and Assembly – High Dynamic 
Parallel Structures with Adaptronic Components” 
concepts for design and modelling of parallel robots for 
high operating speeds, accelerations and accuracy are 
developed. Due to the use of closed kinematic chains, 
parallel robots feature relatively small moved masses 
(drives are mainly placed in the rack) and high stiffness. 
In comparison with serial mechanisms, they offer higher 
dynamics and high accuracy, especially when new and 
optimized structure components (e.g. adaptive joints [27] 
and rods [28]) are used. The disadvantages compared to 
serial robots are mainly a small ratio of workspace to 
installation area and the existence of singularities within 
the workspace. Thence, new design, analysis, and control 
methods were developed to overcome these drawbacks. 
As a mechatronic product, several disciplines and many 
different partial models [7] are necessary to set the robot 
in operation. This results in relatively complex products 
with complex relations. 
As by now, no parallel robots are sold as mass products 
but customized to the needs of a special customer. The 
re-use of knowledge, thence the configuration through a 
modular concept and an effective change management 
through a systematic holistic view are helpful to provide 
the desired fast time-to-market as well as high quality and 
optimal products to the customer needs. 
The developed SysML-based requirements model 
reduces the abovementioned difficulties of collaborative 
product development providing transparency, 
communicability, exchangeability, and coherence. The 
following examples illustrate the approach. 
Figure 5 shows in the explorer view the packages of a 
model for a project “New Robot”. Besides the SysML and 
UML profiles, one can see the packages “Requirements” 
and “Surrounding”. The requirements are hierarchically 
distinguished into “Goals”, “Targets”, and “Technical 
Requirements”. “Surrounding” documents the “product 
environments” and “Use Cases”. For instance, one use 
case in the product lifecycle phase “Use” describes the 
handling of muffins. This use case leads amongst others 
to a refinement of the requirements “workspace” and 
“payload” (see Figure 6). For each customer a unique use 
case has to be developed, considering the specialties of 
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Figure 6: Goal oriented view on the product, excerpt of an extended requirements diagram based on SysML. 

 
that specific surrounding. For instance, the number and 
arrangement of conveyor belts, the size and weight of the 
objects, and the following planned manipulation steps 
have to be considered. It might be that the surroundings 
show synergetic or parasitic effects. For instance, if a 
mechanism could help to orient the objects in a way that 
the robot needs one DoF less, the whole systems could 
get cheaper, especially regarding Total Cost of Ownership 
(TCO), i.e. energy costs. However, the new use case 
shows similarities and differences to already performed 
projects. 
Besides fulfilling the specific use case “Handling of 
muffins” one important goal is a short cycle time. There 
are a number of targets that support this goal. However, 
not every is related to the development of the robot, i.e. 
not within the projects boundaries. For instance prior or 
following manipulation steps can decrease the cycle time 
by supplying the objects in a more efficient way or by 
picking them in a more flexible way (e.g. objects are  
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Figure 7: Simplified example of the hierarchical view on 

requirements of components (left) and component 
structure in a kinematic chain (right). 

grouped relatively to each other, but not absolutely to a 
fixed coordinate system; another robot picks the grouped 
objects and orients them). The target “high dynamic” is 
directly related to the robot and supported by the 
requirements “high acceleration” and “high speed”. As a 
simplified example, the triangular relationship between 
acceleration, speed, and workspace can be described by 
an equation considering constant acceleration at the tool 
centre point (TCP). As long as the concretion level is low, 
this simplified equation can just give an idea of a 
reasonable area. However, it contains the danger of 
prejudgement. 
Another supporting requirement of “short cycle time” is 
the transmission rate of the middleware (right side of 
Figure 6). That means, even if the robot accelerates 
pretty fast it would not necessarily lead to short cycle 
times. If it had to stop and wait for new data (because of 
delay in transmission), the high acceleration would gain 
nothing. If the acceleration would be designed for the 
special task in such a way that no waiting periods evolve, 
drives could be cheaper or less energy consuming. 
Developers from these different domains should thence 
work together to find the optimal – goal supporting – 
solution. The diagrams thus represent a common level of 
knowledge of the whole system and its relations. 
Moreover, the overall development goals are always 
present to each developer. At the high-level 
representation, a domain spanning discussion is 
supported. Then in the software development domain a 
more detailed view on the middleware is necessary. For 
this purpose developers use e.g. sequence diagrams that 
are supported by the SysML notation and modelling tools, 
too. 
The combination of targets “high dynamic” and “high 
accuracy” lead to the requirement “damping” (see left side 
of Figure 6). The kinematic structure is designed following 
lightweight principles to fulfil the target “high dynamic”, 
thus an internal structural damping is relatively small. 
When the robot stops the structure oscillates, thus the 
accuracy is affected. According to the lightweight 
structure, the oscillations die out relatively slowly. 
Adaptive components are able to suppress oscillations 
actively [29]. The adaptive components initiate 
oscillations opposite in phase, thence accelerate the die 
out. Many different disciplines are now involved. The 
adaptronic components (e.g. planar piezo actuators) have 
to be physically integrated on the rods, a suppression 



