TEXT BOUND INTO THE SPINE

"A DISAGGREGATE TRIP GENERATION MODEL FOR THE STRATEGIC PLANNING CONTOL OF PRIVATE CAR TRIPS TO LARGE FOODSTORES"
G. McL. HAZEL

VOLUME 1 - THE TEXT

Ph.D. THESIS

CRANFIELD INSTITUTE OF TECHNOLOGY

This thesis is dedicated to my Father and Mother who, through their love, sacrifice and vision made it all possible.
G. McL. Hazel, July 1985.

For I was my jather's son, tender and only beloved in the sight of my mother. He tought me also, and said unto me, Let thine heart retain my words: keep my commandments, and live. Get wisdom, get understanding : forget it not; neither decline from the words of my mouth. Forsake her not, and she shall preserve thee : love her, and she shall keep thee.

Proverbs 4 : 3-6.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Professor M. Cordey-Hayes for his invaluable advice, experience and guidance and also to the staff of the Centre for Transport Studies, Cranfield Institute of Technology. Special thanks are due to Dr. J. Clark, Mr. I Black and Dr. M. Benwell.

The author also wishes to thank Napier College and Lothian Regional Council for making the research programme possible through the provision of funding and the remission of staff time, Mrs M. Clark for typing this thesis and, last but not least, to my wife Fiona for putting up with the attendant neurosis of research study for the past six years and for proof-reading the thesis.

VOLUME 1

CHAPTER 1

$$
\text { THE GROWTH OF LARGE FOODSTORES IN BRITAIN } 1
$$

CHAPTER 2
THE DEFINITION OF STORE TYPE AND THE ESTIMATION OF PRIVATE-CAR TRIPS TO LARGE RETAIL CENTRES10

CHAPTER 3

CONSUMER BEHAVIOUR 26
CHAPTER 4
THE ACCESSIBILITY OF LARGE RETAIL FOODSTORES 54
CHAPTER 5
DESIGN OF RESEARCH PROGRAMME
67

CHAPTER 6
THE PLANNING AND ORGANISATION OF THE ENQUIRY 84
CHAPTER 7
ANALYSIS OF THE DATA 117
CHAPTER 8
INTERPRETATION AND DISCUSSION OF THE FINDINGS 232
CHAPTER 9

SUMMARY AND CONCLUSION 263
CHAPTER 10
SUGGESTIONS FOR FURTHER RESEARCH 271

REFERENCES 276

CONTENTS

LIST OF TABLES (Contd.)

		PAG
Table 27(b)	Principle Components Analysis - Factor Composition for Each Area (Dependent Factors)	15
Table 27(c)	Principle Components Analysis - Factor Composition for Each Area (Dependent Fa	
Table 28(a)	Principle Components Analysis - Factor	15
	Composition for Each Area (Independent Factors)	15
Table 28(b)	Principle Components Analysis - Factor Composition for Each Area (Independent Factors)	15
Table 28(c)	Principle Components Analysis - Factor Composition for Each Area (Indpendent	
Table 29	Large Foodstores in Edinburgh District	161
Table 30	Spatial Accessibility Indices for Individual Areas	165
Table 31	Pearson Correlation Coefficients for Spatial Accessibility and Variables Exhibiting a	
Table 32	Canonical Correlation Analysis Between Variables B, C, D, E, F and G and $I, K, L, M, N, O, P, ?$ and R for Each Individual Area	170
Table 33	Structure of First Order Canonical Variates for Individual Areas	171
Table 34	Canonical Correlation Analysis for Means Data Matrix with and without the Variable S	17
Table 35	The Structure of the Canonical Correlation Variates with respect to the Means Data Matrix with and without S	174
Table 36	Canonical Correlation Coefficients for Groups of Areas used in the Tests of Homogeneity	177
Table 37	Canonical Correlation Analysis for the Three Superstore Dependent Variables with respect to the Independent Variables	178
Table 38	Structure of First-Order Canonical Variates for Individual Areas using only Three Superstore Dependent Variables	180
Table 39	Canonical Correlation Analysis with respect to the Three Superstore Dependent Variables and Three Selected Independent Variables	181
Table 40	Canonical Correlation Analysis for - 1) All variables 2) Three Store Dependent and All Dependent Variables	
	3) Three Store Dependent and Three Independent Variables	182
Table 41	Pearson Correlation Coefficients Between Dependent and Independent Variables for	
	Individual Areas.	183
Table 42	Means Data matrix in Order of Store	
	Duration of Stay	192
Table 43	Means Data Matrix in Order of Store Expenditure	193

		PAGE
Table 44	Means Data Matrix in Order of Store	
	Frequency of Visit	194
Table 45	Canonical Correlation Analysis for Groups of Areas based on an Aggregate Store Usage	
	Index	197
Table 46	Order of Variable Addition in the Multiple	
	Regression Analysis for F with I to R by Individual Area	199
TabIe 47	Order of Variable Addition in the Multiple	
	Regression Analysis for B with I to R by	
	Individual Area	200
Table 48	Regression Analysis for D with I to R for	
	Individual Areas	201
Table 49	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	203
Table 5	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	204
Table 5	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	205
Table 5	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	206
Table 5	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	207
Table 5	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	208
Table 5	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	209
Table 5	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	210
Table 5	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	211
Table 5	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	212
Table 5	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	213
Table 60	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	214
Table 6	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	215
Table 6	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	216
Table 6	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	217
Table 6	Multiple Regression Analysis - Table of Pearson	
	Correlation Coefficients by Individual Area	218
Table 65	Multiple Regression Analysis F with I to R;	
	F with B, D; B with I to R; and D with I to R	
	for Total Data Matrix	221

CONTENTS

LIST OF TABLES (Contd.)

Table 66	Multiple Regression Analysis - E with I to R for the Total Data Matrix Table 67	PAGE The Prediction of Frequency Use, Duration of Stay and Expenditure at Large Foodstores In the Survey Area using the Developed Trip Generation Model
The Prediction of Personal Accessibility from the Independent Variables using the Means Data Matrix	225	

		PAGE
Figure 1	British Hypermarket and Superstore Openings 1966-1981	3
Figure 2	Growth in Number and Sales Space of French Hypermarkets	4
Figure 3	Number of Parking Spaces as a Function of Sales Area in France	23
Figure 4	Summary of Factors Influencing Activity Scheduling	37
Figure 5	The Accessibility Window of a Household to allow a Private Car, Bulk-Purchasing Trip to a Foodstore to take place	60
Figure 6	Model of the Household Choice Process with respect to Bulk-Purchase Shopping by Private Car	69
Figure 7	Theoretical Study Framework showing groups of Households and Store Locations	72
Figure 8	Conceptual Framework for Model Development Based on Sub-Area Models or Aggregated Data Model	73
Figure 9	Dependent Variable Structure	75
Figure 10	Structure of Dependent and Independent Variables	77
Figure 11	Two Models of the Conceptual Structure of Independent and Dependent Variables	81
Figure 12	Model of Conceptual Framework showing sub-models based on Factor Variables and Individual Variables	83
Figure 13	The Study Area	96
Figure 14	The Questionnaire Design	100
Figure 15	Map of Area Locations	103
Figure 16	Profiles of the Dependent Variables with respect to their Means	105
Figure 17(a)	Profiles of the Independent Variables I to 0 with respect to their Means	106
Figure 17(b)	Profiles of Independent Variables P to R with respect to their Means	107
Figure 18	Profiles of Dependent Variables with respect to Standard Deviation	111
Figure 19(a)	Profiles of Independent Variables I to 0 with respect to Standard Deviation	112
Figure 19(b)	Profiles of Independent Variables P to R with respect to Standard Deviation	113
Figure 20	Scattergram of the Store Expenditure/Week (D) v. Total Expenditure (E) - Area 1 (Moredun)	136
Figure 21	Total Expenditure/Week (E) v. No. of Half Days Employed (Q) - Area 1 (Moredun)	137
Figure 22	Expenditure/Week at Store (D) V. No. in HouseHold (M) - Area 1 (Moredun)	138
Figure 23	Location of Large Foodstores in Edinburgh District	164

CONTENTS

LIST OF FIGURES (Contd.)

Figure 24 Freezer Ownership, Income, Number of Licenses, Number in the Household and Mean Age of the Household with respect to Expenditure at Large Foodstores

```
CHAPTER ONE
THE GROWTH OF LARGE FOODSTORES IN BRITAIN
```


1.1 Introduction

This thesis sets out to provide a model for the calculation of private car trips to large foodstores based on local area household characteristics. It recognises the weakness in predicting private-car trips to large stores using trip-rates obtained from surveys of stores in other areas. The trip generation model that is sought must be easily applied and must use readily accessible data. It is proposed therefore that a relationship be sought between private- car trips to the stores and the household characteristics, obtainable from census data, of the local catchment area. The model thus obtained would be used for strategic planning control.

The inftial chapters set out the scale of growth of large foodstores in Britain and the consequent problems they create for the road network and the local environment. The conceptual framework and research objectives are then discussed and related to the research tasks and the methods of analysis required to achieve the research objectives. The resulting trip generation model is fully examined, to understand the relationships established within the model, and then applied to future development within an established aggregate distribution and assignment model.

The first chapter therefore highlights the growth of large foodstores in Britain and abroad. It discusses the general factors which have combined to encourage this growth and examines the future of this form of retailing in Britain.
1.2 The last 15 years have seen a phenomenal growth in large food retailing stores in Great Britain. Jones ${ }^{(1)}$ estimates that this growth is the equivalent of providing gross floor-space equal to 20 shopping centres the size of Brent Cross. In terms of their size, locational requirements and characteristics, these stores have altered the pattern of shopping centres and the shopping behaviour of millions of householders on a scale unprecedented in the history of the British retall trade.

The Unit for Retail Planning Information (URPI) estimates that a total of 230 large stores, comprising 42 hypermarkets and 188 superstores were open and trading at the end of 1982. ${ }^{(2)}$ URPI define a hypermarket as a store with over $5,000 \mathrm{~m}^{2}$ selling area and a superstore as a store between $2,500 \mathrm{~m}^{2}$ and $5,000 \mathrm{~m}^{2}$ selling area. In 1977 there were 140 stores trading, based on these URPI definitions. Figure 1 shows the rapid growth in British hypermarket and superstore openings between 1961 and 1981.
1.3 During the 1960 's this form of retailing expanded rapidly in Europe, accounting for 10% of the retail trade in some countries. ${ }^{(3)}$ In France, for example, the first hypermarket was constructed in 1967 and there are now in excess of 305 , each with a sales area greater than 2,500 m^{2}.(3) The six largest hypermarkets in France are operated by Carrefour and include a store at Toulouse with 67 checkouts, parking for 4,000 private cars and is twice the size of the largest store operated by any of Carrefour's competitors. ${ }^{(3)}$ Figure 2 and Table 1 show the growth rate of these stores in France.
1.4 In the United States of America the out-of-town hypermarket showed a similar growth pattern. In 1950 the average store size was $400,000 \mathrm{ft}^{2}$ of retall floor space; by 1960 this had risen to over $750,000 \mathrm{ft}^{2}$. In this period the number of large retail centres rose from 2,000

FIGURE 1
British hypermarket and superstore openings 1966-1981

FIGURE 2

Growth in number and sales space of French hypermarkets
Source: Geography, Vol.61, Pt.4, 1976

Number of employees	Salca area (m^{2})						
	$\begin{aligned} & 2500- \\ & \text { +990 } \end{aligned}$	$\begin{aligned} & 5000-2 . \\ & 7499 \end{aligned}$	$\begin{aligned} & 7500- \\ & 9949 \end{aligned}$	$\begin{aligned} & 10000- \\ & 14999 \end{aligned}$	15000 and over	Total	Percentage
1-34	\%	0	0	0	0	1	
35-99	46	0	0	0	0	46	16
100-199	47	8	1	0	0	56	19
150-199	26	19	4	0	0	49	17
200-249	10	23	7	3	0	43	15
250-299	3	20	17	2	0	48	16
300-399	0	9	11	14	1	35	12
100 and over	0	3	3	5	4	15	5
- Miotial	1:3:	14	1 l	4.1	!	2!13	
	. 6	35	1.4	4	$:$		100

- Vercentage relery to all 305 xtores.
sunkin: "Aldus des hyfecr cs supermarchey au ter janvier, 1970", Libro Service detualits, 561 -2.

TABLE 1

to 11,200 and this continued into the seventies adding 1000 to 1200 new stores each year. ${ }^{(4)}$ The North American developments have taken the form of regional shopping centres, usually situated well outside suburban areas.
1.5 The growth of the large retail foodstore has been experienced in most developed countries. Documented evidence has been produced to substantiate this trend in Ireland ${ }^{(5)}$, West Germany ${ }^{(6)}$, Switzerland ${ }^{(7)}$ and Japan ${ }^{(8)}$ in addition to France and the USA mentioned above. This pattern of growth is continuing and Jones, in his paper on the saturation level of hypermarket and superstore provision, ${ }^{(1)}$ concludes that it is not possible to predict saturation in a market as dynamic and uncertain as retailing due to problems of definition, qualitative factors, changes in marketing and management techniques and the difficulty in forecasting development opportunity. This is supported by Sheth ${ }^{(9)}$ in his examination of future retailing trends.
1.6 In contrast to the somewhat explosive development in certain countries the pattern of growth in Britain has been slower and smaller in scale. In 197024 large stores were in existence, the majority operated by Asda and Woolco ${ }^{(2)}$ and situated in the North of England. Since then development has accelerated, as shown in Table 2.
1.7 As in other countries this trend is continuing. Safeway Food Stores, for example, had 82 outlets in 1975 and 110 in 1983, giving a rise in total sales area from 781,000 ft^{2} to $1,005,000 \mathrm{ft}^{2} .^{(10)}$ Kwik Save Discount Group PLC had 156 outlets in 1978 and 306 outlets in 1982, with 30 planned for 1983. (11) Associated Dairies Group PLC had 12 warehouses and 32 branches in 1972. This had risen in 1983 to 72 warehouses and 88 branches (12). The British situation, although less dramatic than the growth patterns of France or the USA, nevertheless constitutes a major

YEAR	HYPERMARKETS	SUPERSTORES	TOTAL
1967	2	1	3
1971	6	22	28
1974	14	61	75
1977	31	109	140
1981	42	188	230

Source: URPI U7, 1978

TABLE 2

Growth in Hypermarkets and Superstores in Great Britain, 1967-1981
change in retailing pattern with major consequences for the urban environment. The report, commissioned by Glasgow Corporation, (13) on shopping centres and hypermarkets in the Glasgow area highlights these consequences and requires planning authorities to understand the reasons for this growth so that it can be effectively controlled.
1.8 The reasons for the emergence of hypermarket and superstore shopping have been well documented and can be classified into two broad areas; changes in methods of store management and retailing and changes in consumers' mobility and accessibility. ($1,2,9,13,14,15$)

The scale of operating enables the retailer to achieve economies by optimising merchandising techniques and by introducing new management methods such as direct purchasing, mechanical goods handing in-store and devolved departmental management responsibility, thereby offering discounted prices to the consumer. Increasing car ownership levels ${ }^{(16)}$ and improving accessibility to large stores have enabled consumers to take advantage of these economies of scale. These factors are more fully discussed by Parker ${ }^{(5)}$, Pacione ${ }^{(14)}$ and others. $(9,15,17,18)$
1.9 The increased accessibility offered by these stores coupled with traffic congestion and restraint policies within city centres, has led to an increase over time in store size. Tesco, for example, have increased the percentage of total sales area of stores over $25,000 \mathrm{ft}^{2}$ from 11% to 40\%, between 1975 and 1981.(19) Thus the one-stop shopping, associated with large foodstore retailing, has become an established and growing section of the retail market. It is generally agreed, by most retail commentators, $(9,14,17,18)$ that this growth will continue and this form of shopping will significantly
affect the retail hierarchy of Britain. The next chapter discusses the impact these stores have had on the traffic movements of urban areas and the local environment and the consequent problems that have been caused.

CHAPTER 2
THE DEFINITION OF STORE TYPE AND THE ESTIMATION OF
PRIVATE-CAR TRIPS TO LARGE RETAIL CENTRES

2.1 Introduction

The chapter begins with an examination of store types and their definitions as this is related to trip rate. This is also necessary to establish the scope of any predictive model that may be developed.

It is shown that the definitions of hypermarkets, superstores and supermarkets are arbitrary and based on floor size. The regional centre can be separately identified. This thesis relates to the former three shop types.

The existing predictive methods, for trip arrival and parking provision at each store, are then discussed and are shown to be unsatisfactory; their specific and empirical nature being inappropriate in the general case. It is suggested that a trip generation model based on local area characteristics be developed which must be easily applied and economical. For these reasons the model should be based on census data and provide an input to a compatible distribution model which allows for competition.
2.2 The Definition of Store Types with respect to Current Practise
2.2.1 In Britain large retail stores vary in size and title from the regional shopping centre to the local supermarket. Therefore when attempting to model private-car trips to large retail stores one must establish the scope of the predicting model. To do this it is necessary to review the current definitions of each type.
2.2.2 It has been quoted, in the previous chapter, ${ }^{(1)}$ that there were in 1981, 230 superstores in Britain. This does not include 70 stores classed as supermarkets but marginally smaller than the cut-off figure, who generate similar levels of private-car traffic. ${ }^{(2)}$ The form of definition can therefore significantly change the level of activity.
2.2.3 The regional shopping centre however, can be classified as distinct from the individual large store in that it differs in sales technique, range of goods offered, number of shops involved and traffic characteristics. ${ }^{(20)}$ The regional shopping centre usually has at least one large department store in addition to many small shops. The sales approach is one of comparison shopping, the consumer being able to choose between several retail units.
2.2.4 The distinction between hypermarkets, superstores and supermarkets is less obvious. They all emphasise convenience goods displayed in one large store and previous and current definitions tend to emphasise the scale factor difference between store types. France defines the hypermarket as follows : (3)
a) a retail unit of at least $2,500 \mathrm{~m}^{2}\left(22,500 \mathrm{ft}^{2}\right)$ sales area on one floor selling a wide range of low-priced food and a more general range of non-food goods.
b) a ground level car park at least three times the sales area of the store.
c) self service principles throughout.

Harris and Andrew ${ }^{(21)}$ define hypermarkets as having a sales area greater than $50,000 \mathrm{ft}^{2}$ and superstores, a sales area greater than $25,000 \mathrm{ft}^{2}$. Pacione ${ }^{(14)}$, in commenting that no definitions have been generally agreed, chooses a figure of $6,000 \mathrm{~m}^{2}\left(60,000 \mathrm{ft}^{2}\right)$ sales area to define the hypermarket.

2.2.5 The Unit for Retail Planning Information (URPI) defines

 hypermarkets and superstores as single level, self-service stores offering a wide range of food and non-food merchandise, with at least $50,000 \mathrm{ft}^{2}$ of sales area for the hypermarket and $25,000 \mathrm{ft}^{2}$ of sales area for the superstore. They must also be supported by adequate car parking. These definitions do not recognise characteristic differences but use the sales area as the basis of definition. Parker ${ }^{(5)}$ again bases his definitions on sales area but chooses $20,000 \mathrm{ft}^{2}$ of selling space as the minimum area necessary for the definition of a superstore.2.2.6 The current literature therefore bases the definitions of hypermarkets and superstores on sales area and the variation in definition produces a wide range of defined hypermarkets and superstores in Britain e.g. the number of hypermarkets varies from 3 to 38 depending on the definition adopted. The characteristics listed by the authors mentioned above are vague and talk in generalities lacking a uniform definition. Supermarkets are not mentioned except for Jones ${ }^{(1)}$ commenting on the false divisions imposed by definitions based on sales area. It is clear that size of store is at best unsatisfactory and
that other factors such as local catchment area characteristics, location and competition must influence the performance of any given store. ${ }^{(22)}$ This is underlined by the fact that the same store could be defined as either a hypermarket or superstore, depending on the sales area definition used, and different trip rates would be applied.
2.2.7 It is proposed therefore to avoid such distinctions between hypermarkets, superstores and supermarkets and use the general term large foodstore where appropriate since in reality the differences in the British context are more to do with the locational factors mentioned above rather than any intrinsic difference caused by size. That is the location is directly related to the accessibility and attractiveness of the store and will affect the distribution of shopping trips within the retail, competitive framework of the area. If the trips generated are modelled on household characteristics and are separated from the distribution to individual stores the definition problem is irrelevant. This postulation will be expanded in the chapter on conceptual framework.
2.2.8 The previous chapter outlined the historical growth of large retail centres and showed their continuing presence in today's retail hierarchy. The size of these stores attracts large numbers of shoppers, predominantly arriving by private-car, and ensures a major impact on the local area, just as any major traffic generator. This raises issues of development control which must be faced by transport planners and leads to a trade-off between retail efficiency and environmental protection. ${ }^{(24)}$ The traffic pattern generated and the consequent social and engineering problems have to be understood and dealt with and the next section of this chapter examines the current methods of trip generation estimation from which development control decisions are made.

2.3 The Problem of Private-Car Trips Attracted to Large Foodstores

2.3.1 It has been argued that large, one-stop shopping stores are an established part of the retail hierarchy and that their size and consequent traffic generation requires control of their development. The particular characteristic that this thesis addresses itself to is the generation of private-car trips to these stores. The percentage of private car trips varies from store to store depending on store type and catchment area characteristics but is invariably between 70% and 90%. $(21,22,23,24)$ Harris and Andrew (21) argue that the scale of trips attracted and the parking provision required compares with the level of trip attraction of a regional airport the size of Turnhouse, Edinburgh and therefore requires the same careful planning and design. The Minworth-Carrefour store generated, in 1979, between 6,300 to 8,500 daily trips with the road access having to cope with up to 1000 vehicle arrivals in the peak hour. The store is situated adjacent to a major road. The Fine Fare, Stirling store was sited within a council housing estate with only a roof car park which catered for 180 cars. The result was that within weeks of the store opening Prohibition and Restriction of Waiting Orders had to be introduced on the residential streets around the store. The local residents suffer severe vehicle intrusion. Aitken \& Malcolm ${ }^{(24)}$, in studying this store, conclude that the introduction of a hypermarket or superstore into an area where the road network is not designed to carry the additional, generated traffic is undesirable. It would appear therefore that in permitting a large, one-stop, foodstore development to proceed, transport planners must ensure that the surrounding road network is capable of supporting the increased load that will be imposed upon it. The method of estimating these trips will now be discussed.

2.4 Current Techniques for the Estimation of Trips Attracted to Large Foodstores

2.4.1 The current method used for the estimation of trips to large stores is either based on Gross Floor Area (GFA) or Net Floor Area (NFA), the latter can also be referred to as sales area, selling area or retail area. Parking requirements are calculated using the same empirical methods which involve comparison of trip rates, established from surveys of stores in other locations, with the store being considered. Harris \& Andrew ${ }^{(21)}$ support this method.
2.4.2 Table 3 shows the results of two British studies which suggest an optimum trip rate/ $1000 \mathrm{ft}^{2}$ GFA when the store has built up a demand from its catchment area. The two stores listed show an agreement between the sets of figures but this pattern is not substantiated when a wider sample is taken. Table 4 is extracted from a letter, in response to Harris \& Andrew's ${ }^{(21)}$ paper, from Maltby \& Johnson ${ }^{(25)}$ of Salford University. The overall variation in this small sample is approximately 80 trips/1000 ft^{2} NFA. For a medium-sized store of say $50,000 \mathrm{ft}^{2}$ NFA this would mean a 4,000 trip variation, a significant difference in terms' of road network capacity. In addition there appears to be no obvious relationship between stores of comparable size. This is supported by URPI ${ }^{(2)}$ who found that the link between turnover and floorspace was tenuous. In some instances stores of a similar size had turnovers differing by 100\%. They also concluded that no relationship could be found between store size and turnover to floor-space ratios.
2.4.3 It can be seen, therefore, that store and locational characteristics influence trip rates. There is no evidence to suggest a simplistic relationship between
floor area and trip rate that can be generally applied with confidence. Indeed, Harris \& Andrew ${ }^{(21)}$ concede that trip rate per floor area is only applicable in certain instances and that for practical applications a more refined technique is required which relates trip rates to catchment area characteristics. Leake ${ }^{(22)}$ established, from his Leeds study, a relationship between the peak two-way traffic flow and retail floor area :

where \quad| $V=20 Y$ |
| :--- |
| $V=$ two-way flow of shopping vehicles (vehs/hr) |
| $Y=$ retall shopping area (per $100 \mathrm{ft}^{2}$) |

Aitken \& Malcolm ${ }^{(24)}$ dispute the value of the constant in the equation and argue that from their study it appeared to have a value of 13.4. However they qualify their statement by acknowledging a range of values between 13.4 and 17.5. Thus the variation found in Table 4 is present in this equation which takes no account of the catchment area characteristics. Kelly ${ }^{(25)}$ substantiates this store trip-rate variation by quoting figures from his Welsh study. The attraction rates for Asda, Gwent and Asda, Merthyr Tydfil are quoted at 59.3 vehs/1000 $\mathrm{ft}^{2} \mathrm{GFA}$ and Leo's Superstore, Pyle at 54.4 vehs/1000 ft^{2} GFA. The Asda stores each having $40,000 \mathrm{ft}^{2}\left(59,000 \mathrm{ft}^{2} \mathrm{GFA}\right)$ of sales area and Leo's Superstore having 30,000 ft^{2} (45,000 $f t^{2}$ GFA) of sales area.

2.5 Current Techniques for the Estimation of
 Private-Car Parking Provision at Large Foodstores

2.5.1 The provision of car-parking at large foodstores shows the same variation as trip-rates. Its under-provision can create accident and environmental consequences and its overprovision is wasteful of land and is environmentally obtrusive. One of the earliest studies of parking at large stores was carried out in 1965 by the

	Total Trips	\% of Weekly Total	Trip Rate 1000 ft GFA, Minworth	Trip Rate 100 ft GFA, Eastleigh
Tuesday	6,399	17.7	43.2	40.1
Wednesday	6,324	17.5	42.7	40.4
Thursday	6,929	19.2	46.8	50.5
Friday	7,896	21.9	53.3	59.1
Saturday	8,536	23.7	57.7	55.4
Total	36,084	100.0	243.7	245.5

Source: Harris \& Andrew. (21)

TABLE 3
Trip Rate/ $1000 \overline{\mathrm{ft}}^{2}$ GFA at two British Superstores (24-hour total, mid-December)

Store		
Location	$\frac{\text { Sales }}{\text { Area }\left(\mathrm{ft}^{2}\right)}$	$\frac{\text { Trip Rate/1000 } \mathrm{ft}^{2}}{\text { Sales Area }}$
Asda, Llandudno	31,000	129.5
Fine Fare, Stirling	34,000	59.1
Gem, Leeds	35,000	69.1
Carrefour, Caerphilly	55,000	70.2
Carrefour, Eastleigh	56,000	116.6
Carrefour, Minworth	70,000	112.8
Tesco, Iram	73,000	63.5
Fine Fare, Hyde	75,000	47.7
Carrefour, Bristol	90,000	87.7

[^0]TABLE 4
Trip Rate/ $1000 \mathrm{ft}^{2}$ Sales Area - a Sample of British Stores

Urban Land Institute ${ }^{(26)}$. The study was carried out at 270 shopping centres in the USA and Canada during the 12 busiest shopping days of the 1964 pre-Christmas period. The suggested design standard of 5.9 spaces per $100 \mathrm{~m}^{2}$ GFA was based on the results from 103 shopping centres having neither offices nor theatres.
2.5.2 Early British parking standards followed the recommendations of the Multiple Shop Federation (27) and NEDO ${ }^{(28)}$. The former converted the American regional standard to the circumstances applying in Britain by allowing for the different levels of car ownership between the two countries. Standards were produced relating to 1969 for high, average and low values of car ownership together with predicted standards for 1975 and 1980. The recommendations only applied to central area shopping facilities. NEDO produced minimum standards which depended on the location of the particular shopping facility. A reduced value of the parking index for central areas reflected the motorist's dislike of congestion, lack of convenient parking facilities and better public transport systems. The higher value of suburban stores reflected their dependence on the private-car.
2.5.3 The NEDO study suggested a minimum of 5.0 parking spaces per $1000 \mathrm{ft}^{2}$ of sales area while Aitken \& Malcolm ${ }^{(24)}$ suggest 6.7 spaces. Sainsbury superstore at Bretton, Peterborough used a value of 10 spaces per $1000 \mathrm{ft}^{2}$ of sales area while Asda have a policy of providing 1 space for every $60 \mathrm{ft}^{2}$ of sales area wherever possible, i.e. 16 spaces per $1000 \mathrm{ft}^{2}$ sales area. Leake ${ }^{(22)}$ initially suggested a figure of 6.0 spaces per $1000 \mathrm{ft}^{2}$ of sales area in areas of high car ownership but published a reappraisal of his work in $1982^{(29)}$ which took cognisance of household car ownership, petrol facilities and ease of circulation. Table 5 shows the suggested rates. Note
that superstores and supermarkets have been grouped together substantiating the argument put forward earlier in the chapter and also the characteristics of the catchment area around the store are beginning to be considered; in this case car ownership. This trend is also seen in a paper by Codd ${ }^{(30)}$ on his work with the City of Glasgow. He suggests a shopping parking prediction model based on shopping centre size and car ownership :

	$\frac{t_{i j}}{c_{i j}}$	$=k f\left(d_{1 f}\right) \quad g\left(A_{j}\right)$
where	$t_{1 j}$	= trips from zone i to shopping centre j over a given time period.
	$C_{1 j}$	= number of cars from zone 1 at shopping centre J.
	A_{j}	= effective area of shopping centre f, a function of convenience and nonconvenience floor space.
	k	= a constant
	f, g	= functions
	$\mathrm{d}_{1 j}$	a measure of deterrence between zone i and shopping centre J.

One aspect of his initial findings was the inadequacy of current procedures. The relationship of parking accumulation vis-a-vis GFA was found to have a poor fit to the least squares line. The relationship is not improved if convenience floor space is used.
2.5.4 In France the higher trip rates experienced at hypermarkets has led to the use of a higher parking design ratio than that used for regional shopping centres. The parking ratio for the latter is 6 spaces/ $100 \mathrm{~m}^{2}$ GLA, which provides sufficient parking for 350 days a year. As a

	Parking Index (car spaces $/ 100 \mathrm{~m}^{2}$ retail area)	
	Without Petrol	With Petrol
Supermarkets; Superstores	11.0	12.5
Hypermarkets	-	20.5

Source : Leake \& Turner. (29)

TABLE 5

Suggested Design P.I. Values for Various Types of Shopping Facilities
general rule the ground level car park of a hypermarket is at least 3 times the sales area. The number of parking spaces can also be shown graphically as a function of sales area as shown in Figure 3, (note the discrepancy between the observed and theoretical ratios).
2.5.5 The Distributive Trades EDC in their report ${ }^{(31)}$ recommended that the absolute minimum for parking provision for an out-of-town shopping centre should be 8.5 spaces/ $1000 \mathrm{ft}^{2}$ sales area and that every effort should be made to improve this allocation. This standard was used for the Eastleigh, Carrefour store and was only just adequate to meet the demand. Minworth-Carrefour has 1,280 parking spaces; in line with the recommendations at that time. Kelly ${ }^{(25)}$ suggests that, from experience in Europe, a design figure of 7 to 10 spaces $/ 1000 \mathrm{ft}^{2}$ GLA is more pertinent to hypermarkets and superstores however he goes on to quote a value of 5.4 spaces for Asda, Gwent and Asda, Merthyr Tydfil and 3.3 spaces for Leo's Superstore, Pyle. He concludes that the suggested range of 7 to 10 spaces does not compare well with his study where a figure of 10 to 15 spaces $/ 1000 \mathrm{ft}^{2}$ GLA was more appropriate.
2.5.6 Maltby \& Johnson ${ }^{(25)}$ note that a comparison of parking provision to 38 Carrefour stores on the Continent of Europe with 19 British stores revealed average provisions of 18.8 spaces $/ 1000 \mathrm{ft}^{2}$ sales area for European stores and 12.3 spaces $/ 1000 \mathrm{ft}^{2}$ sales area for British stores. The authors note that the difference was due to store location, catchment area characteristics and land costs rather than differences in trip generation. This conclusion was based on published data on European and British stores.

FIGURE 3

Number of parking spaces as a function of sales area in France
--m Ratios proposed by SETRA
Observed ratios (sample of 257 centres)
2.5.7 It is clear therefore, that no generally accepted criteria for the estimation of parking spaces exists and the variation in rates is comparable to that found for trip rates. The Local Authority and developer can choose from a wide range of rates to justify their policy decisions. As with trip rates the methods are empirically based on global factors which are shown to be dependent on the characteristics of the area surrounding the particular store being surveyed. There is no obvious correlation shown between store size and parking space, by inspection of the data. This is substantiated by inspection of a list of every hypermarket and superstore in Britain and their floor area and parking space provision. The list shows no pattern between the two variables (see Appendix A).

2.6 Concluding Remarks

2.6.1 The present method of estimating trip rate and parking allocation is unsatisfactory. The development control officer has to use data from areas considered to be equivalent to the catchment area under study. In practise this means the developer may choose rates sympathetic to his cause and the Local Authority likewise and the resulting compromise may not model the actual demand.
2.6.2 The emerging trend, as indicated in the chapter, is to acknowledge the impact of catchment area characteristics on trip rate and parking provision. This thesis seeks to establish an objective basis which models the relationship between local area characteristics and the usage of large foodstores. The model will estimate the trips generated from the local area and must be easily used by the development control officer. This means that it must be able to be applied quickly and economically and to a level of accuracy compatible with its strategic nature.

[^1]
3.1 Introduction

The chapter begins by examining store choice and defining it as comprising three parts - access to store, attraction to competing stores and consumer characteristics and needs. A review is then undertaken of current shopping models which seek to emulate the consumer store-choice process. These are also in three parts - the individual store assessment of trips arriving based on floor area, the aggregate models and the disaggregate models. The latter two seek to model the effect of competition between stores.

The chapter argues that, for the strategic planning control of large stores, a disaggregate model is required that predicts private-car trips to stores from the household characteristics of an area. These trips would then be input into a conventional gravity model and distributed to the existing stores. In order to develop this disaggregate model the effect of competition must be removed and this is achieved by randomly selecting groups of households, spatially together, and comparing the relationship developed within each group.

The latter section of the chapter identifies from previous studies the general factors which predict the shopping usage of a household. These are seen to be an employment factor, a household structure factor and an income and social grouping, which could be thought of as a lifestyle factor. From these general factors specific variables are identified. The effects of personal accessibility and spatial accessibility are fully discussed in the following chapter, thus these two chapters form the basis from which the research objectives and conceptual framework can be developed.

3.2 Factors Influencing Store Choice

3.2.1 The previous two chapters have described the empirical method of traffic estimation from large retail stores. This method is based on the relationship between trip rate and the floor area of the store and estimates the trip attraction to a given store from traffic surveys carried out at other stores. Although it is argued that the above relationship exists $(22,24)$ the method does not perform well in practise due to the different characteristics of each store and its environs.
3.2.2 This study is concerned with the estimation of private-car, shopping trips to large foodstores. This has been approached in three ways :

1) the empirical method, used by most development control planners, based on floor area. This pertains to an individual store.
2) aggregate methods of trip estimation within a competing framework of existing stores. Again based at the store-end.
3) disaggregate methods of trip estimation based at the consumer end. These methods seek to explain and model the nature of the individual consumer's choice.
3.2.3 The understanding of the consumer choice mechanism has attracted much study and a review of the work to date identifies three broad areas which make up this mechanism i.e. the characteristics or attitudes/beliefs of the consumer, the accessibility of the store and the attraction of the store, or the store image. $(32,33)$ This can be thought of as store-based or consumer-based 1.e. :

3.3 Analytical Approaches to Consumer Behaviour

3.3.1 The Gravity Model

One of the earliest and best known applications of the gravity model is the retail location model developed by Lakshmanan \& Hansen ${ }^{(34)}$ from the work of Reilly. ${ }^{\text {(35) }}$ The model allocates consumer expenditures from residential zones i to shopping centres j subject to the constraint :

$$
S_{i j}=\sum_{i} C_{i} P_{i}
$$

$S_{i j}$ are the sales made by vendors in j to consumers in 1 and C_{i} is the per capita expenditure on consumer goods in 1. The model is,

$$
\begin{aligned}
& S_{i j}=A_{i} C_{i} P_{1} W_{j}^{\lambda_{1} d_{i j}^{-\lambda_{2}}} \\
& A_{i}=\frac{1}{\sum_{j} W_{j}^{\lambda_{1}} d_{i j}^{-\lambda_{2}}}
\end{aligned}
$$

where
$\mathrm{W}_{\boldsymbol{j}}$ is a measure of shopping centre attraction in j and are parameters of the model.

In this type of model the attraction of the store $\left(W_{j}\right)$ is usually a simplistic measure such as retall floor area, although other terms reflecting range of goods, etc., can be added. (36) The accessibility term is the deterrence function $W_{j}{ }^{\lambda_{1}} d_{i j}{ }^{-\lambda_{2}}$ and the consumer term is modelled by population $\left(P_{i}\right)$ and per capita expenditure $\left(C_{i}\right)$. The advantage of such a model is its ease of application for strategic modelling and indeed the concept of "gravitational" attraction has been proved from empirical studies to be sufficiently accurate for this type of modelling. ${ }^{(37)}$ The disadvantage is its aggregate nature which relies on the calibration of the model parameters and the deterrence function with respect to a given area.

The callbration of these parameters and function can be both costly and time consuming.

3.3.2 Probabilistic Choice Models

The search for a model which more accurately reflected the consumer's choice pattern led to the extension of the one-centre gravity model to an interacting network of shopping centres. To describe this many-centre interaction the probabilistic notion of competition is introduced. Huff ${ }^{(38)}$ showed that the probability of a given centre j being chosen from a closed set of centres is :

$$
P_{j}=\frac{v_{j}}{\sum_{j} U_{j}}
$$

where U_{j} is the utility associated with the jth centre. The utility of the centre j for a particular consumer is indexed by the ratio of the attractive power (A_{f}) of the centre to the distance $\left(d_{i j}\right)$ of the centre to the consumer 1.e.

$$
P_{i j}=\frac{A_{j}^{\alpha} / d_{i j}^{\beta}}{\sum_{j} A_{j}^{\alpha} / d_{i j} \beta}
$$

This can then be developed in terms of sales by multiplying P_{f} by the retail expenditure of the consumers in zone 1 . ${ }^{(3 \Sigma)}$ The model is similar in structure to the gravity model but attempts to relate the sales emanating from a zone to the probability that a consumer will choose a certain store. The concept of the competitive framework is also an advance towards a more realistic modelling of the choice mechanism of a consumer, compared with the one-centre gravity model.

Harris ${ }^{(39)}$, from a model originally proposed by Stouffer ${ }^{(40)}$, developed a retail location model which contained specific provision to vary demand for different classes of population and to vary consumer behaviour in proportion to the density of shopping opportunities. The basic formalism derived by Harris is,

$$
\rho=\frac{-d Q}{d V}=f(L) Q
$$

and the probability of a shopping trip continuing beyond V is,

$$
R=\int_{L=0}^{\infty} f(L) Q d L
$$

where $\quad=\quad$ probability distribution function
$V=$ the number of opportunities
$\mathrm{L}=$ the probability that a consumer will be satisfied by a particular commodity
$\mathrm{Q}=$ the probability that the consumer has not been satisfied with the first ' x ' number of opportunities

Harris used a gamma distribution for $f(L)$. This is developed to the generalised form,

$$
\begin{aligned}
& R=\left(L+b_{1} W\right)_{1}^{-a} L\left(L+b_{2} D\right)_{2}^{-a} e^{-\left(c_{1} W+c_{2} D\right)} \\
& \text { where } \quad W=V+D \\
& D=\text { distance to the next opportunity. }
\end{aligned}
$$

The model contains seven parameters and these can be reduced depending on the value these parameters take. For example, if $a=b=c=0$ then the gravity model is obtained. For a detalled exposition of the model development the reader is referred to a report by Cordey-Hayes. ${ }^{(32)}$

Wilson ${ }^{(41)}$ developed an approach based on maximum entropy which had as its basic hypothesis that the probability of a particular trip distribution occurring is proportional to the number of states that can give rise to the distribution. The number of distinct arrangements $W\left(T_{1 j}\right)$ that can give rise to the distribution ($T_{i f}$) is,

$$
W\left(T_{1 j}\right)=\frac{T!}{\pi_{i j} T_{i j}!}
$$

where T is the total number of trips. The total number of possible states is then,

$$
W=\sum_{i} \sum_{j} W\left(T_{i j}\right)
$$

The procedure is to maximise $W\left(T_{i f}\right)$, subject to the imposed constraint, to give the most probable distribution. Both the gravity model and the intervening opportunities model, developed by Harris, (39) can be derived from this approach.

A further two models that have been developed are the logit and probit models. The basic form of the logit model is,

$$
P_{c}=\exp V_{c} \sum_{k \varepsilon k} \quad \exp V_{k}
$$

giving the probability P_{c} that a traveller will be attracted to a grouping c of elementary alternatives, given that a set $K=\{\ldots . . .$.$\} of such groupings is$ available to him. $\quad V_{k}$ is the utility of grouping k. The model is disaggregate in the sense that it predicts the choice of an individual.

This model can be derived from the gravity model by considering each individual trip-maker in zone is making one of the 0_{i} trips from that zone, i.e.

$$
P_{j}=\frac{T_{i . j}}{O_{i}}=\frac{{ }_{j}{ }_{j}{ }_{i j}}{\sum_{k}{ }_{k}{ }^{f}{ }_{i k}}
$$

where $\quad P_{j}=$ the probability that the individual in zone 1 will travel to zone f.

If $V_{k}=10 g\left(B_{k} F_{i k}\right)$ the basic logit model can be derived. A fuller explanation of this type of model is given by Daly. ${ }^{(42)}$ An extension of the above is the multinomial logit model which can be written,

$$
P\left(d, m: D M_{t}\right)=\frac{e^{U d m t}}{\sum e^{U d m} t}
$$

where $\left(P\left(d, m: D M_{t}\right)\right.$ is the probability that individual t will choose destination d and mode m from the full set of alternative destinations and modes open to him; $D M_{t} \cdot U_{d m t}$ is the utility individual t obtained from going to destination d by mode m. This model was used for the distribution of shopping trips in Holland in 1975. ${ }^{(43)}$

Probit analysis assumes that there is a threshold P for degree of preference for the store to be chosen. That is a consumer will decide to shop at a store only if his or her degree of preference is above the threshold. A linear representation of this, as used by Malhotra ${ }^{(44)}$, is

$$
P=\sum_{i=0}^{R} \beta_{i} \times_{i}
$$

where $x_{1}, x_{2}, \cdots x_{R}$ represent salient store image characteristics. The model then attempts to explain store choice directly in terms of store image characteristics and thereafter to forecast consumer expenditure.

3.3.3 Attitudinal Approaches

A further approach to the understanding of the consumer choice mechanism involves attitudinal modelling. This area of research, as applied to retail behavioural modelling, is comparatively new and falls into two categories,
a) Studies seeking to model individual psychological or attitudinal responses to choice alternatives, for example the work of Hartgen. (44)
b) Studies seeking to explore the relationships between attitudinal responses and observed behaviours, for example the work of Burnett ${ }^{(45)}$, Cadwallader ${ }^{(46)}$ and Mackay et al ${ }^{(47)}$.

The theory assumes that when individuals evaluate the desirability of alternatives they do so by cognitively integrating their perceptions of the alternatives. The process by which the perceptions of attributes associated with the alternatives are combined into overall evaluations of attitudes may be represented by some form of a multi-attribute utility or value equation. It is assumed that when selecting alternatives, the individual will choose that alternative for which he or she holds the highest overall value or utility.

One of the most influential models in this area of retail marketing research is Fishbein's behavioural intention model ${ }^{(48)}$ which is represented, in summary form, as

$$
B \sim I=\left(A_{B}\right) W_{1}+(S N) W_{2}
$$

where $B=$ a specific overt behaviour under the control of the individual.

I $=$	the intention to perform that
	behaviour
$A_{B}=$	the attitude towards that behaviour
$S N=$	the subjective norm or bellef that
	most people who are important to the
	individual think he or she should
	perform that behaviour
$W_{1}, W_{2}=$	empirically determined standardised
	regression coefficients.

Burnkraut \& Page ${ }^{(49)}$, from their research, argued for the validity of this two-component conceptualisation of the determinants of behavioural intention.

The work of Louviere \& Meyer ${ }^{(50)}$ also provides preliminary support for the approach. They found that psychological judgements are shown to exhibit high correspondence with real behaviour. This means that if estimates of the psychophysical relationships can be obtained a priori, and such estimates are theoretically true, then the problem of multicollinearity between independent variables can be bypassed. A critical link in the theory is the combination rule or the multi-attribute utility function. Without adequate knowledge of its true form considerable error in model specification is possible. This is a general criticism of attitudinal studies. ${ }^{(50)}$ The major advantage is that they require no revealed behavioural data only observations of evolution under controlled circumstances.

3.3.4 Activity Models

In the last decade researchers have begun examining travel in the context of activities which are demanded at the end of trips. This is a departure from the norm where trips have been considered as commodities. The activity-based approach carries the promise of improved understanding of
travel behaviour and an implicit need to define the parameters of interest. These parameters relate to decisions, taken at household level, of whether or not to participate in an activity and for what duration.

Through a review of activity-based models of the past decade Damm (51) isolates three areas into which causal factors can be categorised i.e. activity needs, temporal constraints and spatial constraints. Lenntorp (52) focussed on the potential rather than the actual set of alternatives available. Figure 4 shows the framework of factors affecting activity scheduling. The data required to build activity schedules for each household falls into four categories :

1) the data should at least contain information on the duration of all daily out-of-home activities.
2) an identifier for a person's work status should be present.
3) transportation level of service as well as land-use data is necessary.
4) data on the socio-economic characteristics of the household are required. (51)

This type of data is not readily available and Damm had to use transportation/land-use home interview surveys from Minneapolis/ St Paul. Five equations were then developed for whether or not someone decides to participate in an activity and another five equations for duration were estimated with data on people who participated in an activity in a particular time period.

The above work was of an exploratory nature and called for further research by specific activity e.g. shopping. The

FIGURE 4
Summary of factors influencing activity scheduling
Source: Damm (51)
theory requires information on in-home activities, opening hours of major activities, degree of flexibility in worker's arrival and departure time and non-motorised movements.

Until this data is available activity-based analysis will not play a major role in transportation planning.

3.4 Concepts and Approaches from Consumer Behaviour Theory most Relevant to the Study

3.4.1 The previous section reviewed the theory used to model consumer behaviour. The gravity model, or a similar type of spatial interaction model, is widely used in practise to estimate consumer demand. The model has its origins in central place theory, developed by Christaller ${ }^{(53)} \&$ Losch ${ }^{(54)}$, however the empirical evidence does not support the central place concept of choice. (55) One of the major reasons for this is that retail spatial competition introduces monopolistic elements that are absent from aspatial competition as found in economic theory. ${ }^{(56)}$ This means that market area boundaries are less sharply defined as a result of complex travel patterns: Casparis ${ }^{(57)}$ postulated that consumer preferences and income must influence retail patterns and to assume the consumer will always use the nearest store is questionable.

The work of Hubbard (58) also suggests that consumers are likely to bypass the nearest alternative if the extra effort is compensated by better shopping opportunities. ${ }^{(59)}$ This notion was developed by Reilly ${ }^{(60)}$ into a "law of retail gravitation" which subsequently developed into the gravity model. Although based on the initial central place theory framework the gravity model incorporates a retail competition element represented by "size" of store.
3.4.2 The advantage of the gravity model is primarily its convenience which is suited to the strategic planning required for development control. It is also proven and its limitations are well documented. Pankhurst \& Roe, ${ }^{(61)}$ in comparing a gravity-type model with a decision-type model, found that the gravity model fitted observed data more closely but its generality was poor and showed sensitivity to lack of precision in the parameter values of the model. They suggested that sub-models be developed from disaggregated data enabling the local values of the model parameters to be determined and input to the gravity model.
3.4.3 The emergence of probabilistic theory applied to retail choice was primarily due to Huff ${ }^{(38)}$ who argued that consumers may visit more than one store and the probability of visiting a particular store is equal to the ratio of the utility of that store to the sum of the utilities of all stores considered by consumers. The Huff model (see para. 3.3.2) was the first to suggest that market areas were complex, continuous and probabilistic rather than the non-overlapping geometrical areas of central place theory. The callbration process involves dividing the market area into zones based on residential characteristics and traffic patterns and selecting, randomly, a number of households from each zone. These households are then surveyed to determine for each zone the proportion of store visits made to a particular store. Most empirical studies support the usefulness of this approach ${ }^{(62,63,64)}$ however the accuracy is not good for predicting trips to individual stores. Stanley \& Sewall ${ }^{(65)}$ incorporated a store image utility function in the model and improved its performance in this respect. However although the probabilistic framework and zoning method based on area characteristics are useful to this study the weakness of individual store trip prediction is important to development control.

Abstract

3.4.4 Nakanishi \& Cooper ${ }^{(66)}$ have developed a more general spatial choice model called the Multiplicative Competitive Interaction Model (MCI). They considered store characteristics as well as store attractiveness and estimated the model parameters by log transformation and least-squares procedures. A number of retail companies have employed this method ${ }^{(67)}$ but its main application is in site selection.

The multinomial logit and probit models, mentioned earlier suggest a good approximation to aggregate choice data but are again, at present, mainly applied to market information and simulation experiments. ${ }^{(68)}$ More research is required to develop these models as retall choice models.

3.4.5 The problems of the revealed preference models outlined above, and with respect to this study, are twofold :

a) they assume consumer utility functions to be compensatory, 1.e. Individuals trade-off low levels of one attribute with high levels of another. Recker \& Schuler ${ }^{(69)}$ found that this compensatory assumption did not predict shopping store choice well.
b) they are context dependent i.e. the estimated parameters reflect the characteristics of the area. Rushton ${ }^{(70)}$ found that these area characteristics influenced the utility of the alternatives. Also a number of studies ${ }^{(58)}$ have shown the distance decay parameter to be highly dependent on the characteristics of the spatial structure. The implication is that consumers consider not only the distance to a particular store but the relative distances to other store alternatives. Therefore, depending on the area, consumers may add a
differential weighting to the impact of distance on store choice.

Continuing with this latter point Ghosh ${ }^{(71)}$ found that inclusion of the ratio of distances to the closest and farthest stores from each origin improved the revealed preference model's predictive ability. Hubbard ${ }^{(72)}$ found that the socio-economic characteristics of the area affected the spatial structure and this implies that spatial choice models should be calibrated for different segments of the population, or disaggregate models should be used to directly assess the effect of socio-economic characteristics on store choice. The disadvantage of the latter approach is that it requires a large amount of data. However if a generalised form of disaggregate model could be developed linking the socio-economic characteristics of the area to store usage then this would negate this point.
3.4.6 The final group of models discussed in section 3.3 was attitudinal models. Their advantage is that they overcome the problems of context dependency, discussed with respect to revealed preferenced models, because they estimate consumer utility functions from simulated choice data. They do not, therefore, rely on past choices to reveal the utility function and the estimated weights do not reflect the effect of spatial structures. However these models have problems of definition in that the hypothetical store configurations must reflect the entire spectrum of possible values for a store attribute and they must also be realistic to ensure a meaningful response. ${ }^{(73)}$ The design of the questionnaire is also critical.

An important assertion, in this context, is made by Louviere \& Meyer ${ }^{(50)}$ who found that simple relationships exist between attitudes and trip behaviour. There are, however, major problems with these models with respect to
destination choice and there is little evidence of major improvements, at the present time, to the conventional household or person-based models. (74)
3.4.7 Present practise in the strategic transportation planning control of large foodstores is based on aggregate models, either an individual estimation of trip generation based on floor area or a more general gravity-type model distributing trips to all stores but based on store measures such as floor area and number of parking spaces. This is because these methods are convenient, economic and well-tried. Even though they have shortcomings these are well documented and can be allowed for in the decision-making process. The reluctance to change from this situation to a more disaggregate approach is significant. Confronted with a choice between an imperfect but understood approach to another which is potentially superior but has not stood the test of time, the transportation planner will not change the status quo. There is a need therefore to develop a method which can be applied within the efficiency and economic constraints of practise but which gives the planner a more accurate prediction within which the decision can be made.
3.4.8 The previous chapter showed the unsatisfactory nature of individual store trip prediction based on floor area. This chapter has shown that the traditional gravity-type shopping model can be calibrated to fit observed data satisfactorily but the nature of the trip generation and subsequent parameter calibration means the model is context dependent. To calibrate this for every planning application would be costly in time and money and still relies on aggregate prediction techniques.

Craig, Ghosh \& McLaffery ${ }^{(59)}$ suggested incorporating some form of disaggregate consumer behaviour model into an aggregate model. That is to use the aggregate model to
distribute trips to individual stores but improve the trip prediction and generality of the model by using a disaggregate model. This requires a study of consumer behaviour at the origin end of the trip, household-based as opposed to store-based. The household being the preferred unit for shopping activity rather than the individual because of the nature of the activity. (75)
3.4.9 The aim of this study is to identify and develop a disaggreagte model that will predict private-car shopping trips to large stores and will interface with the current gravity-type distribution model used in practise. This implies a split between the generation of these trips, at a disaggregate level, and the distribution of these trips at the aggregate level. Thus it is assumed that further work, outwith this thesis, may be necessary on the distribution model replacing the gravity-type approach with some improved representation. This then is viewed as a two stage process, this study seeking to develop a disaggregate trip generation model which can initially be Iinked to the conventional gravity model but can be further developed, at a later stage, into a more suitable distribution model.
3.4.10 The probabilistic and attitudinal models can however contribute to the development of this model. The zone framework, based on residential characteristics, used in the probabilistic model is a useful basis when linked to Hubbard's (59) work on the socio-economic characteristics of an area and their influence on household trips. Revealed preference models show a link between spatial and consumer behaviour and Louviere \& Meyer ${ }^{(50)}$ established a IInk between consumer judgement and perception and the characteristics of an area. Pirie ${ }^{(76)}$ showed that spatial preference is linked to spatial behaviour and may be modelled from observing such behaviour. The outcome of store choice can either be viewed as a reflection of
motivation and household values or a reflection of the constraints of the environment and personal circumstances, that is spatial choice can be discovered by questionnaires designed to elicit preferences or by studying overt behaviour. (77) The latter approach is suited to the argument being developed in this chapter and indicates, given the links established between the socio-economic characteristics of an area and spatial choice, that there is a relationship between the behaviour of shoppers and their area characteristics. Thus by studying their overt behaviour and comparing this with the area characteristics the nature of this relationship can be established and once established can be used to predict private-car trips to foodstores at a disaggregate level. The generality of the relationship, if established, would also require investigation.

3.5 Development of Factors Relevant to the Establishment of a Disaggregated Trip Generation Model

3.5.1 The demand to use large foodstores can be conceptualised in many ways but is generally seen to comprise three elements :
a) the needs of the household with respect to the activity
b) the temporal constraints on the household
c) the spatial constraints on the household

This was discussed under activity modelling, and the work of Damm, (51) earlier in the chapter. If it is true that consumer behaviour can be predicted from the area characteristics then. it can be postulated that the needs of the household, with respect to bulk-buying of food, can be predicted from the household characteristics. This also seems intuitively reasonable as a large, high income family, for example, would be more likely to bulk-buy
their food than an aged, single person of low income. The temporal constraints consist of availability of transport and the availability of the person, or persons, to carry out the shopping. Benwell \& White ${ }^{(78)}$ have called this term "personal accessibility". The spatial constraints consist of the opportunities to carry out this type of shopping, that is the distribution of shops with respect to the particular household. The definition of this spatial accessibility can contain store attraction terms as well as a distance term. The latter two factors are discussed in the next chapter on accessibility.
3.5.2 The first term, which refers to the needs of the household with respect to bulk-buying of food, consists of household characteristics. If it is assumed that only car-owning households are studied and that given the need to bulk-buy the household will reallocate its use of the household car, or cars, to make that possible and given that the area being studied has a number of suitable shops which provide opportunities to bulk-buy food, then the demand is reduced to the characteristics of the household and the personal accessibility of the shopper, or shoppers, to carry out the trip. Since this study aims to predict private-car trips to large stores and Holman \& Wilson ${ }^{(79)}$ showed that it is. reasonable, given the household decision to use these stores, that a car can be made available either during the day or in the evening, or at the weekend, the first two assumptions are acceptable. The second assumption is true of all cities in Britain and indeed most large towns and these are the areas where most planning decisions will be required. It may be further argued that the shopper, or shoppers, can also allocate time so that the shopping is carried out, although certain characteristics such as employment and family structure will limit the time available.
3.5.3 The above postulates that the demand can be predicted, given these assumptions, using the characteristics of the household with respect to the personal availability of the shopper, or shoppers. It can also be viewed in terms of the aim to develop a disaggregate trip generation model based on household characteristics linked to a conventional gravity-type distribution model. Thus the generation is split from the distribution, the latter being distributed primarily with respect to the spatial distribution of suitable stores.
3.5.4 This introduces the effect of competition between stores which can affect the choice of store with respect to the consumer. This is the difference between the prediction of trips to individual stores based on their floor area and using a shopping model whether aggregate or disaggregate. These models attempt to simulate the competitive framework the consumer perceives from the basis of size of store, as used in the gravity model, to the discovery of attitudes and beliefs of the individual consumer, as used in behavioural/attitudinal modelling. If the distribution of trips is separated from their generation then competition must be kept constant in order to establish that the relationship is between household characteristics and store usage. This implies that the households to be studied must have the same opportunities open to them so that the differences in their use of the stores is attributable to the differences in household characteristics. Thus the households must be spatially together. Having established a relationship between household characteristics and store usage in one group of households this can be compared with relationships in other groups of households. If the relationship is the same then the spatial separation, and the change in spatial distances to stores, has not altered the relationship and a general disaggregate trip generation model can be developed using the household characteristics
of an area. If there is a difference then either a competition variable could be added to accommodate the difference or a relationship based on household characteristics alone cannot be achieved.
3.5.5 One of the prime factors affecting the allocation of time within a household, as mentioned above, is employment structure. This is of considerable interest to researchers charting the shift of women into the workforce. ${ }^{(80,81)}$ Nichols \& Metzen ${ }^{(82)}$ showed that the woman continues in her role of principle shopper even though her work status changes her time allocation.
3.5.6 The age structure and family size of the household also affects the activity pattern of the household. ${ }^{(83,84)}$ It relates to employment which in turn relates to the income level of the household. The income level not only makes bulk-buying easier but can be used to increase the time available by purchasing the time of others to perform certain tasks. Most empirical studies of shopping behaviour include income as a variable. $(85,86)$ Related to income is social class which is widely used as a predictor of retail usage. ${ }^{(87)}$ Potter ${ }^{(88)}$ showed that social class was related to the use of retail stores.

3.5.7 The general factors therefore, from past studies, which

 influence the shopping activity pattern of the household are the household and employment structures, income and social grouping. The ages and size of the household will determine the food requirement and the income and employment structure of the household will determine the ability to meet that demand. The social grouping of the household relates to the method of carrying out the shopping to meet that demand. ${ }^{(88)}$
3.5.8 This is supported by Neale \& Hutchinson who related

 shopping activity to household structure, income, carownership and two walking variables specific to their study. ${ }^{(85)}$ Dix ${ }^{(86)}$ identified income, household structure and life-cycle, which related to employment, as the important household characteristics with respect to household trips. Thus in general three effects influence the shopping pattern of the household : household structure, employment structure and income and social class.

3.6 Development of Variables Relevant to the Establishment of a Disaggregated Trip Generation Model

3.6.1 Car Ownership

This study relates to car-owning households however the level of car ownership within the household will improve the personal accessibility of the shopper, or shoppers. The Eastleigh Carrefour study ${ }^{(89)}$ showed that car ownership rises with household size and that car ownership among large foodstore users is above average (see Table 6). The study also concluded that car avallability is not critical since, given the decision to use the store, the household will reallocate their time to enable the shopping trip to take place. Garland showed that a strong relationship exists between car ownership and employment and income and this is supported by the Coventry shopping studies. ${ }^{(33)}$ The Eastleigh Carrefour study ${ }^{(89)}$ identified level of car ownership and household size as the best predictors of private-car trips to large stores.

3.6.2 Income

A number of studies have established a relationship between income and shopping usage. ${ }^{(90,91,92)}$ It is

Household Size	Sample Size (No. of Households)	Households with own car or van $\%$
1 person	657	21
2 persons	1178	60
3 persons	631	75
4 persons	681	81
5 or more	460	77

Source : Department of the Environment

TABLE 6
The Relationship between Car Ownership and Household Size
obviously true that higher income groups have a greater disposable income and a greater opportunity to bulk-purchase if they so desire. Again, the Eastleigh Carrefour study showed the high incidence of high-income households using the store. ${ }^{(89)}$

3.6.3 Employment Structure

The number of people employed in a household affects the income level and the time allocation of the household. One of the advantages of the bulk-purchase of food at one centre is the time savings which are important in a high employment household and less so in other households with a lower employment level. Ochojna \& Macbriar ${ }^{(75)}$ showed that employment is a powerful predictor of shopping trips and this is supported by Garland \& Neale \& Hutchinson. $(33,85)$

3.6.4 Social Grouping

Retail studies exploring the effect of socio-economic variables on shopping trips have shown that a relationship exists between shopping usage and social grouping. These studies also show a relationship between store choice and social grouping. ${ }^{(93,94,95)}$ Wasson ${ }^{(96)}$ argues that social grouping is a good segregation base for types of shopping and Schaninger ${ }^{(97)}$ and Hirisch \& Peters ${ }^{(98)}$ show that it is a predictor of food shopping.

3.6.5 Household Structure

It has already been intuitively argued that larger families are more likely to bulk-buy than smaller families. This is given substance by the Eastleigh, Carrefour study ${ }^{(89)}$ and Garland ${ }^{(33)}$ showed that it was a stronger predictor of shopping trips than income. The Transport \& Road Research Laboratory concluded, on their
work at Reading ${ }^{(99)}$, that household size was a major predictor of trip rate.

3.6.6 House Type, Freezer Ownership and Number of Licenses in the Household

There are three other variables which it is proposed to include i.e. house type, freezer ownership and number of licences in the household. There is no rigorous support for these variables in the literature but they are related to this study and should be included in the preliminary analysis.

House type is related to social grouping and, if significant in predicting store trips, is available on census data. Freezer ownership is related to storage of food and hence the bulk-buying of food. Without a freezer an additional constraint is placed on the consumer. The Eastleigh Carrefour study ${ }^{(89)}$ showed that store users were more likely to own a freezer than not.

The number of licenses is related to the personal accessibility of the household and it is argued that it will be positively correlated with store usage since the more people in the household that can drive a car the easier it is for a shopping trip to take place.

3.7 The Variables to be Used and Their Measurement Problems

3.7.1 A common problem in consumer behaviour analysis is the mixing of nominal, ordinal, interval and ratio scale variables, for while parametric statistical analyses can be performed on the latter two it is inappropriate for the former two. (For a fuller explanation of these variable measures see The Analysis of Survey Data - Volume 1 ed. by C.A. O'Muircheartaigh and C. Payne, John Wiley \& Sons). This is important to multivariate analysis which relies on
the application of parametric statistical techniques. of the variables discussed above house type and freezer ownership have only nominal scale and social grouping has ordinal scale. This means that only non-parametric methods are permissable for social grouping. The remaining proposed variables, that is income, car ownership, number of licenses, level of employment, age structure and personal accessibility can all be measured in such a way as to give them ratio scale status and enable parametric statistical methods to be employed. The social grouping variable will be measured as the socio-economic grouping of the household member defined as the head of the household.
3.7.2 Income is difficult to measure due to a reluctance to divulge the household income. For this reason it has been omitted in the past. However it is proposed to use income bands to overcome this reluctance and yet still collect the information in a suitable form. Car ownership and number of licenses in the household will be straightforward, the number of cars, or vans, to include all cars the shopper, or shoppers, have access to for shopping. Employment will be the number of days, or half days; employment per week in the household. This means that the measure will have ratio scale status. Age structure could be categorised according to the ages of the household members however it is better to retain a ratio measure and therefore it is proposed to use three numeric variables which will describe the structure. These are the number in the household, the mean age of the household and the standard deviation of the ages. Personal accessibility is discussed in the next chapter.

3.8 Concluding Remarks

3.8.1 This chapter has argued from existing consumer behaviour theory that there is a relationship between the
characteristics of a household and the bulk-buying of food for that household. The concept postulated combines an aggregate and disaggregate approach to achieve a strategic planning model for development control of large foodstores based on a conventional gravity-type model with the generation term calibrated from a disaggregate model based on household characteristics. Thus it is proposed to split the generation and distribution stages of analysis. This thesis is concerned with the development of the disaggregate trip generation model.

3.8.2 In order to achieve an understanding of the relationship between household characteristics and store usage the effect of competition must be removed. This will be achieved by grouping households together and comparing the relationships developed between groups; the effect of spatial accessibility can then be assessed.

3.8.3 The next chapter discusses in detail the nature and effect of both personal and spatial accessibility with respect to shopping and complements this chapter on consumer behaviour. The research objectives and conceptual framework can then be developed in the following chapter.

CHAPTER 4
THE ACCESSIBILITY OF LARGE RETAIL FOODSTORES
4.1 Introduction

This chapter initially examines the nature of accessibility with respect to bulk-purchase shopping. It is developed as two terms which are called a personal accessibility term and a spatial accessibility term. The former term comprises three factors; the availability of the car, the consumer and the store, and is contained within the trip generation model. The latter term comprises two factors; the attraction of the store over all other stores and the spatial deterrence between the household and the store and is contained within the distribution model. The structure of the trip generation model can be developed as individual variables or as multivariate factors to eliminate multi-collinearity problems between the household variables and the personal accessibility term.

4.2 Application of Current Accessibility Concepts to this Study

4.2.1 The Independent Commission on Transport ${ }^{(100)}$ commented that accessibility is the aim of transport and not mobility, speed or the easing of congestion. (101) Activities cannot exist in isolation; participants require to be transported from their origin to the activity in which they wish to participate. Accessibility therefore, is a measure of the ease of contact with some form of spatially distributed opportunities. It is dependent not only on the locations of opportunities relative to the individual but also on the ease of traversing the spatial separation between the individual and the activity.
4.2.2 A range of aggregate and disaggregate models have been developed to simulate accessibility and a historical review of these models has been carried out by Baxter ${ }^{(102)}$ and Pirie ${ }^{(103)}$. The basic aggregate models use spatial separation as a direct measure of accessibility whether in terms of distance, time, or cost of the journey. An extension of this concept is to add a term to the model for the attractive power of the activity, with respect to other similar activities. This term introduces a competetive element between activities. Hoggart ${ }^{\text {(104) }}$ describes these two factors, the attraction of the activity and the spatial separation between consumer and activity, as travel behaviour and location behaviour. Accessibility therefore is not only the ease of access to an activity but involves the ability of the consumer, relative to his location, to take advantage of the available opportunities. This implies a third term in the model; that of consumer availability. Baxter ${ }^{(102)}$ identified three factors in the measurement of accessibility : mobility, potential and ease of access. These apply to the consumer, the activity and the
transport link between the consumer and the activity respectively. Hoggart ${ }^{(104)}$ identified three similar factors but called them consumer circumstances, attractiveness, and deterrence. Doling views accessibility as the link between trip generation and distribution. (105) In terms of consumer accessibility to large foodstores the representation can be seen as three factors, i.e.

Ability of consumer to take advantage of opportunities to shop.

Accessibility of

Spatial separation from consumer to each store.

This corresponds with the basic store choice mechanism discussed in the previous chapter where these three terms together with the need to shop, represented by the household characteristics, determine store choice. The attraction term and the spatial separation term form part of the distribution of trips, as developed in the previous chapter, whilst the consumer term affects the trip rate at household level. This latter point requires to be substantiated and is discussed in the following section.

4.3 Accessibility and Trip Generation at Household Level

4.3.1 When including an accessibility measure within a trip

 generation model it is desirable to construct the measurein such a way that changes in the system that affect the accessibility of the household to large foodstores will be accommodated. In most studies to date an accessibility measure based on a Hansen aggregate model has been used. $(106,107,108,109)$ These studies have not shown the accessibility measures to have a significant effect on trip generation. This may have been because the models are unsuited to the purpose. This view is supported by Leake \& Hazayyin ${ }^{(110)}$ who showed the necessity of having an accessibility term in the trip generation model. They identified the main requirements of such a term as:
a) it should be easy to understand and logical in expression.
b) it should be easy to formulate and calculate using a minimum input of data and computation time.
c) it should, preferably, utilise data normally collected in transport studies.
4.3.2 Vickerman (111) showed that accessibility has a significant association with variations in trip making and this was specifically shown by Robinson (112) to apply to shopping trips. One of the problems that both Vickerman \& Leake encountered was that of collinearity with other household descriptors. The intercorrelations between an accessibility measure and household characteristics can cause difficulties in identifying the effect of the accessibility measure. Vickerman found factor analysis techniques to be useful because of their structuring of the data to produce a simpler structure based on multi-variate factors, however no a priori structure can be used. If stable factors could be identified a basis may be provided. on which to build a generalised model of shopping trip generation.

4.4 Disaggregation by Mode and Trip Purpose

4.4.1 Doling ${ }^{(105)}$ showed the need for disaggregation by mode in terms of the fundamental differences between households in levels of mobility and disaggregation by trip purpose in terms of the difficulty in combining measures of accessibility for different types of activity opportunity. Also some opportunities are not accessible to some types of households. This is supported by the work of Leake \& Huzayyin ${ }^{(110)}$ and Benwell \& White ${ }^{(78)}$, the latter authors showing that the accessibility of certain groups to certain activities varies depending on their car availability and the activity.
4.4.2 This study is by definition disaggregated by mode and trip purpose. The study of shopping trips has the advantage that all households take part in the activity although not all households shop at large foodstores on a weekly, or more infrequent, basis. The study also relates to private-car shopping trips and therefore car availability may influence the frequency of trips. The ability to make a trip by private car at a given time is influenced by the level of household car ownership, the number of drivers within the household and the time allocation priorities of the household. ${ }^{(78)}$ The first two factors can be easily measured.
4.4.3 If the household uses a large store for the bulk-purchasing of food then it must allocate a significant period of time for the activity. Lucarotti ${ }^{\text {(113) developed a measure of perceived }}$ availability using a trip or person descriptor by asking directly whether a car was available and Gwilliam \& Bannister ${ }^{(114)}$ took account of observed car avallability through the interpretation of a travel diary and household information. Benwell \& White ${ }^{(78)}$ describe a method of indexing a survey population to enable a disaggregate
study of mobility to be undertaken. Unfulfilled transport need was viewed as a product of the interaction between personal car availability and the timing and location of the available activities.
4.4.4 In applying car availability to shopping trip generation the time involvement for a car-borne trip to a large store will mean that normally one trip will be made per third of a day. That is, if the day is split into morning, afternoon and evening sessions it is reasonable to assume that no more than one car-borne shopping trip within a session will take place. Thus for a shopping trip to take place the consumer, the car and the store must be available simultaneously. This is shown in Figure 5. The size of the "accessibility window" within which a car-borne shopping trip can take place will vary according to the household circumstances. The size of the window represents the level of opportunity the household has to carry out this type of activity. Thus it is a measure of the temporal, or personal, accessibility of the household as opposed to the spatial accessibility of the stores relative to the household location. The time that a car and consumer are available will influence duration of the shopping trip and therefore certain opportunities may be outwith that time constraint. The opening times for large foodstores in Britain is uniform; almost all stores opening on a five-day trading cycle, closing on Monday and opening late Thursday and Fridays. This pattern applies to stores in Edinburgh and means that three standard daily sessions can be defined.

4.5 Personal Accessibility within a Trip Generation Model

4.5.1 The personal accessibility of a household, or the shopper within a household, is seen to comprise three factors :

FIGURE 5
The accessibility window of a household to allow a private car, bulk-purchasing trip to a food store to take place.
a) the availability of the car
b) the availability of the shopper
c) the availability of the store

The previous chapter and this chapter have argued that this term should be included within the trip generation model because of its relationship with household variables and its influence on the trip rate of the household. Personal accessibility is a property of the household and the opportunities available to the household and is independent of the trips made. This is shown by Hensher \& Stopher ${ }^{(115)}$ and further supports the argument that the trip generation prediction can be separated from the distribution of the trips.

4.6 Spatial Accessibility within a Trip Distribution Model

4.6.1 The spatial accessibility of the household to the shopping opportunities comprises the remaining two factors outlined above, that is the attraction of a store with respect to other stores and the spatial distance between the household and the store. The second factor is measured using fourney time to the store, distance to the store, or cost, in terms of fuel and consumer time. Leake \& Huzayyin ${ }^{(110)}$ found that fourney time was the most effective measure and this is borne out by the author's personal experience.

4.6.2 The distance to a store from a household has an inverse relationship with the usage of that store. The distance also relates to the frequency of use of the store in that the further a store is from the household the less frequent is the trip rate. The duration of stay increases as the frequency decreases. ${ }^{(21,89)}$ Table 7 shows the relationship between frequency of visit and fourney time.

Frequency of Visit		Journey Time (\%)			
(Sample Size:	$\frac{0-5}{m i n}$	$\frac{5-10}{\min _{0}}$	$\frac{10-20}{\min }$	$\frac{20-30}{\mathrm{~min}}$	$\frac{30+}{\mathrm{min}}$
	254	462	775	243	252
Three times per week +	11	3	2	1	-
Two times per week	14	6	4	2	1
Once per week	48	48	47	34	14
Once per fortnight	10	16	17	16	15
Once per month	8	13	15	24	26
Less often	6	9	11	13	21
1st Visit	3	4	5	10	22

Source : Department of the Environment

TABLE 7
The Relationship between Frequency of Visit to a Large Store and Journey Time
4.6.3 The catchment areas of large foodstores follow a uniform pattern in that ninety-five percent of the store's customers come from within a twenty-five minute car-driving time. ${ }^{(24)}$ This is influenced by the characteristics of the catchment area. For example, the Asda, Coatbridge store attracts fifty percent of its custom from within the local district boundary, this approximates to a twenty-five minute car-driving time. The area is densely populated and has a low car ownership level. Expenditure per trip is also affected by location in that the further a household is from the store the more is spent per visit. ${ }^{\text {(}}{ }^{(9)}$
4.6.4 The other factor which comprises the spatial accessibility measure is store attraction. This factor represents the competition between stores. It is the attractive power of the store with respect to the other store opportunities. The simplest measure of this factor is store floor area. This can be modified to include retail turnover per square metre. $(34,38,116)$ Consumer expenditure can be used to simulate competition, using the Family Expenditure Survey published annually by the Department of the Environment, but the transferability of the weightings from area to area has not been proven. Trip frequencies can also be used as frequency is proportional to expenditure.
4.6.5 Vickerman ${ }^{(111)}$ argues that store attraction can be represented by certain key store variables weighted by expenditure and including the generalised cost of reaching the store. A further development includes measurement of store attributes. Huff ${ }^{(55)}$, for example, used reputation, amenity value, range of goods, services and prices. Davies ${ }^{(93)}$ developed a scheme of retail quality grading which includes prices, quality of goods, range of goods, window display, shop appearance and degree of specialisation. Downs ${ }^{(117)}$ listed nine similar cognitive
categories relating to store attraction. Thus with this measure we have the same choice discussed in the previous chapter relating to the motivation and values of the consumer determining store choice or the constraints of the environment and personal circumstances determining the choice.

4.6.6 The second postulate has been argued in this study but the measures of attraction, listed above, relating to store image should be the subject of further work on the distribution of predicted shopping trips. Thus it is argued that the household makes a decision to bulk-buy its food and this decision can be modelled from the household characteristics and the personal accessibility window of the household. The predicted trips from the households in an area are then distributed to the store opportunities in the area. These opportunities, because of the type of shopping, are easily identified. The distribution model, although not developed in this thesis, should incorporate a spatial accessibility term to reflect the distance from the households to the store and the attraction of one store over another. This term should be in keeping with the aggregate form of the model and the purpose of the model, as shown by Leake and Huzayyin. (110)

```
4.6.7 Benwell & Seaton (118) incorporated number of shops, retail floor space and retail turnover into an attraction term in an aggregate shopping model of the form,
```


$k=a$ constant

The concept of relative attraction is well-known. It has been used extensively in environmental assessment where absolute measures are difficult to achieve but comparative measures can be related to known situations. The argument therefore is that the proportional differences between stores is correct and can represent the attraction of one store relative to all other possible stores. In the context of the aggregate distribution model proposed in the previous chapter, this could be initially measured by distance and/or retail floor area using the same argument that was advanced i.e. that this method at the distribution stage has proved a satisfactory model in past studies for the purpose of development control of large stores.

4.7 Concluding Remarks

Abstract

4.7.1 This chapter has examined the effect of accessibility on the generation and distribution of private-car trips to large foodstores. This is seen as comprising two parts which have been entitled personal accessibility and spatial accessibility. The latter term is made up of two factors; an attraction factor and a spatial deterrence factor. It is argued that personal accessibility relates to the shopping trip rate of the household and should be contained within the trip generation model while spatial accessibility is contained within the distribution model.

4.7.2 The personal accessibility. term is subdivided into three factors: the availability of the car, the availability of the household shopper and the availability of the store. The size of the time period when all three coincide is a measure of the personal accessibility of the household to carry out this type of shopping. This concept of shopping

accessibility can be combined with the theoretical postulates developed from consumer behaviour to formulate the research objectives and the conceptual framework of the thesis in the following chapter.

CHAPTER 5

DESIGN OF RESEARCH PROGRAMME

5.1 Introduction

The previous chapters on consumer behaviour and accessibility identified variables which affect large foodstore usage. This chapter relates these variables to the research objectives and conceptual framework of this thesis.

The chapter begins by listing four research objectives and explaining the concept of household choice of store as a two-stage process; that of decision to make a trip (generation) and decision to use a particular store (distribution). The effect of competition is then discussed and an explanation of the way the sampling framework keeps competition constant within each surveyed area.

Two model structures are proposed one based on combined variable factors and the other on individual variables. Each model seeks to establish a relationship between store usage and identified household characteristics.

The structure of the dependent variable of store usage is defined, together with the independent variable structure, with respect to the two model concepts and a diagramaatic summary of both models and the conceptual framework is given. The latter diagram shows how each model will be examined at individual area, at means area, and at total area level to establish the level of disaggregation possible within the objective of producing an applicable trip generation model for the development control of large foodstores.

5.2 Research Objectives

5.2.1 The research objectives of the study are as follows :

To develop a trip generation model which predicts the number of private-car shopping trips to large foodstores from a given area using household census data.

To build the model so that it can be developed as a strategic planning tool for the development control of large foodstores.

To examine the model at a disaggregated and aggregated level to confirm, or otherwise, if the relationships established at the disaggregate level can be generalised and to establish the level of generalisation that can be achieved.

To show how the model can be combined with a gravity-type distribution model to build an area-wide model of private-car trips to large foodstores.

5.3 Building the Conceptual Framework

5.3.1 The chapter on consumer behaviour theory highlighted a range of variables that have been shown to correlate with shopping trips. The major influences were found to be employment, household structure, income and SEG. The following chapter on accessibility identified two types of accessibility: personal accessibility and spatial accessibility. The former relates to the avallability of the household shopper and car and is to be included in the trip generation model. The latter is to be included in the trip distribution model.
5.3.2 The household choice process identified from these chapters is shown in Figure 6. This shows the basic
$\left.\begin{array}{l}\text { HOUSEHOLD CHOICE } \\ \text { PROCESS WITH } \\ \text { RESPECT TO BULK- } \\ \text { PURCHASE SHOPPING }\end{array}\right]$
Model of the household choice process with respect to bulk-purchase shopping by private car
assumption of this study that the generation and distribution of bulk-purchase shopping trips can be modelled separately; the generation of trips being modelled from household characteristics and the distribution being modelled by standard gravity-model techniques. In other words the decision to bulk-purchase food can be predicted from household characteristics, based on census data, and once the decision has been made the household chooses from the store opportunities available.
5.3.3 The basis of this approach is the established relationships between household characteristics and store trips as developed in Chapter 3. Downs (117), Bender ${ }^{(119)}$, Brown \& Fisk ${ }^{(120)}$ and Hansen \& Deutsher ${ }^{(121)}$ discovered that shoppers tend to overcome a dislike of the large store environment in order to achieve time andor cost savings and this implies that the characteristics of the household govern the shopping behaviour of the household.
5.3.4 The shopping behaviour of the household may be measured using the revealed behaviour of the household and the characteristics of the household. If this can be acheived the household trips can be aggregated to a zonal level, which corresponds to transportation zones previously defined by the Regional Authority, and distributed to the stores in the study area i.e. within the Edinburgh City boundary. The model could then be calibrated to match the individual store arrival patterns. Thus the proposed method uses the standard gravity-type distribution model improved by the addition of a disaggregate generation model developed within this thesis.

5.4 The Effect of Competition

5.4.1 The consumer choice relating to the bulk-purchase of food is viewed as two distinct elements. One of these
elements, the distribution of trips, comprises the attraction of the store with respect to other stores and the spatial accessibility of the store. Each store operates within a competitive framework and the effect of ease of access and store attraction, with respect to the competitive framework, will determine the turnover of the store. Thus competition has a major effect on store usage. To investigate the relationship between use of these stores and household characteristics the effect of competition must be eliminated. The previous chapter proposed that the household sample would comprise groups of randomly selected households, so that within each group the households would have equal store opportunities. The within-area relationships between household characteristics and store usage can be compared with between-area relationships and if randomly sampled, with the aggregate grouping of all household areas. Figure 7 shows this sampling framework.

In the latter two cases, that is between-areas and aggregated areas, the competition effect is no longer constant because of the different spatial locations of the areas. This will require an additional spatial accessibility term to be added to the independent variables.
5.4.2 The conceptual framework showing development of the aggregated household data and the sub-area household data is shown in Figure 8. Each sub-area will have a model corresponding to its usage pattern and the comparison of each sub-area model may provide a general trip generation model. Equally by grouping the data together a second generalised model may also be developed. This latter option may be developed from individual households or from sub-area mean values. The calibrated model for the study area would enable the effect of a new store to be evaluated and hence its maximisation of use within an established area.

FIGURE 7

Theoretical study framework showing groups of households and store locations

FIGURE 8
Conceptual framework for model development based on sub-area models or aggregated data model

The purpose of the analysis therefore is to explore and develop the relationship between store use and household characteristics at sub-area and area level, developing an understanding of these relationships.

5.5 The Definition of Store Usage

5.5.1 Store usage involves three elements which are inter-related; expenditure, duration of stay and frequency of visit. If a household decides to use a large store for bulk-purchase of food and fixes, by decision or default, the level of expenditure it can afford, this will Influence the pattern of usage of the store. For a given level of expenditure a household may choose to spend less and visit more frequently or decrease the frequency and spend more at each visit. This dependent variable structure is shown in Figure 9.
5.5.2 The inclusion of the total shopping budget is to show the bulk-buying expenditure relative to the total shopping budget of the household. This provides a relative budget figure which can be used in the analysis in addition to the absolute bulk-buying expenditure.
5.5.3 The household usage pattern of a store is influenced by the household accessibility window, as defined in Chapter 4, the income level of the household and the needs of the household. Two of the three usage variables will define the third variable. The frequency of visit will determine the arrival rate at a store which will affect road capacity and associated factors such as accident rate and environmental intrusion. The duration of stay will affect the size of car park required and the expenditure level is of interest to the physical planner and developer.

figure 9
Dependent variable structure
5.5.4 It may be that because of the inter-relation of the two sets of three dependent variables a combined usage index is required to model the usage. The disadvantage in the combined usage index is the difficulty of application once the model is developed whereas if the three dependent store variables are kept separate the trip rate and duration of stay can be used to predict the arrival pattern and car parking requirements. The analysis will examine both of these options.
5.5.5 In examining the relationships between household characteristics and store usage the households who use and those who do not use these stores for bulk-purchase shopping by private-car will be included. It is also assumed that only food and general shopping will be included in the survey and that minor shopping trips will be excluded. Major purchases of furniture, clothing, etc., will bias the results relating to the bulk-purchase of food and minor purchases, such as newspapers, are assumed to be insignificant in relation to the household shopping budget. The dependent variables are related to a weekly rate, this being the smallest timescale for bulk-purchase shopping by private car. This means that a monthly trip-rate would be represented by 0.25 trips per week. The duration of stay will be in hours per week and the expenditure in pounds sterling per week on the same weekly basis as trip-rate.

5.6 The Structure of the Independent Variables

5.6.1 In Chapter 3 the major effects on household shopping activity related to the three broad areas of household structure, employment and lifestyle; the latter term comprising income and SEG. This is diagramatically represented in Figure 10. Within each of these three areas are household variables which, in the main, can be obtained from census data. The independent variable

FIGURE 10
Structure of dependent and independent variables
structure is to be modelled in two ways; either as individual variables or as factor variables which represent an underlying data structure and are composed of a weighted variable grouping. This corresponds to the optional structure of the dependent variables and again both models will be examined in the analysis. The factor variables will eliminate multicollinearity problems, if these are encountered using individual variables.

5.7 Choice of Independent Variables within each Area
 and their Indexing

5.7.1 The Household Structure Factor

The size and structure of a household has a major influence on the use of large foodstores. This was shown in Chapter 3 and is confirmed by Garland ${ }^{(33)}$, Ochojna \& Macbriar (75) and the Transport and Road Research Laboratory (89). It is related to car ownership and income and affects the personal accessibility window of the household. $(83,84)$ Census data on household size are readily available and it is proposed to measure it in terms of the number of people in the household, the mean age of the household and the standard deviation of the household ages. The latter two variables give the age profile of the household and are numerical descriptions thus avoiding a category-based classification. Each household will therefore have three variables describing the structure: the number in the household, the mean age of the household and the standard deviation of household ages.

5.7.2 The Employment Factor

The employment status of the household also affects the personal accessibility of the household, determines the SEG of the head of the household and is related to the
income level of the household. $(93,94,95)$ There is an inverse relationship between SEG and the number of days members of the household are employed; as SEG rises the number of days employed decreases. ${ }^{(95)}$ This will have a direct effect on the avallability, and hence personal accessibility, of the household shopper, or shoppers. It is proposed therefore to include three variables within this factor: the number of half days employed per week, the SEG of the head of the household and the personal accessibility of the principal shopper in the household. It is assumed the principal shopper can be identified and this assumption will be tested in a pilot survey. The measurement of SEG is category-based. The standard classification system is used, as shown in Appendix B, with Group 17 including the retired and unemployed.

5.7.3 The Lifestyle Factor

Income, as discussed in Chapter 3, has an important influence on the shopping behaviour of the household and influences the iifestyle of the household. (52) The measurement of income has proved difficult in past studies, and surrogate variables have been included to represent its effect, ${ }^{(51)}$ but it is proposed to use income bands to overcome consumer reluctance. These bands relate to the gross annual income of the household.

In addition to income it is proposed to add four other dependent variables. These are number of cars in the household, number of license holders in the household, freezer ownership and house type. The reasons for their inclusion have been argued in Chapter 3.

The number of cars and number of licenses in the household affect car availability and hence the personal accessibility of the principal shopper. As discussed in Chapter 3, this does not have a dramatic effect on
shopping behaviour since the household arranges its time allocation for shopping around the availability of the car. The number of cars and number of licenses however can provide greater opportunities to shop and in this way may affect the shopping pattern of the household. They are related to household income.

Freezer ownership is also related to income. The Eastleigh, Carrefour ${ }^{(52)}$ study showed that households with freezers were more likely to use a large store for shopping. This variable cannot be abstracted from census data but it will be included in the preliminary analysis.

The fourth variable, house type, again relates to the income level of the household. It is a social indicator but its inclusion may be rendered void because of the sampling framework; that is, certain areas may have little variation in housing type. Its effect may be significant when studying between-area relationships.

5.8 The Structure of the Variables Chosen

5.8.1 It is proposed that the dependent variables be divided into two groups of three, each group consisting of an expenditure, frequency of visit and duration of stay variable. One group relates to bulk-purchase shopping and the other to total household shopping. In addition, the variables are to be examined using two model forms. These are shown in Figure 11. One model examines the variables as a combined usage index and the other as individual varlables. The latter enables submodels to be developed which will predict expenditure, frequency of visit and duration of stay variables separately for a given area. The former, using factor analysis to identify the underlying data structure, produces a usage index which can be related to intensity of use from a given area. The usage index will be difficult to apply in practise but may

MODEL 1

MODEL 2

FIGURE 11
Two models of the conceptual structure of independent and dependent variables
be the only alternative if multicollinearity problems seriously affect the individual variable model.
5.8.2 The independent variable structure is similar to the above and is represented in Figure 11. The same comments apply to the two models.

5.9 The Summarised Conceptual Frameowrk

The summarised conceptual framework is shown in Figure 12. The analysis will examine the relationship between store usage and household characteristics within zones, between zones and with the zones aggregated. The investigative comparison of the relationships established at these levels will determine the degree of generalisation possible with a view to establishing a trip generation model. If established the form of model can be applied at transportation zone level predicting the number of store trips generated within a zone. This will enable the calibration model to be calculated with an accuracy based on the local area and hence enable a more accurate distribution of trips to stores in the area. The following chapters deal with the collection and analysis of data and their application to the research objectives and conceptual framework discussed in this chapter.

6.1 Introduction

This chapter identifies the research tasks to be carried out following the research objectives and conceptual framework of the previous chapter. The implementation of the research tasks is then discussed and statistical techniques identified which will satisfy these tasks. The analysis assumes a linear relationship between the dependent and independent variables.

The survey area, sampling framework and questionnaire design are discussed and the organisation of the pilot and main surveys. This is followed by a presentation of the initial data characteristics using mean, standard deviation and skewness area profiles. These profiles show the intercorrelation between variables and provide a basis for the detailed analysis of the two conceptual models at area, mean and composite area level in the following chapter.

The Identification of Research Tasks with respect to the Research Objectives and Conceptual Framework
6.2.1 The conceptual framework developed in Chapter 5 identified two models based on factor variables and Individual variables respectively. One of the research tasks is therefore to identify these factors from observed data. Once this has been carried out both models can be analysed to test their predictive ability with respect to private-car trips to large foodstores.
6.2.2 The research objectives demand an examination of these models at area level and at aggregated level. It is proposed to examine the relationship between the dependent and independent variables at area level by computing a matrix of variables, obtaining an aggregated form of the data based on the mean profile of the variables in each area, and an aggregated matrix of the households in all areas. These two forms of aggregation are proposed because the variability at household level may be too large to accommodate within a generalised model but the smoothing of within-area variations using mean variable values may be possible. The latter method is appropriate for the strategic planning of large stores as most transportation studies are based at zonal level.
6.2.3 The examination of the relationships mentioned above must include an investigation of the effect of each variable within each model and the strength of that effect. In addition it will be necessary to understand the strength of the relationships between variables and the spread and form of the data distribution of each variable so that variation between areas can be analysed.
6.2.4 The investigation into the level of generality achievable in the models will require examination of any apparent area groupings, for although all areas may not
show the same model relationships groups of areas may be similar. These research tasks imply the application of certain statistical techniques in the analysis of the data and these techniques will now be discussed with respect to the above.

6.2.5 In discussing these techniques it is initially assumed

 that a linear relationship exists between the dependent and independent variables, this will aid the application of the developed strategic model. If a linear relationship is not found then the proposed suite of programs has the facility to identify the nature of the non-linear relationship.
6.3 The Identification of Methods of Analysis with respect to the Research Tasks

6.3.1 Descriptive Statistics

The basic statistics of the variables to be used are required for the matrix of variable means and to aid in the explanation of the analysis. They will reveal underlying distributional characteristics with respect to a measure of central tendency, degree of dispersion around the mean and degree of skewness that will enable a more precise definition of the variable's slope distribution to be achieved. Throughout the analysis the SPSS suite of programs will be used except for the cluster analysis, which will use GENSTAT, and some minor self-written programs. The SPSS subprogram CONDESCRIPTIVE provides the user with the capability of obtaining the above measures for any set of variables which is more or less continuous and approaches an interval level of measurement. Where the variable is discrete, or a category variable, the number, or proportion of cases which fall into each category, will normally be examined.

6.3.2 Bivariate Correlation Analysis

The input to be used for the identification of the combined variable factors, for the canonical correlation and the multiple regression correlation is a correlation matrix. In addition when examining the relationships between the independent and dependent variable sets at area, mean and aggregate level a knowledge of the strength and sign of the bivariate correlation betwen single pairs of variables is useful.

Bivariate correlation provides a single number which summarises the relationship between two variables. These correlation coefficients indicate the degree to which variation in one variable is related to variation in another. It is also possible to compare the strength of the relationship between one pair of variables and another.

When comparing variables it is highly unlikely that a regression line will be found that perfectly fits the data. The Pearson product-moment correlation coefficient, symbolised by r, gives a measure of "goodness of fit" for linear regression. When the linear regression line is a poor fit r will be near $2 e r o ;+1.0$ indicates a perfect fit. If r is close to zero this indicates either no relationship exists or there is a non-linear relationship. The latter will be checked, where appropriate, using a scatter diagram plot.

If the Pearson r coefficient is squared one gets a measure of the proportion of variance in one variable "explained" by the other. It is important, in the context of the research objectives discussed in the previous chapter, that the inter-correlations between variables are understood.

The SPSS subprogram PEARSON CORR computes the Pearson product-moment correlations for pairs of variables. The formula used by SPSS is :

Significance tests are reported for each coefficient and are derived from the use of Student's t with $N-2$ degrees of freedom for the computer quantity,

$$
r\left[\frac{N-2}{1-r^{2}}\right]^{\frac{1}{2}}
$$

6.3.3 Principal Components Analysis

The research objectives seek to build a trip generation model based on the relationship between household characteristics and private-car use of large stores and to generalise this relationship as far as the data analysis permits.

The conceptual framework then identified two model forms to achieve these objectives. One of these models is based on three independent factors (employment, household structure and lifestyle) and two dependent factors (large store usage and total shopping usage). These factors are a combination of several inter-related variables. This structure presupposes an underlying structure based on the intercorrelations of the variables which combine to form the factors.

This structure implies a form of factor analysis which enables one to identify whether some underlying pattern of relationships exist such that the data may be rearranged, or reduced, to a smaller set of factors, or components, that may be taken as source variables accounting for the observed inter-relations in the data.

The term "factor analysis" is not a unitary concept and it subsumes a variety of procedures. Generally it can be said to be organised around the major alternatives available at each end of the three customary steps of factor analysis i.e.

1) the preparation of the correlation matrix
2) the extraction of the initial factors
3) the rotation to a terminal solution

In identifying the initial factors the new variables may be defined as exact mathematical transformations of the original data, or assumptions may be made about the structuring of variables and their source of variation. It is proposed to use the former method which is called Principal Components Analysis. It is a relatively straightforward method of transforming a given set of variables into a new set of composite variables, or principal components, that are orthogonal to each other. No particular assumption about the underlying structure is required. The first principal component may be viewed as the single best summary of linear relationships exhibited in the data. The second component is the second best linear combination of variables, under the condition that the second component is orthogonal to the first. To be orthogonal to the first, the second component must account for a proportion of the variance not accounted for by the first one. Thus the second component may be defined as the linear combination of variables that accounts for the most residual variance after the effect of the first
component is removed from the data. Subsequent components are defined similarly until all the variance in the data is exhausted.

The principal components model may be expressed as,

$$
Z_{j}=a_{j 1} F_{1}+a_{j 2} F_{2}+\ldots+a_{j n} F_{n}
$$

where each of the n observed variables is described innearly in terms of n new uncorrelated components F_{1}, F_{2} \ldots, F_{n} each of which is in turn defined as a linear combination of the n original variables.

The final stage of the analysis is the rotation of the factors to achieve a terminal solution. The exact configuration of the factor structure is not unique, regardless of whether factors are defined or inferred. One factor solution can be transformed into another without violating the basic assumptions, or the mathematical properties of a given solution. Therefore one must choose the best rotational method to arrive at the terminal solution that satisfies the theoretical and practical needs of the research objectives. The two options are the orthogonal method and the oblique method. There is no compelling reason to choose one over the other and it is proposed to use the former of the two methods. It is further proposed that the VARIMAX method of rotation is chosen since it is the most widely used and is a modification of the alternative QUARTIMAX method.

6.3.4 Multiple Regression Analysis

The second model emerging from the conceptual framework consisted of individual variables acting as unique variables and related to the single dependent variables of frequency of use, expenditure and duration of stay. This model implies that multiple regression analysis would be a
suitable statistical tool for the analysis of the model structure. Multiple regression is a general statistical technique through which one can analyse the relationship between a dependent, or criterion variable, and a set of independent or predictor, variables.

The basic principles of regression analysis, used.in the bivariate case mentioned earlier, may be extended to multiple regression. The general form of the equation is,

$$
Y^{1}=A+B_{1} X_{1}+B_{2} X_{2}+\ldots+B_{K} X_{K}
$$

where Y^{1} represents the estimated value for Y, A is the Y intercept and the B_{i} are the regression coefficients. The A and B_{i} coefficients are selected so that the sum of square residuals $\left(Y-Y^{1}\right)^{2}$ is minimised. This implies that the correlation between the actual Y values and the Y^{1} estimated values is maximised, while the correlation between the independent variables and the residual values $\left(Y-Y^{1}\right)$ is reduced to zero.