strategy must be developed, and control hard- and 
software must be designed. However, this technology 
leads to additional costs in development, manufacturing, 
use, and recycling. The consideration of the product 
surroundings show that the technology leads to big 
benefits in the area of precise handling or assembly, 
namely to gain better cycle times. For some other use 
cases, the benefit would not justify the costs. 
Figure 7 shows on its right side the decomposition of the 
kinematic chain into its structural components. Regarding 
the kinematic chain in relation to the aforementioned 
targets, a critical component is found. A joint that supports 
high accuracy should provide low clearance between 
moving surfaces. Then a joint that supports high dynamics 
should provide low friction. The left side of Figure 7 
displays both requirements within the block “joint”, 
because they are directly related to that component. The 
arrows show their dependencies to the system 
requirements and it is possible to follow up to the level of 
goals. The constraint “contact” illustrates that for a low 
clearance there is a normal force at the moving surfaces, 
which generates a friction force. Hence, the smaller the 
clearance the higher becomes the friction. In conventional 
joints, this goal conflict is handled by finding the best 
compromise [30]. The analysis of the model showed that 
the concerning requirements do not have to be fulfilled at 
the same time during operation, i.e. when fast moving a 
low friction is needed, but when assembling the 
movement is relatively slow and the low clearance is of 
importance. To allow a time dependent change of joint 
characteristics new joints with an active adaptability were 
developed [27, 31]. 
In later phases sometimes changes appear. For instance, 
a customer rethinks the cost target: The robot has to be 
cheaper, otherwise he would back out. Analysing the 
relations shows that in that case the simplest possibility is 
to exchange the drives by cheaper (but less powerful) 
ones. This would mainly effect the “high dynamic” target 
and to a certain degree the goal “cycle time”. The model 
allows generating a specific view that makes all these 
relations transparent and communicable to the customer. 
Then it would be up to the customer to decide, whether 
the cheaper robot justifies the loss in cycle time. 
One important aspect for working with models especially 
in collaborative networks is the management of different 
versions. Modelling software often provides a multi-user 
repository that allows team members to work concurrently 
with the same model. Normally a model tree is generated, 
so that a trunk contains the universally valid versions. The 
tip version is the actual common state of the project. The 
different project members generate branches (“private 
sandbox”) to extend and modify the model according to 
their subtask. Versions in a branch can be merged at two 
different manners. “Rebasing” means to integrate the 
trunk tip version in the branch version and create a new 
version in the branch. “Reconciling” means to integrate 
the branch version in the trunk tip version and create a 
new version in the trunk that constitutes the new common 
state of the project. Whilst merging two model versions 
differences can be analysed, i.e. the impact a change in 
one domain had on model elements also used in another 
domain are displayed. However, the project management 
has to ensure a regularly merging of outcomes, an 
analysis regarding redundant elements, and 
communication between project members as well as 
making comments and notes on the made changes. Then 
it is possible to trace changes and even restore the model 
to a former condition. 

Another opportunity of versioning is the building of 
variants. Starting from the common state version different 
branches can be modelled. These branches can detail 
different possible solutions to figure out the best one. 
Moreover, it is possible to start from a generic model and 
detail the different branches according to different 
development aims, e.g. to develop two different robots for 
relatively similar boundary conditions but for different 
tasks. 
As pointed out earlier one problem in product 
development projects is an inadequate documentation of 
results. Using the models as a developing tool is at the 
same time a kind of documentation. It gives at least a 
proper basis for generating the documentation. Modelling 
software often supports a (semi)automatic document 
generation. Thence, documents are generated “on the fly” 
what facilitates this unloved duty of documenting. 

5 CONCLUSIONS 
Multidisciplinary product development in collaborative 
networks is a typical working condition for nowadays 
engineers. After describing the main deficits and dangers 
of such development situations a modelling approach 
using the Systems Modelling Language (SysML) is 
shown. The approach focuses on the generation of a 
requirements model as a basis for discussion and 
analysis of the real project aims. Therefore, it discusses 
the four aspects surrounding, structure, relations, and 
analysis. A simplified example from the field of parallel 
robots illustrates the approach and highlights the benefits. 
The paper shows that the modelling of requirements is an 
essential step in the development of complex products. 
Especially in collaborative networks, it helps to 
concentrate on and to communicate goals, targets, and 
requirements. It assists the decision-making processes 
and makes them more transparent. SysML is a known 
notation, thence the effort to formalise the model is 
comparably small, but gains a good exchangeability, e.g. 
for remote and concurrent working. The generated 
diagrams are quite easy to understand and hence 
augment cognition. 
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