The SPSS subprogram REGRESSION will be used for this analysis. As in the bivariate case the proportion of variance of Y explained can be evaluated by examining the square of the multiple correlation i.e.

$$
R^{2}
$$

Variation in Y explained by the combined linear
influence of the independent variable
Total variation in Y

Regression procedures per se may be categorised as descriptive statistics, however, it is commonly performed on sample data which the researcher is interested in generalising to a population, as in this study. The goodness of fit test of the regression equation contained in the subprogram is the F-test. This is represented as,

$$
F=\frac{\mathrm{SS}_{\mathrm{REG}} / \mathrm{k}}{\mathrm{SS}_{\mathrm{RES}} / \mathrm{N}-\mathrm{k}-1}
$$

$$
=\frac{R^{2} / k}{\left(1-R^{2}\right) /(N-k-1)}
$$

where SSreg is the sum of squares explained by the entire regression equation, SSres is the residual sum of squares, k is the number of independent variables in the equation and N is the sample size. The F-ratio is distributed approximately as the F-distribution with degrees of freedom k and $N-k-1$.

It is proposed to enter the variables using forward step-wise inclusion. The order of inclusion is determined by the contribution of each variable to the explained variance in descending order of importance.

6.3.5 Canonical Correlation Analysis

The preceding two sections have explained how the two model structures proposed will be analysed. The third research objective requires each of these models to be examined to determine the degree of generalisation that can be achieved. Thus it is necessary to examine the structure and each individual variable contribution within each model at area, mean and aggregate level. It is proposed to use canonical correlation analysis for this task as it not only yields the maximum strength of relationship between independent and dependent variables but details the variable weightings which comprise that relationship. These order weightings can then be compared at different levels of aggregation.

Canonical correlation analysis takes as its basic input two sets of variables, each of which can be given theoretical meaning as a set. This corresponds to the sets of dependent and independent variables contained in this study. Then the analysis derives a linear combination from each of the sets of variables in such a way that the correlation between the two linear combinations is maximised. Many such pairs of linear combinations may be derived. These canonical variates are essentially equivalent to the principal components discussed previously, except that the criterion for their selection is not the same. Whereas both techniques produce linear combinations of the original variables, canonical correlation analysis does so not with the object of accounting for as much variance as possible within one set of variables but with the aim of accounting for a maximum amount of the relationship between two sets of variables.

This type of analysis enhances the other forms of analysis used and is suited to the conceptual framework of variables identified. The SPSS subprogram CANCORR will be used and the correlation matrix will form the input data. As with principal components analysis CANCORR manipulates intercorrelations among the variables to search for particular data patterns. The structure and variable weightings of the canonical variates is not explained and must be interpreted with respect to the conceptual framework.

6.3.6 Cluster Analysis

The aim of the study, as discussed in the previous chapter, is to build a generalised trip generation model from the relationship established at area level between the dependent and independent variable sets. This generalisation may not be possible and if this is so two
alternatives exist. Either every area has a different relationship or groups of areas have the same relationship. It may therefore be necessary to apply a clustering technique to the data to identify common groups of areas. The object of this being to assess the level of generality, or aggregation, achievable in the data set in accordance with the third research objective.

A fundamental problem with cluster analysis is the lack of satisfactory definition of what constitutes a cluster. Most clustering techniques cannot be formulated in terms of a satisfactory model because of this problem. The clusters, or groups, will tend to be chosen on an intuitive basis. The SPSS suite has no cluster analysis program so it is proposed to use the GENSTAT sub-program.

6.3.7 Other Statistical Tests

Other small programs will require to be written as the analysis proceeds and these will be explained within the analysis report.

6.4 Identifying the Survey Area

6.4.1 The study is based in the City of Edinburgh which has a number of large shopping stores within its boundary. Each store exerts an attractive power over a considerable catchment area and forms an overlapping competitive framework within the City. The geography of the area means that a green-belt buffer zone exists outside the City boundary and the nearest urban centres to the City are on the periphery of the nearest store catchment areas. Although shopping trips do take place between these areas and City stores the percentage is small relative to the total private-car trip generation. The Regional Council found this figure to be of the order of 1% for a particular store on the City boundary.
6.4.2 It is proposed, therefore, that the City boundary be taken as defining the survey area. This corresponds with planning zones and hence ennumeration district boundaries on which census data is based. The study area is shown in Figure 13.

6.5 The Sampling Framework and Technique

6.5.1 It has been established in the previous chapter that to examine if there is a relationship between household characteristics and store usage the effect of competition has to be held constant. It was proposed to use stratified sampling to group households in areas which will have equal shopping opportunities and hence the same competitive framework.
6.5.2 The sampling element chosen is the household, as previously discussed, and the area group of households will be randomly sampled so that they can be aggregated and retain their random nature. There are 1,529 Ennumeration Districts within the study area and these represent 229,000 households (1981 census). The financial constraint has limited the number of households to 400 which is a sample of 0.2% of the total households. From the experience of previous surveys of this nature undertaken at Cranfield Institute of Technology, Edinburgh University and Napier College and the experience of statisticians at Edinburgh University and Napier College, this sample number is acceptable. Given the number of variables in the conceptual models and the sample number it is proposed to sample fifteen areas each of which have twenty-seven households.
6.5.3 Each Ennumeration District was then given a number, omitting those districts which were defined as "institutions". These listings are shown in Appendix C.

Fifteen districts were then chosen using a random number generator and these are highlighted in Appendix C. The postcodes for these districts were obtained and a list of addresses compiled for each area.

Abstract

6.5.4 The next stage in the sampling process was to identify the car-owning households within the list of addresses for each area. The vehicle licensing centre at Swansea was approached but would not divulge the information. The only way to secure the information is by inquiring at each household and if the household did not possess a car passing to the next household. This process will continue until the sample size in each area is achieved. It is not possible to assess whether this introduces a small blas to the sample.

6.6 The Questionnaire design

6.6.1 The principles of design for the questionnaire are as follows :

1) the questionnaire will be in four parts; a general section, conforming to the lifestyle factor identified in the conceptual framework, a household structure section which collects information related to individuals within the household, a personal accessibility section, which conforms to the principles discussed in Chapter 4 and a shopping diary section.
ii) the questionnaire should be structured in such a way that answers can be ticked in boxes given on the questionnaire wherever possible. This aids speed of response and the computerising of the data.

1ii) the indexing of the variables identified in Chapter 3 will conform to the proposals in that chapter.
iv) the colour of the questionnaire to be light green as this elicits a better response rate from the personal past experience of $\mathrm{Dr} M$ Benwell at Cranfield Institute of Technology. The questionnaire will also be laid out neatly and presented professionally on good quality paper with the Napier College crest.

6.6.2 The general information section obtains information on

 house type, freezer ownership, number of cars in the household and income of the household. This corresponds to the lifestyle factor in the conceptual framework of one model. The number of licenses in the household is not included in this section as it pertains to the individual members of the household. The second section identifies the age structure of the household, which follows the principle employed for income and uses agebands, and the employment structure of the household. In addition a coding is given relating members of the household to the head of the household. This is included for possible further analysis of household structure. The.third section is presented in tabular form so that the interviewer or interviewee can quickly tick the times when the principal shopper and car are available. These can then be visually checked to obtain a ratio based on eighteen periods when the car, principal shopper and store are available simultaneously. In other words it measures the accessibility window of the household. The fourth section is a standard household shopping diary which obtains information, based on a typical week, on shopping expenditure, duration of stay and frequency of visit. If the household conducts a major shopping trip outside this period this should be noted, with the details, on the diary. As proposed in the previous chapter shopping trips with expenditures under $£ 2.00$ are not to be noted in addition to major non-food items.
6.7 The Pilot Survey

6.7.1 A pilot survey was undertaken, during March 1981, to test the effectiveness of the questionnaire design. The survey covered one hundred and fifty households in four areas of Edinburgh; Morningside, Grange, Buckstone and Balcarres. These areas are very different in character and provided a broad test for the questionnaire.
6.7.2 No major problems were encountered and the layout worked efficiently and effectively. The survey confirmed that the household could identify a principal shopper, usually the wife, and the personal accessibility table worked well. There was some confusion between gross and net household income so the questionnaire now has a heading for gross income as this was the measure to which most people could relate. The finalised questionnaire is shown under Figure 14.

6.8 The Organisation of the Survey

6.8.1 The survey was undertaken by one person employed on a full-time basis over two weeks during September 1982. This provided consistency of approach in the interviewing and was an efficient way of carrying out the survey since the interviewer became both experienced and faster as the survey progressed. The interviewer was fully briefed and given a letter of authorisation from Napier College in addition to a badge showing his name and the College name. A letter was also sent to every potential householder explaining the purpose of the survey, the confidentiality of the data and the method of survey. The interviewer carried copies of the letter to cover households that had not received it. This method proved most successful. The letters of authorisation and information are shown in Appendix D. The District Authority and the police were also informed.
miliga oulliges
OKPNRTMENT OP CIVIL EMCDEXAKMC

Incervsewer Wuaber Survey Fore Number Date of Interviow Time of Incerview

Ifction 1-Ganeral Housahold Information
b. 1 monee Type
1.2 Freeser Ownerthip:
1.3 manos of cars/vane
rogularly uned by the
nousenold

1. 1 Tocel Housenold Incom
per annue

Gros: Income		
0	-	(3,000
2 3,000	-	2.6,000
\& 6,00	-	\& 9,000
1 9,000	-	¢12,00
1212,000	-	E15,000
115,000	-	E20,000
120,000	-	125,000
125,000	*	

motal 1
if Time of Day 1 Moraing 9.00 an - 12.00
Afcernoon 12.00 - 5.00 pm
Eventing 5.00 pe - 1.00 pe
ouner/Occupser
Council Rented
privacely fented
Other (Spectfy)...

FIGURE 14

6.9 Setting up the Data Files

6.9.1 A data file for each area was created and the variables indexed according to the questionnaire coding and the conceptual framework. The field widths and indexing is shown in Table 8. The coded data for each area are set out in Appendix E. A further data file was created which aggregated all the areas into one file of four hundred households. The files were given names HAZELI to HAZELI6 and are mounted on a PRIME 750 computer. It will be noted that not all areas have twenty-seven households. This is because of invalid returns with respect to fallure to answer certain questions. This can be clearly seen in area 11 where a large number of households refused to answer the questions on income and employment. It is considered that the remaining data will be sufficient for the analysis.

6.10 The Presentation of the Initial Data Characteristics

6.10.1 The locations of the fifteen areas are shown in Figure 15. They show a good spread over the City and reflect the various types of housing within the City.
6.10.2 In accordance with the research tasks the mean value of each variable was calculated, for all areas, and a means data matrix, MEANS1, was created. The means of the variables are shown in Table 9 and their profiles are plotted in Figures 16 and 17.
6.10.3 A number of points emerge from the initial inspection of the figures. The greatest variations are seen in Area 5 (Waverley), Area 6 (Westburn), Area 10 (Pilton), Area 12 (Turnhouse), Area 13 (Leith) and Area 14 (Craigleith). Area 5 is an area of low bulk-buying habit preferring to shop at smaller stores. It is an inner-city area of low

Columns	$\begin{aligned} & \text { Variable } \\ & \text { Name } \end{aligned}$	$\begin{aligned} & \frac{\text { Variable }}{\text { Description }} \\ & \hline \end{aligned}$	Remarks
1-3	A	Area number	A number from $1-15$
4-9	B	Duration/week at Store	Number of hours to two decimal places
10-14	C	Duration/week for all shopping	As above
15-20	D	Expenditure per week at Store	Number of $£$ to two decimal places
21-26	E	Total Expenditure for all shopping trips	As above
27-31	F	Frequency/Week of visit to Store	The number of times in the week the store is visited
32-36	G	Total frequency/week for all shopping trips	As above but for all shopping
37-38	H	House type	1, 2, 3 or 4
39	I	Freezer ownership	1 or 0
40-41	J	Number of cars/vans used regularly by the household	Number of cars/vans
42-43	K	Income band of the household	Number from 1 to 8
44-45	L	Number of Iicences in the household	Number of licences
46-47	M	Number of people in in the household	Number of people
48-49	N	Mean age of people in the household	Mean age
50-53	0	Standard deviation of ages of the household	Standard deviation
54-56		SEG of the head of the household	SEG group number
57-59		Number of half days/ week of employment in the household	Number of half days
60-62		Personal accessibility index of the principal shopper	A number between 0 and 18

TABLE 8
Coding and Indexing of variables for data files

Frequency of Visit of
Total Shopping
Frequency of Visit to
Large Store (F)
$\underset{\text { Expenditure }}{\text { Tot }}$ Shopping
Duration of Stay for
All Shopping
Duration of Stay at
Large Store

Personal Accessibility (R)
※ 107
(Q)
$\stackrel{\text { 哥 }}{\text { ² }}$
Mean
Mean

5.0/15.0
11.5
10.0
5.0/15.0
-10.0
-5.0

Profiles of Independent Variables P to R with respect to their Means
employment and income, low car-ownership and high mean age. It is an area with a large number of retired persons who neither have the demand, income, nor the accessibility to bulk-buy at large stores.
6.10.4 The Area 6 (Westburn) profile highlights the locational influence of the proximity of a large store. Area 6 is adjacent to a suburban shopping centre. Although freezer ownership, car ownership and income are all low the use of the store is high. The mean age of the household is low.
6.10.5 The Area 10 (Pilton) profile shows the depressed nature of this area. A large average number in the household but low income, car and freezer ownership. The employment is above average, reflecting the large family size and this enables the weekly shopping budget to rise above average, although this is not translated into above average use of large stores.
6.10.6 The Area 12 (Turnhouse) profile shows it to be a prosperous area with a low mean age indicating a high proportion of young families. The shopping budget is above average both for total shopping and bulk-buying even although this area is on the outskirts of the City.
6.10.7 - The Area 13 (Leith) profile shows a high shopping activity but below average expenditure on bulk-buying of food. It is an area of low income with a significant proportion of large families.
6.10.8 Area 14 (Craigleith) is a rich, inner suburb similar in character to Cammo, Swanston and Turnhouse. It is an area of high income, freezer ownership and average number of licenses in the household. The population is older but not retired. The family size is small indicating many children have now left home to further their careers leaving the parents in a mid-life period.
6.10.9 From these profiles areas can be grouped according to "wealth", or age, etc. For example areas 6, 7 and 12 all have low household mean ages. It is also worthy of note that certain variable profiles match. For example the number of licenses in a household and income. Even at this early stage of the analysis it can be seen from the description of the areas above that factors combine to influence the shopping pattern of the household.
6.10.10 A similar exercise to the means distribution was carried out for the standard deviations of each variable. Table 10 and Figures 18 and 19 show the details. It can be seen that the variable dispersion varies considerably from area to area. Freezer ownership, personal accessibility, socio-economic group (SEG) and employment are all relatively equal in profile but the other variables show a range in dispersion pattern. It may have been expected that a uniformity of dispersion would have occurred in such closely located groups however this is not the case and begs the question as to what causes this variability in dispersion.
6.10.11 Tables 11 and 12 show the same type of relative comparison between areas with respect to standard error and skewness respectively. These tables will be referred to later in the analysis.
6.11 Concluding Remarks
6.11.1 This chapter has discussed the analytical implications of the research tasks emanating from the conceptual framework and research objectives. It is assumed that in the first instance a linear relationship exists between household characteristics and store usage and the proposed analytical methods are based on this assumption. If a linear relationship does not exist it is possible to investigate non-linear relationships.

		B	C	D	E	F	G	I	J	K	L	M	N	0	P	Q	R
1.	Moredun	1.0	1.1	14.2	9.1	0.6	1.4	0.5	0.2	1.5	0.6	1.0	17.6	9.0	5.8	7.8	5.0
2.	Spottiswoode	0.8	1.1	13.6	18.1	0.4	2.0	0.5	0.3	1.2	0.7	1.3	18.7	10.4	5.5	8.0	4.9
3.	Clermiston	0.9	1.1	14.4	15.2	0.5	1.6	0.5	0.0	0.8	0.4	1.1	13.1	7.1	5.3	8.9	4.7
4.	Swanston	0.8	1.5	13.6	11.8	0.5	1.3	0.5	0.6	1.5	0.7	1.1	16.9	8.6	5.5	7.3	4.9
5.	Wav./Reg. Place	0.7	2.4	10.1	14.3	0.4	3.5	0.5	0.2	1.1	0.7	1.1	21.1	7.9	5.35	6.9	5.7
6.	Westburn Park	0.5	1.0	12.5	11.6	0.5	1.5	0.4	0.2	0.9	0.5	1.4	16.2	6.8	3.7	8.5	5.1
7.	St Peters P1.	0.6	1.0	15.9	15.4	0.5	1.9	0.5	0.6	1.4	0.5	1.2	12.1	8.8	5.1	7.9	4.8
8.	Saughton Mains	1.0	1.6	20.7	18.5	0.8	1.7	0.5	0.3	1.7	0.7	1.5	15.9	9.9	4.9	15.0	5.7
9.	Craigleith Hill Ave.	0.9	1.4	14.2	11.5	0.7	1.2	0.5	0.4	1.6	0.8	1.1	18.0	9.3	5.4	10.8	5.2
10.	Pilton	0.9	1.4	17.9	19.0	0.6	1.9	0.5	0.3	1.1	0.6	1.9	19.7	8.6	5.1	10.7	5.4
11.	Cammo	0.6	0.9	19.1	20.1	0.6	1.3	0.3	0.9	1.8	1.1	1.5	18.5	8.8	7.5	10.9	7.3
12.	Turnhouse	0.8	1.7	15.3	16.4	0.6	1.7	0.5	0.4	1.1	0.5	1.3	13.4	9.5	4.3	7.9	5.0
13.	Leith	0.7	3.7	9.5	15.0	0.4	2.1	0.4	0.3	1.3	0.6	1.5	18.4	8.8	4.8	8.7	6.2
14.	Craigleith Cres/View	0.6	1.0	14.5	17.3	0.6	1.5	0.3	0.6	2.0	0.9	1.4	18.3	9.1	7.5	8.2	4.5
15.	Easter Rd/Dalry	0.5	1.3	10.6	12.6	0.5	1.6	0.5	0.3	0.8	0.5	0.9	20.2	8.2	5.6	7.0	5.3
16.	All Areas	0.8	1.7	15.0	15.6	0.6	1.9	0.5	0.4	1.5	0.7	1.4	18.5	9.0	5.7	9.4	5.3

[^2]

113

		B	C	D	E	F	G	I	J	K	L	M	N	0	P	Q	R
1.	Moredun	0.2	0.2	3.0	1.9	0.1	0.3	0.1	0.0	0.3	0.1	0.2	3.8	1.9	1.2	1.7	1.1
	Spottiswoode	0.2	0.3	3.1	4.2	0.1	0.5	0.1	0.1	0.3	0.2	0.3	4.3	2.4	1.3	1.8	1.1
3.	Clermiston	0.2	0.2	3.0	3.2	0.1	0.3	0.1	0.0	0.2	0.1	0.2	2.7	1.5	1.1	1.9	1.0
4.	Swanston	0.2	0.3	2.7	2.3	0.1	0.3	0.1	0.1	0.3	0.1	0.2	3.3	1.7	1.1	1.4	1.0
5.	Wav. /Reg. Place	0.1	0.5	2.0	2.9	0.1	0.7	0.1	0.0	0.2	0.1	0.2	4.2	1.6	1.1	1.4	1.1
6.	Westburn Park	0.1	0.2	2.7	2.5	0.1	0.3	0.1	0.0	0.2	0.1	0.3	3.5	1.5	0.8	1.9	1.1
	St Peters Pl.	0.1	0.2	3.1	3.0	0.1	0.4	0.1	0.1	0.3	0.1	0.2	2.3	1.7	1.0	1.5	0.9
8.	Saughton Mains	0.2	0.3	4.1	3.6	0.2	0.3	0.1	0.1	0.1	0.3	0.1	3.1	1.9	1.0	2.4	1.1
9.	Craigleith Hill Ave.	0.2	0.3	2.7	2.2	0.1	0.2	0.1	0.1	0.3	0.1	0.2	3.5	1.8	1.0	2.1	1.0
10.	Pilton	0.2	0.3	3.5	3.7	0.1	0.4	0.1	0.1	0.2	0.1	0.4	3.8	1.7	1.0	2.1	1.0
11.	Cammo	0.2	0.2	4.8	5.0	0.1	0.3	0.1	0.2	0.4	0.3	0.4	4.6	2.2	1.9	2.7	1.1
12.	Turnhouse	0.1	0.3	3.0	3.2	0.1	0.3	0.1	0.1	0.2	0.1	0.3	2.6	1.9	0.8	2.7	1.0
13.	Leith	0.1	0.7	1.8	2.9	0.1	0.4	0.1	0.1	0.2	0.1	0.3	3.5	1.7	0.9	1.7	1.2
14.	Craigleith Cres/View	0.1	0.2	2.9	3.4	0.1	0.3	0.1	0.1	0.4	0.2	0.3	3.6	1.8	1.5	1.6	0.9
	Easter Rd/Dalry	0.1	0.3	2.03	2.4	0.1	- 0.3	0.1	0.1	0.2	0.1	0.2	3.9	1.6	1.1	1.3	1.0
16.	All Areas	0.0	0.1	0.8	0.8	0.0	0.1	0.0	0.0	0.1	0.0	0.1	1.0	0.5	0.3	0.5	0.3

[^3]| | в | c | D | E | F | G | 1 | J | K | L | M | N | 0 | P | Q | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1．Moredun | 1.5 | 0.9 | －0．1 | 0.6 | 0.2 | 1.7 | －0．6 | 4.7 | 1.0 | 1.1 | －0．0 | 0.1 | 0.0 | －0．3 | 0.9 | －0．1 |
| 2．Spottiswoode | 0.2 | 1.1 | 0.2 | 1.4 | －0．2 | 0.9 | 0.1 | 2.8 | 1.5 | 0.8 | 0.7 | 0.1 | 0.8 | －0．5 | 0.3 | －0．1 |
| 3．Clermiston | 0.5 | 1.2 | 0.5 | 1.9 | －0．7 | 2.0 | 0.7 | － | 0.5 | 1.8 | 1.4 | －0．8 | ． 2 | 0.5 | 0.3 | 0.6 |
| 4．Swanston | 2.1 | 1.4 | 0.4 | 0.5 | 0.2 | 1.4 | －0．9 | 1.2 | －0．0 | 0.1 | －0．0 | 0.7 | －0．3 | 1.1 | 1.0 | －0．4 |
| 5．Wav．／Reg．Place | 0.3 | 2.6 | 0.2 | 1.3 | －0．9 | 1.9 | 0.6 | 5.0 | 1.7 | 2.7 | 0.3 | －0．6 | 0.5 | －0．7 | 0.6 | －0．0 |
| 6．Westburn Párk | 0.4 | 1.6 | －0．4 | －0．3 | 0.3 | 1.3 | 1.7 | 4.6 | 2.1 | 1.0 | 0.2 | 1.7 | －1．1 | 1.2 | 1.0 | 0.2 |
| 7．St Peters P1． | 0.1 | 1.6 | 1.0 | 0.9 | －0．2 | 2.6 | －0．1 | 2.6 | －0．1 | －0．4 | 0.5 | 1.9 | 0.3 | 1.4 | 1.3 | 1.0 |
| 8．Saughton Mains | 1.5 | 0.8 | 1.1 | 1.1 | 1.3 | 0.7 | －0．9 | 2.6 | 0.4 | 0.8 | 0.8 | 0.2 | －0．1 | －0．2 | 0.7 | －0．3 |
| 9．Craigleith Hill Ave． | 0.7 | 2.0 | 0.1 | 1.0 | 1.4 | 1.1 | －0．4 | 1.7 | 0.2 | 0.1 | 0.1 | 0.4 | －0．3 | 0.1 | 0.7 | 0.5 |
| 10．Pilton | 0.9 | 1.4 | 0.5 | 1.4 | 0.6 | 0.6 | 0.4 | 3.4 | 1.0 | 0.7 | 0.8 | 0.4 | 0.1 | 0.0 | 1.1 | 0.3 |
| 11．Cammo | 0.3 | 1.4 | 0.9 | 1.0 | 0.1 | 0.9 | －2．5 | 1.4 | 0.3 | 1.4 | 0.0 | 0.4 | －0．9 | 0.5 | 1.7 | －1．2 |
| 12．Turnhouse | 0.2 | 1.1 | －0．4 | 1.4 | －0．0 | 1.1 | －1．1 | 1.7 | 0.4 | －0．4 | 0.2 | 1.1 | 0.1 | 1.3 | 1.4 | 0.0 |
| 13．Leith | 0.3 | 2.9 | －0．5 | 1.1 | －1．3 | 1.6 | 1.4 | 3.4 | 1.0 | 1.1 | 0.6 | 0.7 | －0．5 | 0.4 | 1.2 | －0．0 |
| 14．Craigleith Cres／View | 0.6 | 0.9 | 0.4 | 0.8 | 1.2 | 0.8 | －2．6 | 1.4 | 0.3 | 1.9 | 0.7 | －0．3 | 0.1 | 0.1 | 0.6 | －1．2 |
| 15．Easter Rd／Dalry | －0．5 | 1.0 | 0.0 | 0.4 | 0.2 | 0.4 | 0.9 | 3.4 | 0.1 | 0.7 | －0．0 | 0.9 | －0．2 | 0.2 | 0.2 | －0．1 |
| 16．All Areas | | | | | | | | | | | | | | | | |

S．D．OF Age
S．E．G．
$\mathrm{Q}=$ Employment
$\mathrm{R}=$ Personal Accessibility

[^4]TABLE 12
－acx
$ー ク シ ー \Sigma z ~$
Measure of Skewness for Each Survey Area

The two conceptual models imply a multiple regression analysis, with a preceding identification of principal components in one of the models. The input to these statistical techniques is from a bivariate correlation matrix which serves the additional purpose of indicating the sense and strength of the bivariate variable relationships.
6.11.2 The nature of the relationship between the independent and dependent variables requires to be analysed in detail at various disaggregate and aggregate levels and the proposed canonical correlation analysis will identify the overall strength of the relationship at each level and the structure of that relationship. This will indicate the level of generality of model that can be achieved. It may be that certain groups of areas exhibit the same structural relationship and cluster analysis will be used to identify these groupings.
6.11.3 The chapter then explains the rationale behind the sampling framework, survey area and questionnaire design and this is tested in a pilot survey. Following the pilot survey the organisation of the main survey is explained and the initial tabulation of the raw data.
6.11.4 The final section discusses the initial data characteristics and identifies certain variations between areas. Tables of means, standard deviations and degree of skewness are listed and an inftial appreciation of the interdependence of the variables is gained. The means data matrix will be required for the detailed analysis.
6.11.5 The following chapter deals with the analysis of both the proposed models and investigates the nature of the relationship between the independent and dependent variables at area, mean and composite area level. This will enable a generalised trip generation model to be developed which can then be integrated into a standard, aggregate trip distribution model.

CHAPTER 7

ANALYSIS OF THE DATA

7.1 Introduction

This chapter follows on from the preliminary profile analysis of areas and carries out the research tasks, identified from the research objectives and conceptual framework, developed within Chapter 6.

The analysis is divided into three sections :

1) the formation of the Pearson correlation matrices and principal components analysis to develop the conceptual Model 1.
ii) the canonical correlation analysis to analyse the strength and structure of the relationship between the two sets of variables.
iif) the multiple regression analysis to develop a disaggregate trip prediction model.

These tasks not only identify the appropriate form of the trip generation model being proposed but establish the level of disaggregation possible whilst retaining an acceptable level of trip prediction. The proposed model will then be examined for stability and application in the following chapter.

7.2 The Framework of the Analysis

7.2.1 The conceptual framework shown in Figures 11 and 12 identify two models; one based on composite, variable components and the other based on individual variables. One of the primary research tasks is therefore to confirm the component data structure of Model 1. In building a predictive trip generation model for private-car trips to large stores the level of generality that can be attributed to the chosen model must be found. The conceptual framework has shown this in two parts; one at the individual area level and the other at the total area and means area levels. The analysis must examine the structure of the relationship at area, means and total level to identify the level of generality able to be achieved in the model. It may be that although not all the area relationships are the same, groups of areas may be the same and so this is an intermediate level of aggregation that will be examined.

7.2.2 If areal variation exists the analysis must discuss and explain this variation. The initial production of the Pearson bivariate correlation matrix at area, mean and total level will aid this understanding in addition to providing the input matrix for the later stages of the analysis.

7.2.3 Once the level of generality is identified a predictive model can be developed at the appropriate level. The effectiveness of the model and its stability over each individual area will be tested.

7.2.4 The methods of analysis are shown in matrix form in Table 13 and relate to the levels of aggregation and research tasks emanating from the research objectives and conceptual framework of Chapters 3, 4 and 5. It is proposed to separate the analysis and the interpretation
exsenzca tasks

RESEAECM TASKS	individual area level mean of areas levels		TOTAL Of All hreas mevel
Compute the correlation natrices for the laput to the otatistical techniques uned later in the	Compute Correlation Matrix	Compute Correlation Matrix	Conpute Correlation Matrix
gation of bivariate relat foashipa as an ald to understanding and interpretation later in the analyais.	Teat for area non-homogeneity	Test for area non-homogeneity	Test for area non-homogeneity
Identify the Eaployment, Household Structure and Lifeatyle factors of Model 1	Principal components analyala and discussion of etructure of componente - Model 1.	Principal components analyais, with and without apatial acceseibility index and discuseion of etructure of componenta - Model 1.	Principal components analysia with diecuseion of atructure of componente - Model 1. Test of non-homogeneity by addition of areas on aggregate component etructure.
Examine and analyae the atreagth and etructure of the relationehip between the dependent and independent variables at at individual area, aggregated areas and means of areas levelg. Deternine the level of generality than can be achieved by the models.	Canonical correlation analysis to detersine form and atrength of relat fonship between dependent and independent variablea.	Canonical correlation analysis to deternine form and strength of relat fonship between dependent and independent variables.	Canonical correlation analyeie to deternine fore and strength of relationship between dependent and independent variables Teat of stability, by addition of areas of canonical variate structure.
	Canonical correlation analyses using only the store variables with all independent and three independent variables.	Canonical correlation analyees using only the atore variables with all independent and three independent variables.	Canonical correlation analyeee using only the store variables with all independent and three independent variables.
		Explanation of Areal variation with respect to Pearson correlation matrices.	
			Explanation of groupings of areas using cluster analyais.
Build a predictive trip generation model for private car tripe to large foodetores.	Multiple Regression Analyais - Models 1 and 2	Multiple Regreseion Analyais - Modela 1. Model 2 carried out in three stages: 1) with all independent variables 2) without personal accesaibility (R) 3) as (2) and without incone (K) and freezer ounership(1).	Multiple Regression Aaalysie - Modelel 12. Model 2 carried out in four at agea: 1) all six depend ent variables with individdual fadependent variables. 2) three atore variables and and three independent componeats w.r.t. total data eatrix. 3) three atore variablea and three independent components w.r.t. individual areas. 4) three atore variables and three independent componente w.r.t. means date matrix.

of the results so that this chapter will report on the analysis. The following chapter will then interpret the findings from the analysis. It is difficult to achieve a complete segregation of analysis and interpretation and certain points of interpretation will be discussed as they occur in this chapter.

7.3 Calculation of Pearson Product-Moment Correlations Matrix and Identification of Significant Variable Correlations with respect to the Conceptual Framework

7.3.1 Pearson Correlation Coefficients with respect to the Dependent Variables

The Pearson correlation coefficients, greater than or equal to 0.35 , for the dependent variables are listed in Table 14. All correlation coefficients listed with respect to dependent and independent variables are statistically significant at the 5% level.

The table shows that the three store usage variables are strongly intercorrelated in all areas, the exception being in area 11 (Cammo) between duration of stay and frequency of visit to the stores. The three total shopping usage variables are also strongly intercorrelated although the strength of the correlation varies from area to area. The significant relationship between store and total shopping usage relates to the shopping expenditure variables D and E. Area 1 (Moredun) and Area 13 (Leith) are the exceptions. Area 1 is an area remote from large shopping stores with a large retired persons grouping and Area 13 is an inner city area of low income and car ownership.

No relationship was found between duration of stay at the stores and total time spent shopping. This also applied to frequency of visit to large stores. In general the households regarded the bulk-buying shopping usage as a separate entity from other household shopping.

NOTE: 1) Only coefficients greater than 0.35 are shown.
2) All coefficients are etatistically significant at the 5% level.

7.3.2 Pearson Correlation Coefficients with respect to the Independent Variables

As with the dependent variables only coefficients greater than 0.35 and significant at the 5% level are shown. Table 15 shows the listings of coefficients. Variable H (House Type) has been omitted from the analysis because of collinearity problems with other independent variables. This is not of concern because each area showed little variation in house type and this variable would not have added significantly to the analysis.

Inspection of the table indicates that income, the household structure variables, employment and socio-economic grouping are the variables showing the strongest intercorrelations with other independent variables. Certain areas diverge significantly from the general correlations. Areas 12 (Turnhouse) and 1 (Moredun) show particular divergence. Area 1 shows this divergence with the dependent variables and its contributing factors were highlighted in the previous subsection. Area 12 is a remote suburb on the City boundary and is predominantly young, middle-class families. The separation of the area from the other parts of the City may contribute to the devergent nature of the area. It will be noted that the personal accessibility variable (R) does not show a consistently strong correlation with any other variable although it is negatively correlated with income and employment and positively correlated with the mean age of the household and socio-economic grouping.

					$\begin{aligned} & \text { E } \\ & 0 \\ & \mathbf{0} \\ & \mathbf{C} \\ & j \end{aligned}$	$\stackrel{\text { a }}{\underset{\sim}{0}}$	$\begin{aligned} & \text { E } \\ & \text { 足 } \\ & \mathbf{0} \\ & \mathbf{3} \end{aligned}$				$\underset{\sim}{\text { c }}$	䈍	$\begin{aligned} & \mathbf{0} \\ & \text { B } \\ & \text { O } \\ & \text { E } \\ & \text { B } \end{aligned}$	-	$\xrightarrow[\sim]{\sim}$	-	ت
Variable Relationships	-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Freezer Ownership(1)	Incone(k)	-	0.49	0.38	0.57	-	-	0.60	-	0.39	-	-	-	0.42	0.36	-	0.37
No. of Cars(J)	Income(R)	0.49	0.41	-	0.55	0.73	-	0.50	-	0.43	0.47	0.70	-	0.72	0.60	-	0.53
No. of Cars(J)	No. of Licences(L)	-	-	-	0.38	0.84	-	0.33	-	0.59	-	0.88	-	-	0.62	-	0.51
No. of Cars(J)	Eaployment(Q)	-	0.52	-	-	0.42	0.47	0.52	-	0.43	0.48	0.82	-	-	0.64	0.52	-
Income(k)	No. of Licences(L)	-	0.58	-	0.64	0.72	-	0.44	0.61	0.47	-	0.57	-	-	0.58	-	0.53
Income(K)	No. in Household(M)	-	-	-	-	0.56	-	0.42	0.79	0.53	-	0.68	0.36	-	0.65	0.65	0.40
Income(K)	Mean Age of Household(N)	-0.46	-0.53	-0.40	-	-0. 57	-0.38	-	-0. 70	-0.63	-	-0.35	-	-0.40	-0.61	-0.60	-0.37
Incone(K)	S. D. OF Household Ages(0)	-	-	-	-	0.65	0.42	0.52	0.61	0.61	-	0.40	-	-	0.60	0.59	0.36
Income(K)	S.E. G. (P)	-0.80	-0.57	-0.61	-0. 55	-0.70	-	-0. 55	-0.59	-0.77	-	-0.67	-	-0.64	-0.71	-0.57	-0.59
Incone(X)	Employment(Q)	-	0.70	0.43	0.53	0.64	-	0.52	0.87	0.68	0.82	0.71	0.41	0.52	0.65	0.49	0.52
Income(K)	Personal Accessibility(R)	-0.49	-	-0. 54	-	-0.40	-0.41	-	-0.53	-	-	-0.46	-	-	-0.37	-	-
No. of Licenses(L)	No. in Household(M)	-	0.67	-	-	0.45	-	0.46	0.48	0.48	0.44	0.57	-	0.33	0.65	-	0.38
No. of Licences(L)	S. D. of Household Ages(0)	-	0.55	0.46	-	0.47	-	-	-	0.61	0.35	0.59	-	-	0.64	-	0.36
No. of Licences(L)	Employment(Q)	-	0.53	0.38	-	0.52	-	0.54	0.53	0.44	-	0.91	-	0.53	0.46	-	0.39
No. in Household(M)	Mean Age of Household(N)	-0.64	-0.48	-0.74	-0.73	0.87	-0.55	-	-0.79	-0.81	-0.69	-0.79	-0.42	-0.71	-0.87	-0.49	-0.62
No. in Household(H)	S. D. of House hold Ages(0)	0.84	0.89	0.78	0.73	0.79	0.62	0.72	0.69	0.78	0.75	0.67	0.66	0.52	0.80	0.79	0.72

NOTE: 1) Only coefficients greater than 0.35 are shown.
(2u0 3دed) Sl atgy

	Areas	$\begin{aligned} & \text { 5 } \\ & 0 \\ & \text { \% } \\ & \text { 足 } \end{aligned}$	0 0 0 0 0 0 0		$\begin{aligned} & \text { E } \\ & 0 \\ & \text { B } \\ & \text { 品 } \\ & \vdots \\ & \vdots \end{aligned}$			 心			¢	兑		号		N	－
Variable Relationships	－	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
No．in Household（M）	S．E．G．（P）	－0．46	－	－	－	－0．62	－0．48	－	－0．51	－0．39	－	－0．78	－	－0．38	－0．64	－0．62	－0．35
No．in Household（M）	Employment（Q）	－	0.56	0.62	0.46	0.78	0.67	－	0.78	0.77	0.38	0.60	－	0.45	0.48	0.39	0.48
Mean Age of H／hold Ages（N）	S．D．of House－ hold Ages（0）	－0．51	－0．45	－0．64	－0．65	－0．85	－0． 55	－	－0．68	－0．81	－0．69	－0．71	－	－0．63	－0．81	－0．50	－0．57
Mean Age of H／hold Ages（N）	S．E．G．（P）	0.79	0.64	0.40	0.47	0.73	0.82	－	0.68	0.67	0.38	0.77	0.37	0.59	0.70	0.73	0.60
Mean Age of H／hold Ages（N）	Employment（Q）	－	－0．63	－0．63	－0．41	－0．82	－0． 52	－	－0．73	－0．68	－0．39	－0．42	－	－0．45	－0．55	－0．68	－0．45
Mean Age of H．Hold Ages（ N ）	Personal Accessibility（R）	0.47	0.57	0.40	－	0.67	0.38	0.40	0.43	0.40	－	－	－0．41	－	－．	0.47	－
S．D．of House－ hold Ages（0）	S．E．G．（P）	－	－	－0．36	－	－0．69	－	\cdots	－0．41	－0． 53	－	－0．50	－	－0．40	－0．49	－0．68	－0．35
S．D．of House－ hold Ages（0）	Employment（Q）	－	0.54	0.54	－	0.81	0.51	－	0.60	0.71	－	0.57	－	0.47	0.52	0.56	0.40
S．E．G．（P）	Employment（Q）	－	－0． 56	－0．63	－	－0．81	－0． 56	－0．36	－0．64	－0． 53	－	－0．60	－	－0． 56	－0．81	－0．61	－0．47
S．E．G．（P）	Personal Accessibility（R）	0.68	0.52	0.68	－	0.60	－	－	0.52	0.45	0.40	0.35	－	0.51	0.35	0.41	
Employment（Q）	Personal Accessibility（R）	－	－	－0．61	－0．46	－0．67	－	－	－0． 58	－0．41	－0．40	－0．62	－	－0． 56	－0．61	－0．62	－0．41

7.3.3 Pearson Correlation Coefficients with respect to the Relationships between Dependent and Independent Variables

The correlation coefficients, greater than or equal to 0.35 , between the dependent and independent variables are shown in Table 16. Three values just below 0.33 are shown in brackets and all values shown are significant at the 5% level.

These relationships are of prime importance to the study as they indicate the strengths of the linear relationships between the predictor and predicted variables. It is evident, from Table 16, that the large store and total shopping expenditure variables (D and E) are the most important of the dependent variables and show correlation with the same independent variables discussed in the previous section i.e. income, the household structure variables and employment. Socio-economic grouping does not appear. Again areas 1 (Moredun) and 12 (Turnhouse) consistently do not show these relationships and in addition area 4 (Swanston) shows little relationship between the two sets of variables. Area 4 is similar to area 12 in that it is an outer, middle-class suburb.

The correlation coefficients for the sum of all the areas combined are low, the highest being 0.57 between total shopping expenditure per week and the number in the household, which is not unexpected due to the areal variability.
7.3.4 These initial results show areal variation in the bivariate correlations and will be important in the interpretation of this variation. Some of the variation can be attributed to the location or a dominant characteristic in the area, such as high mean age of population or proximity to a large store, and it is expected that in general the areal variation will be shown

Variable Relationships	Areas				$\begin{aligned} & \text { g } \\ & \text { B } \\ & \text { E } \\ & 5 \end{aligned}$	空					$\begin{aligned} & \stackrel{5}{3} \\ & \underset{a}{1} \end{aligned}$	寧		$$		岕	－
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Exp．／Week at Store（D）	Income（k）	－	0.47	0.43	－	－	－	0.45	－	0.49	0.39	0.65	－	－	－	－	0.36
Exp．／Week at Store（D）	No．in Household（M）	－	0.40	－	－	0.39	0.60	0.40	（0．33）	0.71	0.42	0.66	－	－	－	－	（0．33）
Exp．／Week at Store（D）	Stand．Dev．of H／hold Ages（0）	－	－	－	－	－	0.51	0.41	0.36	0.58	0.42	0.35	－	－	0.43	－	－
Exp．／Week at Store（D）	Eaployment（Q）	－	0.43	－	－	0.43	0.55	－	－	0.51	0.39	0.79	－	－	－	－	－
Tot．Shopping Exp．／Week（E）	No．in Household（H）	0.50	－	0.70	－	0.59	0.81	0.56	0.73	0.60	0.62	0.71	0.52	0.45	0.53	0.78	0.57
$\begin{aligned} & \text { Tot. Shopping } \\ & \text { Exp. / Week(E) } \end{aligned}$	Mean Age of Household（N）	－0．43	－0．63	－0．60	－	－0．45	－0．55	－	－0．63	－0．57	－0．49	－0．43	－	－0．34	－0． 50	－0．39	－0． 39
$\begin{aligned} & \text { Tot. Shopping } \\ & \text { Exp. /Week(E) } \end{aligned}$	$\begin{aligned} & \text { S. D. of } \\ & \text { Ages }(0) \end{aligned}$	－	－	0.43	－	0.34	0.73	0.35	0.41	0.57	0.60	0.52	0.37	0.49	0.61	0.72	0.43
$\begin{aligned} & \text { Tot. Shopping } \\ & \text { Exp. /Heek(E) } \end{aligned}$	Eaployment（Q）	－0．31	0.73	0.64	－	0.48	0.72	－	0.56	0.51	0.55	0.14	－	0.43	－	－	0.42
$\begin{aligned} & \text { Toc. Shopping } \\ & \text { Freq. /Heek(}) \end{aligned}$	No． 1 n Household（ H ）	－	－	0.58	0.35	0.41	－	－	． 0.46	－	0.41	－	0.50	0.38	－	0.67	（0．31）

table 16

Pearson Correlation Coefficients Relating Dependent and Independent Variables
to be the result of several local area effects working together. These initial indications do not encourage the development of a generalised model for all areas at household level. In particular areas 1 and 12 cause concern in that they consistently diverge from the general pattern. This effect may continue to be seen in the statistical analysis of each area's data.

7.4 Testing the Areal Data for Non-Homogeneity of the Bivariate Correlations

7.4.1 The tables showing the significant bivariate correlations also show an areal variation. It is important, in the context of a generalised model, to establish whether these areal variations mean that these areas constitute a non-homogenous group. To test this each variable pair was pooled over the fifteen areas and the resulting single correlation compared to the bivariate correlation obtained from the total data matrix for the same variable pair. The homogeneity of each variable pair was then tested using a computer program based on the parallel estimates of correlation coefficients. The method of averaging is via the z-transformation procedure. ${ }^{(122)}$ The bivariate comparisons are listed in Table 17. The variable pairs with a correlation coefficient greater than 0.3 were subjected to a further analysis. The most divergent area was omitted first and the new whole correlation coefficient compared to the total matrix coefficient. If this did not establish homogeneity between the groups the next most diverse area was omitted. This process continued until homogeneity was achleved. Table 18 shows the selected variable pairs and the areas omitted in order to achieve homogeneity.
7.4.2 The table shows that where homogeneity exists in a variable pair over all areas the pooled correlation

KEY:

Variable Pairing	Total Matrix Coefficient	Pooled Coefficient (All Areas)	Remarks

Hrs./Wk at Store (B)	$\begin{aligned} & \text { Freq./Wk } \\ & -\quad \text { at Store(F) } \end{aligned}$	0.78	Not Homogeneous	By omitting areas Cammo(11) and Easter (15) homogeneity was achieved giving a whole factor of 0.85 .
Tot.Hrs/Wk Shopping(C)	Tot.Exp./Wk $-\quad$ Shopping(E)	0.45	Not Homogeneous	By omitting Spottiswoode(2) homogeneity was achieved giving a whole factor of 0.51 .

| Tot.Hrs/Wk \quad Tot.Freq./Wk $0.73 \quad$ Not | |
| :--- | :--- | :---: |
| Shopping (C) | Shopping(G) |

$\begin{aligned} & \text { Exp./Wk } \\ & \text { at Store(D) } \end{aligned}$	Tot.Exp./Wk - Shopping(E)	-0.57	Not. Homogeneous	By omitting areas Moredun (1) and Leith(13) homogeneity was achieved giving a whole factor of -0.65 .
Tot.Exp./Wk Shopping(E)	Tot.Freq./ - Weeks(G)	-0.47	Not Homogeneous	By ommitting areas Spottiswoode(2), Westburn(6) and Cammo(11) homogeneity was achieved giving a whole factor of -0.60 .
Tot.Exp./Wk Shopping(E)	No. in - Household(M)	-0.57	Not Homogeneous	By omitting area Swanston (4) homogeneity was achieved giving a whole factor of $\mathbf{- 0 . 6 2}$.
Tot.Exp./Wk Shopping(E)	Mean Age of - Household(N)	-0.38	Not Homogeneous	By omitting area St Peters (7) homogeneity was achieved giving a whole factor of -0.45 .

TABLE 18

Variable Pairing	Total Matrix Coefficient	Pooled Coefficient (All Areas)	Remarks

Tot.Exp. /Week(E)	Employment/ - Household(Q)	0.42	Not Homogeneous	By omitting areas Moredun (1) and Craigleith(14) homogeneity was achleved giving a whole factor of 0.49 .
Exp./Wk at Store(D	No. in - Household(M)	0.33	Not Homogeneous	By omitting areas Moredun (1) and Swanston(4) homogeneity was achieved giving a whole factor of 0.37 .
No. of Cars/ Household (J)	- Income(K)	0.53	Not Homogeneous	By omitting area Easter(15) homogeneity was acheived giving a whole factor of 0.50 .
No. of Cars/ Household	No. of Lic. - Holders(L)	0.51	Not Homogeneous	Homogeneity could not be achieved after four groups had been omitted.
Income/ Household (K)	No. in - Household(M)	0.40	Not Homogeneous	By omitting area Clermiston (3) homogeneity was achieved giving a whole factor of 0.48.
Income/ Household(K)	$\begin{array}{r} \text { S.D. of } \\ -\quad \text { Ages }(0) \end{array}$	0.36	Not Homogeneous	By omitting area Turnhouse (12) homogeneity is achieved giving a whole factor of 0.40 .
Income/ Household(K)	Employment/ Household(Q)	0.52	Not Homogeneous	By omitting areas Moredun (1) and Westburn (6) homogeneiry is achieved giving a whole factor of 0.63 .
No. of Lic. Holders (L)	$\begin{aligned} & \text { S.D. of } \\ & \text { Aes (0) } \end{aligned}$	0.39	Not Homogeneous	By omitting areas Moredun (1) and Easter(15) homogeneity is achieved giving a whole factor of 0.48.

TABLE 18 (Contd)

| Variable Pairing | Total Pooled
 Matrix Coefficient
 Coefficient (All Areas) | Remarks |
| :---: | :---: | :---: | :---: |

No. in Household(M) -	Mean Age of Household(Q)	-0.62	Not Homogeneous	By omitting areas St Peters (7) and Turnhouse(12) homogeneity is achleved giving a whole factor of $\mathbf{- 0 . 7 4 .}$
No. in Household(M) -	S.E.G. of Household(P)	-0.35	Not Homogeneous	By omitting area Pilton(10) homogeneity is achieved giving a whole factor of -0.45 .

No. in Household(M) -	Employment/ Household (Q)	0.48	Not Homogeneous	By omitting areas Moredun (1) and Turnhouse(12) homogeneity is achieved giving a whole factor of 0.58 .
Mean Age of Household(N) -	S.D. of Ages (0)	-0.57	Not Homogeneous	By omitting areas St Peters (7) and Turnhouse(12) homogeneity is achieved giving a whole factor of -0.67 .
Mean Age of Household(N) -	S.E.G. of Household(P)	0.60	Not Homogeneous	By omitting area St Peters (7) homogeneity is achieved giving a whole factor of 0.64 .

| Mean Age of | Personal | 0.32 |
| :--- | :--- | :---: | | Not |
| :---: |
| Household $(n)-$ |
| Access. (R) |\quad| Homogeneous |
| :---: |

S.D. of	Employment/	0.40
Ages (0)	Household(Q)	

Not
Homogeneous

By omitting areas Swanston (4), Turnhouse(12) and Craigleith(14) homogeneity was acheived giving a whole factor of 0.42 . All these areas have inverse relationships.

By omitting areas Moredun (1) and Turnhouse (12)homogeneity was acheived giving a whole factor of 0.52 .

TABLE 18 (Contd.)

Variable Pairing	Total Matrix Coefficient	Pooled Coefficient (All Areas)	Remarks
$\begin{aligned} & \text { S.E.G. of } \\ & \text { Household }(P)-\begin{array}{c} \text { Employment/ } \\ \text { Household }(Q) \end{array} \end{aligned}$	-0.47	Not Homogeneous	By omitting area Moredun (1) homogeneity was achieved giving a whole factor of -0.55.
$\begin{array}{ll} \text { S.E.G OF } & \text { Personal } \\ \text { Household }(P)- & \text { Access. }(R) \end{array}$	0.31	Not Homogeneous	By omitting areas Swanston (4) and Turnhouse(12) homogeneity was achieved giving giving a whole factor of 0.46 . These areas have a negative relationship.
$\begin{array}{ll} \text { Employment/ } & \text { Personal } \\ \text { Household }(Q)- & \text { Access.(RO } \end{array}$	-0.41	Not Homogeneous	By omitting area Moredun(1) homogeneity was acheived giving a whole factor of -0.48 .

coefficient and the total data matrix coefficient are the same. The occurrence of non-homogeneity can be shown on an area basis and, within areas, on a variable pair basis. Table 19 shows the number of times an area was responsible for causing non-homogeneity over all areas. This highlights area 1 (Moredun) and area 12 (Turnhouse) as those areas showing the greatest tendency to exhibit non-homogeneity and area 4 (Swanston) and area 7 (St Peters) to be the areas showing non-homogeneity four and five times respectively. The first three areas have been described previously but area 7 is a young, middle-class area in the inner city with a large proportion of households with no children and both husband and wife working.
7.4.3 If the variable pairs causing non-homogeneity are listed for each of the above four areas, household structure variables occur in all but two of the variable pairs in areas 4, 7, and 12 and the employment variable occurs in all but three of the variable pairs in area 1. Table 20 lists these variable pairs. Before commenting on these relationships, further investigation to establish the nature of the relationships is undertaken using scatter diagrams. Typical examples of these plots are shown in Figures 20,21 and 22. The remaining diagrams are shown in Appendix F .
7.4.4 The main points to emerge from these plots is the effect of non-use of the large store and the effect of the category variables. In Figure 20 the linear relationship is impaired by the presence of seven households who do not bulk-buy. The employment variable, although not classified in categories, occurs in categories, as is evident in Figure 21. This effect also occurs with the number in the household, the number of licences in the household and personal accessibility.

Area Number	No. of Time(s) Area was responsible for non- homogeneity
1	
2	11
3	2
4	1
5	4
6	0
7	2
8	5
10	0
11	0
12	1
13	3
14	8
15	1

AREA 1 :	Expenditure/Week at Store		Total Shopping Expenditure/Week
(Moredun)	Total Shopping Expenditure/Week	\&	Employment Household
	Expenditure/Week at Store	δ	Number in Household
	Income/Household	\&	Employment/Household
	No. of Licence Holders	\&	S.D. of Ages
	No. of Licence Holders	\&	Employment/Household
	No. in Household	\&	Employment/Household
	No. in Household	\&	Employment/Household
	Mean Age of Household	\&	Employment/Household
	S.D. of Ages	\&	Employment/Household
	S.E.G. of Household	\&	Employment/Household
	Personal Accessibility	\&	Employment/Household
AREA 12 :	Income/Household	\&	S.D. of Ages
(Turnhouse)	No. in Household	\&	Mean Age of Household
	No. in Household	\&	Employment/Household
	S.D. of Ages	\&	Mean Age of Household
	Mean Age of Household	\&	Employment/Household
	Mean Age of Household	\&	Personal Accessibility
	S.D. of Ages	\&	Employment/Household
	S.E.G. of Household	\&	Personal Accessibility
AREA 4 :	Total Shopping Expenditure/Week	\&	No. in Household
(Swanston)	Expenditure/Week at Store	\&	No. in Household
	Mean Age of Household	\&	Personal Accessibility
	S.E.G. of Household	\&	Personal Accessibility
AREA 7 :	Total Shopping Expenditure/Week	\&	Mean Age of Household
(St Peters)	No. in Household	\&	Mean Age of Household
	S.D. of Ages	\&	Mean Age of Household
	S.E.G. of Household	\&	Mean Age of Household
	Employment/Household	\&	Mean Age of Household

TABLE 20
Variable Pairs in Areas Showing Non-Homogeneity

Appendix F-12 shows seven households with zero standard deviation of household ages indicating either one or two persons of the same age residing in the house. Appendix F-21 shows a large group of single persons and young couples with no children, as previously described in area 7. This is also seen in Appendices $F-23$ and $F-24$.

In area 1 (Moredun) twenty-five percent of households do not bulk-buy but low usage of large stores in other areas has not resulted in the non-homogeneity present in this area.

7.4.5 The scatter plots do not show non-linear relationships

 but attribute the non-homogeneity to either no relationship, the presence of households with zero use of large stores, or the tendency for certain variables to fall into categories. In area 1 (Moredun) Appendices F-1 and F-3 support the statement that a significant proportion of retired, or unemployed, people reside in this area. This, combined with the relative isolation of the area from the nearest large store, accounts for the non-homogeneity of the area.7.4.6 This section of the analysis has computed the correlation matrices at area, means and total matrix level for input to the later statistical analyses. In addition the variable pairs have been examined, as has their homogeneity across all areas. This is important for two reasons, firstly to build a generalised model for all areas the relationship between dependent and independent variables must be homogeneous and secondly when considering the reasons why areal variation occurs these bivariate relationships will aid in the interpretation of the variation. The initial analysis of the worst areas of non-homogeneity has indicated that part of that non-homogeneity is due to zero usage of large stores and categorising of variables. These effects and the reason
why no relationship exists in certain areas must be discussed once further analysis has been completed.

7.5 Identifying the Employment, Household Structure and Lifestyle Factors of Model 1 using Principal Components Analaysis

7.5.1 The second section of the analysis examines the postulate that the underlying data structure comprises two dependent factors and three independent factors. The two dependent factors are large store shopping, or bulk-purchasing of foodstuffs, and total household shopping and the three independent factors are employment, household structure and lifestyle. It is argued that these three influences, made up of a combination of household characteristics, determine both large store and total shopping usage.
7.5.2 The statistical technique selected in the previous chapter to determine this underlying data structure is principal components analysis. The analysis, which is carried out at area, area means and total matrix levels, does not use iteration because the without iteration method is a sufficiently good approximation for interpretation with a considerable saving in computer time. The rotation of the solution, using VARIMAX as discussed in the previous chapter, simplifies the structure and aids interpretation. (123)

7.5.3 Principal Components Analysis of the Total Data Matrix taking account of the effect of areal non-homogeneity on the data structure

The tests for non-homogeneity previously reported in this chapter identified area 1 (Moredun) and area 12 (Turnhouse) as the areas showing the greatest degree of non-homogeneity. Conversely area 3 (Clermiston), area 5

Abstract

(Waverley), area 8 (Saughton), area 9 (Craigleith Hill), area 10 (Pilton) and area 13 (Leith) showed either no, or an insignificant proportion of, non-homogeneity. These seven areas were subjected to a principal components analysis to investigate their component data structure. The other areas were then added, in order of increased non-homogeneity presence, to see the effect these areas would have on the stability of the data structure. Table 21 lists the ordering of the area additions.

The principal components resulting from the six computer runs are shown in Tables 22 to 26. The first factor is of prime importance as are the extreme polar weightings of each factor. These tables show that the data structure remains stable as areas are added, so that the presence of non-homogeneity in certain areas, especially areas 1 and 12, does not impair the structure. This is important in the context of a generalised model based on component variables. The second order components do show change primarily because of the fifth component generated in the first two computer runs. However this stabilises as the areas are aggregated and affects only the minor components.

7.5.4 The Composition of the Total Data Matrix Components

In accord with the structure of Model 1 the principal components analysis on the total data structure separated the dependent and independent variables. The following principal components were output from the analysis :

PCA	Run 1	:	Areas 3, 5, 8, 9, 10, 13
PCA	Run 2	:	Areas 2 and 14 added
PCA	Run 3	:	Areas 11 and 16 added
PCA	Run 4	:	Areas 3 and 15 added
PCA	Run 7	:	Area 7 added
PCA	Run 6	:	Area 1 and 12 added

TABLE 21
Total Data Matrix Principle Component Analysis -
Testing the Effect of Areal Non-Homogeneity on the Component Structure

Run 1 Areas: $3,5,8,9 \text {, }$ $10,13$	Run 2 Areas: $2,3,5,8,9 \text {, }$ $10,13,14$	Run 3 Areas: $\begin{gathered} 2,3,5,6,8 \\ 9,10,13 \\ 14 \end{gathered}$	Run 4 Areas: $\begin{aligned} & 2,3,4,5,6 \\ & 8,9,10,11, \\ & 13,14,15 \end{aligned}$	Run 5 Areas: $\begin{aligned} & 2,3,4,5,6 \\ & 7,8,9,10, \\ & 11,13,14, \end{aligned}$	Run 6 All Areas: 1,2,3,4,5 6,7,8,9, 10,11,12, 13,14,15
Factor 1					
Q 0.71016	Q 0.75152	Q 0.80799	Q 0.82217	Q 0.79658	Q 0.76408
K 0.67648	00.53059	M 0.71596	M 0.71445	M 0.66141	M 0.63038
$0 \quad 0.51451$	M 0.52133	00.69534	$0 \quad 0.68470$	00.63669	00.59053
M 0.45823	K 0.48066	K 0.50530	K 0.52775	K 0.50597	K 0.53264
E 0.35814	E 0.37800	E 0.49094	E 0.48377	E 0.42941	E 0.40878
D 0.20663	D 0.18601	L 0.32621	L 0.33967	L 0.31046	L 0.30528
I 0.15328	I 0.16143	D 0.29483	D 0.28792	D 0.26456	D 0.25135
L 0.12242	L 0.14849	J 0.20159	J 0.22416	J 0.19769	J 0.20617
G -0.00921	H 0.09010	H 0.19341	H 0.18056	H 0.15468	I 0.06908
H -0.02234	J 0.03431	I 0.07020	G 0.07677	I 0.05623	G 0.04768
F -0.02456	C 0.00791	G 0.04817	I 0.05828	G 0.04730	F 0.02715
J -0.04578	G 0.00423	C 0.03008	C 0.03417	F 0.01989	H 0.14060
C $\mathbf{- 0 . 0 5 1 9 0}$	F -0.03626	G 0.02608	F 0.01882	C -0.00357	c -0.01657
B $\mathbf{- 0 . 0 8 4 1 9}$	B $\mathbf{- 0 . 0 7 1 0 9}$	B $\mathbf{- 0 . 0 6 4 9 2}$	B $\mathbf{- 0 . 0 8 2 7 8}$	B -0.07522	B $\mathbf{- 0 . 0 6 7 5 7}$
N -0.69750	P -0.71852	P -0.67654	R -0.65859	P -0.66705	R -0.65777
P -0.79251	N -0.72931	R -0.68088	P -0.66092	R -0.67181	P -0.68477
R -0.82530	R -0.83003	N -0.82209	N -0.79810	N -0.80079	N -0.78626

TABLE 22
Total Data Matrix Principle Components Analysis -
Testing The Effect of Areal Non-Homogeneity

Run 1	Run 2	Run 3	Run 4	Run 5	Run 6
Areas:	Areas:	Areas:	Areas:	Areas:	All Areas:
$3,5,8,9$,	$2,3,5,8,9$,	$2,3,5,6,8$,	$2,3,4,5,6$	$2,3,4,5,6$	
10,13	$10,13,14$	$9,10,13$,	$8,9,10,11$,	$7,8,9,10$,	
		14	$13,14,15$	$11,13,14$,	
Factor 2					

G	0.90686	F	0.94345	F	0.93088	F	0.92041	F	0.91840	F	0.92133
C	0.87985	B	0.90737	B	0.89507	B	0.89220	B	0.89568	B	0.89993
E	0.71981	D	0.87826	D	0.85216	D	0.86609	D	0.86609	D	0.87168
M	0.50766	E	0.34221	E	0.36092	E	0.37391	E	0.37566	E	0.38904
O	0.36905	K	0.14572	M	0.18045	M	0.14556	M	0.15955	M	0.15779
H	0.14955	I	0.12171	H	0.15880	H	0.12201	O	0.12843	K	0.12499
Q	0.13496	M	0.10968	R	0.14322	K.	0.11577	K	0.12486	O	0.10657
I	0.08050	H	0.10147	L	0.13331	R	0.10728	R	0.10847	L	0.09341
P	0.06258	O	0.09089	O	0.13278	L	0.10542	L	0.09509	R	0.09163
D	0.05154	L	0.09958	K	0.12716	O	0.10001	H	0.09389	I	0.09105
L	0.03183	R	0.06106	J	0.10936	J	0.08597	I	0.06549	H	0.07963
F	0.02449	C	0.02174	I	0.03966	I	0.05808	J	0.05704	J	0.05461
B	0.01927	J	0.00187	C	0.00898	C	0.00273	C	0.00235	C	0.01665
R	0.01503	P	-0.00339	P -0.01409	P	-0.00575	P	-0.00578	Q	-0.04005	
K -0.06569	Q	-0.02927	Q	-0.01557	Q	-0.00580	Q	-0.02559	P	-0.04840	
J -0.08718	N	-0.11109	G	-0.12598	G	-0.12552	N	-0.14910	G	0.14728	
N -0.36122	G	-0.11857	N	-0.15617	N	-0.13175	G	0.15272	N	-0.15325	

TABLE 23
Total Data Matrix Principle Components Analysis -
Testing the Effect of Areal Non-Homogeneity

Run 1	Run 2	Run 3	Run 4	Run 5	Run 6
Areas:	Areas:	Areas:	Areas:	Areas:	All Areas:
$3,5,8,9$,	$2,3,5,8,9$,	$2,3,5,6,8$,	$2,3,4,5,6$	$2,3,4,5,6$	
10,13	$10,13,14$	$9,10,13$,	$8,9,10,11$,	$7,8,9,10$,	
		14	$13,14,15$	$11,13,14$,	
Factor 3					

F	0.95345	L	0.80545	J	0.76338	J	0.72525	J	0.72588	J	0.70530
B	0.91361	J	0.71809	L	0.69207	L	0.69207	L	0.69118	L	0.68533
D	0.88227	K	0.56519	K	0.66803	K	0.65363	K	0.67273	K	0.62593
E	0.28958	M	0.55083	I	0.56235	I	0.59964	I	0.60778	I	0.58362
M	0.13202	O	0.54422	R	0.28330	R	0.30684	R	0.30476	R	0.33277
O	0.10704	Q	0.37938	D	0.23375	O	0.21023	O	0.24642	O	0.24911
K	0.09758	R	0.29054	Q	0.22978	D	0.18368	Q	0.23135	D	0.20833
H	0.09357	E	0.27979	O	0.22585	Q	0.18128	D	0.20675	M	0.20375
R	0.08369	D	0.25501	E	0.21462	M	0.16979	M	0.19869	Q	0.20500
I	0.07900	I	0.09793	M	0.17768	E	0.14695	E	0.18436	E	0.17140
L	0.07127	F	0.04875	F	0.04539	F	0.04055	F	0.02396	F	0.03796
C	0.00189	G	0.02129	G	0.00073	N	-0.03757	N	-0.01325	N	-0.02572
J -0.01954	B	-0.07665	N	-0.04057	G	-0.03775	G -0.03877	B	-0.04985		
Q -0.02075	C	-0.08292	B -0.08170	B	-0.06162	B	-0.06117	G	-0.04464		
P -0.02470	H	-0.10099	C -0.12530	C	-0.10553	C	-0.11368	C	-0.11224		
G -0.09351	P	-0.19908	P	-0.31743	P	-0.33722	P	-0.33630	P	-0.32889	
N -0.12496	N	-0.33800	H	-0.55442	H	-0.58093	H	-0.56670	H	-0.57811	

TABLE 24
Total Data Matrix Principle Components Analysis -

Testing the Effect of Areal Non-Homogeneity

Run 1	Run 2	Run 3	Run 4	Run 5	Run 6
Areas:	Areas:	Areas:	Areas:	Areas:	Al1 Areas:
$3,5,8,9$,	$2,3,5,8,9$,	$2,3,5,6,8$,	$2,3,4,5,6$	$2,3,4,5,6$	
10,13	$10,13,14$	$9,10,13$,	$8,9,10,11$,	$7,8,9,10$,	
		14	$13,14,15$	$11,13,14$,	
Factor 4					

J	0.79076	G	0.91917	G	0.91257	G	0.90588	G	0.89459	G	0.88693
L	0.78963	C	0.90110	C	0.88873	C	0.88692	C	0.87870	C	0.87701
K	0.60144	E	0.63607		E	0.56588	E	0.56798	E	0.60991	E
Q	0.49787	M	0.36825	M	0.35663	M	0.36761	M	0.42149	M	0.45883
M	0.48002	O	0.24341	O	0.22463	O	0.25679	O	0.29087	O	0.33117
O	0.44145	H	0.13003	R	0.13192	R	0.16095	R	0.15655	R	0.16957
D	0.23501	I	0.10345	P	0.12827	P	0.07199	P	0.09307	P	0.07672
I	0.21296	P	0.07348	H	0.11816	L	0.04733	H	0.06786	Q	0.07467
R	0.20500	Q	0.06530	L	0.08332	I	0.02404	L	0.06478	L	0.07091
E	0.19607	R	0.02805	I	0.05193	H	0.02249	Q	0.06289	H	0.06657
H	0.03441	L	0.01712	Q	0.03581	B	0.01941	I	0.04492	I	0.03917
F	0.02173	B	0.01658	B	0.01098	Q	0.00614	B	0.01738	B	0.03142
G -0.04259	F	0.00927	F -0.00778	F	-0.01335	D	-0.01032	D	-0.00711		
B -0.08456	D	0.00574	D -0.03461	D	-0.03686	R	-0.02072	K	-0.00837		
P -0.09180	K	-0.03586	J	-0.03813	K	-0.05494	F	-0.02569	F	-0.01016	
C -0.11452	J	-0.08652	K	-0.05282	J	-0.09497	J	-0.05152	J	-0.04564	
N -0.26208	N	-0.23148	N	-0.13301	N	-0.16271	N	-0.11618	N	-0.13656	

TABLE 25

Total Matrix Principle Components Analysis -
Testing the Effect of Areal Non-Homogeneity

	Run 1 Areas: $\begin{gathered} 3,5,8,9 \\ 10,13 \end{gathered}$	Run 2 Areas: $2,3,5,8,9 \text {, }$ $10,13,14$	Run 3 Areas: $\begin{gathered} 2,3,5,6,8 \\ 9,10,13 \\ 14 \end{gathered}$
	Factor 5	Factor 5	Factor 5
H	0.83627	I 0.71503	
P	0.16926	K 0.41437	
N	0.15413	J 0.32529	
E	0.13829	L 0.10290	
Q	0.13071	D 0.08345	
M	0.04252	N 0.07395	
G	0.02828	E 0.04348	
L	0.02256	F 0.00273	
R	0.01614	G 0.00036	
B	0.01072	Q -0.00076	
F	0.00224	R -0.02069	
	-0.00527	B -0.05039	
	-0.01111	C -0.07039	
	-0.08399	0-0.15701	
	-0.11461	M -0.21732	
	-0.23358	P -0.30061	
	-0.52075	H -0.63627	

TABLE 26
Total Data Matrix Principle Components Analysis -
Testing the Effect of Areal Non-Homogeneity

Dependent Variables (79.6\% variance explained)

Factor 1 (45.7\%)

Factor 2 (33.9\%)

Variable We	Weighting	Variable		Weighting
Exp.at store (D)	0.93	Total shopping	freq. (G)	0.91
Freq.at store (F)	0.91	Total shopping	hours (C)	0.89
Hours at store (B)	0.86	Total shopping	expend. (E)	0.68

Independent Variables (63.6\% variance explained)

Factor 1 (38.2\%) Factor 2 (15.2\%) Factor 3 (10.2\%)

Variable	Weighting	Variable	eighting	Variable	Weighting
$\begin{aligned} & \text { Household } \\ & \text { Size (M) } \end{aligned}$	0.89	No. of Cars (J)	0.73	Personal Access (R)	0.87
$\begin{aligned} & \text { S.D. of } \\ & \text { Ages (0) } \end{aligned}$	0.86	Income (K)	0.69	SEG (P)	0.59
Mean Age (N)	-0.74	No. of Lics.(L)	0.65	Employment (Q)	-0.63
		$\begin{aligned} & \text { Freezer Ow } \\ & \text { ship (I) } \end{aligned}$	$\begin{aligned} & \text { ner- } \\ & 0.62 \end{aligned}$		

The data structure shows the dependent variables clearly split into a large store component and a total shopping component and the independent variables split into three components which correspond to the household factor, the Ifestyle and the employment factor of Model 1. The dependent components explain 79.6% of the dependent variable variance and the independent components explain 63.6% of the independent variable variance. The household factor is the dominant component explaining 38.2% of the variance. The three variables comprising this factor have weightings showing their importance. In the third factor note that as employment .rises the personal accessibility
of the principal shopper falls reflecting the increasing number of working wives in the population.

The bulk-buying expenditure variable is of prime importance in the first dependent variable component but the total shopping expenditure variable is of third order importance in the second component. This indicates that once the household decides to spend a certain budget at a large store the frequency of smaller shopping trips becomes more important rather than the amount of budget residue left in the household shopping account. This minor shopping trip budget shows less variation than frequency and duration of these trips.

7.5.5 The Principal Components Analysis of each Individual Area

The analysis described in the previous section indicated a meaningful overall data structure that corresponds with Model 1 of the conceptual framework. This structure was not affected by the non-homogeneity present in some areas. This section carries out a principal components analysis on each area to investigate if the total data structure occurs at individual area level thus indicating that a generalised model, based on Model 1, can be achieved.

Tables 27 and 28 1ist the component structure by area of the dependent and independent variables respectively. The percentage of variance explained by each component after rotation is listed underneath each component. The percentage of variance explained varies from eighty-five percent to one hundred percent.

The dependent variable structure in all areas, except area 11 (Cammo), conforms to the general structure. This is not the case with the independent data structures. The primary factor in the majority of areas is household

Area No.	Factor 1		$\text { Factor } 2$		Factor 3	
1	F	0.98		C 0.99		
	B	0.92		G 0.81		
	D	0.89		E 0.40		
	(60.8\%)		(39.2\%)			
2	B	0.99		$C \quad 0.96$	D	0.70
	F	0.87		G $\quad 0.79$	E	0.70
	D	0.49				
	(54.2\%)		(28.5\%)			(17.3\%)
3	F	0.96		G $\quad 0.97$		
	B	0.86		E 0.78		
	D	0.75		C 0.64		
	(70.4\%)		(29.6\%)			
4	D	0.98		G $\quad 0.85$		
	F	0.85		C 0.83		
	B	0.84	E	E 0.59		
	(60.7\%)		(39.3\%)			
5	G	0.96		D 0.90		
	C	0.93	F	F 0.83		
	E	0.86	B	B 0.76		
	(62.2\%)		(37.8\%)			

TABLE 27a
Principle Components Analysis - Factor Composition for Each Area (Dependent Factors)

Area No.	$\begin{array}{r} \mathrm{Fa} \\ \text { Variable } \end{array}$	or 1 Weighting	Varia	Factor 2 ble Weighting	$\begin{gathered} \text { Fac } \\ \text { Variable } \end{gathered}$	$\text { r }{ }_{\text {Weighting }}$
6	D	0.88	C	0.98		
	B	0.85	G	0.91		
	F	0.83	D	-0.36		
	E	0.78				
	(59.4\%)		(40.6\%)			
7	B	0.96	E	0.83		
	D	0.88	G	0.80		
	F	0.81	C	0.55		
	(62.1\%)		(37.9\%)			
8	F	0.95	G	0.95		
	D	0.93	C	0.92		
	B	0.89	E	0.65		
	(56.8\%)		(43.2\%)			
9	D	0.96	G	0.89		
	F	0.85	C	0.81		
	B	0.82				
	(66.0\%)		(34.0\%)			
10	F	0.99	G	0.99		
	B	0.90	C	0.71		
	D	0.89	E	0.61		
	(60.7\%)		(39.3\%)			

TABLE 27b
Principle Components Analysis - Factor Composition for Each Area (Dependent Factors)

Area No.	Factor 1		```Factor 2 Variable Weighting```		Factor 3	
11	E	0.98	B	0.73	C	0.62
	D	0.95	G	-0.74	B	0.42
	F	0.50				
	(56.8\%)		(27.1\%)		(16.0\%)	
12	D	0.99	C	0.89		
	F	0.84	G	0.84		
	B	0.75	E	0.58		-
	E	0.70				
	(69.8\%)		(30.2\%)			
13	G	0.96	F	0.98		
	E	0.87	D	0.83		
	C	0.82	B	0.70		
	(69.5\%)		(30.5\%)			
14	D	0.96	G	0.92	-	
	F	0.89	C	0.88		
	B	0.87	E	0.52		
	(62.8\%)		(37.2\%)			
15	G	0.97	D	0.97		
	C	0.79	F	0.68		
	E	0.76	B	0.66		
	(53.4\%)		(46.6\%)			

TABLE 27c
Principle Components Analysis - Factor Composition for Each Area (Dependent Factors)

Area Factor 1 Factor 2 Factor 3 Factor 4

 No. Variable Weighting Variable Weighting Variable Weighting Variable Weighting1

R	0.92
P	0.87
N	0.64
K	-0.70
	(35.8\%)

2

M	0.63
0	0.63
P	0.54
R	0.48
I	0.62

(18.8\%)

J	0.85
K	0.58
I	0.42
Q	0.40
L	0.38
	(13.9\%)

L	0.79
Q	-0.76
(11.5%)	

\[

\]

3

M	0.90
0	0.87
Q	0.71
L	0.51
I	-0.52
N	-0.68
	(44.4%)

	0.87
K	0.87
Q	0.54
P	-0.76
R	-0.83

(22.2\%)

4

K	0.80
L	0.80
I	0.78
J	0.70
P	-0.74
	(39.3\%)

M	0.87	Q	0.76
0	0.84	K	0.43
N	-0.89	R	-0.89

5

Q	0.84
O	0.84
M	0.80
I	0.64
P	-0.69
R	-0.79
N	-0.92
	(58.0%)

J 0.92
L
K
0.88
0.84
(19.8\%)
(58.06)

J	0.61	I	0.48
R	0.56	L	0.47
N	0.40	J	-0.64
I	0.38		
K	0.35		
	(12.2%)		(10.0%)

(15.0\%)

TABLE 28a
Principle Components Analysis - Factor Composition for Each Area
(Independent Factors)

Area Factor 1 Factor 2 Factor 3 Factor 4
No. Variable Weighting Variable. Weighting Variable Weighting Variable Weighting

6

M	0.73
Q	0.72
O	0.63
P	-0.84
N	-0.91

I	0.83
J	0.77
Q	0.53
	0.51

(19.6\%)
(13.4\%)

7

> (37.8\%)

Q	0.83
J	0.78
K	0.71
I	0.62
L	0.48
P	-0.36

(38.7\%)
(15.7\%)
(12.8\%)

Q	0.84
M	0.81
O	0.78
K	0.78
R	-0.69
P	-0.75
N	-0.89

(50.4\%)
(12.7\%)
(11.7\%)

9

K	0.81
Q	0.68
O	0.65
N	-0.78
P	-0.95

I	0.89
M	0.75
Q	0.49
O	0.48
N	0.43

L	0.82
J	0.82
R	0.65

(18.3\%)
(10.2\%)

10

0	0.90
M	0.86
L	0.47
N	-0.85
	(37.9%)

K
Q
J
I
0.89
0.85
0.72
0.54
(18.6\%)

R	0.83
P	0.75
L	0.44
J	0.37
Q	-0.29

(14.7\%)

TABLE 28b
Principle Components Analysis - Factor Composition for Each Area (Independent Factors)

Area Factor 1
 Factor 2
 Factor 3
 Factor 4

No. Variable Weighting Variable Weighting Variable Weighting Variable Weighting

11

Q	0.91	0	0.77
J	0.86	M	0.76
L	0.85	I	0.74
K	0.79	P	-0.71
R	-0.59	N	-0.93
	(58.1%)		(14.4%)

12

$$
\begin{array}{lr}
\text { M } & 0.87 \\
0 & 0.83 \\
\mathrm{~N} & -0.46 \\
& \\
& (28.1 \%)
\end{array}
$$

13

O	0.84
M	0.81
N	-0.85

(41.4\%)

J	0.80
L	0.66
P	-0.74

(17.1\%)
(12.9\%)
(12.1\%)
(41.
(17.1\%)

Q	0.83
K	0.79

I	0.72
N	0.61
R	-0.67

R 0.93
0.67
-0.63
-0.63

L $\quad 0.96$
Q 0.56

$$
-0.85
$$

(41.48)

M	0.91
O	0.87
L	0.70
K	0.68
P	-0.73
N	-0.94

(56.2\%)

15

M	0.92
O	0.86
K	0.83
N	-0.73
P	-0.73

Q	0.67
I	0.65
K	0.50
J	0.49
P	-0.41
R	-0.76

(12.6\%)
(43.3\%)
(15.4\%)
(12.6\%)
(11.1\%)

TABLE 28c
Principle Components Analysis - Factor Composition for Each Area
(Independent Factors)
structure but it contains other prominent variables pertinent to the area. The other two general factors can be identified in some areas but were intermingled with other variables. The number of components varied from two to four.

This result corresponds to the initial areal investigation based on the profile of means and standard deviations by area and the local disaggregation that could be achieved. It may be possible to use the stable total data matrix structure on an aggregated basis or if the same structure is confirmed by examination of the means data matrix. Conversely the second model using individual areas may be able to respond to this areal variation. The initial criticism of Model 1 still pertains in that the measurement of the five factors would pose severe practical problems.

7.5.6 Area Means Matrix Principal Components Analysis, Without a Spatial Accessibility Index

The area means matrix is listed in Table 9. These average values for each variable over all areas smooth the household variation within areas and provide an area measure commensurate with zoning in transportation modelling. The principal components analysis was carried out with the dependent and independent variables separated, as with the total matrix. The component structure is as follows :

Dependent Variables (100\% variance explained)

Factor 1 (61.2\%) Factor 2 (38.8\%)
Variable Weighting Variable Weighting

Exp.at store (D) 0.93 Total shopping freq. (G) 0.99
Freq.at store (F) 0.93 Total shopping hours (C) 0.69
Hours at store (B 0.72 Total shopping expend. (E) 0.27

Independent Variables (84.8% variance explained)
Factor 1 (47.1\%) Factor 2 (24.7\%) Factor 3 (13.0\%)

Variable Weighting		Variable Weighting		Weighting	
Freezer		Mean Age		No. in	
Ownership(I)	0.92	(N)	0.83	Household(M)	0.92
Income (K)	0.90	SEG (P)	0.77	SD of ages (0)	0.87
No. of		Employme		Mean Age	
Lics.(L)	0.89	(Q)	-0.61	(N)	-0.28

Personal
Access (R) 0.85

The dependent variable structure corresponds with the total data matrix structure showing the two shopping components explaining all the variance in the variable means. The independent structure also corresponds with the total data matrix structure except for the presence of personal accessibility in the lifestyle component, mean age in the employment component and the relegation of the household structure component to the third order. Note that the variable J is omitted due to collinearity problems and this has affected the composition of the first component.

7.5.7 Area Means Matrix Principal Components Analysis, with a Spatial Accessibility Index

The combining of area means in one matrix means that competition is no longer constant within the matrix. The spatial accessibility of each area differs according to the opportunities to bulk-buy with respect to that area. However the data structure shown in the preceding section indicated that the effect of competition did not radically affect the stability of the data structure. In chapter 4 accessibility was argued as comprising three elements :
a) the personal accessibility of the principal shopper
b) the spatial accessibility of the store
c) the relative attraction of the store.

The first term has been included in the analysis, the second and third terms have not. It was proposed to use the basic form of the accessibility model :

$$
s_{i}=\sum_{j=1}^{n} \frac{A_{j}}{d_{i j}} \lambda
$$

where \begin{tabular}{rl}

$S_{i}=$ \& | spatial accessibility to stores 1 to |
| :--- |
| n from households in area 1 |

$A_{j}=$ \& attractiveness of store j

$d_{1 j}=$ \& straight-line distance from 1 to j

λ \& $=$ callbration factor.
\end{tabular}

In keeping with the concept of integrating the disaggregate trip generation model with a standard gravity-type distribution model it is proposed to use retail sales area as the measure of attractiveness and
straight-line distance as the measure of deterrence. These are also in keeping with the strategic role of the model in development control. If it is assumed that the maximum driving contour is twenty-five minutes all sixteen large shopping stores in the study area are included. These stores, as identified by the Physical Planning Department, Lothian Regional Council are listed in Table 29. The locations of the stores with respect to the fifteen study sub-areas are shown in Figure 23.

The spatial accessibility indices were computed using a power factor of two for lambda. This has been proved by empirical studies to be the power function best suited to shopping models. ${ }^{(124)}$ These values are listed in Table 30. However values for lambda of one and three will also be computed and compared.

The principal components analysis of the means data matrix with spatial accessibility index was carried out with the dependent and independent variables separated. The resultant data structure is as follows :

Dependent Variables (100% variance explained)

Factor 1 (47.4\%)
Factor 2 (31.3\%)

Variable	Weightin	Variable Weig	Weighting
Exp.at stor	(D) 0.93	Total duration of shopping(C)	g(C) 0.99
Freq.at stor	(F) 0.93	Total freq. of shopping(G)	(G) 0.69
Duration at store (B)	0.73	Total expend. of shopping(E)	0.27

Independent Variables (79.5% variance explained)

Factor 1 (44.4\%) Factor 2 (23.1\%) Factor 3 (12.0\%)

Variable	Weighting	Variable Wei	ighting	Variable	hting
Freezer Ownership(I)		No. in		Mean Age	
) 0.92	Household(M)	0.92	(N)	0.81
Income (K)	0.89	SD of ages(0)	0.84	SEG(P)	0.77
No. of Lics.(L)		Spatial		Employment	
	0.88	Access(S)	0.60	(Q)	-0.61
Personal Access (R)		Mean Age			
	0.85	(N)	-0.32		

The addition of spatial accessibility has the effect of raising the household structure factor to the second order thereby bringing the means data structure closer to the total data structure. The household structure factor is now a composite measure which includes spatial accessibility. Table 31 shows the variables with which the spatial acessibility index is correlated. Note that the three large store variables, in addition to total shopping expenditure, are correlated. Spatial accessibility is intercorrelated with the independent variables of income and household size: This indicates that the spread of bulk-buying opportunities influences the use of large stores and indeed the total shopping budget. This is supported by, the bivariate relationship with income. The positive relationship with household size is a measure of the marketing potential of the stores in that as household size rises the opportunity to bulk-buy rises. It is to be noted that none of these bivariate relationships is particularly strong and the overall effect on the component structure is to reduce the percentage of the variance explained from 100% to 78.7% for the dependent structure and from 84.8% to 79.5% for the independent structure.

Gross	Sales			
Ft^{2}	M^{2}	Ft^{2}	M^{2}	Data Located

Local Centres

Safeway, East Craigs	20,000	1,860	16,000	1,490	1	1
Safeway, East Craigs	26,000	2,420	20,000	1,860	2	1
Safeway, East Craigs	-	-	19,000	1,770	6	1
Safeway, Jock's Lodge	14,250	1,350	-	-	2	4
Safeway, Jock's Lodge	15,600	1,450	-	-	10	4
Safeway, Jock's Lodge	-	-	10,000	930	6	4
Safeway, Davidson's Mains	14,250	1,320	10,330	960	2	2
Safeway, Davidson's Mains	15,800	1,470	-	-	10	2
Safeway, Davidson's Mains	-	-	10,100	940	6	2

Stores Outwith Existing Centres

Asda, Milton Road	71,260	6,630	39,000	3,630	2	6
Asda, Milton Road	-	-	42,300	3,930	6	6
Asda, Milton Road	69,370	6,450	46,930	4,360	8	6
Asda, Milton Road	73,000	6,800	42,000	3,900	9	6
Trendcentre, Granton	43,500	4,050	30,000	2,790	2	3
Trendcentre, Granton	-	-	40,000	2,720	6	3
Trendcentre, Granton	40,000	3,700	30,000	2,800	9	3
Trendcentre, Chesser Ave.	45,000	4,190	$18,500 *$	$1,720 *$	2	14
Trendcentre, Chesser Ave.	41,000	3,180	$22,000 *$	2,050	1	14
Trendcentre, Chesser Ave.	-	-	$23,300 *$	$2,070 *$	6	14
Tesco, Drumdryden Drive	29,000	2,700	18,000	1,670	4	15

[^5]

City Centres

Templeton, St James Centre	13,000	1,210	9,800	910	1	8
Templeton, St James Centre	15,690	1,460	9,010	840	2	8
Marks \& Spencers, Princes St.	-	-	$12,040 *$	$1,120 *$	3	9
British Home Stores, Princes St.	-	-	$8,640 *$	800^{*}	3	10
Littlewoods, Princes St.	-	-	$7,120 *$	$600 *$	3	11

Inner Suburbs

Laws, Nicolson Street	9,800	910	9,400	870	1	7
Fine Fare, Dalry Road	-	-	11,000	1,020	1	12
Fine Fare, Dalry Road	18,620	1,730	11,540	1,070	2	12
Fine Fare, Dalry Road	-	-	11,460	1,070	6	12
Fine Fare, Dalry Road	14,400	1,340	11,500	1,070	5	12

District Centres

Scotmid, Portobello	-	-	-	-	-	5
Presto, Wester Hailes	59,000	5,490	39,000	3,630	2	16
Preston, Wester Hailes	59,000	5,500	39,000	3,600	2	16
Safeway, Morningside	26,110	2,430	18,690	1,740	7	13
Safeway, Morningside	-	-	20,770	1,930	6	13

TABLE 29 (Contd.)
Large Foodstores in Edinburgh District

Data Sources :

1. Store Managers (January/February 1982)
2. Edinburgh District Floorspace Survey (1976)
3. Personal Inspection (June 1982)
4. Personal Inspection (September 1982)
5. Personal Inspection (October 1982)
6. IGD Large Stores Directory (1982) or Superstore Directory (1982)
7. Planning Application (January 1979)
8. Measurement of plans for reorganisation of Store (May 1982)
9. URPI List of Hypermarkets and Supèrstores (1982)
10. Montagu Evans \& Son 'Shopping Survey Report' (September 1978)
11. New Towns Annual Report 1981.

TABLE 29 (Contd.)
Large Foodstores in Edinburgh District

Area No.	$\mathrm{S}_{\boldsymbol{j}}$	Area No.	$\mathrm{S}_{\boldsymbol{j}}$
1	0.4	8	1.8
2	2.0	9	1.1
3	1.5	10	1.3
4	0.5	11	1.6
5	1.6	12	0.8
6	19.6	14	1.2
7	3.2	15	1.2

NOTES:

1) Area 6 is adjacent to a superstore.
2) $\lambda=2$. Other values of lambda are compared with this value later in the analysis.

TABLE 30
Spatial Accessibility Indices for Individual Areas

Variable Pair	Pearson Correlation Coefficient	Significance Level (x 100\%)
$\begin{gathered} S-B \\ \text { (Duration at Store) } \end{gathered}$	0.52	0.02
$\begin{aligned} & S-D \\ & \text { (Expenditure at Store) } \end{aligned}$	0.44	0.05
```S - E (Tot.Shopping Expenditure)```	0.51	0.02
```(Frequency at Store)```	0.55	0.01
$\underset{\text { (Income) }}{\mathrm{S}-\mathrm{K}}$	0.46	0.04
$\begin{gathered} S-M \\ \text { (Household Size) } \end{gathered}$	0.51	0.03

TABLE 31
Pearson Correlation Coefficients for Spatial Accessibility and Variables Exhibiting a Significant Relationship

If the variables are not separated and a principal components analysis is carried out, the addition of spatial accessibility creates a fifth order component of spatial accessibility, expenditure at store and total duration and total expenditure of shopping. This component explains 7.5% of the variance in the variables. As is expected spatial accessibility to bulk-buying opportunities does relate to usage of these large stores but is of minor importance in explaining the measurement of trip rate.

7.5.8 Comments on the Principal Components Analysis

The purpose of the principal components analysis was to confirm the factor structure of Model 1 and thereby define a usage factor which could be predicted by independent factors based on household characteristics, i.e. the analysis indicates what factors are being measured by the dependent and independent variables. The analysis did confirm the postulated structure of Model 1 at total data matrix and means data matrix level and the non-homogeneity of variable pairs in some areas did not affect the stability of the structure.

However the analysis of the individual areas showed that although the dependent structure held true the independent structure was unstable. The general factors were evident in over half the areas but were influenced by dominant local factors such as proximity of a large store and high proportion of retired persons. This can have the effect of increasing, or reducing, the bulk-buying capacity of an area in a way that would not be expected from the level of income in the area. This means that the effects of such external influences as proximity of a large store and internal influences such as a large proportion of retired households affect the stability of the general model. This consequently throws doubt on the abllity to
generalise a structure over all areas at the househild level. Both the individual areal profiles and areal data structures indicate that the shopping usage variables can be represented by a bulk-buying term and a total shopping term. However this usage level is arrived at in different ways depending on the variable strengths in that area. Each area has its own dominant characteristics that influence the shopping usage patterns of the area. The end result may be the same level of superstore usage but the influencing variable combinations may be different.

Thus this implies that a model based on the three factors of model 1 would be limited in that the general factor structure of Model 1 cannot cope with the within areal variations. As these variations are subdued through aggregation, Model 1 can represent the generalised structure. This is seen in the structure of the total data matrix and the means matrix. Therefore a trip prediction model based on Model 1 would apply at the aggregated level and not at individual area level. This should be evident from the multiple regression analysis.

7.6 Examination of the Strength and Structure of the Relationship between the Dependent and Independent Variables using Canonical Correlation Analysis

7.6.1 Before developing the trip prediction capabilities of the postulated models it is necessary to examine the strength and structure of the relationship between the dependent and independent variables to see if there is a basis for model development. As has been discussed in chapter 6 canonical correlation analysis is a generalisation of multiple regression analysis which enables the maximum relationship to be determined between a dependent and independent set of variables. The canonical correlation coefficient indicates the extent of the correlation between the two variable sets when the
variables are weighted so as to yield their maximum correlation. As with principal components analysis the canonical variates are independent and uncorrelated.

7.6.2 Canonical Correlation Analysis for Individual Areas

A canonical correlation analysis was carried out for each area using all the dependent and independent variables excepting House Type (H) and Number of Household Cars (J) both of which were causing multi-collinearity problems. Table 32 lists details of the analysis. The first order canonical variates significant at the 5% level are shown, except in areas $1,4,5,12$ and 13 where no significant variate was found and the first order variate is listed. The eigenvalues can be multiplied by one hundred to obtain the percentage of the variance explained in the two variable sets. The addition of Number of Household Cars (J) to area 13 brought the canonical coefficient up to 0.92 and the significance level to 0.03 . The variable J did not produce multi-collinearity in area 13. The addition of J to areas $1,4,5$ and 12 did not alter the level of significance.
> 7.6.3 These individual area results show that a strong relationship exists between the dependent and independent variables. The total data matrix however, shows only 41% of the variance explained and supports the conclusion, indicated by the principal components analysis, that the household characteristics of an area can predit usage of large stores but do so in different ways depending on the dominant characteristics of the area.

7.6.4 The Structure of the First Order Canonical Variates

The variables, weighted over 0.5 , comprising the first order variates are shown in Table 33. There is no consistent structure to either the dependent or

Area No.	Eigenvalue	Canonical Correlation Coefficient	With S Lambda	Chi-Square	D.F.	Significance Level
1	0.88	0.94	0.01	59.38	54	0.29
2	0.98	0.99	0.00	73.78	54	0.04
3	0.93	0.96	0.00	76.24	54	0.03
4	0.81	0.90	0.03	58.26	54	0.32
5	0.77	0.88	0.04	52.80	54	0.52
6	0.94	0.97	0.00	78.98	54	0.02
7	0.82	0.91	0.01	80.26	54	0.01
8	0.84	0.92	0.01	88.78	54	0.00
9	0.92	0.96	0.01	81.13	54	0.01
10	0.87	0.94	0.01	81.42	54	0.01
11	1.00	1.00	0.00	89.80	54	0.00
12	0.88	0.94	0.02	70.69	54	0.06
13	0.74	0.86	0.02	71.42	54	0.06
14	0.87	0.93	0.01	72.08	54	0.05
15	0.87	0.93	0.02	73.44	54	0.04
16	0.41	0.64	0.47	271.84	54	0.00
(total)						

TABLE 32
Canonical Correlation Analysis Between Variables B, C, D, E, F and G and I, K, L, M, N, O, P, Q and R for Each Individual Area

Area No.	Usage Index Structure of Canonical Variate	Independent Variable Structure of Canonical Variate
1	1.8F-0.6E-1.9B	0.6R-1.2M
2	1.2D + 1.0B-0.8C-1.6F	$0.9 \mathrm{M}+0.5 \mathrm{P}-0.6 \mathrm{~J}-0.80$
3	1-11E	0.9M + 0.7R-0.6P
4	$1.6 \mathrm{D}+1.3 \mathrm{G}-0.7 \mathrm{E}-1.3 \mathrm{~F}$	$1.4 \mathrm{M}+0.7 \mathrm{~N}-0.50$
5	$1.5 \mathrm{C}+1.3 \mathrm{D}-0.8 \mathrm{C}$	$1.0 Q+0.5 \mathrm{P}+0.5 \mathrm{R}-0.70-0.8 \mathrm{~N}$
6	$1.5 E+1.0 C-2.4 G-2.7 D$	$-0.8 \mathrm{M}-0.6 \mathrm{~N}-0.5 \mathrm{~J}(+0.2 \mathrm{I})$
7	1.3E-0.6G	0.7K-0.5Q-0.7N
8	$1.6 \mathrm{D}+0.9 \mathrm{C}-0.9 \mathrm{~B}-1.8 \mathrm{E}$	$-1.0 \mathrm{M}+0.70$
9	1.9D-1.1B	$0.7 Q+0.5 I(-0.4 P)$
10	$0.6 \mathrm{G}+0.5 \mathrm{D}-0.9 \mathrm{C}$	$0.8 \mathrm{M}+0.7 \mathrm{Q}+0.6 \mathrm{~N}-0.7 \mathrm{~L}$
11	0.6D $+0.6 \mathrm{~F}-0.8 \mathrm{~B}$	$1.0 \mathrm{Q}+0.6 \mathrm{~J}+0.5 \mathrm{~K}-0.7 \mathrm{P}-1.3 \mathrm{~L}$
12	0.5C-1.2B	$0.70+0.6 \mathrm{~K}+0.5 \mathrm{~N}+0.5 \mathrm{P}(-0.1 \mathrm{~L})$
13	0.6D-1.0G-1.4F	0.9J $+0.5 \mathrm{~L}-0.80-0.8 \mathrm{P}-1.2 \mathrm{~K}$
14	1.1B-1.1D	0.6M $+0.5 \mathrm{~N}-0.5 \mathrm{~K}-0.8 \mathrm{P}-0.9 \mathrm{~L}$
15	-0.9E (+0.4D)	$0.9 Q+0.7 N-0.70$
16	$0.8 \mathrm{E}+0.5 \mathrm{D}(-0.3 \mathrm{~B})$	$0.6 \mathrm{M}(-0.04 \mathrm{~N})$

TABLE 33
Structure of First Order Canonical Variates for Individual Areas
independent variable sets over the fifteen areas. Groups of similar areas can be identified, such as areas 2,4 and 13 whose poles are expenditure at the store (D) and frequency at the store (F), but the independent structure is not the same for these areas. Household structure figures prominently on the independent side of the equation as does shopping expenditure on the dependent side. This is in line with the strength of the bivariate relationships previously examined. The total data matrix shows three significant canonical variates which explain $41 \%, 10 \%$ and 6% respectively of the variance in the variable sets. The structure of these variates does not relate to the individual area structures.

The analysis indicates that a general model to household level will not be possible due to the variation within each area. There is however a relationship between household characteristics and store usage which can be further explored. Also the possibility of combining areas will be explored, as discussed in the previous chapter, using cluster analysis.

7.6.5 Canonical Correlation Analysis using the Means Data Matrix, with and without the Spatial Accessibility Index

The canonical correlation analysis for the means data matrix, with and without the spatial accessibility index, is shown in Table 34. It was expected, based on the results of the principal components analysis, that a strong canonical correlation would exist between the two sets of variables and this is shown to be true. The effect of adding spatial accessibility is the appearance of a third significant canonical variate.

The structure of the variates is shown in Table 35. The two dependent variates are based on shopping expenditure

Eigenvalue	Canonical Correlation Coefficient	With S Lambda	Chi-Square	D.F.	Significance Level
Without S :					
1.00	1.00	0.0	9999.0	60	0.00
1.00	1.00	0.0	9999.0	45	0.00
$(0.96$	0.98	0.0	32.17	32	$0.46)$
With S :	1.00	0.0	9999.0	66	0.00
1.00	1.00	0.0	9999.0	50	0.00
1.00	1.00	0.0	9999.0	36	0.00
1.00	0.98	0.06	25.18	24	$0.40)$
0.96					

TABLE 34
Canonical Correlation Analysis for Means Data Matrix with and without the Variable S
Variate \quad Dependent Variables \quad Independent Variables

Without S :

1	$0.8 D+0.7 B-0.6 E$	$1.1 R+0.9 K+0.70-1.4 P-2.5 L$
2	$1.4 G _1.0 B-0.6 D-1.4 C$	$1.9 J+1.8 I+1.2 R-1.1 N-1.2 P-5.4 L$

With S :

1
2
$1.0 B(-0.3 E)$
$1.3 C-0.8 B-1.4 G$
$1.6 E+1.4 B-1.3 C-2.6 D$

$$
\begin{aligned}
1.3 R+0.9 K & +0.60-1.3 P-2.5 L \\
5.4 L+1.2 P & +1.1 N-1.1 R-1.9 I-2.0 J \\
1.3 L+0.9 R & +0.5 Q+0.5 P-0.60 \\
& -0.9 S-0.9 I-1.1 J
\end{aligned}
$$

TABLE 35
The Structure of the Canonical Correlation Variates with respect to the Means Data Matrix, with and without S
and total shopping usage and the independent variates are based on the number of licenses (L), the number of cars (J) and the personal accessibility of the principal shopper (R). The addition of spatial accessibility adds a third variate based on duration of stay at the store (B) and expenditure at the store (E). These structures reinforce the previous analysis at total data matrix and individual area level that a common usage factor cannot be identified over all the areas at household level.

7.6.6 The Value of the Power Function, Lambda, in the Spatial Accessibility Index

As previously mentioned in the chapter the value of two was assumed for lambda ${ }^{(124)}$, however values of one and three were examined to investigate their effect. Appendix G shows the results of the investigation. Appendix G-1 shows the principal components analysis for the three values of lambda. Only the value of two generates the fifth spatial accessibility component and the structure is stable for values of two and three. Appendix G-2 shows the canonical correlation coefficients for the three values of lambda. The value of two shows a third significant variate with a canonical coefficient of one. Appendix G-3 lists the variate structures and shows that a value of three for lambda causes instability. On the basis of these results and the previous work referred to earlier it is proposed that the value of two for the power function lambda is accepted.

7.6.7 The Reduction in Strength of the Overall Canonical Correlation with Aggregation

It has been shown that as areas are aggregated the principal components structure tends to the general structure. However as areas are aggregated the effect of areal variation reduces the strength of the relationship
between the dependent and independent variables. Thus although the canonical correlation for each area is strong the overall canonical correlation for the total data matrix is 0.64. Table 36 shows the area groupings used to test if the non-homogeneity within areas affected the component data structure. These groupings were subjected to a canonical correlation analysis and the diluting effect of gradual aggregation can be clearly seen. No one area is responsible for the dilution of relationship Indeed the addition of areas 1 (Moredun) and 12 (Turnhouse), areas which showed the greatest degree of non-homogeneity, decrease the overall canonical correlation by only 0.02%. This gradual dilution of relationship is expected since the proportional increase in the size of the aggregated group at each stage of the analysis does not exceed 10\%. Thus the interpretation of each area describing usage in different ways is supported. The areal variations work against each other to dilute the strong areal relationships. The means data matrix smooths out the variation within areas, at household level, to produce a strong general canonical coefficient.

7.6.8 Canonical Correlation Analysis using only the Three

Bulk-Buying Dependent Variables and all Independent Variables

The canonical correlation analysis carried out to date has been based on the six dependent variables. The conceptual framework, subsequently confirmed by the principal components analysis, defined two sets of dependent variables based on the bulk-buying of food and the total food budget of the household. The two proposed models attempt to relate household characteristics and store usage and therefore if the three store usage variables can be separately modelled the application becomes easier. Table 37 shows a canonical correlation analysis using the

Areas	$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	Eigenvalue	Canonical Correlation Coefficient	With S Lambda	Chi-Square	D. F.	Significance Level
$\begin{aligned} & 3,5,8, \\ & 10,13 \end{aligned}$	155	0.57	0.76	0.28	185.53	60	0.00
+2,14	200	0.48	0.69	0.35	202.30	60	0.00
+6,11	237	0.48	0.70	0.35	240.16	60	0.00
+4,15	290	0.44	0.66	0.42	242.19	60	0.00
+7	317	0.44	0.66	0.43	260.72	60	0.00
+1,12	365	0.42	0.64	0.45	263.03	60	0.00

TABLE 36
Canonical Correlation Coefficients for Groups of Areas
used in the Tests of Homogeneity

Area No.	Eigenvalue	Canonical Correlation Coefficient	With S Lambda	Chi-Square	D. F.	Significance Level
1	0.72	0.85	0.09	33.96	30	0.28
2	0.89	0.94	0.04	35.82	30	0.21
3	0.70	0.83	0.11	34.18	27	0.16
4	0.54	0.74	0.28	22.72	30	0.83
5	0.65	0.80	0.22	25.72	30	0.69
6	0.82	0.90	0.06	37.55	30	0.16
7	0.70	0.84	0.13	38.15	30	0.15
8	0.69	0.83	0.10	41.01	30	0.09
9	0.89	0.94	0.04	59.78	30	0.00
10	0.83	0.91	0.06	52.43	30	0.01
11	0.98	0.99	0.00	62.42	30	0.00
12	0.39	0.63	0.35	18.67	30	0.95
13	0.69	0.83	0.12	40.06	30	0.10
14	0.84	0.92	0.08	45.39	30	0.04
15	0.52	0.72	0.27	24.60	30	0.74
16	0.28	0.53	0.66	146.14	30	0.00
(Total)						
Means						
Data	1.00					
Matrix						

TOTAL 37
Canonical Correlation Analysis for the Three Superstore Dependent Variables with Respect to the Independent Variables
three store variables duration of stay (B), expenditure (D), and frequency of visit (F) and all the independent variables.

The results show strong correlation coefficients in all areas, except area 12 (Turnhouse) but eleven area relationships are not significant at the 5% level. The total data matrix canonical correlation has dropped from 0.64 to 0.53 but the means data matrix remains strong. Inspection of the canonical variable areal structure, in Table 38, again shows little stability.

7.6.9 Canonical Correlation Analysis using the three Bulk-buying Dependent Variables and three Independent Variables

The level of significance may be improved by reducing the number of independent variables. The independent variables chosen for each area are the variables, shown by the areal principal components analysis, to be the most dominant in that area. Table 39 shows the result of the analysis. The result of reducing the independent variables means that eight areas are significant at the 5% level. Seven of these areas have strong canonical correlation coefficients the eighth, area 13 (Leith), has a coefficient of 0.63 . The overall coefficient has fallen by 0.02% to 0.51 implying that the additional variables do not contribute in a significant way to the equation. The results of the last three stages of the analysis, are shown in Table 40. It shows the reduction of the areal canonical correlation coefficient as variables are removed. Seven areas, areas 3 (Clermiston), 6 (Westburn), 7 (St Peters), 8 (Saughton), 9 (Craigleith Hill), 10 (Pilton), and 11 (Cammo) show consistently strong correlation coefficients but their variate structures show little uniformity. It also shows three groups of areas:

Area	Usage Index Structure of Canonical Variate	Independent Variable Structure of Canonical Variate
1	$2.7 \mathrm{~F}-2.0 \mathrm{~B}$	$0.9 R+0.6 I-0.5 N-0.5 P-0.7 Q-1.2 M$
2	$(0.4 F+0.4 B)-1.2 D$	$0.5 \mathrm{~J}-0.6 \mathrm{~L}$
3	$1.4 \mathrm{D}-0.6 \mathrm{~B}-1.3 \mathrm{~F}$	$0.6 R+0.5 M-0.8 P-0.90$
4	1.7F-1.3D	0.60-0.6L-0.7P-1.1M
5	1.OB-1.3D	$-1.1 Q-0.5 P-0.5 R(+0.3 M)$
6	0.9D (-0.4 B)	$0.6 J+0.5 M-0.5 I-0.5 N$
7	1.1D+0.5F-0.5B	0.8K-0.5Q-0.9N
8	$2 . O B-0.7 D-0.7 F$	0.8L-0.6I-1.5Q
9	1. $0 B-1.40$	$-0.7 Q-0.5 I(+0.30)$
10	$1.1 D+0.7 F-2.0 B$	0.6M-0.8L
11	$0.6 D+0.6 F-0.8 B$	1.3K-0.5M-0.5N-0.6Q
12	$0.9 D+0.5 B(-0.4 F)$	$0.7 Q+0.6 \mathrm{R}+0.5 \mathrm{~J}-0.5 \mathrm{~N}-0.7 \mathrm{~K}-0.7 \mathrm{~L}$
13	2.1F-1.9D	$1.00+0.6 \mathrm{~N}+0.6 \mathrm{P}+0.5 \mathrm{~K}-0.8 \mathrm{Q}$
14	0.9B-1.8D	$0.9+0.8 \mathrm{M}-0.6 \mathrm{~L}-1.2 \mathrm{P}$
15	0.7E-1.1B	$0.9 \mathrm{~L}-0.5 \mathrm{~K}-0.5 R-0.6 I$
16	0.6B-1.4D	(0.3N-0.4K)

TABLE 38
Structure of First-Order Canonical Variates for Individual Areas using Only Three Superstore Dependent Variables

Area No.	Eigenvalue					
.	Canonical Correlation Coefficient	With S Lambda	Chi-Square	D.F.	Significance Level	
1	0.34	0.58	0.55	10.53	9	0.32
2	0.41	0.64	0.53	9.31	9	0.41
3	0.61	0.78	0.28	23.27	9	0.01
4	0.40	0.63	0.59	11.32	9	0.25
5	0.38	0.61	0.52	13.47	9	0.14
6	0.64	0.80	0.31	19.21	9	0.02
7	0.57	0.75	0.38	22.06	9	0.01
8	0.58	0.76	0.30	22.55	9	0.00
9	0.82	0.91	0.14	44.31	9	0.00
10	0.66	0.81	0.26	30.25	9	0.00
11	0.87	0.93	0.03	39.25	9	0.00
12	0.13	0.36	0.81	4.42	9	0.88
13	0.39	0.63	0.43	18.78	9	0.03
14	0.32	0.56	0.65	9.16	9	0.42
15	0.38	0.61	0.55	13.35	9	0.15
16	0.26	0.51	0.70	128.15	9	0.00

TABLE 39
Canonical Correlation Analysis with Respect to the Three Superstore Dependent Variables and Three Selected Independent Variables

$\begin{gathered} \text { Area } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { All } \\ \text { Var iables } \end{gathered}$		B, D,F and All Independent Variables		B, D,F and Three Independent Variables	
	Canonical Correlation Coefficient	$\begin{gathered} \text { Level } \\ \text { of } \\ \text { Significance } \end{gathered}$	Canonical Correlation Coefficient	$\begin{gathered} \text { Level } \\ \text { of } \\ \text { significance } \end{gathered}$	Canonical Correlation Coefficient	$\begin{gathered} \text { Level } \\ \text { of } \\ \text { Significance } \end{gathered}$
1	0.94	0.29	0.85	0.28	0.58	0.32
2	0.99	0.04	0.94	0.21	0.64	0.41
3	0.96	0.03	0.83	0.16	0.78	0.01
4	0.81	0.32	0.74	0.83	0.63	0.25
5	0.71	0.52	0.80	0.69	0.61	0.14
6	0.94	0.02	0.90	0.16	0.80	0.02
7	0.82	0.01	0.84	0.15	0.75	0.01
8	0.84	0.00	0.83	0.09	0.76	0.00
9	0.92	0.01	0.94	0.00	0.91	0.00
10	0.87	0.01	0.91	0.01	0.81	0.00
11	1.00	0.00	0.99	0.00	0.93	0.00
12	0.88	0.06	0.63	0.95	0.36	0.88
13	0.92	0.03	0.83	0.10	0.63	0.03
14	0.93	0.01	0.92	0.04	0.56	0.42
15	0.93	0.04	0.72	0.74	0.61	0.15
16	0.64	0.00	0.53	0.00	0.51	0.00

[^6]| Ares | Pecroon Correlation Coeffictent | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | c-n (0.4) | $\mathrm{F}-\mathrm{I}$ (0.4) | D-I (0.4) | c-m (0.4) | |
| 2 | | | c-r (0.4) | | | |
| 3 | | $\mathrm{d}-\mathrm{K}(0.4)$ | | ${ }_{c}^{\mathrm{c}} \mathrm{c}=\mathrm{H}(0.0 .6)^{*}$ | c-k (0.5) | |
| 4 | $\mathrm{E}-\mathrm{H}(0.3)$ | $\begin{aligned} & 6-\mu(0.3) \\ & 6-1(-0.3) \\ & c-1(0.3) \\ & 6-2(-0.3) \end{aligned}$ | ${ }^{*}$ s shoum because | no correlat tons | | |
| 5 | | | | с- ${ }^{\text {(}}$ (0.5) | | |
| 6 | | | | | F-x (0.5) | с - \quad - |
| 1 | | | $c-8$ $c-a$ | B-n (-0.5) | $\mathrm{p}-\mathrm{N}(-0.5)$ | c-s (0.5) |
| 8 | | | B-1 (0.4) | c-n(0.5) | | |

TABLR 41
Pearson Correlation Coefficients Between Dependent and Independent

Area No.		arson Correlat	Coefficients				
9	$\begin{aligned} & E-X(0.4) \\ & E-M(0.6)^{\star} \\ & E-N(-0.6)^{\star} \\ & E-O(0.6)^{\star} \\ & E-P(-0.5) \\ & E-Q(0.5) \\ & E-R(0.4) \end{aligned}$	$\begin{aligned} & D-I(0.7)^{\star} \\ & D-K(0.5) \\ & D-M(0.7)^{\star} \\ & D-N(-0.6)^{\star} \\ & D-O(0.6)^{\star} \\ & D-Q(0.5) \end{aligned}$	$B-H \quad(0.4)$	$\mathbf{F}=\mathbf{H}(0.7)^{*}$	C-I (-0.4)		
10	$\begin{aligned} & E-X(0.4) \\ & E-M(0.6) \\ & E-N(-0.5) \\ & E=0(-0.6)^{\star} \\ & E-Q(0.5) \end{aligned}$	$\begin{aligned} & D-J(0.4) \\ & D-K(0.4) \\ & D-L(0.4) \\ & D-M(0.4) \\ & D-O(0.4) \\ & D-Q(0.4) \end{aligned}$	$G-M(0.4)$	$B-L(0.5)$	$F-L \quad(0.5)$	C-0 (0.4)	
11	$\begin{aligned} & E-J(0.8)^{\star} \\ & E-K(0.7)^{\star} \\ & E-L(0.7)^{\star} \\ & E-M(0.7)^{\star} \\ & E-N(-0.4) \\ & E-0(0.4) \\ & E-P(-0.7)^{\star} \\ & E-Q(0.7)^{\star} \end{aligned}$	$\begin{aligned} & D-J(0.8)^{\star} \\ & D-K(0.7)^{\star} \\ & D-L(0.7)^{\star} \\ & D-M(0.7)^{\star} \\ & D-N(-0.5) \\ & D-P(-0.7)^{\star} \\ & D-Q(0.8)^{\star} \end{aligned}$	$\begin{array}{ll} F-K & (0.5) \\ F-M & (0.5) \\ F-N & (-0.5) \\ F-P & (-0.6) \star \end{array}$				
12	$\begin{aligned} & E-H(0.5) \\ & E-O(0.4) \end{aligned}$	G-M(0.5)	C-M(0.4)				
13	$\begin{aligned} & E-M(0.5) \\ & E=0(0.5) \\ & E-Q(0.4) \end{aligned}$	$\begin{aligned} & G-M(0.4) \\ & G-O(0.5) \end{aligned}$	$\begin{array}{ll} F-K & (-0.5) \\ F-Q & (-0.4) \\ F-R & (0.4) \end{array}$	$C-0(0.4)$			
14	$\begin{aligned} & E-K(0.5) \\ & E-L(0.5) \\ & E-M(0.5) \\ & E-N(-0.5) \\ & E-0(0.6)^{*} \end{aligned}$	D-0(0.4)	G-L (0.4)	C-L (0.4)			
15	$\begin{aligned} & E-H(-0.4) \\ & E-R(0.5) \\ & E-M(0.8) \star \\ & E-E(-0.4) \\ & E-O(0.7)^{\star} \\ & E-P(-0.5) \end{aligned}$	$\begin{aligned} & G-R(-0.4) \\ & G-R(0.4) \\ & G-M(0.7)^{\star} \\ & G-N(-0.5) \\ & G-O(0.7)^{\star} \\ & G-P(-0.6) \end{aligned}$	$B-I(0.4)$	$\begin{aligned} & C-H(0.4) \\ & C-M(0.6) \star \\ & C-N(-0.4) \\ & C-O(0.6) \star \\ & C-P(-0.6) \star \end{aligned}$			

1) areas showing a strong correlation with all independent variables and with three independent variables

1i) areas showing a strong correlation with only all the independent variables

1i1) area not showing a strong correlation

If the Pearson bivariate correlations are inspected, as listed in Table 41, it is evident that the expenditure dependent variables (D and E) are the variables upon which a strong canonical correlation is based. The lack of correlation in the other dependent variables is because of the small variance in their measurement.

7.6.10 Examination of the Three Groups of Areas Based on the Results of the Canonical Correlation Analysis of Paras. 7.6 .8 and 7.6 .9

The first group of areas comprise areas $3,6,7,8,9,10$, 11 and 13. Area 13 is added because of the strong canonical coefficient in the first two analyses :

1) Area 3- | the strong coefficient is based |
| :--- |
| on total shopping variables E and |
| G therefore the coefficient drops |
| when these are omitted. |

1i) Area $7-\quad$| the expenditure variables E and D |
| :--- |
| are the basis of the |
| relationship. |

11i) Area $8-\quad$| the total expenditure variable E |
| :--- |
| is dominant. |

iv)	Area 9 -	the expenditure variables E and D are dominant.
v)	Area $10-$	as for area 9.
vi)	Area 11 -	the expenditure variables D and E again strong in addition to the frequency of use of store variable F.
vii)	Area 13 -	the absence of the store expenditure variable D accounts for the decrease in the coefficient.
The	cond group	comprises areas 2, 12, 14 and 15
1)	Area $2-$	expenditure variables D and E are dominant
ii)	Area 12 -	no relationship with any of the store variables B, D, F.
111)	Area 14 -	again B, D and F almost totally absent.
iv)	Area 15 -	as for area 14.
The last group of areas comprises areas 1, 4 and 5:		
1)	Area 1 -	very little relationship shown with the store variables B, D, F.
11)	Area 4 -	no relationship with B, D, F.
1ii)	Area 5 -	the relationship with the
		expenditure variables is

From inspection of Table 41 it can be seen that the expenditure variables D and E form the basis of strong areal canonical correlations. In group two the reliance on the total shopping variables produces a reduction in the coefficient when they are removed. Group three requires all six dependent variables to achieve a strong correlation.
7.6.11 The canonical correlation analysis has established that a strong relationship exists, in each area, between the dependent and independent variables but that the structure of the relationship differs from area to area. The result of this variation is that on aggregation the canonical correlation coefficient is reduced. Thus the conclusion of the principal components analysis is supported by this analysis that a generalised model at household level using either of the proposed models will not produce a satisfactory prediction model.

The means data matrix however, continues to show a strong correlation between the variable sets and an areal model based on the mean profile of each area is possible.

7.7 Examination of Area Groupings using Cluster Analysis

7.7.1 The third research objective and consequent research task addressed the problem of generality of the model and required the analysis to determine the level of disaggregation possible while still retaining a strong predictive relationship between the dependent and independent variables. The principal components analysis and canonical correlation analysis showed that the areal variation between households was of such diversity that a general model structure was not possible. The means profiles of each area, however, did provide the basis for a general model but this model relates to average area
values. In the context of a strategic control model this is acceptable and compares with the zoning system of a conventional transportation model.

Abstract

7.7.2 Certain areas did show similarities and before developing the predictive models, using multiple regression analysis, the middle-ground of aggregated area groupings should be examined using cluster analysis. It is apparent, from the canonical correlation analysis, that certain groups of areas have similar variable poles to their canonical variates. If the dependent variate poles are inspected the following is shown :

All Dependent Variables

Four areas $(3,6,8,15)$	have $D-E$ as opposite poles
Three areas $(2,4,13)$	have $D-F$ as opposite poles
Three areas $(9,11,14)$	have $D-B$ as opposite poles
Two areas $(5,10)$	have $C-G$ as opposite poles
One area (7)	has $E-G$ as opposite poles
One area (12)	has $B-C$ as opposite poles
One area (1)	has $B-F$ as opposite poles

The immediate points of interest to note in these groupings is the continuing dominance of the two shopping expenditure variables D and E and the continuing isolation of area 1 (Moredun) and area 12 (Turnhouse).

If only the three store variables are included the following is shown :

Three Store Variables

Seven areas ($5,6,7,9,10,11,14$) have $D-F$ as opposite poles Five areas ($2,3,4,12,13$) have $D-B$ as opposite poles Three areas $(1,8,15)$ have $B-F$ as opposite poles.
7.7.3 The area groups using all six dependent variables exhibit common characteristics in that areas $3,6,8$ and 15 are predominantly council-rented housing whereas 9, 11, and 14 are private housing. Areas 5 and 10 are areas of social deprivation. This socio-economic form of classification does not show for the three store variables.

7.7.4 A canonical correlation analysis was carried out on the four aggregated groups of areas which relate to the six dependent variables. The correlation coefficients for each group are as follows :

Areas $3,6,8,15$	0.79
Areas $2,4,13$	0.60
Areas $9,11,14$	0.78
Areas 5, 10	0.82

The diluting effect of aggregation is again evident in these results although the 0.79 value for areas $3,6,8$ and 15 has remained relatively strong, explaining over 60\% of the variance in the variables. The conceptual basis of these groups is however superficial and is not rigorous in that other council-rented areas such as area 10 (Pilton) are not included.
7.7.5 Cluster analysis was used to determine the minimum number of groups for which significance could be achieved at the 5\% level. The analysis is based on the formula :

$$
\left.\left.F\left(c_{1}, c_{2}\right)=\frac{R c_{1}-R c_{2}}{R c_{2}} / \frac{n-c_{1}}{n-c_{2}} \frac{c_{2}}{c_{1}}\right)^{2 / p}-1\right\}
$$

where $\quad R_{c_{1}}=\begin{aligned} & \text { residual sum of squares for clustering } \\ & \text { combination } 1 .\end{aligned}$
$R_{c_{2}}=$ residual sum of squares for clustering combination 2.
(Note : $c_{2}>c_{1}$)

$$
\begin{aligned}
p\left(n-c_{1}\right)= & \text { numerator } \mu_{1} \text { in F-test } \\
p\left(n-c_{2}\right)= & \text { numerator } \mu_{2} \text { in F-test } \\
& (\text { (i.e. degrees of freedom) }
\end{aligned}
$$

$\mathrm{p} \quad=$ number of variables
$n \quad=$ number of areas.

Thus between 1 and 2 clusters :

$$
\begin{aligned}
F\left(c_{1}, c_{2}\right) & =\frac{1595.41-978.29}{978.29} /\left\{\frac{15-1}{15-2} \frac{2}{1}^{2 / 16}-1\right\} \\
& =0.63 / 1.08(0.92)-1 \\
& =3.5
\end{aligned}
$$

$$
\mu_{1}=16(1)=16 \quad \text { at } 5 \% \text { level 1.6. which is }
$$

$$
\mu_{2}=16(15-2)=208 \rightarrow \text { significant }
$$

Between 2 and 3 clusters:

$$
\begin{aligned}
F\left(c_{1}, c_{2}\right) & =\frac{978.29-697.28}{697.28} /\left\{\frac{15-2}{15-3}\left(\frac{3}{2}\right)^{0.125}-1\right\} \\
& =0.40 / 1.08(1.84)-1 \\
& =0.4 \\
\mu_{1} & =16(1)=16 \quad \text { at } 5 \% \text { level 1.6. which is } \\
\mu_{2} & =16(15-2)=208 \rightarrow \text { significant }
\end{aligned}
$$

7.7.6 The two significant clusters comprised areas $1,2,3,5$, 8,9 and 14 and areas $4,6,7,10,11,12,13$ and 15. Inspection of each group characteristics provides no meaningful classification and only marginally improves the overall canonical coefficient. Thus although the cluster analysis provides significant clusters at the two cluster level, no meaningful interpretation can be ascribed to these clusters.
7.7.7 A further basis for the grouping of areas can be argued on store usage level, grouping areas of similar usage. This can be achieved using either duration of stay, expenditure or frequency of visit. Tables 42,43 and 44 show the areas in order of duration of stay, expenditure and frequency of visit to stores respectively. These tables show the linear relationship between certain independent variables and store usage and how this relationship can be affected by a dominant area characteristic. For example four variables are plotted against area number in Figure 24. With each of these variables a linear trend can be seen but, for example area 6 (Westburn) appears to be consistently misplaced. It is an area of low income, freezer ownership and car ownership and yet it has a high store usage. This is because of the proximity of the area to a large store and the large number of walking trips that take place. This is reflected in the spatial accessibility index of 19.6. A further example is in Table 44 and area 9 (Craigleith Hill Avenue). This is in an area of high income and car and freezer ownership, however the low number in the household and the high average age indicates that there is a significant group of retired couples in this area whose food requirement is low. The area is therefore displaced further down the usage table. This exercise can be carried out for all areas and further supports the analysis results to date in that it shows the interplay

Area		B	C	D	E	\mathbf{P}	G	S	I	J	\mathbf{K}	L	M	N	0	\mathbf{P}	Q	R
12	Turnhouse	$\begin{aligned} & 1.3 \\ & (0 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4) \end{aligned}$	$\begin{array}{r} 28.1 \\ (0 . \end{array}$	$\begin{aligned} & 38.1 \\ & \text { 4) } \end{aligned}$	1.1	2.5	0.8	0.7	1.2	4.0	1.8	3.3	31.1	12.2	6.4	13.9	12.7
15	Easter Rd/ Dalry	$\begin{array}{r} 1.2 \\ (0 \end{array}$	2.3	$\begin{array}{r} 20.1 \\ 10 \end{array}$	$\begin{aligned} & 29.6 \\ & 8) \end{aligned}$		$\begin{aligned} & 2.8 \\ & 39) \end{aligned}$	1.2	0.3	1.1	2.9	1.3	2.9	37.1	9.4	10.3	9.5	12.7
11	Carta	1.1	$\begin{aligned} & 2.0 \\ & i 5) \end{aligned}$	26.3 10	34.1	1.1	$\begin{aligned} & 2.6 \\ & 42) \end{aligned}$	1.6	0.9	1.7	4.9	2.1	3.2	43.3	14.1	8.1	11.6	15.4
14	Craigleith Cres/ View	1.1 10	2.1	$\begin{array}{r} 25.8 \\ (0 \end{array}$	$\begin{aligned} & 38.2 \\ & 8) \end{aligned}$		$\begin{gathered} 2.6 \\ 38) \end{gathered}$	1.2	0.9	1.3	4.7	1.8	2.9	49.1	9.1	9.3	8.7	15.0
4	Swanston	1.1	2.3 8)	21.0 10	$\begin{aligned} & 31.2 \\ & 7) \end{aligned}$	0.9	2.1	0.5	0.7	1.4	4.0	1.9	3.2	38.7	12.0	7.4	12.5	13.7
13	Leith	1.1	$\begin{aligned} & 3.4 \\ & 32 \text {) } \end{aligned}$	16.7 10	$\begin{aligned} & 32.1 \\ & 52) \end{aligned}$	0.8	$\begin{aligned} & 2.8 \\ & 297 \end{aligned}$	0.8	0.2	1.1	2.9	1.3	3.5	38.6	13.2	11.0	10.5	10.9
6	Westburn Park	1.0	1.6	28.2	32.9	1.1	2.1	19.6	0.2	1.0	2.8	1.3	3.4	31.4	12.7	10.6	12.5	11.4
8	Saughton Mains		$\begin{aligned} & 2.5 \\ & 40) \end{aligned}$	21.6	$\begin{aligned} & 37.3 \\ & 58) \end{aligned}$		$\begin{array}{r} 2.7 \\ 33) \end{array}$	1.8	0.7	1.1	3.5	1.4	3.3	48.5	11.8	12.3	16.4	12.2
3	Clerniston		2.0	15.7	$\begin{aligned} & 27.5 \\ & 57) \end{aligned}$		$\begin{aligned} & 1.8 \\ & 39) \end{aligned}$	1.5	0.3	1.0	2.7	1.2	2.3	51.4	4.4	9.9	13.2	11.7
7	St Peters P1		$\begin{aligned} & 1.6 \\ & 56) \end{aligned}$	20.8	$\begin{aligned} & 28.8 \\ & 72) \end{aligned}$		$\begin{aligned} & 1.9 \\ & 42)^{2} \end{aligned}$	3.2	0.5	1.2	3.6	1.6	2.5	30.1	7.6	7.4	12.8	10.2
9	Craigleith Hill Ave		5)	18.7	$\begin{aligned} & 26.3 \\ & 71) \end{aligned}$		$\begin{aligned} & 1.7 \\ & 41) \end{aligned}$	1.1	0.6	1.2	3.8	1.5	2.9	43.6	11.4	10.0	12.9	$11.1{ }^{\circ}$
1	Moredun		1.9	17.9	$\begin{aligned} & 30.0 \\ & 60) \end{aligned}$		$\begin{aligned} & 1.8 \\ & 39) \end{aligned}$	0.4	0.6	1.0	2.7	1.4	2.9	44.9	11.4	11.7	9.1	13.0
2	Spottiswoode		$\begin{aligned} & 2.0 \\ & 45) \end{aligned}$		$\begin{aligned} & 29.2 \\ & 58) \end{aligned}$	0.6	$\begin{array}{r} 2.4 \\ 25) \end{array}$	2.0	0.5	1.1	2.6	1.3	2.3	46.0	8.4	12.4	8.2	13.3
5	Wav./Reg. Pl		$\begin{aligned} & 2.6 \\ & 35) \end{aligned}$	13.9	$\begin{aligned} & 26.4 \\ & 53) \end{aligned}$		$\begin{gathered} 3.6 \\ 19)^{3} \end{gathered}$	1.6	0.4	1.0	2.2	1.0	2.4	52.4	6.4	12.4	6.2	11.6
10	Pilton		$\begin{aligned} & 2.6 \\ & 31) \end{aligned}$	18.5	$\begin{aligned} & 38.1 \\ & 49) \end{aligned}$	0.6	$\begin{aligned} & 3.1 \\ & .19) \end{aligned}$	1.3	0.4	1.1	2.6	1.3	3.6	41.3	8.8	11.7	13.1	10.7
16	A11 Areas		$\begin{aligned} & 2.2 \\ & 45) \end{aligned}$	20.6	32.0		2.4	-	0.5	1.2	3.3	1.5	3.0	41.7	10.1	10.0	11.5	12.3

[^7][^8]| Area | | B | C | D | E | \mathbf{F} | C | S | I | J | K | L | M | N | 0 | P | Q | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | Wev./Reg. Pl | 0.9 | 2.6 | 13.9 | 26.4 | 0.7 | 3.6 | 1.6 | 0.4 | 1.0 | 2.2 | 1.0 | 2.4 | 52.4 | 6.4 | 12.4 | 6.2 | 11.6 |
| 3 | Clertiston | 1.0 | 2.0 | 15.7 | 27.5 | 0.7 | 1.8 | 1.5 | 0.3 | 1.0 | 2.7 | 1.2 | 2.3 | 51.4 | 4.4 | 9.9 | 13.2 | 11.7 |
| 2 | Spottiswoode | 0.9 | 2.0 | 17.0 | 29.2 | 0.6 | 2.4 | 2.0 | 0.5 | 1.1 | 2.6 | 1.3 | 2.3 | 46.0 | 8.4 | 12.4 | 8.2 | 13.3 |
| 13 | Leith | 1.1 | 3.4 | 16.7 | 32.1 | 0.8 | 2.8 | 0.8 | 0.2 | 1.1 | 2.9 | 1.3 | 3. 5 | 38.6 | 13.2 | 11.0 | 10.5 | 10.9 |
| 1 | Moredun | 0.9 | 1.9 | 17.9 | 30.0 | 0.7 | 1.8 | 0.4 | 0.6 | 1.0 | 2.7 | 1.4 | 2. 9 | 44.9 | 11.4 | 11.7 | 9.1 | 13.0 |
| 10 | Pilton | 0.8 | 2.6 | 18.5 | 38.1 | 0.6 | 3.1 | 1.3 | 0.4 | 1.1 | 2.6 | 1.3 | 3.6 | 41.3 | 8.8 | 11.7 | 13.1 | 10.7 |
| 9 | Craigleith Hill Ave | 0.9 | 1.8 | 18.7 | 26.3 | 0.7 | 1.7 | 1.1 | 0.6 | 1.2 | 3.8 | 1.5 | 2.9 | 43.6 | 11.4 | 10.0 | 12.9 | 11.1 |
| 15 | Easter Rd/Dalry | 1.2 | 2.3 | 2.0 | 29.6 | 1.1 | 2.8 | 1.2 | 0.3 | 1.1 | 2.9 | 1.3 | 2.9 | 37.1 | 9.4 | 10.3 | 9.5 | 12.7 |
| 7 | St Peters P1 | 0.9 | 1.6 | 20.8 | 28.8 | 0.8 | 1.9 | 3.2 | 0.5 | 1.2 | 3.6 | 1.6 | 2.5 | 30.1 | 7.6 | 7.4 | 12.8 | 10.2 |
| 4 | Swanston | 1.1 | 2.3 | 21.0 | 31.2 | 0.9 | 2.1 | 0.5 | 0.7 | 1.4 | 4.0 | 1.9 | 3.2 | 38.7 | 12.0 | 7.4 | 12. 5 | 13.7 |
| 8 | Saughton Mains | 1.0 | 2.5 | 21.6 | 37.3 | 0.9 | 2.7 | 1.8 | 0.7 | 1.1 | 3.5 | 1.4 | 3.3 | 48:5 | 11.8 | 12.3 | 16.4 | 12.2 |
| 14 | Craigleith Cres/ View | 1.1 | 2.1 | 25.8 | 38.2 | 1.0 | 2.6 | 1.2 | 0.9 | 1.3 | 4.7 | 1.8 | 2.9 | 49.1 | 9.1 | 9.3 | 8.7 | 15.0 |
| 11 | Camo | 1.1 | 2.0 | 26.3 | 34.1 | 1.1 | 2.6 | 1.6 | 0.9 | 1.7 | 4.9 | 2.1 | 3.2 | 43.3 | 14.1 | 8.1 | 11.6 | 15.4 |
| 6 | Westburn Park | 1.0 | 1.6 | 28.2 | 32.9 | 1.1 | 2.1 | 19.6 | 0.2 | 1.0 | 2.8 | 1.3 | 3.4 | 31.4 | 12.7 | 10.6 | 12.5 | 11.4 |
| 12 | Turnhouse | 1.3 | 2.4 | 28.1 | 38.1 | 1.1 | 2.5 | 0.8 | 0.7 | 1.2 | 4.0 | 1.8 | 3.3 | 31.1 | 12.2 | 6.4 | 13.9 | 12.7 |
| 16 | A11 Areas | 1.0 | 2.2 | 20.6 | 32.0 | 0.8 | 2.4 | - | 0.5 | 1.2 | 3.3 | 1.5 | 3.0 | 41.7 | 10.1 | 10.0 | 11.5 | 12.3 |

[^9]| Area | | B | c | D | E | F | C | S | 1 | J | K | L | M | N | 0 | P | 0 | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | Turnhouse | 1.3 | 2.4 | 28.1 | 38.1 | 1.1 | 2.5 | 0.8 | 0.7 | 1.2 | 4.0 | 1.8 | 3.3 | 31.1 | 12.2 | 6.4 | 13.9 | 12.7 |
| 6 | Westburn Park | 1.0 | 1.6 | 28.2 | 32.9 | 1.1 | 2.1 | 19.6 | 0.2 | 1.0 | 2.8 | 1.3 | 3.4 | $31.4{ }^{\text { }}$ | 12.7 | 10.6 | 12.5 | 11.4 |
| 11 | Camo | 1.1 | 2.0 | 26.3 | 34.1 | 1.1 | 2.6 | 1.6 | 0.9 | 1.7 | 4.9 | 2.1 | 3.2 | 43.3 | 14.1 | 8.1 | 11.6 | 15.4 |
| 15 | Easter Rd/Dalry | 1.2 | 2.3 | 20.1 | 29.6 | 1.1 | 2.8 | 1.2 | 0.3 | 1.1 | 2.9 | 1.3 | 2.9 | 37.1 | 9.4 | 10.3 | 9.5 | 12.7 |
| 14 | Craigleith Cres/ View | 1.1 | 2.1 | 25.8 | 38.2 | 1.0 | 2.6 | 1.2 | 0.9 | 1.3 | 4.7 | 1.8 | 2.9 | 49.1 | 9.1 | 9.3 | 8.7 | 15.0 |
| 8 | Saughton Mains | 1.0 | 2.5 | 21.6 | 37.3 | 0.9 | 2.7 | 1.8 | 0.7 | 1.1 | 3.5 | 1.4 | 3.3 | 48.5 | 11.8 | 12.3 | 16.4 | 12.2 |
| 4 | Swanston | 1.1 | 2.3 | 21.0 | 31.2 | 0.9 | 2.1 | 0.5 | 0.7 | 1.4 | 4.0 | 1.9 | 3.2 | 38.7 | 12.0 | 7.4 | 12.5 | 13.7 |
| 7 | St Peters P1 | 0.9 | 1.6 | 20.8 | 28.8 | 0.8 | 1.9 | 3.2 | 0.5 | 1.2 | 3.6 | 1.6 | 2.5 | 30.1 | 7.6 | 7.4 | 12.8 | 10.2 |
| 13 | Leith | 1.1 | 3.4 | 16.7 | 32.1 | 0.8 | 2.8 | 0.8 | 0.2 | 1.1 | 2.9 | 1.3 | 3.5 | 38.6 | 13.2 | 11.0 | 10.5 | 10.9 |
| 9 | Craigleith Hill Ave | 0.9 | 1.8 | 18.7 | 26.3 | 0.7 | 1.7 | 1.1 | 0.6 | 1.2 | 3.8 | 1.5 | 2.9 | 43.6 | 11.4 | 10.0 | 12.9 | 11.1 |
| 1 | Moredun | 0.9 | 1.9 | 17.9 | 30.0 | 0.7 | 1.8 | 0.4 | 0.6 | 1.0 | 2.7 | 1.4 | 2.9 | 44.9 | 11.4 | 11.7 | 9.1 | 13.0 |
| 3 | Clermiston | 1.0 | 2.0 | 15.7 | 27.5 | 0.7 | 1.8 | 1.5 | 0.3 | 1.0 | 2.7 | 1.2 | 2.3 | 51.4 | 4.4 | 9.9 | 13.2 | 11.7 |
| 5 | Wav. /Reg. PI | 0.9 | 2.6 | 13.9 | 26.4 | 0.7 | 3.6 | 1.6 | 0.4 | 1.0 | 2.2 | 1.0 | 2.4 | 52.4 | 6.4 | 12.4 | 6.2 | 11.6 |
| 2 | Spotciswoode | 0.9 | 2.0 | 17.0 | 29.2 | 0.6 | 2.4 | 2.0 | 0.5 | 1.1 | 2.6 | 1.3 | 2.3 | 46.0 | 8.4 | 12.4 | 8.2 | 13.3 |
| 10 | Pilton | 0.9 | 2.6 | 18.5 | 38.1 | 0.6 | 3.1 | 1.3 | 0.4 | 1.1 | 2.6 | 1.3 | 3.6 | 41.3 | 8.8 | 11.7 | 13.1 | 10.7 |
| 16 | All Areas | 1.0 | 2.2 | 20.6 | 32.0 | 0.8 | 2.4 | - | 0.5 | 1.2 | 3.3 | 1.5 | 3.0 | 41.7 | 10.1 | 10.0 | 11.5 | 12.3 |

> $N=$ Mean Age of Household
$0=S . D$. of Ages
> $0=$ S. D. of Ages
$\mathbf{P}=$ S. E. G.
> Q - Number of half days employed

S = Spatial Access
H $=$ Freezer Ownership
I Wreezer Ownership
$J=$ Number of Cars
$K=$ Incoae
$\mathbf{L}=$ Nubber of Licences
$M=$ Nuaber in Household
TABLE 44
No. of Freczer Mean age of
Income Licenses Ownership Household

between the independent variables. The inear trend however also supports the relationship established by the canonical correlation analysis and indicates that a model based on multiple regression is possible, albeit not based at household level.

7.7.8 This section of the analysis has found no basis for classification of areas into usage groups. A range of classification criteria can be selected and each yields a different set of groups. For example, if the three store usage variables were added together, unweighted, and grouped on three usage classifications of high, medium and low, a possible grouping would be :

These areas group bear no resemblance to the previously established groups, based on cluster analysis or canonical variates. A canonical correlation analysis was carried out on these groupings and the effect of area aggregation on the correlation coefficient again observed. Table 45 shows the details. There is therefore no satisfactory justification for developing this approach.

7.8 Prediction of the Store Dependent Variables using Multiple Regression Analysis

7.8.1 This section of the analysis concerns the development of a predictive model using multiple regression analysis. The two models identified in the conceptual framework will be analysed to investigate their development into a strategic trip generation model for private car trips to large foodstores. The first model to be examined is Model 2 which is based on the individual variables. The three dependent variables of greatest interest are duration of

$6,11,14$	
$6,11,14,12$	0.77
$1,2,3,5$	
$1,2,3,5,13$	0.72
$1,2,3$	0.68
$4,8,9$	0.62
$4,8,9,10$	0.72
$4,8,9,10,7,13$	0.72

TABLE 45

Canonical Correlation Analysis for Groups of Areas
Based on an Aggregate Store Usage Index

Abstract

stay at the store (B), expenditure at the store (D) and frequency of visit to the store (F). This model has the advantage that trip generation, car park capacity and market potential can be modelled separately using frequency (F), duration (B) and expenditure (D) respectively.

7.8.2 Multiple Regression Analysis of the Individual Areas using Model 2

The details of the multiple regression analysis for each area are shown in Appendix H. This shows a step-wise analysis for each of the three dependent store variables with the independent variables and frequency of use (F) with duration of stay (B) and expenditure (D). The asterisked values are those proved significant using the F-test.

It can be clearly seen from inspection of the appendix that the three dependent variables are strongly correlated in all areas. It is therefore possible to predict one of these variables from the other two variables at household level. The prediction of the individual dependent variables from the independent variables shows the areal variation corresponding to that found by the previous stages of the analysis.

The store expenditure variable (D) is the one variable which shows a relationship with the independent variables. Its multiple correlation coefficient varies from 23\% to 95\% and is significant in ten areas. This again shows the dominance of store expenditure in the dependent/independent relationships.

As expected, the prediction mechanism varies from area to area and does not show either a standard structure or groups of standard structures. Tables 46 to 48 show the

TABLE 46
Order of Variable Addition in the Multiple Regression Analysis for F with I to R by Individual Area

Duration with I - R		
Area	1	$B=I Q K J R M N P$
Area	2	$B=R P J O M N L Q$
Area	3	$B=I K R O P N Q M$
Area	4	$B^{\circ}=\mathrm{MNIROPKJ}$
Area	5	$B=K M O R N J Q P$
Area	6	$B=M I O J K Q L R N$
Area	7	$B=N K Q P M L R J O$
Area	8	$B=I R L Q M P O N$
Area	9	$B=R Q M J O L N P K I$
Area	10	$B=L I R Q J O M N P$
Area	11	$B=K Q M R L J O N P I$
Area	12	$B=N K J Q M O P I L R$
Area	13	$B=P R L Q O J K N M I$
Area	14	$B=P K N M R Q J K I O$
Area	15	$B=I L J R O K M N P$
Area	16	$B=N Q K I M R O J L P$

TABLE 47

Order of Variable Addition in the Multiple Regression Analysis for B with I to R by Individual Area

Area	1	D	$=I Q O K L P J M N$
Area	2	D	$=\quad L R O M J Q K P$
Area	3	D	$=\quad K O M R P I Q N$
Area	4	D	= RJIMNKPLO
Area	5	D	- QPLRIMNJKO
Area	6	D	$=M J I K R Q L O N P$
Area	7	D	$=K$ KRQIPOMJL
Area	8	D	$=O R I P J K Q M N$
Area	9	D	= MINJLORP
Area	10	D	$=0 \mathrm{KLJIRP}$
Area	11	D	= JPOQRLKNIM
Area	12	D	$=J N M Q K L R I P$
Area	13	D	$=L R P N O Q M J K I$
Area	14	D	$=O P K M N L J I Q R$
Area	15	D	$=L K J P I M Q R O$
Area	16	D	$=\quad K M I N R P L J O$

TABLE 48
Order of Variable Addition in the Multiple Regression
Analysis for D with I to R for Individual Areas
order of variables chosen in each area by the step-wise regression for each of the three dependent variables. The standardised residual plots and the observed and predicted dependent variable values for each area are shown in Appendix I. An analysis of the residuals is carried out later in this section of the analysis.

7.8.3 Interpretation of the Multiple Regression Analysis at Individual Area Level with respect to the Pearson Correlation Matrices

The areal variation that has been observed at each stage of the analysis can be understood from inspection of the Pearson correlation matrices shown, for each area, in Tables 49 to 64. These tables show correlation coefficients greater than or equal to 0.4 and significant at the 5\% level.

The upper-right quartile of the tables shows the number and strength of the relationships between the dependent and independent variables. A strong multiple correlation coefficient can be achieved either by a number of correlated variables of medium strength or by one or two strongly correlated variables. For example in area 2 (Spottiswoode) store expenditure (D) has a correlation coefficient of $0.78,61 \%$ of its variation being explained by the independent variables. Table 50 shows that this relationship is achieved from six moderately correlated independent variables.

The areas that have consistently shown a poor relationship between the two variable sets and those areas exhibiting a strong relationship can also be seen from the tables. Areas 1 (Moredun) and 12 (Turnhouse) show virtually no significant correlations between the store variables B, D and F and the independent variables, whereas areas 9 (Craigleith Hill) and 11 (Cammo) show strong correlations

Area - 1	(More		Significant Pearson Correlations over 0.4													
	$\binom{(-1.9)}{B}$	$\stackrel{(0.2)}{c}$	$\left(\begin{array}{c} 0.1) \\ D \end{array}\right.$	(-0.6)	(1.8)	(-0.3)	$\left(\begin{array}{c} (0.4) \\ I \end{array}\right.$	(0.1)	(-0.1)	(0.3)	(-1.2)	(-1.4)	$\binom{0}{0}$	(-0.2)	$\left(\begin{array}{c} -0.4) \\ Q \end{array}\right.$	$\left(\begin{array}{l} (0.6) \\ R \end{array}\right.$
B(-1.9)	1	x	0.8	\times	0.9	x	x	x	x	x	\times	\times	x	x	x	x
$\mathrm{c}(0.2)$		1	\times	0.4	x	0.8	x	x	x	x	0.4	-0.4	x	x	x	x
d(0.1)			1	x	0.9	-0.4	0.4	x	x	x	x	\times	x	x	\times	x
$\mathrm{E}(-0.6)$				1	x	x	x	x	x	x	0.5	-0.4	x	x	-0.4	-0.4
F(1.8)					1	x	0.4	x	x	x	x	x	x	x	x	x
c(-0.3)						1	\times	x	x	x	x	-0.4	\times	x	x	x
I(0.4)							1	x	\times	x	x	x	*	x	x	x
J(0.4)								1	0.5	x	x	x	0.4	x	x	\times
K(-0.1)									1	x	x	-0.5	x	-0.8	x	-0.5
L(0.3)										1	x	\times	x	x	x	x
M(-1.2)											1	-0.6	0.8	-0.5	x	x
$\mathrm{N}(-0.4)$												1	-0.5	0.8	x	0.5
O(0)													1	x	x	x
$\mathrm{P}(-0.2)$														1	\%	0.7
$Q(-0.4)$															1	x
R(0.6)																1

TABLE 49
by Individual Area

TABLE 50

Multiple Regression Analysis - Table of Pearson Correlation Coefficients

Area - 4 (Suanston)								Significant Pearson Correlations Over 0.4								
	(0.0)	$\begin{gathered} (-0.4) \\ c \end{gathered}$	$\underset{D}{(1.6)}$	$\underset{E}{(-0.7)}$	(-1.3)	$\begin{gathered} (1,3) \\ G \end{gathered}$	(-0.3)	(-0.3)	(0.0)	$\underset{L}{(0.1)}$	$\underset{M}{(1.4)}$	$\underset{N}{(0.7)}$	$\left(\begin{array}{c}(-05 \\ 0\end{array}\right.$	$\underset{P}{(0.0)}$	$\underset{Q}{(0.2)}$	$\underset{R}{(0.1)}$
B(0.0)	1	0.5	0.7	x	0.8	\times	0.5	-	0.4	x	\mathbf{x}	x	x	x	x	x
C (-0.4)		1	0.4	0.5	0.4	0.7	x	-	0.5	x	x	x	x	x	x	x
D(1.6)			1	0.6	0.8	0.4	x	-	0.4	x	x	x	x	x	x	x
$E(-0.7)$				1	\times	0.7	x	-	0.4	x	0.7	-0.6	0.4	-0.5	0.6	x
F(-1.3)					1	\times	\mathbf{x}	-	\times	x	\times	x	\times	x	x	x
c(1.3$)$						1	x	-	\times	\times	0.6	x	0.5	x	\times	x
1(-0.3)							1	-	0.4	\times	x	x	x	x	x	
J(-0.3)	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-
K(0.0)								-	1	x	x	-0.4	\times	-0.6	0.4	-0.5
L(0.1)								-		1	\times	\times	0.5	x	0.4	x
M(1.4)								-			1	-0.7	0.8	x	0.6	\times
N(0.7)												1	-0.6	0.4	0.6	0.4
0(-0.5)													1	-0.4	0.5	x
$\mathrm{P}(0.0)$.				1	-0.6	0.7
Q(0.2)															1	\times
R(0.1)																1

[^10]| | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (-0.3) | $\left(\begin{array}{c} -0.8) \\ c \end{array}\right.$ | (1.3) | (-0.3) | (-0.4) | ${ }_{6}^{(1.5)}$ | $\binom{0.1)}{i}$ | | ; ${ }^{4}$ | $(-0,2)$ | (0.4) | $\binom{0.1)}{\mathbf{n}}$ | (-0.8) | (-0.7) | ${ }_{\text {P }}^{(0.5)}$ | $\stackrel{(1.0)}{0}$ | (0.5) |
| ${ }_{B}(-0.3)$ | \times | 0.7 | \times | 0.7 | x | \times | | x | x | * | * | \times | x | x | \times | x |
| $\mathrm{c}(-0.8)$ | 1 | * | 0.8 | \times | 0.9 | 0.4 | | * | * | * | \times | * | \times | \times | \times | * |
| D(1.3) | | 1 | 0.4 | 0.7 | \times | \times | | \times | \times | 0.4 | 0.4 | \times | \times | \times | 0.4 | \times |
| E(-0.3) | | | 1 | \times | 0.8 | * | | * | \times | \times | 0.6 | -0.4 | 0.3 | \times | 0.5 | * |
| $\mathrm{F}(-0.4)$ | | | | 1 | \times | \times | | \times | \times | * | \times | \times | \times | \times | 0.3 | \times |
| c(1.5) | | | | | 1 | 0.4 | | * | * | \times | 0.4 | \times | \times | \times | \times | \times |
| 1(0.1) | | | | | | 1 | | * | \times | * | * | -0.4 | 0.4 | \times | 0.4 | -0.4 |
| J(0.4) | | | | | | | 1 | , | 0.7 | 0.8 | \times | \times | \times | -0.4 | 0.4 | \times |
| $\mathrm{K}_{(-0.2)}$ | | | | | | | | | 1 | 0.7 | 0.6 | -0.6 | 0.6 | -0.7 | 0.6 | -0.4 |
| L(0.4) | | | | | | | | - | | 1 | 0.4 | x | 05 | -0.5 | 0.5 | x |
| ${ }^{\text {(}}$ (0.1) | | | | | | | | - | | | 1 | -0.9 | 0.8 | -0.6 | 0.8 | -0.5 |
| $N(-0.8)$ | | | | | | | | | | | | 1 | -0.8 | 0.7 | -0.8 | 0.7 |
| $0(-0.7)$ | | | | | | | | | | | | | 1 | -0.7 | 0.8 | -0.6 |
| P(0.5) | | | | | | | | | | | | | | | -0.8 | 0.6 |
| Q(1.0$)$ | | | | | | | | | | | | | | | 1 | -0.7 |
| R(0.5) | | | | | | | | | | | | | | | | 1 |

TABLE 54
Multiple Regression Analysis - Table of Pearson Correlation Coefficients
by Individual Area

-8 (Saughton) Significant Pearson Correlations Over 0.4															
$\underset{B}{(-0.9)}$	$\left(\begin{array}{c} (0.9) \\ C \end{array}\right.$	$\underset{D}{(1.6)}$	$\underset{E}{(1.8)}$	(-1.1)	${ }_{\text {(-0.4) }}^{6}$	(0.3)	$\begin{gathered} (0.1) \\ J \end{gathered}$	$\begin{gathered} (0.0) \\ \mathbf{K} \end{gathered}$	(-0.2)	$\underset{M}{(-1.0)}$	(0.4)	(0.4)	(-0.4)	(0.0)	(0.1)
$B(-0.9) \quad 1$	x	0.8	0.3	0.9	x	-0.4	x	x	x	x	x	x	x	x	x
C(0 9)	1	\times	0.6	\times	0.9	x	x	x	x	0.4	-0.4	x	x	x	x
D(1.6)		1	0.6	0.8	x	\mathbf{x}	x	x	x	0.3	x	0.4	x	x	x
E(1.8)			1	0.4	0.5	x	x	0.6	0.4	0.7	-0.6	0.4	x	0.6	x
F(-1.1)				1	x	x	x	x	x	\times	\times	x	x	x	x
G(-0.4)					1	\mathbf{x}	x	x	x	0.5	-0.3	\times	\times	x	x
I (0.3)						1	x	x	x	x	x	x	x	x	x
J(0.1)							1	x	x	x	x	x	x	x	x
K(0.0)								1	0.6	0.8	-0.7	0.6	-0.6	0.9	-0.5
L(-0.2)									1	0.5	\times	x	-0.3	0.5	x
M(-1.0)										1	-0.8	0.7	-0.5	0.8	x
N(0.4)											1	-0.7	0.7	-0.7	0.4
O(0.7)												1	-0.4	0.6	-0.4
$\mathrm{P}(-0.4)$					-								1	-0.6	0.5
Q(0.0)														1	-0.6
R(0.1)															1

[^11]

[^12]

[^13]
$$
6.5 \mathrm{axavy}
$$

Area - 12 (Turnhouse) Significant Pearson Correlations Over 0.4			Significant Pearson Correlat ions Over 0.4													
	$\begin{gathered} (-1.2) \\ B \end{gathered}$	$\begin{gathered} (0.5) \\ c \end{gathered}$	$\underset{\text { D }}{(0.2)}$	(0.4)	(0.2)	$\left(\begin{array}{c} 0.2) \\ G \end{array}\right.$	(0.1)	(0.1)	${ }_{K}^{(0.6)}$	(-0.1)	(0.0)	(0.5)	$\underset{0}{(0.7)}$	(0.5)	$\begin{gathered} (0.3) \\ Q \end{gathered}$	(0.3)
B(-1.2)	1	0.4	0.7	0.6	0.7	x	x	x	x	x	x	-0.3	x	x	x	x
C(0.5)		1	x	0.6	x	0.7	x	\times	x	x	0.4	x	x	x	x	x
D(0.2)			1	0.7	0.8	x	x	0.3	x	x	x	x	x	x	x	x
E(0.4)				1	0.6	0.6	x	x	x	x	0.5	x	0.4	x	x	0.3
P(0.2)					1	\times	x	x	x	x	x	x	x	x	x	x
G(0.2)						1.	x	x	0.5	x	0.5	x	x	x	\times	x
I(0.1)							1	x	x	x	x	x	x	\times	x	x
J(0.1)								1	x	x	\times	x	x	-0.4	x	x
K(0.6)									1	x	0.4	x	x	x	0.4	x
L(-0.6)										1	x	x	\mathbf{x}	-0.4	0.3	0.4
M(0.0)											1	-0.4	0.7	x	x	0.4
N(0.5)												1	x	0.4	x	-0.4
O(0.7)													1	x	x	x
P(0.5)														1	x	x
Q(0.3)															1	x
R(0.3)																1

TABLE 60
Multiple Regression Analysis - Table of Pearson Correlation Coefficients
by Individual Area

Area - 13 (Leith)							Significant Pearson Correlations Over 0.4									
	$\left(\begin{array}{c} (0.1) \\ 8 \end{array}\right.$	$\underset{c}{(-0.1)}$	$\underset{D}{(0.6)}$	$\underset{E}{(0.1)}$	${ }_{(}^{(-1.4)}$	${ }_{(-1.0)}^{\text {c }}$	$\begin{gathered} (0.1) \\ 1 \end{gathered}$	(0.9)	$\begin{gathered} (-1.2) \\ k \end{gathered}$	(0.5)	$\underset{M}{(-0.1)}$	${ }_{(-0.1)}^{\text {N }}$	(-0.8) 0	$\underset{\mathrm{P}}{(-0.8)}$	(0.3)	(-0.5)
B(0.1$)$	1	x	0.6	-0.4	0.8	-0.4	x	x	x	x	x	x	- ${ }^{\text {x }}$	0.3	x	0.3
C(-0.1)		1	-0.4	0.7	-0.3	0.9	x	x	x	x	x	x	0.4	x	x	x
D (0.6)			1	\times	0.8	-0.3	x	x	x	x	x	\times	x	x	x	x
E(0.1)				1	\times	0.9	x	x	x	x	0.5	-0.3	0.5	x	0.4	x
F(-1.4)					1	-0.4	x	x	x	-0.5	x	x	. x	x	-0.4	0.4
G(-1.0)						1	x	\times	x	\times	0.4	\times	0.5	x	\times	\times
I(0.1)							1	0.5	0.4	x	x	x	x	x	x	x
J(0.9)								1	0.7	x	x	x	x	x	. x	\times
K(-1.2)									1	x	0.3	-0.4	x	-0.6	0.5	-0.3
L(0.5)										1	0.3	\times	\times	\times	0.5	\times
$\mathrm{m}(-0.1)$											1	-0.8	0.5	-0.4	0.5	x
N(0.1)												1	-0.6	0.6	-0.5	x
$0(-0.8)$													1	-0.4	0.5	x
$\mathrm{P}(-0.8)$														1	-0.6	0.5
Q(0.3)															1	-0.6
R(-0.5)																1

[^14]Area - 14 (Craigleith Cres./View)

	(1.1)	$\begin{gathered} (-0.4) \\ c \end{gathered}$	$\underset{D}{(-1.1)}$	(-0.3)	(-0.2)	(0.1)	(-0.2)	(0.3)	(-0.5)	(-0.9)	(0.6)	(0.5)	$\begin{gathered} (-0.4) \\ 0 \end{gathered}$	(-0.8)	(-0.1)	(-0.2)
B(1.1)	1	x	0.8	0.4	0.8	x	x	x	x	x	x	x	x	x	x	x
C (-0.4)		1	x	0.5	x	0.8	x	x	x	0.4	x	x	x	x	x	x
D(-1.1)			1	0.6	0.8	\times	x	x	x	x	x	x	0.4	x	x	x
$E(-0.3)$				1	0.5	0.4	x	x	0.5	0.5	0.5	-0.5	0.6	x	x	x
$F(-0.2)$					1	x	x	x	x	x	x	x	x	x	x	x
C(0.1)						1	x	x	x	0.4	x	x	\times	x	\mathbf{x}	x
I(-0.2)							1	x	x	x	*	x	x	x	x	x
J(0.3)								1	x	0.6	0.5	-0.4	0.5	-0.6	0.6	x
K(-0.5)									1	0.6	0.6	-0.6	0.6	-0.7	0.6	-0.4
L(-0.9)										1	0.7	-0.6	0.6	-0.6	0.5	-0.4
M (0.6)										.	1	-0.9	0.8	-0.6	0.5	-0.3
$N(0.5)$												1	-0.8	0.7	-0.6	x
$0(-0.4)$													1	-0.5	0.5	-0.3
$\mathrm{P}(-0.8)$														1	-0.8	0.4
$Q(-0.1)$							-								1	-0.6
$\mathrm{R}(-0.2)$																1

[^15]| Area - 15 (Rem | er Rd./ | (oalty R | | Stgnificanc Pearson Correlations over 0.4 | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{(-0.3)}$ | $\left(\begin{array}{c}(0.0) \\ c\end{array}\right.$ | ${ }_{(0.4)}^{\text {D }}$ | $\stackrel{(-0.9)}{\left.()^{\prime}\right)}$ | | ${ }_{(-0.4)}^{6}$ | ${ }_{\text {(-0.1) }}^{1}$ | ${ }^{(-0.3)}$ | $\left(\begin{array}{c}(0.1) \\ k\end{array}\right.$ | | i) ${ }^{\text {1) }}$ | (-0.4) | $\left(\begin{array}{c}(0.7) \\ \text {) }\end{array}\right.$ | $\left(\begin{array}{c}(-0.7) \\ 0\end{array}\right.$ | ${ }_{\text {p }}^{(0.2)}$ | ${ }^{(0.9)}$ | $\underset{\mathrm{k}}{(0.0)}$ |
| B(-0.3) | \times | 0.6 | x | 0.6 | ${ }^{-0.3}$ | 0.4 | * | x | | * | x | * | \times | \times | x | x |
| c(0.0$)$ | 1 | \times | 0.6 | \times | 0.8 | \times | \times | \times | | * | 0.6 | -0.4 | 0.6 | -0.6 | * | * |
| D(0.4) | | 1 | 0.5 | 0.6 | \times | \times | * | \times | | \times | \times | \times | \times | x | \times | * |
| E(-0.9) | | | 1 | \times | 0.6 | \times | \times | 0.5 | | \times | 0.8 | -0.4 | -0.5 | * | * | * |
| P(0.1) | | | | 1 | \times | * | * | \times | | \times | \times | \times | \times | \times | * | * |
| c(-0.4) | | | | | 1 | \times | \times | 0.4 | | \times | 0.7 | -0. 5 | 0.7 | -0.6 | * | \times |
| ${ }^{1}(-0.1)$ | | | | | | 1 | * | * | | * | * | 0.3 | * | 0.4 | * | x |
| ${ }^{\mathrm{J}(-0.3)}$ | | | | | | | 1 | * | | | x | \times | \times | \pm | 0.5 | * |
| k(0.1) | | | | | | | | 1 | | | 0.6 | -0.6 | 0.6 | -0.6 | 0.5 | * |
| L(0.1) | | | | | | | | | 1 | | \times | \times | \times | \times | \times | \times |
| ${ }^{\mathbf{m}(-0.4)}$ | | | | | | | | | | | 1 | -0.5 | 0.8 | -0.6 | 0.4 | \times |
| N(0.7) | | | | | | | | | | | | 1 | -0.5 | 0.7 | -0.1 | 0.5 |
| ${ }^{0}(-0.7)$ | | | | | | | | | | | | | 1 | -0.7 | 0.6 | \pm |
| ${ }^{\mathrm{P}}(0.2)$ | | | | | | | | | | | | | | 1 | -0.6 | 0.4 |
| Q R(0.9) R | | | | | | | | | | | | | | | 1 | -0.6 |
| | | | | | | | | | | | | | | | | 1 |

[^16]| Area - 16 | 16 (To | | Significant Pearson Correlations Over 0.4 | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (-0.3) | $\begin{gathered} (-0.1) \\ c \end{gathered}$ | (0.5) | (0.8) | (-0.1) | $\left(\begin{array}{c} (0.1) \\ 6 \end{array}\right.$ | $\left(\begin{array}{c} (0.1) \\ i \end{array}\right.$ | (0.0) | (0.4) | (0.0) | $\underset{M}{(0.6)}$ | (0.0) | $\left(\begin{array}{c} (0.0) \\ 0 \end{array}\right.$ | $\left(\begin{array}{c} (0.1) \\ \mathbf{p} \end{array}\right.$ | $\underset{Q}{(0.3)}$ | $\left(\begin{array}{c} (0.1) \\ R \end{array}\right.$ |
| $\mathrm{B}(-0.3)$ | 1 | * | 0.7 | x | 0.8 | \times | x | x | x | x | x | x | x | x | x | x |
| $\mathrm{c}(-0.1)$ | | 1 | x | 0.4 | \times | 0.7 | x | \times | \times | \times | x | \times | x | x | x | x |
| $\mathrm{D}(-0.5)$ | | | 1 | 0.6 | 0.8 | x | x | x | 0.4 | x | x | \times | x | x | x | x |
| $\mathrm{E}(0.8)$ | | | | 1 | x | 0.5 | x | x | 0.4 | x | 0.6 | -0.4 | -0.4 | x | x | x |
| $\mathrm{F}(-0.1)$ | | | | | 1 | * | x | x | x | x | \times | \times | x | x | x | \times |
| c(0.1$)$ | | | | | | 1 | \times | x | x | \times | \times | * | x | \times | \times | * |
| 1(0.1) | | | | | | | 1 | x | 0.4 | x | * | x | * | * | * | * |
| J(0.0) | | | | | | | | 1 | 0.5 | 0.5 | x | \times | \times | \times | \times | \times |
| k(0.4) | | | | | | | | | 1 | 0.5 | 0.4 | -0.4 | 0.4 | -0.6 | 0.5 | x |
| L(0.0$)$ | | | | | | | | | | 1 | 0.4 | x | 0.4 | -0.4 | 0.4 | * |
| M(0.6$)$ | | | | | | | | | | | 1 | -0.6 | 0.7 | x | 0.5 | x |
| N(0.0) | | | | | | | | | | | | 1 | -0.6 | 0.6 | -0.5 | x |
| o(0.0) | | | | | | | | | | | | | , | x | 0.4 | \times |
| P(0.1) | | | | | - | | | | | | | | | 1 | -0.5 | \times |
| Q(0.3) | | | | | | | | | | | | | | | 1 | -0.4 |
| R(0.1) | | | | | | | | | | | | | | | | 1 |

[^17]based on the shopping expenditure variables. This is generally true, and it is suppported by the canonical correlation analysis, in that the presence of a strong relationship between dependent and independent variables has its basis in the expenditure variables D and E.

The correlations within the dependent and independent variables are generally strong and will tend to reduce the correlation between dependent and independent variables. The number of variables also influences the correlation coefficient and this is adjusted to yield a more conservative estimate. The method of adjustment is based on the formula :

```
r}\mp@subsup{}{}{2}\mathrm{ in the population
    = error variance in Y in the population
```

The adjusted \mathbf{r}^{2} formula uses unbiased estimates of the error variance and the total variance in the population. The formula used in the SPSS computer package is :

$$
\text { Adjusted } \mathbf{r}^{2}=\mathbf{r}^{2}-\left(\frac{k-1}{N-k}\right)\left(1-r^{2}\right)
$$

where $\quad \begin{aligned} k & =\begin{array}{l}\text { number of independent variables in } \\ \text { the regression equation. }\end{array} \\ N & =\text { number of cases. }\end{aligned}$

In Appendix H the adjusted \mathbf{r}^{2} values have not been written into the standard output since the individual area model shows a low predictive capability.

7.8.4 Examination of Residuals

These comments on the examination of the residuals apply to the preceding multiple regression analysis and to the

Abstract

subsequent multiple regression analysis. The residuals list for each output was checked for any regular pattern of positive and negative runs. They were also checked for any regular pattern of scatter about the mean and their randomness was checked using the Durban-Watson test statistic and the plotting of the residual values on probability paper to confirm their linearity. These checks confirm that no abnormality exists in the residuals.

7.8.5 Multiple Regression Analysis with respect to the Total Data Matrix

It is not expected that a predictive model, using Model 2 and the total data matrix, will provide a satisfactory prediction capability. The overall canonical correlation coefficient is low and inspection of Table 64 shows that only income (K) is correlated, at a low level of 0.4 , with store expenditure (D), with the duration and frequency variables uncorrelated at, or above, the 0.4 level. This is confirmed by inspection of Table 65 and Appendix I-16 where the r^{2} values of frequency (F), duration of stay (B) and expenditure (D) were $8 \%, 4 \%$ and 18% respectively. If the analysis is carried out for the total shopping expenditure (E) the equation explains 38% of the variance in the dependent variable. The interest in the difference between bulk-buying expenditure (D) and total shopping expenditure (E) relates to the elimination of the zero expenditure values found in D. The presence and effect of zero values in general is discussed in the next chapter on the interpretation of the analysis. The results of the multiple regression analysis based on total shopping expenditure are shown in Table 66 and Appendix J.

A further analysis was carried out using a relative household expenditure term, T, defined as the total shopping budget (E) minus the bulk-buying budget (D).

Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R for Total Data Matrix
FILE Fi (CREATIJN TATE = NG/US/H3)

File fi creatioti uate = be/geash

FILE Fi (CREATION DATE $=10 / 17 / 83)$

This was done to equalise the proportion of total shopping budget spent at large foodstores. However, the results of the analysis showed that only 12% of the variance in T was predicted by the independent variables. The results of the analysis are shown in Appendix K.

7.8.6 Multiple Regression Analysis with respect to the Means Data Matrix, with and without the Spatial Accessibility Index

The means data matrix has been shown to form the basis of a predictive model at mean area level. It is expected that the development of a model based on multiple regression analysis will support this view. The analysis was carried out in three stages :
i) with all the independent variables
ii) with income (K) and freezer ownership (I) omitted
iii) with personal accessibility (R), income (K) and freezer ownership (I) omitted.

The reason for this is that the three variables mentioned in stages (ii) and (iii) are not contained within census data and as part of the research objectives require a strategic model based on census data these have been removed to see if their omission impairs the model significantly. The results of the analysis are shown in Appendix L. The adjusted r^{2} values have been added to the output listing.

Omitting all three variables the highest adjusted multiple correlation coefficients, which are significant at the 5% level are:
Frequency of visit $(F)=0.75$ (adjusted $r^{2}=43 \%$)
Duration of stay $(B)=0.71$ (adjusted $r^{2}=37 \%$)
Expenditure per visit $(D)=0.80$ (adjusted $r^{2}=50 \%$)

If personal accessibility (R) is included the values become :
Frequency of visit $(F)=0.92$ (adjusted $r^{2}=65 \%$)
Duration of stay $(B)=0.96$ (adjusted $\left.r^{2}=86 \%\right)$
Expenditure per visit (D) $=0.87$ (adjusted $r^{2}=62 \%$)

The values with all independent variables included are :
Frequency of visit $(F)=0.98$ (adjusted $\left.r^{2}=83 \%\right)$
Duration of stay $(B)=0.97$ (adjusted $\left.r^{2}=85 \%\right)$
Expenditure per visit $(D)=0.96$ (adjusted $\left.r^{2}=77 \%\right)$

These figures show a good prediction of the three individual dependent variables. The store expenditure variable requires income (K) and freezer ownership (I) to be included to achieve a level of 77% prediction. The duration of stay variable (B), important for car parking capacity, requires the addition of personal accessibility (R), raising the level of variance in B explained from 37\% to 86%. The frequency of visit variable (F), important for trip prediction, requires all the independent variables to achieve an 83\% prediction. Thus each of the store dependent variables can be predicted using household characteristics. The application and stability of these multiple regression equations will be discussed in the following chapter. Note that spatial accessibility (S) becomes the most important variable for frequency of use when personal accessibility (R) and income (K) are removed.

7.8.7 Multiple Regression Analysis with Respect to Model 1

The results of the analysis relating to Model 1 have supported the conceptual theory of three independent factors of influence on two store usage factors. However
the model based on this structure has shown no stability between areas and the analysis has indicated that the predictive capability of a factor-based model will be poor. To investigate this further the multiple regression analysis was carried out in four stages :

1) to define the usage index as a linear combination of all six dependent variables and to correlate this with the individual dependent variables by area.
i1) to define the usage index as a linear combination of the three store usage variables relating this to the principal components structure, using weighted and unweighted variables, for the total data matrix. This will test the effect of the component weightings on the multiple regression coefficient.
iii) as in (ii) but applied at individual area level.
iv) as in (ii) but applied to the means data matrix.

The results of stage (i) of the analysis are shown in Appendix M. In seven areas the grouped usage index had a lower correlation coefficient than the Model 2 structure. In the remaining eight areas the coefficients were of the same order of magnitude. There is therefore no advantage in this form of model. This is further exacerbated by measurement difficulties associated with the usage index. As with the preceding stages of the analysis there is no uniform variable structure between areas.

The second stage of the analysis applied to the total data matrix using the weighted and unweighted principal components structure. The results of the analysis are shown in Appendix N. Although the coefficient is greater than for the individual usage variables it is very low at 0.36 unweighted and 0.37 weighted. Thus only 12% and 13%
of the variance in the usage index is predicted with the component weighting making no appreciable difference to the prediction.

The third stage of the analysis related to the individual areas using the model of stage (i1). The analysis was carried out using the total data matrix component weightings and with area component weightings. This was applied to only the first seven areas as it was not expected to yield high prediction levels. The results are shown in Appendix 0. These results show the same pattern as stages (i) and (ii) in that the correlation coefficient in all seven areas is lower than other forms of model and the component weightings make no significant difference to the prediction.

The final stage of this section of the analysis relates to the means data matrix, with and without spatial accessibility. The results of the analysis are shown in Appendix P. The model does not perform as well as the individual usage variables of Model 2 and the addition of the spatial accessibility variable marginally decreases the value of the multiple correlation coefficient. In keeping with the results from the principal components analysis and the canonical correlation analysis Model 1 does not provide a basis for a trip generation model of private-car trips to large foodstores.
7.8.8 The multiple regression analysis examined the predictive capabilities of the two proposed models. Model 2, based on individual variables, showed the same areal instability as the previous stages of the analysis and, with the exception of store expenditure, did not provide high levels of prediction for the store usage variables. As the areal canonical correlation between the dependent and independent variables is consistently high this indicates that to achieve this relationship all the store variables
are required. Thus when separated the relationships, as seen by the Pearson correlation matrices, are not strong enough to produce high multiple correlations. The model based on the total data matrix explained 40% of the variance in the dependent variables.

This is a creditable performance when one considers that the model is attempting to predict the store usage of each household but is not satisfactory with respect to a trip prediction model for development control. As with the other sections of the analysis the means data matrix provided a basis for good prediction of the three dependent store variables. The structure and stability of these equations will be discussed in the following chapter.

The "analysis based on Model 1 , using the principal components structure, did not provide any advantage over Model 2 and in most cases yielded lower prediction levels. It is proposed therefore to develop the disaggregate trip generation model on Model 2 using the means data matrix. This is complementary to current transport modeling techniques based on transport zones, the difference being these equations are based at a more disaggregate level and have been developed from the household characteristics of an area. These characteristics are largely census based and can adapt to the changing land-use patterns of an area without recourse to further major household surveys.

7.9 Concluding Remarks

The analysis of the data has been carried out in three sections : the production of the Pearson correlation matrices and the principal components analysis to establish the form of Model 1 , the canonical correlation analysis to establish the strength and structure of the relationship between the dependent and independent
variables and the multiple regression analysis to develop the predictive model.

The principal components analysis identified a stable data structure at an aggregated level but did not find that this structure was maintained at area level. The canonical correlation analysis established that a strong relationship existed between the two variable sets at area level but that this relationship required all the dependent variables to be present. As the areas were aggregated the canonical relationship diminished, in other words the independent variables were defining store usage with respect to the character of the area and as areas were added together these strong relationships were cancelling each other out because of the areal variation in bivariate relationships. Thus as areas were added the canonical coefficient declined in proportion to the area sample size.

The area means data smoothed out the areal variation and enabled strong relationships to be established between the individual dependent variables and the independent variables. This was developed in the multiple regression analysis to provide three equations, for the three store variables, with an $80 \%-90 \%$ level of prediction. This model cannot be improved upon at individual area or total data matrix level or by using the principal components structure.

The development and application of this model will be considered in the following chapter.

CHAPTER 8
 INTERPRETATION AND DISCUSSION OF THE FINDINGS

8.1 Introduction

This chapter gives an overview of the analysis and interprets the results with respect to the research objectives. The interpretation specifically addresses the problem of within and between area variations. The interpretation is then discussed with specific reference to the areal variation, level of disaggregation achieved and stability of the model. The chapter concludes with a discussion of the application of the three proposed sub-models and their interface with the distribution model. The development and application of the combined model to development control procedures is also discussed.

8.2 An Overview of the Analysis

Abstract

8.2.1 The conceptual framework of the thesis postulated that private-car trips to large foodstores could be split into two parts comprising the generation of trips and the distribution of trips to the stores in the study area. The research objectives sought to identify this disaggregate generation model, find the level of disaggregation able to satisfy the prediction accuracy required and explain the model's interaction with an aggregate distribution model. The generation model could not be defined a priori and two conceptual models were proposed. These models were based on the bellef that the choice mechanism of the consumer could be modelled from observed behaviour which in turn could be related to national census data on each household.

8.2.2 The inspection of the Pearson bivariate correlation matrix confirmed that the six dependent, shopping variables were inter-related and many of the independent variables were inter-related especially, as expected, the three household structure variables and income, employment and SEG. The inter-relationships between the dependent and independent variables were based on the two shopping expenditure variables, D and E. The areal variation, which has been mentioned at each stage of the analysis, could be seen at this preliminary stage where area 1 (Moredun) and area 12 (Turnhouse) showed significant variation in the strength of the bivariate correlations.

8.2.3 The principal components analysis examined model 1 , based on five composite variable factors. The analysis sought to confirm this model structure so that a store usage index could be identified. However, although the aggregated data supported the conceptual structure the model broke down at individual area level. The model based on the aggregated data explained 80% of the
variation within the dependent variables and 64% within the independent variables. The structure based on the means data matrix explained 100% of the variation within the dependent variables and 85% within the independent variables. The addition of a spatial accessibility index did not add to the level of explanation significantly. The above figures highlight the smoothing effect of the means data matrix, which shall be discussed in detail later in the chapter.

8.2.4 The canonical correlation analysis sought to establish the strength and structure of the relationship between the dependent and independent variables. The analysis showed that in all areas the strength of relationship was high, around 80% explanation, but when the areas were aggregated the correlation coefficient fell to $0.64,41 \%$ explanation, for the total data matrix. This supported the conclusion of the principal components analysis in that each area achieved the strong canonical correlation using a different model structure. The canonical correlation declined in proportion to a rising sample size. This means that as the within-area variation increases the percentage variance explained decreases.

8.2.5 The 0.64 coefficient was achieved using all the dependent variables and all the independent variables. If the three store variables were used with all the independent variables the coefficient fell to 0.53, however if only three of the independent variables were used the coefficient only fell by 0.02 to 0.51 . The three independent variables were chosen relative to the canonical-weightings for each area and therefore differed from area to area.

8.2.6 The multiple regression analysis showed that a general

 model could be achieved using the means data matrix but because of the areal variation a general model could notbe applied within each area at household level. As a consequence of this areal variation the total data matrix did not provide a strong predictive model. The means data matrix, without income (K), freezer ownership (I) and personal accessibility (R), attained multiple correlation coefficients of $0.75,0.69$ and 0.80 for frequency of visit (F), duration of stay (B) and expenditure per visit (D) respectively but the adjusted \mathbf{r}^{2} values fell to $0.43,0.39$ and 0.50. The addition of personal accessibility (R) raised the adjusted values to $0.65,0.86$ and 0.62 and the further addition of income (K) and freezer ownership (I) raised the values to $0.83,0.79$ and 0.77 .

8.3 Interpretation of the results

8.3.1 The canonical correlation showed that the postulated theory, that a relationship exists between shopping usage and household characteristics, is correct. It further showed that the relationship is strong, with an 80\% explanation of the dependent variables. However the way in which this explanation is achieved varies from area to area. Tables 49 to 64 show the Pearson bivariate correlations by area. It can be clearly seen, by inspection of the upper-right quartile, that the prediction of store usage depends on the shopping expenditure variables and their relationship to the independent variables. These tables show the areal variation and why certain areas, such as area 1 (Moredun), do not produce a good relationship between the two sets of variables. They do not explain, however, why this areal variation exists.

8.3.2 A low correlation between a variable pair can be

 attributed to one of three reasons :a) there is no relationship
b) the variable variance is low
c) the relationship is not inear.

The third reason can be discounted as this was investigated, using scatter diagrams, in the initial stages of the analysis. The first two reasons require further discussion.

Table 10 shows the standard deviations for the two sets of variables. If two extreme areas, i.e. an area which gives a poor relationship and an area which gives good relationship between the two variable sets, such as area 1 (Moredun) and area 11 (Camo), are inspected the standard deviation of key independent variables income (K), number in the household (M), mean age of household (N) and employment (Q) show a consistently lower value in area 1 than in area 11. This lack of dispersion is also evident in area 12 (Turnhouse), another area which has consistently shown a poor predictive quality. This lack of variance can be explained by the characterisitics of these areas. For example, in area 1 there is a high proportion of retired couples whose income level will be relatively uniform, given the quality of the area. Therefore although it is an area of private housing the store usage level is low due to the low demand of this group and the lack of large store facilities within walking distance of the area.
8.3.3 The general situation is shown graphically in the sketch below. In certain areas the values of the independent variable are clustered between a narrow band on the x-axis (between x_{1} and x_{2}). This affects the ability of the regression model to predict an accurate relationship. If there is a larger variation in the independent variable then there is a greater spread, and hence the standard deviation of the variable is increased. If this is achieved within a sample of equivalent size then the regression correlation coefficient of that sample will
compare favourable with the former (between x_{3} and x_{4}). If, however, to achieve the increased standard deviation the sample size is increased then there will be the negative effect of increased spread in the y-axis due to the normally expected variation between households (from y_{1}, y_{2} to y_{3}, y_{4}).

> | Dependent |
| :--- |
| Variable |

Key :

$x \quad$ Values with small standard deviation within x_{1}, x_{2} - Equivalent size of sample but with larger deviation within x_{3}, x_{+}

- Increased sample within x_{3}, x_{6}.
8.3.4 This problem is not related to an optimisation of sample, or zone size, but rather a symptom of the variation between households and between the areas of households. The variation, in this case, is the variation in the standard deviation of a particular variable from area to area. The implication of this is that the developed trip generation model should be applied at the most disaggregate level at which household census data can be extracted i.e. at the ennumeration district level. as these areas are aggregated then the least-squares difference will increase because of the increased spread
around the regression line and the correlation coefficient will fall.
8.3.5 Thus the smallest practical zone size is the ennumeration district, approximately 120 households. An analysis at this level would use the variable means within each district. The means data matrix giving a consistently accurate prediction capability. This is not to imply that the overall accuracy of the model has increased but that by taking the variable means values within each area the areal variability has been reduced. This will yield a zonal base, rather than a household base, which is required for the trip distribution model at a later stage. The variation within and between areas is explained in the sketch below.

The diagram represents the areal variation and the larger variation in the total data matrix. When the means of area variables are taken the overall variation is much less but the variance between means is sufficient to yield a high predictive correlation.
8.3.6 From the foregoing it is clear that a predictive model can be based on the means data matrix. However the stability of the variable order, as areas are removed
one-by-one from the means data matrix, is subject to fluctuations. The strengths of the F-test values for each stage of the step-wise regression analysis were inspected to identify a reduced number of variables which could predict the store usage variables to an acceptable level and which would remain stable as areas were subtracted. This identified the following groupings :

```
Frequency of use (F) = Income (K), Mean age of household
                                    (N), Number of Licences (L),
                                    Personal accessibility (R).
```

Expenditure per
Visit (D)
$=$ Income (K), Mean age of household (N), Number of 1icenses (L), Number in the household (M), Personal accessibility (R).

Duration of Stay (B) $=$	SEG (P), Standard deviation of
	household ages (0), spatial
	accessibility ((S), personal
	accessibility (R).

These groupings were stable as each area was subtracted from the means data matrix and the adjusted r^{2} values for F, D and B are $72 \%, 70 \%$ and 42% respectively. It should be noted that, as indicated in the previous chapter, the adjusted r^{2} takes account of the number of variables and the sample size and the reduced values shown above reflect the small sample size. The unadjusted r^{2} values for F, D and B are $80 \%, 80 \%$ and 58%. Higher levels of prediction can be achieved but the variable structure is not stable as areas are removed.
8.3.7 The variables included, however, require justification and an analysis was carried out removing variables one-by-one from each equation to examine the effect on the
multiple regression correlation coefficient. The results are as follows:

For frequency of use :

1.a) $\quad F=1.000+0.346 \mathrm{~K}-0.027 \mathrm{~N}+0.119 \mathrm{R}-1.117 \mathrm{~L}$
$r^{2}=80 \%$; adjusted $r^{2}=72 \%$
b) $\quad F=0.573+0.043 \mathrm{~K}-0.015 \mathrm{~N}+0.061 \mathrm{R}$
$r^{2}=59 \%$; adjusted $r^{2}=48 \%$
c) $\quad F=0.875+0.119 \mathrm{~K}-0.010 \mathrm{~N}$
$r^{2}=47 \%$ adjusted $r^{2}=38 \%$
d) $F=0.416+0.131 \mathrm{~K}$
$r^{2}=32 \%$; adjusted $r^{2}=27 \%$

For expenditure at store :
2.a) $D=13.121-15.315 L-0.459 \mathrm{~N}+6.055 \mathrm{~K}+$ $1.821 R+2.272 \mathrm{M}$ $\mathbf{r}^{2}=80 \%$; adjusted $r^{2}=70 \%$
b) $D=21.222-14.758 \mathrm{~L}-0.504 \mathrm{~N}+$

$$
6.170 K+1.768 R
$$

$r^{2}=76 \%$; adjusted $r^{2}=66 \%$
c) $D=22.668-3.269 \mathrm{~L}-0.290 \mathrm{~N}+$ 4.510K
$\mathbf{r}^{2}=65 \%$; adjusted $\mathbf{r}^{2}=55 \%$
d) $D=17.042-8.698 \mathrm{~L}-0.221 \mathrm{~N}$ $r^{2}=57 \%$; adjusted $r^{2}=50 \%$

For duration of stay at the store :

$$
\text { 3.a) } \begin{aligned}
& B=0.810-0.026 P+0.001 s+0.027 R+0.0050 \\
& r^{2}=58 \% ; \text { adjusted } r^{2}=42 \% \\
& \text { b) } \quad B=0.834-0.027 P+0.001 \mathrm{~S}+0.029 R \\
& r^{2}=58 \% ; \text { adjusted } r^{2}=46 \% \\
& \text { c) } B=1.251-0.033 P+0.002 S \\
& r^{2}=48 \% ; \text { adjusted } r^{2}=39 \% \\
& \text { d) } B=1.416-0.040 P
\end{aligned}
$$

$$
r^{2}=34 \% ; \text { adjusted } r^{2}=29 \%
$$

8.3.8 From the above the three equations which yield the highest levels of prediction of the independent variables and are stable are as follows:

$$
\begin{aligned}
& F=1.0+0.346 R-0.027 N+0.119 R-1.117 L \\
& B=0.81-0.026 P+0.001 S+0.027 R \\
& D=13.1-15.315 L-0.459 N+6.055 K+1.821 R+2.272 M
\end{aligned}
$$

where

$F=$ Frequency of visit to store/week/household

B = Duration of stay at store/week/household
D = Expenditure at store(s)/week/household
$K=$.Income/household
$L=$ Number of licenses in the household
$M=$ Number in the household
$N=$ Mean age of the household
$P=$ SEG of head of household
$R=$ Personal accessibility of principal shopper
$S=$ Spatial accessibility of household.

These are the variables and coefficients of major predictive importance relative to the usage of large foodstores. This means that as household income and personal accessibility rise the frequency of use of the store increases and as the mean age drops frequency of use increases. The latter relationship indicates the presence of children in a household and the increased food demand of a family with young children and teenagers. The inverse relationship between the number of licenses and frequency of use relates to two factors. It is evident, from the experience of working with the data, that households with a high number of licenses tend to be low-income, large families with several people working in low SEG employment. This is supported by the Pearson
number in the household rises and SEG falls the number of licenses increases. In addition there is no correlation between the personal accessibility of the shopper and the number of licenses. This was discussed in the previous chapter on accessibility when it was seen that the household reallocates the avallability of the household car, or cars, to carry out a major shopping. Thus it is expected that as the number of licenses in the household is associated with households whose frequency of use will be lower, the relationship with frequency of use will be inversely proportional.

The expenditure at the store rises with income, family size and personal accessibility. The negative correlation with the number of licenses has been discussed above. As the mean age of the household falls expenditure rises. The strong positive relationship between the number in the household and the mean age of the household supports the conclusion that larger families have a greater food demand and will generally spend more, all other things being equal.

For the duration of stay equation the time spent at the store rises as the accessibility of the store and shopper rises and as the SEG of the household rises. There is a positive correlation between SEG and personal accessibility but a negative correlation between expenditure at the store and SEG. Thus although households with a lower income and frequency use of the store shop longer, they spend less. It is expected that if frequency of use declines duration of stay will increase. This can be accompanied by increased expenditure if the household budget is high but in this case indicates more careful budgeting of scarce resources.

The increase in the adjusted r^{2} when the standard deviation of household ages (0) is omitted, and the fact
that the unadjusted \mathbf{r}^{2} does not decrease, indicates that this variable does not significantly contribute to the model and should not be included.
8.3.9 If these models are applied to the fifteen means data profiles the prediction of the three store usage variables is high. Table 67 lists the results of the analysis. These results per household must be multiplied by the number of households in the ennumeration district to predict the weekly number of trips, duration of stay and expenditure emanating from the area to large foodstores.

8.4 Discussion of the Results

8.4.1 The research objectives seek to identify a disaggregate trip generation model that can be combined with an aggregate distribution model to provide a strategic model for the development control of large foodstores based on the household characteristics of an area. The application of this model will be eased if these characteristics are based on census data, thereby eliminating the need for expensive shopping surveys. The level of disaggregation possible with respect to the model was also to be investigated. At best this would accurately model each household, however this extreme level of disaggregation did not prove satisfactory due to the variation between areas and households. The model developed does however achieve a level of disaggregation acceptable within the objectives of the thesis by basing the model at ennumeration district level, which is the most disaggregate level for census date information.
8.4.2 It was the postulation of the thesis that the choice mechanism of bulk-purchase shopping could be split into a generation stage, where the household characteristics determine the necessity to use these stores, and the distribution stage, where the household decides where to

Actual Usage Values				Predicted Usage Values		
Area No.	Frequency of use (F) (trip)	Duration of stay (B) (hrs)	Expenditure/ Visit (0) (£)	Frequency of use (F) (trip)	Duration of stay (B) (hrs)	Expenditure/ Visit (D) (£)
1	0.7	0.9	17.9	0.7	0.9	17.7
2	0.6	0.9	17.0	0.8	0.9	17.3
3	0.7	1.0	15.7	0.6	0.9	13.5
4	0.9	1.1	21.0	0.9	1.1	22.7
5	0.7	0.9	13.9	0.6	0.8	13.6
6	1.1	1.0	28.2	1.0	0.9	24.2
7	0.8	0.9	20.8	0.9	0.9	20.8
8	0.9	1.0	21.6	0.8	0.9	20.3
9	0.7	0.9	18.7	0.8	0.9	19.9
10	0.6	0.8	18.5	0.6	0.8	17.6
11	1.1	1.1	26.3	1.0	1.1	26.1
12	1.1	1.3.	28.1	1.1	1.1	26.1
13	0.8	1.1	16.7	0.8	0.9	20.8
14	1.0	1.1	25.8	1.1	1.0	25.4
15	1.1	1.2	20.1	1.1	0.9	23.4

TABLE 67
The Prediction of Frequency of Use, Duration of Stay and Expenditure at Large Foodstores in the Survey Areas Using the Developed Trip Generation Model
shop. The analysis supports this postulation and the final trip frequency model does not contain the spatial accessibility variable. It is included in the duration of stay model as there is a relationship between the distance between a household and a store and the time spent at the store.
8.4.3 Having split the choice process into two parts it was necessary to find the strength and structure of the relationship between the two sets of variables. The canonical correlation showed that all six dependent variables were necessary to obtain areal canonical coefficients of around 0.9 but the structure was not stable between areas. Two levels of variable variation exist; the within-area variation between households and the between-area variation. Neither of the two models postulated could predict the aggregated effect of the two levels of variation at household level but if the means of the variables were taken for each area model, based on Model 2, could be developed satisfactorily. This model has the advantage over Model 1 in that it separates frequency of trips, duration of stay and expenditure per visit into three multiple regression models.

8.4.4 The issue of accuracy of representation of the sample size requires discussion. Finance dictated a sample size of four hundred households and the sampling framework was designed around this constraint. The fifteen areas were randomly chosen and provide a well-distributed coverage of the city. It must therefore be assumed that if another fifteen areas were randomly chosen the same relationships would be found. Although competition was kept constant, the effect of competing stores on the trip generation of households was found to be insignificant. This may not be true in an area with no large store if a store was then introduced and these results must be taken in the context of an accessible, existing bulk-buying trading pattern.

The proven value of the developed model is in building an accurate mathematical representation of an existing area, which can be updated as census data is updated, thereby providing a base against which the effect of a new store can be measured.
8.4.5 One of the reasons for the inability of either proposed model to cope with the areal variations at household level

* is the presence of car-owning households who never bulk-buy. The tables of raw data, Appendix E, show that the worst cases are area 10 (Pilton), where 37\% of households do not bulk-buy, area 3 (Clermiston), with 29\%, and area 1 (Moredun); with 32\%. The multiple regression models do not anticipate zero usage and therefore the correlation coefficient is reduced. However a comparison of the store variables and the total shopping variables, which contain no zero values, show that the presence of zero values did not make a major impact on the results of the analysis. The zero values must be included otherwise the sample would be biased and the means data matrix overcomes their presence by smoothing out the variation. The effect is an average trip prediction from an area, which is the desired result from the trip generation model. It is recommended that the effect of the zero values be further investigated so that the model prediction within areas may be improved thereby developing a greater understanding of the consumer choice mechanism at household level.
8.4.6 Thus the three multiple regression models developed provide a set of sub-models that address three specific tasks. The estimation of private-car trips to large foodstores, the design of car parking capacity based on duration of stay and the assessment of market potential from the expenditure model. The first two predict the trip rate and duration per week. Further work requires to be carried out to enable arrival rate throughout the week
to be estimated. The raw data contains information on time and day of each shopping trip but a further detailed research programme will be required to build a daily, or hourly, sub-model within the proposed set of sub-models. The present trip estimation can be proportioned over the week based on existing flows to stores in the city and the shopping diaries.

8.5 Concluding Remarks on the Development of the Trip Generation Model

8.5.1 This section, following an overview of the analysis of the two conceptual models, has primarily addressed the problems of variance within the model, the level of disaggregation of the model and model stability. These problems have been discussed with respect to the sample size and sampling framework of the thesis. The variance of the sample comprises the within-area variance and the between-area variance. The aggregated effect of the two kinds of variance make it impossible to predict private-car store usage at the individual household level to an acceptable degree of accuracy. This can be achieved within each area using a different model structure but this lack of stability makes it unsuitable for strategic planning.
8.5.2 If however, the areal variation is smoothed, by taking the mean of each variable, a strategic model for all areas can be developed. The areal variation is caused by two effects. Firstly a lack of spread in the major variables in certain areas due to uniformity of population groups. For example, in area 1 (Moredun) the uniformity of income due to the high proportion of retired couples. Secondly the variation due to the randomness of human behaviour. Whenever a model seeks to predict human response an element of human individuality will always be present. Many factors impinge on the lifestyle of a household

Abstract

making it difficult to predict all permutations with respect to strategic control. Indeed the two are, by definition, largely opposites. An example of this, from the survey, was a high-income household with children and good access to large stores who did not use bulk-buying stores because of a particular vegetarian/whole-food philosophy to life.

There are many such cases each differing in detail but causing variation in the model. The effect of these two factors cause the areal variation. A third factor which could cause the same effect is the omission of critical variables. However in each area the canonical correlation coefficient indicated that the independent variables explained around 90% of the variance in the dependent variables thereby indicating that this was not the case.
8.5.3 The level of disaggregation of the model was examined using the area data, total data and means data matrices. As indicated above the total variation within and between areas produced a low multiple regression correlation coefficient for the total data matrix. The areal variation produced a patchy response in the predictive models even though the structure of the models changed to accommodate the variation. The means data matrix however, provided three models that accurately predicted the three store variables of frequency, duration of stay and expenditure. Thus it is possible to produce a predictive model disaggregated to areas of twenty-seven households. The most disaggregate level at which census data can be abstracted is the ennumeration district. This represents an aggregation of the model from groups of twenty-seven households to around one hundred and twenty households. This also gives the zoning base from which all transportation and physical planning zones are aggregated. It is, therefore, unviersal in its application. This does not represent an increase in accuracy from the household

Abstract

level but a practical model base from which a development control model can be built. The result of the aggregation to area means level is an excellent model prediction of shopping trips emanating from the area.


```
8.5.4 The stability of the three models was achieved using a
    reduced set of variables based on the F-test of
    significance. The models are as follows :
```

Frequency of use of store/
household/
week $(F) \quad=1.0+0.346 K-0.027 N+0.119 R-1.117 L$
Duration of stay at store/
household/ week $(B)=0.81-0.026 P+0.001 S+0.027 R$
Expenditure at store/
household/
week (D) $\quad=13.1-15.315 \mathrm{~L}-0.459 \mathrm{~N}+6.055 \mathrm{~K}+1.821 \mathrm{R}$
$+2.272 \mathrm{M}$
where
$K=$ income of the household
$L=$ number of licenses in the household
$M=$ number in the household
$\mathrm{N}=$ mean age of the household
$P=$ SEG of head of household
$R=$ personal accessibility of principal shopper
$S=$ spatial accessibility of household to stores.

The structure of these models has been discussed earlier in this chapter and they support the postulated theory of the thesis that the bulk-buying shopping behaviour of a car-owning household can be thought of as a two-stage process. Firstly the characteristics of the household determine the decision to use a large foodstore then the household looks at the alternatives available and chooses a store. Thus the process is split into a trip generation stage and a trip distribution stage. The objective of this thesis is to produce the generation model at a disaggregate level, based on household characteristics. The above set of models achieves this objective.
8.5.5 Thus data is abstracted from each enumeration district (ED) in the defined study area for each variable in the equation. The three variables that cannot be abstracted directly from census data are income, personal accessibility and spatial accessibility. The third of these variables is related to the distribution of stores and will be discussed later in the chapter. It is a physical measurement of the distribution of stores relative to each ED. Income has a strong Iinear relationship with the number of licenses in the household. The correlation coefficient is 0.87 and the adjusted r^{2} value is 87%. The predictive equation, from the means data matrix, is :

$$
K=-0.44+2.55 L
$$

where $K=$ household income
$L=$ number of driving licenses in the household

Personal accessibility can also be predicted using the inter-correlations of the independent variables but it requires four variables to achieve an adjusted \mathbf{r}^{2} figure
of 0.68. The step-wise regression output is listed in Table 68. These four variables are stable as areas are subtracted from the means data matrix, except that employment (Q) and the number in the household (N) exchange places after two areas are withdrawn. Further work requires to be done to achieve a better understanding of personal accessibility.
8.5.6 The output from these three models is a trip rate, a duration of stay and an expenditure per household per week at bulk-buying foodstores respectively. These rates are then multiplied by the number of households in the ED to get the total for each ED in the study area. The total number of private-car trips within the study area would then be used to calibrate the trip distribution model, constrained by the pattern of arrivals at the existing stores. Thus a strategic model is developed which can be updated from census data and onto which any new store proposal can be mapped to examine its effect. This concept will now be discussed in greater detail.

8.6 The Interface with an Aggregate Trip Distribution Model

8.6.1 This section of the chapter discusses the interface of the proposed trip generation model with an aggregate distribution model. It's purpose is to put the developed model in the context of the whole design package, showing how the model would be applied, in confunction with the distribution model, to the development control of large foodstores. It is not the purpose of this thesis to develop the applications package required for the implementation of such a model in practise but rather to prove that a trip generation model can be built on household characteristics.

Variable Name	Multiple Correlation	r2 value	Adjusted r2 value
No. of Cars (J)	0.65	0.42	
Employment (Q)	0.74	0.54	0.38
No. of Licences (L)	0.79	0.62	0.47
No. in Household (N)	0.88	0.77	0.52

TABLE 68
The Prediction of Personal Accessibility from the Independent
Variables using the Means Data Matrix

Abstract

8.6.2 The research objectives sought to establish a rellable basis for private-car trip prediction to large foodstores based on household characteristics. The developed model comprises three sub-models, one of which relates to trip-rate. This model is based on the means data matrix and on the variables income (K), number in the household (N), personal accessibility of the principal shopper (R) and the number of licences (L). The form of the model is given below :

$$
F=1.0+0.346 K-0.027 N+0.119 R-1.117 L
$$

Abstract

8.6.3 The zonal base chosen is at Ennumeration District (ED) level as this is highly disaggregate, with respect to a strategic development control model, and data at a lower level cannot easily be obtained. By multiplying the trip-rate for each ED in the study area by the number of households the potential number of weekly, bulk-buying, car trips is obtained. Thus for each ED the generated number of trips per week is calculated.

8.6.4 The private-car arrivals at each store in the survey area would require to be surveyed either by customer interview or by vehicle count, as the total sales figure cannot be used because it includes all shopping trips. There is also a units incompatability in that trips to each store is equated to sales at each store so that the generated trips would require to be multiplied by an expenditure per trip factor. This latter problem can be accommodated since there is an expenditure sub-model for each ED.

8.6.5 There is therefore a choice between either a singly or doubly-constrained distribution model. The doublyconstrained model has the advantage that the distributed traffic can be assigned to the road network but has the

disadvantage that the modal split at each store would have to be found so that the total sales per week from car trips could be calculated. Given that the number of large stores is relatively small, it is proposed that a doubly-constrained distribution model should be used.

8.7 The Form of the Proposed Distribution Model

8.7.1 The form of the model is :

	$s_{i j}$	$=k_{1} k_{j}{ }^{\prime} O_{1} C_{1} S_{j} / f\left(T_{1 j}\right)$
where	k_{1}	$=\left[\Sigma k_{j} S_{j} / f\left(t_{i j}\right)\right]^{-1}$
and	k_{j}	$=\left[\sum k_{1} 0_{1} C_{1} / f\left(T_{1 j}\right)\right]^{-1}$
	0_{1} c_{1} s_{j}	- trips from ED 1 to store in ED ${ }_{j}$ - expenditure per trip in $E D_{1}$ = private car based sales at store in ED 1
and	f($\mathrm{T}_{1 j}$) $\mathrm{S}_{1 j}$	- deterrence function - total number of car-borne shopping trips from zone 1 to store in ED f.

The product of the constants k_{1} and k_{j}, for each production zone and attracting store respectively, ensures that both the row and column totals of the model matrix equal the row and column totals of the survey matrix. The model is subject to the two constraints,

$$
\begin{aligned}
& \sum_{i} s_{1 j}=o_{1} c_{i} \text { at the production end, and } \\
& \sum_{i} o_{i} c_{1}=\sum s_{j} \text { at the attraction end. }
\end{aligned}
$$

8.7.2 The generation term for each $E D_{1}, O_{1} C_{1}$, is the number of trips from the ED multiplied by the expenditure per visit, as predicted by the multiple regression sub-models. The
attraction term, S_{1}, is the number of sales at each store. Further work in this area may prove a more complex attraction term to be a better estimator of the distribution pattern but in the context of the philosophy of the conceptual framework number of sales in considered an adequate proxy for store attraction. This is discussed further in Chapter 10.

8.7.3 The form of the deterrence function is usually based on one of the three mathematical functions ${ }^{(125)}$:

a) the power function, $f\left(T_{1 j}\right)=T_{1 j}$
b) the exponential function, $f\left(T_{1 f}\right)=\exp \left(\beta T_{1 j}\right)$
c) Tanner's function, $f\left(T_{1 j}\right)=T_{1 j} \exp \left(B T_{1 j}\right)$

The calibration should include a testing of different functions to choose the function that best fits the empirical survey data, whether based on trip length or journey time; however this is seldom carried out in practise. Calibration involves finding the numerical value of the parameter or or the two parameters and , which control the mean trip length or journey time. The simplest procedure is to run the model for a range of parameter values thereby calibrating the model by trial and error. A more efficient method is to adopt a systematic search routine such as the Fibbonaci, or golden-section, search algorithm ${ }^{(126)}$, or the Newton-Raphson method $(127,128)$. It is proposed that journey time should be used, as argued in Chapter 4, on grounds of ease of implementation and the required strategic level of control unless further work suggests a more complex function is better.

8.8 The Design Procedure for the Distribution Model

8.8.1 The distribution of the trips generated at ennumeration district level may be achieved using a fully constrained model of the form,

and

$$
\sum_{j} S_{i j}=o_{1} C_{i}
$$

$$
\sum_{i}^{O_{1} C_{i}}=\sum_{j} S_{j}
$$

This model would produce a distribution matrix whose origins would be the ennumeration districts in the study area and whose destinations will be the stores. A matrix of journey times would also be produced using the same origin and destination base. The mathematical function of transport impedance proposed is the power function based on journey time.
8.8.2 An inftial value of the calibration parameter α, is then selected and the zoning balancing factors, k_{1} and $k_{j}{ }^{\prime}$, calculated. The balancing factors are solved using an iterative process by assuming any intial value for either k_{i} or $k_{j}{ }^{\prime}$. Once the calculation converges the balancing factors are substituted into the distribution model and the model origin and destination matrix is calculated. Then the mean journey time of all trips in the model origin and destination matrix is calculated and this is compared to the mean survey fourney time. The value of may then require to be adjusted. If necessary another callbration parameter may require to be selected until the calibration criteria are satisfied.

8.8.3 The survey area chosen has the advantage that few trips come from the rural areas outwith the green belt around

Edinburgh City boundary. Within the study area every household is within a twenty minute driving time contour of a large foodstore. However in an area where the study area cannot be so closely defined boundary problems will exist. This will mean that the study area will require to be enlarged until a suitable watershed in the market exists. The enlarged area will mean that other stores may be included.
8.8.4 The problem of catchment area definition relates to the distribution of shopping trips and the attraction of competing stores. It does not relate to the generation, or potential generation, of this type. of shopping trip. The development of measures of attractiveness, although discussed in the context of spatial accessibility in Chapter 4, is the subject of further work. This should include the value of the power function within the deterrance measure and the degradation of the power of attraction with distance.
8.8.5 The above paragraphs have stated a preference for a doubly-constrained model on the grounds of a better representation of the actual shopping pattern and the ability to assign the predicted trips to the road network thereby directly assessing the impact on specific roads and junctions. However a simpler procedure would be a singly-constrained model where,

$$
\sum_{j} T_{1 j}=o_{1}
$$

This would not involve the expenditure sub-model nor the need to survey each store to establish modal trip patterns. The store attraction distribution would then be a probability function based on some proxy measure of attraction, such as floor area, and a deterrance function. The general form of the probability function would be,

where $P_{i j}$ is the probability of a consumer in zone 1 shopping at store j and W_{j} is the store attraction index. The model would then be of the form

$$
s_{i j}=o_{1} c_{1} \frac{W_{j}^{\lambda_{d_{i j}}}{ }^{-\lambda_{2}}}{\sum_{j} W_{j}^{\lambda_{1}} d_{i j}}-\lambda_{2}
$$

This agrees with the probabilistic nature of the shopping market as proposed by Huff. ${ }^{(38)}$

8.9 Concluding Remarks on the Interface with an

Aggregate Distribution Model
8.9.1 The objective of the thesis is to establish a disaggregate trip generation model, for private-car trips to large foodstores, using household characteristics based on census data. This having been achieved the model has been put into the context of the total applications package required for development control of these stores. The proposed trip generation model requires to be tested over the whole of Edinburgh City and in other areas if it is to be used generally.

8.9.2 The development of a strategic development control model will require the following outlined stages :

1). Census data for the relevant household varlables extracted for every $E D$ and the total number of trips and total expenditure calculated from the equations. This needs to be done only once and thereafer would be updated every ten years, or if a major

Abstract

residential land-use change occured. The duration of stay, which is a by-product of the development of the trip generation model potentially offers the possibility of estimating car parking requirements. Further work requires to be done to distribute the total duration of stay from each ED to the large foodstores.

11) The first stage provides a zonal system with numbers of private-car trips for each zone. These require to be distributed to the stores in the designated study area. If the doubly-constrained model is used the total expenditure will have to be calibrated with the total car-borne sales. Alternatively a singly-constrained distribution model using a probability function, as described earlier in the chapter, and a deterrance function based on journey time or cost could be used. These alternatives require to be tested as part of the future development of the total applications package.
8.9.3 The major advantages of the proposed method over existing methods are ease of application, both at the generation and distribution stages, economy of time, in that neither household nor store interview surveys require to be carried out, increased accuracy based on local area characteristics rather than extrapolation from other surveys in other areas and the ability to build an area-wide model thereby being able to assess the impact of a new store in the area or of a store ceasing to trade in the area. The trip generation model developed in this thesis combined with a standard aggregate distribution technique provides a unique solution to the dual problems of the context dependence of aggregate models and the data acquisition demands of disaggregate models.
8.9.4 From a developer's point of view once the total application model has been constructed new store locations could be chosen to maximise the number of potential trips. The trip generation model could be used to predict the number of trips in any given area, without giving the distribution of these trips with respect to the new and existing stores in the area. Thus the three sub-models could be used in a store-specific application. This would mean that a catchment area was defined around an existing store and the models applied to the ennumeration districts within the catchment area. Thus for any store the number of trips, duration of stay and expenditure per week could be estimate for its catchment area. This has the advantage over existing methods in that the models relate to local characteristics, the disadvantage, as mentioned above is that the effect of other stores in the system is not included. There is no guarantee that the households within the catchment area of a store will use that store, however it may be a guide to possible usage and is potentially superior to trip generation calculations based on floor-area. A comparison of the two methods in a store-specific application should be the subject of further work.

8.10 A Listing of the Major Points Emerging from the Analysis

8.10.1 The bulk-buying of food by private-car can be represented as a separate, two stage process, i.e. the decision to make the trip and the subsequent choice of store. This means that it can be structured as a two-stage modelling process of trip generation and distribution.
8.10.2 There is a strong linear relationship between the use of large foodstores by private-car and certain houshold characteristics which can be extracted from census data.
8.10.3 Bulk-purchase food shopping by private car can be identified as distinct from general shopping thereby providing a dependent variable of usage with which the relationships with household characteristics can be measured.
8.10.4 This usage variable is best measured by the three separate variables of trip frequency, duration of stay and expenditure per visit rather than a usage factor. A relative shopping term, where bulk-purchase food shopping is expressed as a percentage of total shopping, does not add to the explanation of the usage variable.
8.10.5 Two models were investigated based on factor variables and individual variables. The factor-based model in all cases is inferior to the individual-based model.
8.10.6 The strong relationship, based on the canonical correlation analysis, between household characteristics and large store usage indicates that no major independent variables have been omitted.
8.10.7 The proposed model predicts 41% of the total variation in large store usage at individual household level. Although this level of prediction is not satisfactory in the context of a strategic development control model it is a creditable performance when one considers the large variation at this maximum level of disaggregation.
8.10.8 This base level of accuracy means that when the model is aggregated to ennumeration district level the prediction is extremely high at 95\%. Ennumeration district is the base zoning system for all transportation and physical planning zoning, therefore the generation model can be readily interfaced with a standard trip distribution model.

8.10.9 The proposed model comprises three sub-models which not only predict the number of trips per ennumeration district but the duration of stay and the bulk-buying expenditure.

> 8.10.10 The model shows that the spatial accessibility of a household to large stores does not affect the number of trips emanating from the household. This supports the theory that the choice process can be regarded as two separate stages.
8.10.11 The advantages of the proposed model are :

1) ease of application and economy of time because the required data is extracted from census data.
i1) Increased accuracy because the model is based on local characteristics.

1i1) an ability to develop an area model, in confunction with a standard trip distribution model, incorporating the interacting forces of different shops within the distribution stage.

1v) the combination of the advantages of a disaggregate model at the generation stage interfacing with a standard, aggregate model at the distribution stage, overcoming the disadvantages of the data requirements and the context dependency of the two types of models respectively.
v) its use in a store-specific application if a catchment area is defined around the store in question.

CHAPTER 9
SUMMARY AND CONCLUSION
9.1 Introduction

This chapter summarises the research programme highlighting the salient points of the thesis. The summary includes all chapters of the thesis.
9.2 The objective of the research programme is to produce a private-car trip generation model, based on local household area characteristics, for use in the strategic control of large foodstores. Also to discover the level of disaggregation at which a general model can be developed and to show how the developed model interfaces with a standard, aggregate distribution model. The thesis began with the historical background to the study discussing the reasons for the growth of this type of shopping in Britain. The following chapter discussed the problems caused by these stores and the current methods used to predict their traffic attraction. These methods are based on the floor-area of the store and it is shown that this is unreliable and varies with local area characteristics. Various recent research papers recognise the need for a generalised model of trip generation based on local area characteristics but no model exists at the present time. The estimation of parking spaces is also unrellable when based on the same criteria as trip-rate.
9.3 The chapter on consumer behaviour relates consumer behaviour theory to the observed characteristics of bulk-buying shoppers. This identifies important variables which are related to store usage and consumer choice. The chapter on accessibility discusses the place of accessibility within consumer choice and store competition. Accessibility is seen to comprise three elements :
a) the avallability of a private car
b) the availability of the principal shopper
c) the avallability of the store

For a private-car shopping trip to take place all three have to coincide. These elements represent the personal accessibility of the household and are part of the trip.
generation model. The spatial accessibility of each store comprises an attraction term and a spatial deterrence term. This relates to the distribution of trips within the competing framework of stores. It only applies in an area where the consumer has an existing range of store choice and may not apply where no store exists and a store is to be provided. To study the relationship between household characteristics and store usage competition had to be held constant. This is achieved by selecting groups of households which have equal store opportunities.
9.4 The research objectives and conceptual framework were then developed. It was not possible to develop an a priori model of store usage based on household characteristics. The study is therefore designed as an investigative research programme based on two conceptual models. The first model proposed that store usage is a composite variable comprising frequency of use, duration of stay and expenditure per visit and is predicted by three composite, independent factors of household variables. The three factors are based on household structure, employment and lifestyle. If this model proved acceptable a graduated table of store usage, based on the composite usage index, would be constructed. The disadvantage of this model is the application of the usage index. The second model proposed that the three store usage variables are linearly related to household characteristics and can be predicted from them directiy. The application of this model is much easier than the previous model as the three variables are identifiable.
9.5 The model defined in principle by the research design relates to the strategic control of large foodstore development. This implies that the model must be efficient in time and effort with a predictive capability superior to existing procedures. The data requirements
of the model should not therefore be onerous and should be based on census data. These data are accessible and regularly updated. The variables not included in census data will be estimated from other intercorrelated variables or external sources.
9.6 The methods of analyses used were multi-variate, statistical techniques based on the SPSS computer suite of programs. The survey area was defined as the Edinburgh city boundary and fifteen sub-areas, each of twenty-seven households, were chosen at random using a hierarchical sampling technique based on postal-codes. The household questionnaire was designed to measure the identified variables, as indexed, and a pilot survey was carried out to test the design. Following the main survey of four hundred households, fifteen sub-area data files were constructed and initial sub-area profiles prepared.
9.7 The analysis of the data commenced with the establishment of a Pearson bivariate correlation matrix which shows the strength of the relationship between each variable pair. The two shopping expenditure variables are strongly related to the independent variables but the other dependent variables show few consistent relationships. The non-homogeneity of certain sub-areas was investigated and its presence found to be insignificant in its influence on the data structure. No evidence of non-linear relationships was found. A principal components analysis was carried out to establish what is being measured on the dependent side of the equation and how it is measured by the independent variables. The total data matrix verified the factor model, postulated by the conceptual framework, but the structure does not consistently exist at sub-area level. Conversely the canonical correlation shows that within each area a strong relationship exists between the two variable sets,
but at total data matrix level the canonical coefficient drops from 0.90 to 0.64. This implies that although the objectives of the research can be achieved within the sub-areas, at household level, a general model for all sub-areas cannot be used.
9.8 The second model, based on the individual variables, was then investigated using multiple regression analysis. Again the areal variation is large and the prediction level is variable. However, if the mean of each variable within the sub-area is calculated and a means data matrix constructed, the three store usage variables of frequency of use, duration of stay and expenditure per week can be predicted accounting for approximately 90\% of the variance in these variables.

These multiple regression equations were developed to achieve three sub-models that are stable from area to area. These models are :

```
F=1.0 + 0346K-0.027N + 0.119R-1.117L
B = 0.81-0.026P + 0.001S + 0.027R
D = 13.1-15.315L - 0.459N + 6.055K + 1.821R + 2.272M
```

where
$F=$ Frequency of store use/week
$B=$ Duration of stay at store/week
D = Expenditure at store/week
$K=$ Income of the household
$L=$ Number of licences in the household
$M=$ Number in the household
$N=$ Mean age of the household
$P=$ SEG of head of household
$R=$ Personal accessibility of principal shopper
$S=$ Spatial accessibility of household to stores

The trip frequency and expenditure variable models account for 70% of the variance in the independent variable. The duration of stay model explains 42%. These percentages are adjusted for the number of variables and sample size. The sample size (i.e. fifteen) of the means data matrix depresses the actual percentages which are 80% and 58% respectively. A higher level of prediction can be achieved but the stability of the model decreases.
9.9 The areal variation comprises two elements; within-area and between-area variation. When areas are aggregated the total variation becomes so large that the prediction level drops significantly. The means data matrix smooths the within-area variation to provide sufficient, but not excessive, between-area variation to achieve a high level of prediction. The areal variation between areas is caused by a lack of variance in variables in certain areas, due to uniform groupings, and the individuality of human behaviour.
9.10 It is possible, therefore, to develop a stable, predictive trip generation model based on the means data matrix. The model consists of three sub-models relating to trip-rate, duration of stay and expenditure per week. These apply to trip generation, car parking capacity and market potential respectively. The model based on composite factors proved unsatisfactory.
9.11 The level of disaggregation achieved is small, based on groups of twenty-seven households, and is impractical. The smallest disaggregation achievable in practise is at ennumeration district (ED) level, which is of the order of one hundred and twenty households. This is also the zoning base from which all other transportation zones are aggregated. The study area would therefore be divided into ED's and the trip-rate, duration and expenditure
levels calculated for each ED. If this was unacceptable on cost grounds the ED's can be aggregated to form sub-areas within transportation zones.
9.12 The effect of competition, represented by spatial accessibility, only appears in the duration sub-model. This implies that in an area of existing stores a new store will redistribute the existing car-borne trips, increase or decrease the duration of stay at these stores and redistribute the expenditure. Trips by other modes, notably walking trips, around the new store will be generated. This supports the theory of the thesis in that the generation and distribution stages of the car-borne shopping trip can be separated. Household characteristics determine the need to bulk-buy and once this need has been recognised the household looks at the alternatives and chooses a store.
9.13 Although not part of the thesis the interface of the trip generation model with the aggregate trip distribution model is discussed and is based on a systems approach. This means that a model of the study area pattern for car-borne, bulk-buying shopping is constructed based on the local area trip generations discussed above. The distribution model proposed is a doubly-constrained aggregate distribution model of the form,

$$
s_{i j}=k_{i} k_{j}^{\prime} 0_{i} c_{i} s_{j} / T_{i j}^{\alpha}
$$

where $\quad k_{i}=\left[\Sigma k_{j}^{\prime} s_{j} / T_{i j}^{\alpha}\right]^{-1}$
and

$$
k_{j}^{\prime}=\left[\sum k_{i} 0_{i} c_{i} / T_{i j}^{\alpha}\right]^{-1}
$$

subject to the constraints,

$$
\sum_{j}^{\sum S_{1 j}}=o_{1} C_{1}
$$

and $\quad \sum_{i} 0_{i} C_{i}=\sum_{j} S_{j}$
where $S_{1 j}=$ the total car-borne sales from zone 1 to store j
$0_{1}=$ total car-borne trips from zone 1
$C_{1}=$ weekly expenditure/household from zone 1
$S_{j}=$ total car-borne sales at store j
$T_{i j}^{\alpha}=a$ deterrance power function
$k_{i}, k_{j}^{\prime},^{\alpha}=$ model parameters
9.14 Once the model is calibrated a mathematical understanding of the shopping pattern in the study area is achieved. The doubly-constrained distribution model also means that the trips can be assigned to the road network to investigate potential capacity problems. A proposed store can then be added to the model to study the effects on the trip distribution. The zonal trip-rates will be updated as census data is updated.
9.15 The research objectives of the thesis have therefore been achieved in that a strategic, disaggregate trip generation model for private-car use of large foodstores has been developed. The level of disaggregation of the model has been fully investigated and its interface with an aggregate distribution model explained. The following chapter identifies areas of further development.

CHAPTER 10
SUGGESTIONS FOR FURTHER RESEARCH

10.1 Introduction

This chapter suggests a number of areas where further work could be undertaken. Many of these areas have been mentioned in the text. They range from the city-wide development and testing of the proposed model to the improved measurement of specific variables.

10.2 The Development and Testing of a City-Wide Model

10.2.1 The proposed generation model has been tested with respect to the four hundred household sample, however, the development of a city-wide model needs to be investigated. This would initially be an extension of the existing study in Edinburgh but studies in other towns and cities require to be undertaken to test the national generality of the model.
10.2.2 Comparison must be made with existing methods of trip prediction ensuring that the catchment areas are comparable. This would involve including all the stores In a study area so that the city-wide model could be compared to the store-specific models. It would also be of interest to compare the store-specific approach using both the existing disaggregate methods and the new disaggregate equations.

10.3 Estimating the Hourly and Daily Trip Pattern

10.3.1 The time and day of each shopping trip is recorded on the shopping diary questionnaire for the household sample. At the strategic level the weekly total of trips combined with the daily pattern of bulk-buying shopping, which is well-documented, is sufficient. However the accuracy and flexibility of the model would be improved if a sub-model could be developed on an hourly and/or daily basis. This could provide the basis for the study of a range of critical scenarios.

10.4 Further Development of the Model

10.4.1 The model was developed in an area of competing large stores. Every household in the area, with a car, has access to a large store within a twenty-five minute driving time. A further development of the model would
be the study of areas without such stores, to evaluate the potential generation from the area. The investigation would adopt the same disaggregate model philosophy but would involve attitudinal surveys to establish the potential level of use with respect to household characteristics.
10.4.2 The model could be further developed for other modes of travel. This may involve modal sub-models for walking and bus trips. Each modal sub-model would require its own network system but would use a common zoning system due to the highly disaggregate ennumeration district base.
10.4.3 The philosophy of this thesis, using a disaggregate generation model with an aggregate distribution model could be investigated for other areas of development control, such as housing, offices and recreation. Each area constitutes a major study but the possibility of developing a family of development control models based on census data is most attractive and should be pursued.

10.5 Measurement of the Variables

10.5.1 The previous suggestions have dealt with the general development of the model and its testing. This area of further work is more specific in that it relates to the measurement of individual variables. Freezer ownership, Income and SEG were category-based variables; although income can be thought of as numeric. Some of the other variables were in effect category variables in that the range of values was limited. Car ownership and number of licenses are examples of this categorisation. The dependent variables of frequency and duration also suffered from the effect in that the consumer rounded off the duration to the nearest hour or half- hour and frequency was either once per week, fortnight, or month.

The latter benefited from the weekly standardisation. This stepped-effect worked against the inear correlation since the measurements grouped around certain values. Further work requires to be carried out on the indexing and measuring of these variables so that a more continuous measure is obtained. The inclusion of income and personal accessibility in the model means that census data cannot supply all the information for the model. Further work requires to be carried out to establish independent measures for income and personal accessibility, thereby obviating the need to rely on other independent varlables or on global data such as the National Expenditure Survey.

Abstract

10.5.2 The presence of zero values in the dependent usage variables did not impair the predictive capacity of the model based on the means data. However the zero values did affect the sub-area models. Further work requires to be carried out to investigate whether it is possible to predict zero usage of large stores in a car-owning household. If the model could be amended to anticipate zero usage the prediction at household level would be improved.

10.6 The Development of the Distribution Model

10.6.1 The proposed distribution model is compatible with the research objectives in that it is aggregate and proven in its application. The attraction term is based on either number of sales, if the proposed model is used, or floor-area, if the singly-constrained model is used. However the chapter on accessibility highlighted the work to date on attraction terms for large stores. These more complex measures should be tested once a city-wide model has been developed to judge whether the increased complexity is justified with respect to cost-effectiveness and distributional accuracy.
10.6.2 The same philosophy applies to the deterrance function where journey time is used. Again the chapter on accessibility discussed more complex measures based on generalised cost and these should also be investigated to establish their contribution to the model's accuracy.
10.6.3 Finally other forms of distribution model should be investigated and their results compared to the standard spatial interaction model. A range of distribution models is available, including those which operate at a disaggregate level. These models should however be sympathetic to the philosophy of the design method in that they should provide an easily applied and efficient tool for the strategic planning control of large foodstores.

REFERENCES

1. JONES, P.M.
2. JONES, P.M.
3. DAWSON, J.A.
4. BELL, R.A.
5. PARKER, T
6. SHAW, G.
7. SMITH, B.
8. DAWSON, J.A. SATO, T.
9. SHETH, J.N.
10. COMPANY PROFILE
11. COMPANY PROFILE
12. COMPANY PROFILE

Hypermarkets and superstores saturation or future growth? Retail and Distribution Management, July/ August 1982, pp20-27.

Trading features of hypermarkets and superstores. URPI U7, 1978.

Hypermarkets in France. Geography, Vol.64, Part 4, 1976 pp259-262.

Transportation aspects of out-of-town shopping centres. Journal of the Institution of Municipal Engineers, Vo1. 98, Oct.1971, pp267-272.

The development of planned shopping centres in the Republic of Ireland. Retail and Distribution Management, March/April 1982, pp25-29.

Shopping centre development in West Germany. Retail and Distribution Management, May/June 1984, pp47-51.

Switzerland - retailing at a crossroads. Retail and Distribution Management, Sept./ Oct. 1983, pp40-47.

Controls over the development of large stores in Japan. The Services Industries Journal, 1982, pp137-145.

Emerging trends for the retailing industry. Journal of Retailing, Vol.49, No.3, Fall 1983, pp6-18.

Safeway Food Stores Ltd. Retall Business No. 276, February 1981, p37.

Kwik Save Discount Group PLC. Retail Business No. 303, May 1983, p45.

Associated Dairies Group PLC. Retail Business No. 304, June 1983, p39.

13.	$\begin{aligned} & \text { MANSLEY, R.D. } \\ & \text { VERRICO, R. } \end{aligned}$	Shopping centre and hypermarket developments in and around Glasgow. Report for the Corporation of Glasgow, 1971.
14.	PACIONE, M.	The in-town hypermarket : an innovation in the geography of retailing. Regional Studies Vol. 13, 1978, ppl524.
15.	NEDC REPORT	The future pattern of shopping. National Economic Development Office Report, HMSO London, 1971.
16.	BASIC ROAD STATISTICS (1978)	British Road Federation Report, London 1980.
17.	GERN, R.C.	The middle-aged spread of regional shopping centres in the 1970's. Traffic Engineering and Control, 1970.
18.	DICK, A.C.	Transportation aspects of new shopping developments. Traffic Engineering and Control, October 1971, pp249-251.
19.	COMPANY PROFILE	Tesco Stores (Holdings) Ltd. Retall Business No.286. December 1981, p31.
20.	BELL, R.A.	Transportation aspects of out-of-town shopping centres. Journal of the Institution of Municipal Engineers, Vol. 98, Oct. 1971, pp267-272.
21.	HARRIS, M.R. ANDREW, H.R.	The traffic implications of hypermarket development. Traffic Engineering and Control, January 1979, pp2-8.
22.	LEAKE, G.R. TURNER, D.J.	Shopper and vehicle characteristics at large retail shopping centres. Traffic Engineering and Control, January 1982, pp8-13.
23.	CODD, J.A.	Parking requirements at suburban shopping centres - an investigation. Traffic Engineering and Control, March 1983, pp119-124.
24.	AITKEN, C.P. MALCOLM, J.F.	Parking, traffic generation and superstores : an underestimate? Traffic Engineering and Control, April 1977, pp199-201.

25.	KELLY, R.W.	```Parking at a Hypermarket - six years on. Traffic Engineering and Control, May 1979, pp257-262.```
26.	URBAN LAND INSTITUTE	Parking requirements for shopping centres. Technical Bulletin 53, Washington, DC, 1965.
27.	MULTIPLE SHOP FEDERATION	Car parking for shoppers. London, 1973.
28.	NATIONAL ECONOMIC DEVELOPMENT OFFICE	Future pattern of shopping. HMSO, London, 1971.
29.	LEAKE, G.R. TURNER, D.J.	Parking demand at large retail shopping stores : a reappraisal. Municipal Engineer, Vol. 109, May 1982, ppll3117.
30.	BARRET, R.	Trip generation and modal split of shopping trips. Traffic Engineering and Control, February 1975, pp72-74.
31.	DISTRIBUTIVE TRADES EDC	The future pattern of retalling. Report, 1971.
32.	CORDEY-HAYES, M.	Retail location models. Centre for Environmental Studies, CES WP16, October 1968.
33.	GARLAND, R.N.	The use of cluster analysis to identify and explain patterns of household travel. MSc Thesis, Cranfield Institute of Technology, September 1978.
34.	LAKSHMANAN, T.R. HANSEN, W.G.	A retail market potential model. Journal of the American Institute of Planners, 31, pp134-43, 1965.
35.	REILLY, W.J.	Methods for the study of retail relationships. Bulletin No. 2944, University of Texas, Houston, Texas, 1929.
36.	BATTY, M.	Urban modelling : Algorithms, calibrations, predictions. Cambridge Urban and Architectural Studies, 1976.

37.	LANE, R. POWELL, T.J. SMITH, P.P.	Analytical transport planning. Duckworth, London, 1971.
38.	HUFF, D.L.	A probabilistic analysis of shopping centre trade areas. Land Economics 39 pp81-89 (1963).
39.	HARRIS, B.	Models of locational equilibrium for retail trade. (Mimeo) and Journal of Regional Science, Vol.5, No.1, 1964.
40.	STOUFFER, S.A.	Intervening opportunities : A theory relating mobility and distances. American Society Review 5, No.6, 1940.
41.	WILSON, A.G.	A statistical theory of spatial distribution models. Transportation Research 1, November, 1967.
42.	DALY, A.	Estimating choice models containing attraction variables. Transportation Research Vol.16B, No.1, pp5-15, 1982.
43.	RICHARDS, M.G. MARS, N.J.I.	Gednaggregeerde simultane vraagmodellen voor winkelritten in het stedelifk verkeer. Le Clercq, F. et al. (eds) Colloquium wervoersplanologisch speurwerk, 1975, praktijk en model in de vervoersplanning, Delft, 1975, pp5174.
44.	HARTGEN, D.T.	Attitudinal and situational variables influencing urban mode choice : Some empirical findings. Transportation 3, pp377-392, 1974.
45.	BURNETT, P.	The dimensions of alternatives in spatial choice processes. Geography. Anal.5, ppl81-204, 1973.
46.	CADWALLADER, M.	A behavioural model of consumer spatial decision making. Econ. Geography 51, pp339-349, 1975.
47.	MACKAY, D.B. OLSHARSKY, R.W. SENTELL, G.	Cognitive maps and spatial behaviour of consumers. Geograph. Anal. 7, pp19-34, 1975.
48.	$\begin{aligned} & \text { FISHBEIN, M. } \\ & \text { AJZEN, I. } \end{aligned}$	Belief, attitude, intention and behaviour : an introduction to theory and research. Reading, MA : AddisonWesley, 1975.

49.	BURNKRANT, R.E. PAGE, T.J. (Jr.)	An examination of the convergent, discriminant and predictive validity of Fishbein's behavioural intention model. Journal of Marketing research, Vol.XIX, pp550-561, November 1982.
50.	LOUVIERE, J.J. MEYER, R.J.	A composite attitude-behaviour model of traveller decision making. Transportation research Vol. 15B, No.5, pp411-420, 1980.
51.	DAMM, D.	Parameters of activity behaviour for use in travel analysis. Transportation research, Vol. 16A, No. 2, pp135-148, 1982.
52.	LENNTORP, B.	Paths in space-time environments. Lund studies in geography, series B, No. 44, CWK Gleerup, Lund, Sweden, 1976.
53.	CHRISTALLER, W.	Die Zentralen orte in Sudlentschland. Jena, E. Germany : G Fischer (1935).
54.	LOSCH, A.	The economics of location. New Haven, Conn., Yale University Press (1954).
55.	HUFF, D.L.	Determination of intra-urban retail trade area. Real Estate Research Program, Los Angeles, University of California (1962).
56.	$\begin{aligned} & \text { EATON, B. } \\ & \text { LIPSEY, } \end{aligned}$	The theory of market pre-emption: the persistence of excess capacity and monopoly in growing spatial markets. Economics 46, pp149-158, 1979.
57.	CASPARIS, J.	Metropolitan retail structure and its relationship to population. Land Economics 43, pp213-218, 1967.
58.	HUBBARD, R.	A review of selected factors conditioning consumer travel behaviour. Journal of Consumer Research 5, pp7-21, 1978.
59.	$\begin{aligned} & \text { CRAIG, C.S. } \\ & \text { GHOSH, A } \\ & \text { McLAFFERTY, s. } \end{aligned}$	Models of the retail location process : a review. Journal of Retailing, Vol.60, No.1, pp5-37, Spring 1984.
60.	REILLY, W.J.	The law of retall gravitation. New York, Knickerbocker Press, 1931.

61.	PANKHURST, I.C. ROE, P.E.	```An empirical study of two shopping models. Regional Studies, Vol. 12, pp727-748, 1978.```
62.	$\begin{aligned} & \text { HUFF, D.L. } \\ & \text { BLUE, L. } \end{aligned}$	A programmed solution of estimating retail sales potential. Center for Regional Studies, Laurence, Kansas, 1966.
63.	FORBES, J.D.	Consumer patronage behaviour. Marketing and the New Science of Planning, Chicago, American Marketing Association, pp381-385, 1968.
64.	HAINES, G.H. SIMON, L.S. ALEXIS, M.	Maximum likelihood estimation of central city food trading areas. Journal of Marketing Research, 9, pp154-159, 1972.
65.	STANLEY, T.J. SEWALL, M.A.	Image inputs to a probabilistic model predicting retail potential. Journal of Marketing, 40, pp48-53, 1976.
66.	NAKANISHI, M. COOPER, L.G.	Parameter estimation for multiplicative interactive choice model : least squares approach. Journal of Marketing Research, 11, pp303-311, 1974.
67.	$\begin{aligned} & \text { ACHABAL, D. } \\ & \text { GOOR, W.L. } \\ & \text { MAHAJAN, V. } \end{aligned}$	MULTILOC : A multiple store location decision model. Journal of Retailing, 58, pp5-25, Summer 1982.
68.	LOUVIERE, J. WOODWORTH, G.	Design and analysis of simulated consumer choice or allocation experiments : an approach based on aggregate data. Journal of Marketing Research, 20, pp350-367, 1983.
69.	RECKER, W. SCHULER, H.	Destination choice and processing spatial information : some empirical tests with alternative constructs. Economic Geography, 57, pp373-383, 1981.
70.	RUSHTON, G.	Analysing spatial behaviour by revealed space preference. Annals of the Association of American Geographers, 59, pp391-400, 1969.

71.	GHOSH, A.	Parameter nonstationarity in retail choice models. Journal of Business Research, forthcoming, 1984.
72.	HUBBARD, R.	Parameter stability in cross-sectional modeling of ethnic shopping behaviour. Environment and Planning A, 11, pp977992, 1979.
73.	GREEN, P.E. SRINIVASAN, V.	Cojoint analysis in consumer research : issues and outlook. Journal of Consumer Research, 5, pp103-123, 1978.
74.	RICHARDS, M.	Disaggregate demand models - promises and prospects. Transportation Research A, Vol.16A, No.5-6, pp339-344, 1982.
75.	OCHOJNA, A.D. MACBRIAR, I.D.	A pragmatic application of category analysis to small-scale household travel surveys. Centre for Transport Studies, Cranfield Institute of Technology, 1976.
76.	PIRIE, G.H.	Measuring accessibility : a review and proposal. Environment and Planning A, Vol.11, pp299-312, 1979.
77.	PAHL, R.E.	Whose city? Penguin Books, Middlesex, 1975.
78.	BENWELL, M. WHITE, I.	Car availability and transport need. Traffic Engineering and Control, pp410414, August/September 1979.
79.	HOLMAN, R.H. WILSON, R.D.	```Temporal equilibrium as a basis for retail shopping behaviour. Journal of Retailing, pp58-81, Spring, 1982.```
80.	$\begin{aligned} & \text { STROBER, M.H. } \\ & \text { WEINBERG, C.B. } \end{aligned}$	Working wives and major family expenditures. Journal of Consumer Research, No.4, pp141-147, December 1977.
81.	JOYCE, M. GUILTINAN, J.	The professional woman : a potential market segment for retallers. Journal of Retailing, No. 54, pp59-70, Summer 1978.
82.	NICKOLS, S.Y. METZEN, E.J.	Housework time of husband and wife. Home Economics Research Journal, No.7, pp85-97, November 1978.

83.	$\begin{aligned} & \text { WILLIAMS, R.H. } \\ & \text { PAINTER, J.J. } \\ & \text { NICHOLAS, H.R. } \end{aligned}$	A policy oriented typology of grocery shoppers. Journal of Retailing, No.54, pp27-42, Spring, 1978.
84.	$\begin{aligned} & \text { BERKOVITZ, E.N. } \\ & \text { WALTON, J.R. } \\ & \text { WALKER, O.C. } \end{aligned}$	In-home shoppers : the market for innovative distribution systems. Journal of Retalling, No.55, ppl5-33, Summer 1979.
85.	NEALE, J.L. HUTCHINSON, B.G.	Analysis of household travel activities by information statistics. Transportation Research A, Vol.15A, pp163-171, 1981.
86.	DIX, M.C.	Report on investigations of household travel decision-making behaviour. Working paper 27, Transport Studies Unit, University of Oxford, England, 1977.
87.	SPENCER, A.H.	```Deriving measures of attractiveness for shopping centres. Regional Studies, Vol.12, pp713-726, 1978.```
88.	POTTER, R.B.	Spatial and structural variations in the quality characteristics of intraurban retailing centres. Research paper, Bedford College, University of London, October 1979.
89.	DEPARTMENT OF THE ENVIRONMENT	The Eastleigh Carrefour - a hypermarket and its effects. Research Report 16, Department of the Environment, 1976.
90.	KATONA, G. MUELLER, E. CLARK, L.H.	A study of purchasing decisions. New York University Press, New York, 1970.
91.	THORELLI, H.B.	Concentration of information power among consumers. Journal of Marketing Research, No.8, pp427-432, November 1971.
92.	NEWMAN, J.W. STAELIN, R.	Multivariate analysis of differences in buyer decision time. Journal of Marketing Research, No.8, pp192-198, May 1971.
93.	DAVIES, R.L.	Effects of consumer income differences on shopping movement behaviour. Tijdshr.econ.soc. Geogr., No.60, ppll2122, 1969 .

94.	LOYD; R. JENNINGS, D.	Shopping behaviour and income : comparisons in an urban environment. Econ.Geogr., No.54, pp154-167, 1978.
95.	NADER, G.A.	Socio-economic and consumer behaviour. Urban Studies, No.6, pp235-245, 1969.
96.	WASSON, C.R.	Is it time to quit thinking of income classes? Journal of Marketing, No.33, pp54-57, April 1969.
97.	SCHANINGER, C.M.	Social class versus income revisited : an empirical investigation. Journal of Marketing Research, Vol.XVIII, pp192208, May 1981.
98.	HIRISCH, R. PETERS, M.	Selecting the superior segmentation correlate. Journal of Marketing', No.38, pp60-63, 1974.
99.	DOWNES, J.D.	Variation of household and personal travel time budgets in Reading Research Report LR966. Department of the Environment, 1980.
100.	MONTEFIORE, H. et al	Changing directions. A report from the Independent Commission on transport. Coronet, 1973.
101.	SCHAEFFER, K.H. SCLAR, E.	Access for all. Penguin Books, Middlesex, 1975.
102.	BAXTER, R. et al	Mobility, accessibility and potential in urban and regional planning. Research report, Marketing centre for Architectural \& Urban Studies, University of Cambridge.
103.	PIRIE, G.H.	Measuring accessibility : a review and proposal. Environment and Planning A, Vol.II, pp299-312, 1979.
104.	HOGGART, K.	Transportation accessibility : some references. Exchange bibliography 482, Council of Planning Libraries, 1974.
105.	DOLING, J.	A comment on the measurement of spatial opportunity. Regional Studies, Vol. 13, 1979.
106.	MAKKASH, T.Z.	Activity-accessibility models of tripgeneration. PhD Thesis, Purdue University, USA, 1969.

107.	GUR, Y.J.	An accessibility sensitive trip generation model. PhD Thesis, Northwestern University, USA, 1971.
108.	DOUBLEDAY, C.	Spatial mobility and trip generation. Urban transport Planning Conference, Leeds University, March 1976.
109.	DALVIE, M. MARTIN, K.	Estimation of non-work trip-demand : a disaggregated approach. Urban Transport Planning Conference, Leeds University, March, 1976.
110.	LEAKE, G.R. HUZAYYIN, A.S.	Accessibility measures and their suitability for use in trip generation models. Traffic Engineering and Control, pp566-572, December 1979.
111.	VICKERMAN, R.W.	Accessibility, attraction and potential: a review of some concepts and their use in determining mobility. Environment and Planning A, 6, pp675691, 1974.
112.	ROBINSON, R.V.F. HEBDEN, J.J.	Methodological problems in the study of shopping travel. • Proceedings of Retall VICKERMAN, R.W. and Local Planning Seminar, PTRC, London, 1974.
113.	LUCAROTTI, P.S.K.	```Car availability - the fundamental split. Transportation Planning and Technology 3, pp203-213, 1977.```
114.	GWILLIAM, K.M. BANISTER, D.J.	Patterns of car usage and restraint modelling. Transportation 6 (4), pp345-364, 1977.
115.	HENSHER, D.A. STOPHER, P.R.	Conference Report : international conference on behavioural travel modelling. Traffic Engineering and Control, 18, pp319-322, 1977.
116.	RHODES, T. WHITAKER, R.	```Forecasting shopping demand. Journal of the Town Planning Institute, 53, pp188-192, 1967.```
117.	DOWNS, R.M.	The cognitive structure of an urban shopping centre. Environmental Behaviour 2, ppl3-39, 1970.

118.	BENWELL, M. SEATON, R.A.F.	Accessibility and the shopping activity. C.T.S. Report, Cranfield, 1977.
119	BENDER, W.C.	Consumer purchase costs - do retallers recognise them? Journal of Retailing, 40, ppl-8, Spring 1964.
120.	$\begin{aligned} & \text { BROWN, F.E. } \\ & \text { FISK, G. } \end{aligned}$	Department stores and discount houses : who dies next? Journal of Retailing, 41, pp15-27, Fall 1965.
121.	hansen, R.A. DEUTSCHER, T.	An empirical investigation of attribute importance in retail store selection. Journal of Retailing, 53, pp59-72, Winter 1978.
122.	RAO, C.R.	Linear Statistical Inference and its applications. Wiley.
123.	O'MUIRCHEARTAIGH, C.H. PAYNE, C.	Exploring data structures. Wiley.
124.	BATTY, M.	Urban modelling : algorithmns, calibrations, preictions. Cambridge University Press, 1976.
125.	OPENSHAW, S. CONNOLLY, C.J.	Empirically derived deterrance functions for maximum performance spatial interaction models. Environment and Planning A, 9, ppl067- 79, 1977.
126.	BATTY, M.	Exploratory callbration of a retall location model using search by golden section. Environment and Planning, 3, pp411-32. 1971.
127.	BATTY, M.	```The calibration of gravity, entropy, and related models of spatial interaction. Environment and Planning, 4, pp131-250. 1972.```
128.	BLACK, J.	Urban transport planning. Croom Helm, 1981.

"A DISAGGREGATE TRIP GENERATION MODEL FOR THE STRATEGIC PLANNING CONTROL OF PRIVATE CAR TRIPS TO LARGE FOODSTORES"
G. McL. HAZEL

VOLUME 2 - APPENDICES

Ph.D. THESIS

CRANFIELD INSTITUTE OF TECHNOLOGY

VOLUME 2

APPENDICES

APPENDICES (Contd.)

PAGE

Appendix F
F-6 S.D. of Age Structure (0) v. No. of Half DaysEmployed (Q) - Area 1 (Moredun)76
F-7 SEG of Head of Household (P) v. No. of Half Days Employed (Q) - Area 1 (Moredun) 77
F-8 No. of Half Days Employed (Q) v. Personal Accessibility (R) - Area 1 (Moredun) 78
F-9 Income (K) v. S.D. of Ages (0) - Area 12 (Turnhouse) 79
F-10 No. in Household (M) v. Mean Age of Household (N) - Area 12 (Turnhouse) 80
F-11 No. in Household (M) v. No. of Half Days Employed (Q) - Area 12 (Turnhouse) 81
F-12 Mean of Age Structure (N) v. S.D. of Age Structure (0) - Area 12 (Turnhouse) 82
F-13 Mean of Age Structure (N) v. No. of Half Days Employed (Q) - Area 12 (Turnhouse) 83
F-14 Mean Age (N) v. Personal Accessibility (R) - Area 12 (Turnhouse) 84
F-15 S.D. of Ages (0) v. No. of Half Days Employed (Q) - Area 12 (Turnhouse) 85
F-16 SEG of Head of Household (P) v. Personal Accessibility (R) - Area 12 (Turnhouse) 86
F-17 Total Expenditure/Week (E) v. No. in Household (M) - Area 4 (Swanston) 87
F-18 Expenditure/Week at Store (D) v. No. in Household (M) - Area 4 (Swanston) 88
F-19 Mean Age (N) v. Personal Accessibility (R) - Area 4 (Swanston) 89
F-20 SEG of Head of Household (P) v. Personal Accessibility (R) - Area 4 (Swanston) 90
F-21 Total Expenditure/Week (E) v. Mean Age of Household (N) - Area 7 (St Peters Place) 91
F-22 No. in Household (M) v. Mean Age of Household (N) - Area 7 (St Peters Place) 92
F-23 Mean Age of Household (N) v. S.D. of Age Structure (O) - Area 7 (St Peters Place) 93
F-24 Mean Age of Household (N) v. SEG of Head of Household (P) - Area 7 (St Peters Place) 94
F-25 Mean Age of Household (N) v. No. of Half Days Employed (Q) - Area 7 (St Peters Place) 95
Appendix G 96
G-1 Principle Components Analysis for all Variables $\lambda=1,2$ and 3 97
G-2 Canonical Correlation Analysis for $\lambda=1,2$ and 3 102

		PAGE
G-3	Canonical Variate Structures for $\lambda=1,2$ and 3	103
Appendix H		106
H-1	Area 1 - Multiple Regression Analysis with I to R; F with B, D; B with I to R; and	
	D with I to R	107
H-2	Area 2 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and	
	D with I to R	111
H-3	Area 3 - Multiple Regression Analysis F with I to R ; F with B , D ; B with I to R ; and	
	D with I to R	115
H-4	Area 4 - Multiple Regression Analysis F with I to R ; F with B, D; B with I to R ; and	
	D with I to R	119
H-5	Area 5 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and	
	D with I to R	123
H-6	Area 6 - Multiple Regression Analysis with	
	I to R; F with B, D; B with I to R ; and D with I to R	127
H-7	Area 7 - Multiple Regression Analysis F with	
	I to R; F with B, D; B with I to R; and	
	D with I to R	131
H-8	Area 8 - Multiple Regression Analysis with	
	I to R; F with B, D; B with I to R; and D with I to R	135
H-9	Area 9 - Multiple Regression Analysis F with	
	I to $\mathrm{R} ; \mathrm{F}$ with $\mathrm{B}, \mathrm{D} ; \mathrm{B}$ with I to R ; and	
	D with I to R	139
H-10	Area 10 - Multiple Regression Analysis F with	
	I to R; F with B, D; B with I to R; and D with I to R	143
H-11	Area 11 - Multiple Regression Analysis F with	
	I to R; F with B, D; B with I to R; and	
	D with I to R	147
H-12	Area 12 - Multiple Regression Analysis F with	
	D with I to R	151
H-13	Area 13 - Multiple Regression Analysis with	
	I to R; F with B, D; B with I to R; and	
	D with I to R	155
H-14	Area 14 - Multiple Regression Analysis F with	
	I to R; F with B, D; B with I to R; and	
	D with I to R	159
H-15	Area 15 - Multiple Regression Analysis F with	
	I to R; F with B, D; B with I to R; and	
	D with I to R	163

APPENDICES (Contd.)

Appendix L		209
L-1	Multiple Regression Analysis - F with I to S; F with B, D; B with I to S; D with I to S for	
	Means Data Matrix	210
L-2	Plot of Standardised Residuals and Table of Observed and Predicted Values for Means Data	
	with respect to Variable D	214
L-3	Multiple Regression Analysis - F with J, L, M,	
	N, O, P, Q, S; F with B, D; B with J, L, M, N,	
	$\begin{aligned} & O, P, Q, S ; D \text { with } J, L, M, N, O, P, Q, R, S \\ & \text { for Means Data Matrix } \end{aligned}$	215
L-4	Plot of Standardised Residuals and Table of	
	Observed and Predicted Values for Means Data with respect to Variable D	219
L-5	Multiple Regression Analysis - F with J, L, M,	
	N, O, P, Q, S; F with B, D; B with J, L, M, N,	
	$0, P, Q, S ; D$ with J, L, M, N, O, P, Q, S for Means Data Matrix	220
L-6	Plot of Standardised Residuals and Table of	
	Observed and Predicted Values for Means Data with respect to Variable D	224
Appendix		225
	Area 1-Multiple Regression Analysis for U	
	with Variables I to R	226
	Area 1 - Plot of Standardised Residuals and	
	Table of Observed and Predicted U Values	227
	Area 2 - Multiple Regression Analysis for U with Variables I to R	228
	Area 2 - Plot of Standardised Residuals and	
	Table of Observed and Predicted U Values	229
	Area 3 - Multiple Regression Analysis for U with Variables I to R	230
	Area 3 - Plot of Standardised Residuals and	
	Table of Observed and Predicted U Values	231
	Area 4 - Multiple Regression Analysis for U	
	with Variables I to R	232
	Area 4 - Plot of Standardised Residuals and	
	Table of Observed and Predicted U Values	233
	Area 5 - Multiple Regression Analysis for U with Variables I to R	234
	Area 5 - Plot of Standardised Residuals and	
	Table of Observed and Predicted U Values	235
	Area 6 - Multiple Regression Analysis for U	
	with Variables I to R	236
	Area 6 - Plot of Standardised Residuals and	
	Table of Observed and Predicted U Values	237

APPENDICES (Contd.)
PAGE
Appendix M

> M-13 Area 7 - Multiple Regression Analysis for U with Variables I to R
$\begin{array}{lll}\text { M-14 } & \text { Area 7 - Plot of Standardised Residuals and } & \\ & \text { Table of Observed and Predicted U Values } & 239\end{array}$
M-15 Area 8 - Multiple Regression Analysis for U with Variables I to R240

M-16 Area 8 - Plot of Standardised Residuals and
Table of Observed and Predicted U Values
241

M-17 Area 9 - Multiple Regression Analysis for U
M-18 Area 9-Plot of Standardised Residuals and Table of Observed and Predicted U Values 243
M-19 Area 10 - Multiple Regression Analysis for U
$\begin{array}{lll}\text { M-20 Area } 10 \text { - Plot of Standardised Residuals and } & \\ & \text { Table of Observed and Predicted U Values }\end{array}$
$\begin{array}{ll}\text { M-21 Area 11 - Multiple Regression Analysis for U } \\ & \text { with Variables I to R }\end{array}$
$\begin{array}{ll}\text { M-22 } & \text { Area 11-Plot of Standardised Residuals and } \\ & \text { Table of Observed and Predicted } U \text { Values }\end{array}$
M-23 Area 12 - Multiple Regression Analysis for $U \quad 248$
M-24 Area 12 - Plot of Standardised Residuals and Table of Observed and Predicted U Values 249
$\begin{array}{ll}\text { M-25 Area } 13 \text { - Multiple Regression Analysis for U } \\ & \text { With Variables I to R }\end{array}$
$\begin{array}{ll}\text { M-26 } & \text { Area 13-Plot of Standardised Residuals and } \\ & \text { Table of Observed and Predicted U Values }\end{array}$
M-27 Area 14 - Multiple Regression Analysis for U
with Variables I to R
M-28 Area 14 - Plot of Standardised Residuals and $\quad 253$
M-29 Area 15-Multiple Regression Analysis for U 254
$\begin{array}{ll}\text { M-30 Area } 15 \text { - Plot of Standardised Residuals and } \\ & \text { Table of Observed and Predicted } U \text { Values }\end{array}$
$\begin{array}{ll}\text { M-31 Area } 16 \text { - Multiple Regression Analysis for U } \\ & \text { with Variables I to R }\end{array}$
M-32 $\begin{array}{ll}\text { Area } 16 \text { - Plot of Standardised Residuals and } \\ & \text { Table of Observed and Predicted } U \text { Values }\end{array}$
Appendix N 264
N-1 Area 16 - Muitiple Regression Analysis for U
with Unweighted El, SI, H1
$\begin{array}{lll}\text { N-2 } \begin{array}{ll}\text { Area } 16 \text { - Multiple Regression Analysis for U } & \\ & \text { with Unweighted E1, Sl, H1 }\end{array} & 266\end{array}$266

APPENDICES (Contd.)

APPENDICES (Contd.)
Appendix 0
0-20 Area 3 - Plot of Standardised Residuals andTable of Observed and Predicted U Valuesw.r.t. El, SI, Hl (Total Weighted)287
0-21 Area 4 - Multiple Regression Analysis for Uwith E1, S1, H1 (Total Weighted)2850-22 Area 4 - Plot of Standardised Residuals andTable of Observed and Predicted U Valuesw.r.t. E1, H1, S1 (Total Weighted)2890-23 Area 5 - Multiple Regression Analysis for Uwith E1, S1, H1 (Total Weighted)2900-24 Area 5 - Plot of Standardised Residuals andTable of Observed and Predicted U Valuesw.r.t. E1, H1, SI (Total Weighted)291
0-25 Area 6 - Multiple Regression Analysis for U with E1, S1, H1 (Total Weighted) 2920-26 Area 6 - Plot of Standardised Residuals andTable of Observed and Predicted U Valuesw.r.t. E1, H1, S1 (Total Weighted)293
0-27 Area 7 - Multiple Regression Analysis for U with E1, S1, Hl (Total Weighted) 294
0-28 Area 6 - Plot of Standardised Residuals andTable of Observed and Predicted U Valuesw.r.t. E1, H1, S1 (Total Weighted)295
Appendix P 296P-1 Multiple Regression Analysis for Usage withHouse, Employment \& SEG (Means Data withoutVariable S)297
P-2 Plot of Standardised Residuals and Table ofObserved and Predicted Usage Values w.r.t.House, Employment and SEG (Means Data withoutVariable S)298
P-3 Multiple Regression Analysis for Usage with House, Employment \& SEG (Means Data with Variable S) 299P-4 Plot of Standardised Residuals and Table ofObserved and Predicted Usage Values w.r.t.House, Employment and SEG (Means Data withVariable S)300

APPENDIX A

A-1
Map and Table showing Distribution of Hypermarkets and Superstores, Open and Planned, and their sizes

$\frac{\text { Location }}{(\text { District })}$	$\underline{\text { Retailer }}$	Net	Gross	Car	$\frac{\text { Opening }}{\text { Date }}$
		Floorspace	Floorspace	Parking	
		$\left(\frac{S q \cdot m_{0}}{\left(q \cdot f t_{0}\right)}\right.$	$\frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{(\mathrm{Sq} \cdot \mathrm{ft} \cdot)}$	Spaces	
AVON					
$\begin{aligned} & \text { Bristol } \\ & \text { (Bristol City) } \end{aligned}$	Asda	$\begin{aligned} & 3,200 \\ & (34,000) \end{aligned}$	$\begin{aligned} & 4,900 \\ & (53,000) \end{aligned}$	564	1978
Bristol (Northavon)	Carrefour	$\begin{aligned} & 8,400 \\ & (90,000) \end{aligned}$	$\begin{aligned} & 16,500 \\ & (178,000) \end{aligned}$	1,700	1978
Nailsea, Bristol (Woodspring)	Super Key	$\begin{aligned} & 2,500 \\ & (27,000) \end{aligned}$	$\begin{aligned} & 5,000 \\ & (54,000) \end{aligned}$	-	Planned
Yate (Northavon)	Tesco	$\begin{aligned} & 3,300 \\ & (35,000) \end{aligned}$	$\begin{aligned} & 6,300 \\ & (68,000) \end{aligned}$	500	Planned

BEDFORDSHIRE

Kempston	J.Sainsbury	3,200	5,900	500	1975
(North Bedfordshire)	$(34,000)$	$(63,000)$			

BERKSHIRE

Bracknell (Bracknell)	SavaCentre	-	$\begin{aligned} & 14,500 \\ & (156,000) \end{aligned}$	735	Planned
Calcot, Reading (Newbury)	SavaCentre	$\begin{aligned} & 7,000 \\ & (75,000) \end{aligned}$	$\begin{aligned} & 13,900 \\ & (150,000) \end{aligned}$	1,350	Planned
Lower Earley (Wokingham)	Asda	$\begin{aligned} & 3,900 \\ & (42,000) \end{aligned}$	$\begin{aligned} & 6,500 \\ & (70,000) \end{aligned}$	680	1979
Reading (Reading)	Tesco	$\begin{aligned} & 3,300 \\ & (35,000) \end{aligned}$	$\begin{aligned} & 5,100 \\ & (55,000) \end{aligned}$	Shared	1976
Tilehurst (Reading)	Super Key	$\begin{aligned} & 3,000 \\ & (32,000) \end{aligned}$	$\begin{aligned} & 5,000 \\ & (54,000) \end{aligned}$	221	1978
Wokingham (Wokingham)	Tesco	$\begin{gathered} 3,000 \\ (32,000) \end{gathered}$	$\begin{aligned} & 5,100 \\ & (55,000) \end{aligned}$	300	Planned

CAMBRIDGESHIRE

Bar Hill (S.Cambridgeshir	Tesco)	$\begin{gathered} 3,000 \\ (32,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	500	1977
Cambridge (Cambridge City)	```Co-op (Cambridge Society)```	$\begin{gathered} 4,300 \\ (46,000) \end{gathered}$	$\begin{aligned} & 7,200 \\ & (77,000) \end{aligned}$	496	1978

Location	Retailer	Net	Gross	Car	Opening
(District)		Floorspace	Floorspace	Parking	Date
		$\frac{\mathrm{sq} \cdot \mathrm{~m}_{0}}{(\mathrm{sq} \cdot \mathrm{ft} \cdot)}$	$\frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{(\mathrm{Sq} \cdot \mathrm{ft})}$	Spaces	

CAMBRIDGESHIRE (Contd.)

CHESHIRE

Chester (Chester City)	Tesco	$\begin{gathered} 4,600 \\ (50,000) \end{gathered}$	$\begin{aligned} & 7,400 \\ & (80,000) \end{aligned}$	550	Planned
Crewe (Crewe \& Nantwich)	Asda	$\begin{gathered} 4,100 \\ (44,000) \end{gathered}$	$\begin{aligned} & 6,700 \\ & (72,000) \end{aligned}$	600	1979
Ellesmere Port (Ellesmere Port)	Lewis's	$\begin{gathered} 6,300 \\ (68,000) \end{gathered}$	$\begin{aligned} & 9,600 \\ & (103,000) \end{aligned}$	3,000	1976
Macclesfield (Macclesfield)	Co-op (North Midland Soc.)	$\begin{gathered} 4,200 \\ (45,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	-	Planned
Warrington (Warrington)	Fine Fare	$\begin{gathered} 7,400 \\ (80,000) \end{gathered}$	$\begin{aligned} & 10,100 \\ & (109,000) \end{aligned}$	1,500	Planned
Widnes (Halton)	Asda	$\begin{gathered} 4,400 \\ (47,000) \end{gathered}$	$\begin{aligned} & 6,200 \\ & (67,000) \end{aligned}$	750	1969
Widnes (Halton)	$\begin{aligned} & \text { Co-op } \\ & \text { (Warrington Soc.) } \end{aligned}$	$\begin{gathered} 4,600 \\ (50,000) \end{gathered}$	$\begin{aligned} & 7,200 \\ & (78,000) \end{aligned}$	800	1975
Winsford (Vale Royal)	Fine Fare	$\begin{gathered} 4,600 \\ (50,000) \end{gathered}$	$\begin{aligned} & 6,300 \\ & (68,000) \end{aligned}$	750	1976

Cleveland

Hartlepool, (Middleton Grange Hartlepool)	Fine	Fare	$\begin{gathered} 4,600 \\ (50,000) \end{gathered}$	$\begin{aligned} & 7,400 \\ & (80,000) \end{aligned}$	480	Planned
Middles brough (Middlesbrough)	Fine	Fare	$\begin{gathered} 5,600 \\ (60,000) \end{gathered}$	$\begin{aligned} & 8,500 \\ & (91,000) \end{aligned}$	688	Planned
South Bank (Langbaurgh)	Asda		$\begin{gathered} 3,700 \\ (40,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	-	Planned

Location	Retailer	Net	Gross	Car	Opening
(District)		Floorspace	Floorspace	Parking	Date
		$\frac{S q \cdot m_{0}}{\left(S q \cdot f t_{0}\right)}$	$\left.\frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{(\mathrm{Sq} \cdot \mathrm{ft}}\right)$	Spaces	

Stockton-on- Asda Tees (Stockton-on-Tees (Stockton-on-Tees	$\begin{gathered} 3,900 \\ (42,000) \end{gathered}$	$\begin{aligned} & 6,700 \\ & (72,000) \end{aligned}$	454	1970
$\begin{aligned} & \text { Thornaby Woolco } \\ & \text { (Stockton-on-Tees) } \end{aligned}$	$\begin{gathered} 6,200 \\ (67,000) \end{gathered}$	$\begin{aligned} & 9,600 \\ & (103,000) \end{aligned}$	950	1968

CORNWALL

Camborne (Kerrier)	Big I	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 3,700 \\ & (40,000) \end{aligned}$	400	Planned
Truro (Carrick)	Tesco	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	Shared	1978

CUMBRIA

Barrow-in Furness (Barrow in-Furness)	Asda	$\begin{gathered} 2,900 \\ (31,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	550	1974
DERBYSHIRE					
Chesterfield (Chesterfield)	Big I	-	$\begin{aligned} & 3,700 \\ & (40,000) \end{aligned}$	-	Planned
Chesterfield (Chesterfield)	Preston	$\begin{gathered} 3,300 \\ (35,000) \end{gathered}$	$\begin{aligned} & 5,100 \\ & (55,000) \end{aligned}$	150	1969
Derby, Spondon (Derby)	Asda	$\begin{gathered} 3,700 \\ (40,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	-	Planned
Mickleover (Derby)	Hillards	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (49,000) \end{aligned}$	371	1979
Sinfin (Derby)	Fine Fare	$\begin{gathered} 3,300 \\ (35,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	850	$\begin{aligned} & 1979 \\ & (1977) \end{aligned}$

DEvon

Exeter	Big I	3,000	4,300	-	Planned
(Exeter City)		$(32,000)$	$(46,000)$		
Lee Mill	Tesco	2,800	4,600	5,000	Planned
(South Hams)		$(30,000)$	$(50,000)$		

Location	Retailer	Net	Gross	Car	Opening
(District)		Floorspace	Floorspace	Parking	Date
		$\left.\frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{\mathrm{sq} \cdot \mathrm{ft}}\right)$	$\begin{aligned} & \left.\frac{\mathrm{sq} \cdot \mathrm{~m}_{0}}{\mathrm{Sq} \cdot \mathrm{ft}}\right) \\ & \hline \end{aligned}$	Spaces	

DEVON (Contd.)

Newton Abbot	Tesco	3,700	5,600	400	Planned
(Teignbridge		$(40,000)$	$(60,000)$		
P1ymouth	Asda	2,900	4,600	557	1976
(P1ymouth City)		$(31,000)$	$(50,000)$		

DORSET

Bournemouth (Bournemouth)	Big I	$\begin{gathered} 5,700 \\ (61,000) \end{gathered}$	$\begin{aligned} & 8,500 \\ & (91,000) \end{aligned}$	500	Planned
Bournemouth (Bournemouth)	Woolco	$\begin{gathered} 6,900 \\ (74,000) \end{gathered}$	$\begin{aligned} & 10,300 \\ & (111,000) \end{aligned}$	1,650	1968
Weymouth Portland)	Big I	$\begin{gathered} 2,900 \\ (31,000) \end{gathered}$	$\begin{aligned} & 3,800 \\ & (41,000) \end{aligned}$	550	1978

DURHAM

Darlington (Darlington)	Big I	$\begin{gathered} 3,100 \\ (33,000) \end{gathered}$	$\begin{aligned} & 5,200 \\ & (56,000) \end{aligned}$	-	Planned
Darlington (Darlington)	Fine Fare	$\begin{gathered} 3,000 \\ (32,000) \end{gathered}$	$\begin{aligned} & 5,400 \\ & (58,000) \end{aligned}$	300	1978
Darlington (Darlington)	Wm.Morrison Supermarkets	$\begin{gathered} 3,400 \\ (37,000) \end{gathered}$	$\begin{aligned} & 5,000 \\ & (54,000) \end{aligned}$	-	1980
Newton Aycliffe (Sedgefield)	Fine Fare	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 4,100 \\ & (44,000) \end{aligned}$	280	1979
Peterlee (Easington)	Fine Fare	$\begin{gathered} 4,500 \\ (48,000) \end{gathered}$	$\begin{aligned} & 6,300 \\ & (68,000) \end{aligned}$	240	1975
Stanley (Derwentside)	Fine Fare	$\begin{gathered} 4,500 \\ (48,000) \end{gathered}$	$\begin{aligned} & 5,900 \\ & (63,000) \end{aligned}$	340	1977

EAST SUSSEX

Eastbourne	Tesco	3,700	5,900	400	Planned
(Eastbourne)		$(40,000)$	$(63,000)$		

ESSEX

$\begin{aligned} & \text { Basildon } \\ & \text { (Basildon) } \end{aligned}$	SavaCentre	$\begin{gathered} 6,500 \\ (70,000) \end{gathered}$	$\begin{aligned} & 13,900 \\ & (150,000) \end{aligned}$	1,000	1980
Chelmer Village (Chelmsford)	Asda	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	520	1979
Colchester (Colchester)	Tesco	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	400	Planned
Colchester (Colchester)	Tesco	$\begin{gathered} 4,200 \\ (45,000) \end{gathered}$	$\begin{aligned} & 6,500 \\ & (70,000) \end{aligned}$	700	Planned
Colchester (Colchester)	Tesco	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,800 \\ & (52,000) \end{aligned}$	250	$\begin{aligned} & 1979 \\ & (1978) \end{aligned}$
Harlow (Harlow)	Tesco	$\begin{gathered} 6,500 \\ (70,000) \end{gathered}$	$\begin{aligned} & 9,500 \\ & (102,000) \end{aligned}$	-	Planned
$\begin{aligned} & \text { Pitsea } \\ & \text { (Basildon) } \end{aligned}$	Tesco	$\begin{gathered} 7,600 \\ (82,000) \end{gathered}$	$\begin{aligned} & 9,800 \\ & (105,000) \end{aligned}$	1,000	1978
South Woodham Ferrers (Chelmsf	Asda ord)	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 5,200 \\ & (56,000) \end{aligned}$	600	1978
Wickford (Basildon)	Not Available	$\begin{gathered} 2,700 \\ (29,000) . \end{gathered}$	$\begin{aligned} & 3,600 \\ & (39,000) \end{aligned}$	100	Planned

GREATER LONDON

Croydon (L.B.Croydon)	J. Sainsbury	$\begin{gathered} 3,300 \\ (36,000) \end{gathered}$	$\begin{aligned} & 6,000 \\ & (65,000) \end{aligned}$	500	Planned
$\begin{aligned} & \text { Erith } \\ & \text { (L.B. Bexley) } \end{aligned}$	Asda	$\begin{gathered} 4,300 \\ (46,000) \end{gathered}$	$\begin{aligned} & 7,200 \\ & (78,000) \end{aligned}$	500	Planned
Finchley (L.B. Barnet)	Tesco	$\begin{gathered} 3,300 \\ (36,000) \end{gathered}$	$\begin{aligned} & 4,800 \\ & (52,000) \end{aligned}$	300	1978
Ilford (L.B. Redbridge)	Cartiers (Ilford)	$\begin{gathered} 3,300 \\ (35,000) \end{gathered}$	-	800	$\begin{aligned} & 1979 \\ & (1976) \end{aligned}$
Park Royal (L.B. Ealing)	Asda	$\begin{gathered} 4,600 \\ (49,000) \end{gathered}$	$\begin{aligned} & 7,200 \\ & (78,000) \end{aligned}$	622	Planned

$\frac{\text { Location }}{\text { (istrict) }}$	$\underline{\text { Retailer }}$	$\frac{\text { F1oo } \frac{\text { Net }}{\text { rspace }}}{\left(\frac{\text { Sq.m. }}{\text { Sq. }}\right.}$	$\frac{\text { F1 Gross }}{\frac{\text { Sq. }}{\text { Sq. } \mathrm{m}_{\bullet}}}$	$\frac{\text { Car }}{\text { Parking }}$ Spaces	$\frac{\text { Opening }}{\text { Date }}$
GREATER LONDON (Contd.)					
Stratford (L.B. Newham)	Big I	$\begin{gathered} 2,500 \\ (27,000) \end{gathered}$	$\begin{aligned} & 4,900 \\ & (53,000) \end{aligned}$	-	Planned
Sutton (L.B. Sutton)	Tesco	$\begin{gathered} 4,600 \\ (50,000) \end{gathered}$	$\begin{aligned} & 7,400 \\ & (80,000) \end{aligned}$	400	Planned
Thornton Heath (L.B. Croydon)	Tesco	$\begin{gathered} 4,700 \\ (51,000) \end{gathered}$	$\begin{aligned} & 6,500 \\ & (78,000) \end{aligned}$	400	Planned
Tottenham (L.B. Haringey)	Tesco	$\begin{gathered} 3,700 \\ (40,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	300	Planned
Walthamstow (L.B. Waltham F	J.Sainsbury orest)	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 4,200 \\ & (45,000) \end{aligned}$	350	Planned
Wood Green	Big I	-	5,600	-	Planned
GREATER MANCHESTER					
Ashton-under Lyne (Tameside)	Big I	$\begin{gathered} 3,100 \\ (330,000) \end{gathered}$	$\begin{aligned} & 4,800 \\ & (52,000) \end{aligned}$	500	Planned
Bolton (Bolton)	Asda	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 5,900 \\ & (64,000) \end{aligned}$	500	1970
Chadderton (O1dham)	As da	$\begin{gathered} 3,300 \\ (36,000) \end{gathered}$	$\begin{aligned} & 5,800 \\ & (62,000) \end{aligned}$	560	1972
Failsworth (01dham)	Co-op (Norwest Society)	$\begin{gathered} 3,700 \\ (40,000) \end{gathered}$	$\begin{aligned} & 5,800 \\ & (62,000) \end{aligned}$	530	1975
Failsworth (01dham)	Wm.Morrison Supermarkets	$\begin{gathered} 5,600 \\ (60,000) \end{gathered}$	-	200	1978
Farnworth (Bolton)	Asda	$\begin{gathered} 3,300 \\ (35,000) \end{gathered}$	$\begin{aligned} & 5,800 \\ & (62,000) \end{aligned}$	450	1979
Golborne (Wigan)	Asda	2,800	5,000	500	1972
Gorton (Manchester City)	Co-op (Co-operative Retail Services	$\begin{aligned} & 2,800 \\ & (30,000) \end{aligned}$	-	-	Planned

Location	Retailer	Net	Gross	Car	Opening
(District)		Floorspace	Floorspace	Parking	Date
		$\left(\mathrm{sq} \mathrm{\cdot m}_{0}\right)$	$\frac{S q \cdot m_{0}}{\left(S q \cdot f t_{0}\right)}$	Spaces	

Harpurhey (Manchester City)	Asda	$\begin{gathered} 4,300 \\ (46,000) \end{gathered}$	$\begin{aligned} & 6,800 \\ & (73,000) \end{aligned}$	700	Planned
Hindley (Wigan)	$\begin{aligned} & \text { Co-op } \\ & \text { (Greater } \\ & \text { Lancastria Soc.) } \end{aligned}$	$\begin{gathered} 2,700 \\ (29,000) \end{gathered}$	$\begin{aligned} & 4,100 \\ & (44,000) \end{aligned}$	500	1977
Horwich (Bolton)	Tesco	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	600	1974
Hyde (Tameside)	Fine Fare	$\begin{gathered} 7,000 \\ (75,000) \end{gathered}$	$\begin{aligned} & 9,800 \\ & (105,000) \end{aligned}$	600	1976
Ince-in Makerfield (Wigan)	Wm.Morrison Supermarkets	-	-	-	1979
$\begin{aligned} & \text { Irlam } \\ & \text { (Salford City) } \end{aligned}$	Tesco	$\begin{gathered} 6,800 \\ (73,000) \end{gathered}$	$\begin{aligned} & 9,700 \\ & (104,000) \end{aligned}$	980	1976
Manchester, Longsight (Manchester City)	Asda	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 5,400 \\ & (58,000) \end{aligned}$	475	1978

Middleton (Rochdale)	Woolco	$\begin{gathered} 6,000 \\ (65,000) \end{gathered}$	$\begin{aligned} & 9,300 \\ & (100,000) \end{aligned}$	816	1971
01dham (01dham)	Co-op (Pioneers Society)	$\begin{gathered} 4,600 \\ (50,000) \end{gathered}$	$\begin{aligned} & 7,500 \\ & (81,000) \end{aligned}$	450	1976
Rochdale (Rochdale)	Asda	$\begin{gathered} 3,800 \\ (41,000) \end{gathered}$	$\begin{aligned} & 6,600 \\ & (71,000) \end{aligned}$	1,000	1969
Rochdale (Rochdale)	Tesco	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,200 \\ & (45,000) \end{aligned}$	550	1973
Sale (Trafford)	Tesco	$\begin{gathered} 4,100 \\ (44,000) \end{gathered}$	$\begin{aligned} & 5,900 \\ & (64,000) \end{aligned}$	234	1977
$\begin{aligned} & \text { Walkden } \\ & \text { (Salford City) } \end{aligned}$	Tesco	$\begin{gathered} 5,400 \\ (58,000) \end{gathered}$	$\begin{aligned} & 7,400 \\ & (80,000) \end{aligned}$	900	1978

GREATER MANCHESTER (Contd.)

Whitefield (Bury)	Preston	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 4,200 \\ & (45,000) \end{aligned}$	325	1975
Wigan (Wigan)	Asda	$\begin{gathered} 3,000 \\ (32,000) \end{gathered}$	$\begin{aligned} & 5,400 \\ & (58,000) \end{aligned}$	550	1970
Wythenshawe (Manchester	Co-op (Norwest Society)	$\begin{gathered} 5,600 \\ (60,000) \end{gathered}$	$\begin{aligned} & 9,800 \\ & (106,000) \end{aligned}$	1,400	$\begin{aligned} & 1979 \\ & (1976) \end{aligned}$

HAMPSHIRE

Basingstoke Chineham (Basingstoke \&	Not available eane)	$\begin{gathered} 3,700 \\ (40,000) \end{gathered}$	$\begin{aligned} & 5,000 \\ & (54,000) \end{aligned}$	Shar	Planned
Burlesdon Towers (Eastleigh)	Tesco	$\begin{gathered} 3,700 \\ (40,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	632	Planned
Chandlers Ford (Eastleigh)	Carrefour	$\begin{gathered} 5,200 \\ (56,000) \end{gathered}$	$\begin{aligned} & 11,500 \\ & (124,000) \end{aligned}$	1,100	1974
Gosport (Gosport)	Asda	$\begin{gathered} 3,000 \\ (32,000) \end{gathered}$	$\begin{aligned} & 4,700 \\ & (51,000) \end{aligned}$	347	1977
Gosport (Gosport)	Big I	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 4,100 \\ & (44,000) \end{aligned}$	300	1973

Littlepark (Havant)	Co-op (Portsea Island Society)	$\begin{gathered} 6,500 \\ (70,000) \end{gathered}$	$\begin{aligned} & 10,700 \\ & (115,000) \end{aligned}$	1,200	Planned
Portsmouth (Portsmouth City)	Tesco	$\begin{gathered} 3,700 \\ (40,000) \end{gathered}$	$\begin{aligned} & 5,900 \\ & (64,000) \end{aligned}$	Shared	1978
Southampton (Southampton City)	Tesco)	$\begin{gathered} 3,700 \\ (40,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	500	Planned
Waterlooville (Havant)	Asda	$\begin{gathered} 3,300 \\ (36.000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	600	Planne

HEREFORD AND WORCESTER

Bromsgrove (Bromsgrove)	Fine Fare	$\begin{gathered} 3,500 \\ (38,000) \end{gathered}$	$\begin{aligned} & 4,900 \\ & (53,000) \end{aligned}$	380

HERTFORDSHIRE

Boreham Wood (Hertsmere)	Tesco	$\begin{gathered} 2,900 \\ (31,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	300	Planned
Hatfield (Welwyn Hatfield)	Woolco	$\begin{gathered} 6,700 \\ (72,000) \end{gathered}$	$\begin{aligned} & 9,500 \\ & (102,000) \end{aligned}$	1,250	1972
Stevenage (Stevenage)	Tesco	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 4,800 \\ & (52,000) \end{aligned}$	600	1973
Watford (Watford)	Tesco	$\begin{gathered} 4,200 \\ (45,000) \end{gathered}$	$\begin{aligned} & 6,000 \\ & (65,000) \end{aligned}$	450	Planned

HUMBERSIDE
$\left.\begin{array}{llclll}\text { Scunthorpe } & \text { Asda } & \begin{array}{c}2,800 \\ (30,000)\end{array} & \begin{array}{l}4,500 \\ (48,000)\end{array} & 5113 & 1976 \\ \text { (Scunthorpe) } & & & & \\ & & 2,800 & 3,700 & - & 1979 \\ \text { Scunthorpe } & \text { Co-op } & (30,000) & (40,000) & & \\ \text { (Scunthorpe) } & \begin{array}{l}\text { (Co-operative }\end{array} & & & & \\ & \text { Retail Services) }\end{array}\right)$

ISLE OF WIGHT

| Newport | Big I | 3,000 | 5,300 |
| :--- | :---: | :---: | :---: | :---: |
| (Medina) | | $(32,000)$ | $(57,000)$ |

KENT

$\frac{\text { Location }}{\text { District })}$	$\underline{\text { Retailer }}$	$\frac{\text { Floo } \frac{\text { Net }}{\text { rspace }}}{\left(\frac{\text { Sq.m. }}{\text { Sq. }}\right.}$	$\frac{\frac{\text { Gross }}{\text { Florspace }}}{\frac{\text { Sq.m. }}{\text { Sq.ft. })}}$	$\frac{\text { Car }}{\frac{\text { Parking }}{\text { Spaces }}}$	$\frac{\text { Opening }}{\text { Date }}$
LANCASHIRE					
Blackburn (Blackburn)	```Co-op (Blackburn Society)```	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 4,100 \\ & (44,000) \end{aligned}$	330	1977
Blackpool (Blackpool)	Fine Fare	$\begin{gathered} 4,700 \\ (51,000) \end{gathered}$	$\begin{aligned} & 9,100 \\ & (98,000) \end{aligned}$	500	1979
Blackpool, Marton (Blackpool)	$\begin{aligned} & \text { Co-op (Greater } \\ & \text { Lancastria } \\ & \text { Society) } \end{aligned}$	$\begin{gathered} 5,300 \\ (57,000) \end{gathered}$	$\begin{aligned} & 9,800 \\ & (106,000) \end{aligned}$	1,000	1979
Colne (Pendle)	Asda	$\begin{gathered} 3,100 \\ (33,000) \end{gathered}$	$\begin{aligned} & 5,700 \\ & (61,000) \end{aligned}$	500	1971
Preston (Preston)	Asda	$\begin{gathered} 3,600 \\ (39,000) \end{gathered}$	$\begin{aligned} & 8,900 \\ & (96,000) \end{aligned}$	247	1967
Rawtenstall (Rossendale)	Asda	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 4,900 \\ & (53,000) \end{aligned}$	430	1977
Whittle-LeWoods (Chorley)	Asda	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 4,900 \\ & (53,000) \end{aligned}$	536	1978

LEICESTERSHIRE

Braunstone (B1aby)	Asda	$\begin{aligned} & \cdot 3,700 \\ & (40,000) \end{aligned}$	$\begin{aligned} & 6,100 \\ & (66,000) \end{aligned}$	660	Planned
Hinckley (Hinckley \& Bosworth)	Asda	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 4,400 \\ & (47,000) \end{aligned}$	320	1972
Leicester, Oadby (Oadby \& Wigston)	Woolco	$\begin{gathered} 5,900 \\ (63,000) \end{gathered}$	$\begin{aligned} & 8,500 \\ & (92,000) \end{aligned}$	600	1967
Leicester, Thurmaston (Charnwood)	$\begin{aligned} & \text { Co-op } \\ & \text { (Leicestershire } \end{aligned}$	$\begin{gathered} 5,800 \\ (62,000) \end{gathered}$	$\begin{aligned} & 7,700 \\ & (83,000) \end{aligned}$	800	1975

Location	Retailer	Net	Gross	Car	Opening
(District)		Floorspace	Floorspace	Parking	Date
		$\left.\frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{(\mathrm{sq} \cdot \mathrm{ft}}\right)$	$\begin{aligned} & \left.\frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{(\mathrm{Sq} \cdot \mathrm{ft}}\right) \\ & \hline \end{aligned}$	Spaces	

LINCOLNSHIRE

Gainsborough (West Lindsay)	Big I	$\begin{gathered} 3,300 \\ (35,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	400	1977
$\begin{aligned} & \text { Lincoln } \\ & \text { (Lincoln City) } \end{aligned}$	Co-op (Lincoln	$\begin{gathered} 2,500 \\ (27,000) \end{gathered}$	$\begin{aligned} & 3,400 \\ & (37,000) \end{aligned}$	280	1978
$\begin{aligned} & \text { Lincoln } \\ & \text { (Lincoln City) } \end{aligned}$	Tesco	$\begin{gathered} 3,300 \\ (36,00) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (49,000) \end{aligned}$	200	1974
Spalding (South Holland)	Super Key	$\begin{gathered} 2,700 \\ (29,000) \end{gathered}$	$\begin{aligned} & 5,400 \\ & (58,000) \end{aligned}$	400	1978
MERSEYSIDE					
Birkenhead (Wirral)	Asda	$\begin{gathered} 3,100 \\ (33,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	425	1976
Birkenhead Woodchurch (Wirral)	$\begin{aligned} & \text { Co-op } \\ & \text { (Co-operative } \\ & \text { Retail Services) } \end{aligned}$	$\begin{gathered} 4,400 \\ (47,000) \end{gathered}$	$\begin{aligned} & 6,800 \\ & (73,000) \end{aligned}$	250	1972
Huyton (Knowsley)	Asda	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 4,900 \\ & (53,000) \end{aligned}$	536	1977
Kirkby (Knowsley)	Co-op (Greater Lancastria Society)	$\begin{gathered} 5,900 \\ (64,000) \end{gathered}$	$\begin{aligned} & 10,000 \\ & (108,000) \end{aligned}$	-	1978
Liverpool (Liverpool City)	$\begin{aligned} & \text { Co-op } \\ & \text { (Co-operative } \\ & \text { Retail Services) } \end{aligned}$	$\begin{gathered} 3,100 \\ (33,000) \end{gathered}$	$\begin{aligned} & 4,900 \\ & (53,000) \end{aligned}$	325	1979
Southport (Sefton)	Big I	$\begin{gathered} 4,200 \\ (45,000) \end{gathered}$	$\begin{aligned} & 5,900 \\ & (64,000) \end{aligned}$	500	Planned
St Helens (St Helens)	$\begin{aligned} & \text { Co-op } \\ & \text { (St Helens Soc.) } \end{aligned}$	$\begin{gathered} 2,700 \\ (29,000) \end{gathered}$	$\begin{aligned} & 3,600 \\ & (39,000) \end{aligned}$	-	1978
St Helens (St Helens)	Wm.Morrison Supermarkets	$\begin{gathered} 3,100 \\ (33,000) \end{gathered}$	$\begin{aligned} & 3,700 \\ & (40,000) \end{aligned}$	500	$\begin{aligned} & 1978 \\ & (1971) \end{aligned}$

Location	Retailer	Net	Gross	Car	Opening
(District)		Floorspace	Floorspace	Parking	Date
		$\frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{(\mathrm{~s} \cdot \mathrm{f} \cdot \mathrm{ft})}$	$\frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{(\mathrm{Sq} \cdot \mathrm{ft})}$	Spaces	

NORTH YORKSHIRE

Harrogate (Harrogate)	Wm.Morrison Supermarkets	$\begin{gathered} 5,100 \\ (55,000) \end{gathered}$	-	-	Planned
York Huntingdon (Ryedale)	Asda	$\begin{gathered} 3,000 \\ (32,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	628	1974

NORTHAMPTONSHIRE

| Northampton, Tesco 9,900
 Weston Favil 13,900 1,600
 (Northampton) | | $(107,000)$ | 1974 |
| :--- | :---: | :---: | :---: | :---: |

NORTHUMBERLAND

Blyth	Presto	2,800	4,200
(B1yth Valley)		$(30,000)$	$(45,000)$

NOTTINGHAMSHIRE

$\begin{aligned} & \text { Arnold } \\ & \text { (Gedling) } \end{aligned}$	Fine Fare	$\begin{gathered} 4,600 \\ (50,000) \end{gathered}$	$\begin{aligned} & 7,200 \\ & (77,000) \end{aligned}$	620	1978
Bulwell (Nottingham City)	Co-op (Greater Nottingham Society)	$\begin{gathered} 2,700 \\ (29,000) \end{gathered}$	$\begin{aligned} & 4,200 \\ & (45,000) \end{aligned}$	130	1978
Mansfield (Mansfield)	Tesco	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,400 \\ & (47,000) \end{aligned}$	519	Planned
Nottingham (Rushcliffe)	Asda	$\begin{gathered} 5,100 \\ (55,000) \end{gathered}$	$\begin{aligned} & 9,700 \\ & (104,000) \end{aligned}$	1,000	1966
Nottingham (Nottingham City)	Tesco	$\begin{gathered} 5,600 \\ (60,000) \end{gathered}$	$\begin{aligned} & 7,400 \\ & (80,000) \end{aligned}$	Shared	1978
Sutton-in- Ashfield (Ashfield)	Fine Fare	$\begin{gathered} 5,900 \\ (64,000) \end{gathered}$	$\begin{aligned} & 8,600 \\ & (93,000) \end{aligned}$	860	1978

$\frac{\text { Location }}{(\text { District })}$	Retailer	$\frac{\text { Floorspace }}{\frac{\text { Net }}{\text { Sq. }}}$	$\frac{\frac{\text { Gross }}{\text { Floorspace }}}{\frac{\text { Parking }}{\text { Sq.mo }}} \frac{\frac{\text { Par }}{\text { Sq.ftes }}}{\text { Spaces }}$		$\frac{\text { Openin }}{\text { Date }}$
OXFORDSHIRE					
Banbury (Cherwell)	Big I	$\begin{gathered} 2,700 \\ (29,000) \end{gathered}$	$\begin{aligned} & 3,900 \\ & (42,000) \end{aligned}$	-	1977
Wheatley (South Oxf	$\begin{aligned} & \text { So-Lo } \\ & \text { re) } \end{aligned}$	$\begin{gathered} 2,700 \\ (29,000) \end{gathered}$	$\begin{aligned} & 3,500 \\ & (38,000) \end{aligned}$	350	1978
SALOP					
Telford (Wrekin)	Carrefour	$\begin{gathered} 5,200 \\ (56,000) \end{gathered}$	$\begin{aligned} & 10,900 \\ & (117,000) \end{aligned}$	1,000	1973
Telford (Wrekin)	J.Sainsbury	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 4,400 \\ & (47,000) \end{aligned}$	900	1973

SOMERSET

Taunton (Taunton Deans)	Big I	4,600 $(50,000)$	7,100 $(76,000)$	650	Planned
Yeovil					
(Yeovi1)	Tesco	2,900	4,600	Shared 1978	
		$(31,000)$	$(50,000)$		

SOUTH YORKSHIRE

Carcroft (Donacaster)	Asda	3,000 $(32,000)$	4,800 $(52,000)$	320	1974
Dinnington	Asda	-	-	-	P1anned
(Rotherham)					
Rotherham, Eastwood (Rotherham) Asda		3,200	5,600	500	1969
		$(34,000)$	$(60,000)$		

Sheffield Sheaf Valley (Sheffield City)	Not Available	$\begin{gathered} 4,000 \\ (43,000) \end{gathered}$	$\begin{aligned} & 6,000 \\ & (65,000) \end{aligned}$	527	1976
Sheffield, Chapeltown (Sheffield City)	Asda	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,700 \\ & (51,000) \end{aligned}$	400	1976
Sheffield, Handsworth (Sheffield City)	Asda	$\begin{gathered} 2,700 \\ (29,000) \end{gathered}$	$\begin{aligned} & 5,500 \\ & (59,000) \end{aligned}$	478	1970

Location	Retailer	Net	Gross	Car	Opening
(District)		Floorspace	Floorspace	Parking	Date
		$\left(S \frac{S q \cdot m_{0}}{\left.q_{\cdot} \cdot f t_{\cdot}\right)}\right.$	$\left.\frac{S q \cdot m_{0}}{(\mathrm{Sq} \cdot \mathrm{ft}}\right)$	Spaces	

STAFFORDSHIRE

Burslem (Stoke-onTrent)	```Co-op (North Midland Society)```	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 3,400 \\ & (37,000) \end{aligned}$	450	1973
Hanley (Stoke-on-Trent)	Tesco	$\begin{gathered} 5,600 \\ (60,000) \end{gathered}$	$\begin{aligned} & 7,600 \\ & (82,000) \end{aligned}$	500	1977
Longton (Stoke-on Trent)	```Co-op (North Midland Society)```	$\begin{gathered} 3,100 \\ (33,000) \end{gathered}$	$\begin{aligned} & 4,100 \\ & (44,000) \end{aligned}$	-	Planned
Newcastle-Under-Lyme (Newcastle-under-Lyme)	Co-op (North Midland Society	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	500	1973
Stafford (Stafford)	Tesco	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 4,500 \\ & (48,000) \end{aligned}$	400	Planned
Talke (Stoke-on-Trent City)	```Co-op (North Midland Society)```	$\begin{gathered} 6,500 \\ (70,000) \end{gathered}$	$\begin{aligned} & 8,000 \\ & (86,000) \end{aligned}$	1,000	1975
Tame Valley Wilnecote (Tamworth)	Co-op (Tamworth Society)	$\begin{gathered} 3,300 \\ (35,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	700	Planned

SUFFOLK

Ipswich, Boss	Co-op (Ipswich	2,800	4,900	603	1977
Hall (Babergh)	Society)	$(30,000)$	$(53,000)$		
		4,200	5,900	600	Planned
Lowestoft	Fine Fare	$(45,000)$	$(64,000)$		

SURREY

Woking	Fine Fare	3,100	5,600	1,000	1977
(Woking)		$(33,000)$	$(60,000)$		

TYNE AND WEAR

Killingworth	Woolco	6,300	9,800	1,030
(North Tyneside)	$(68,000)$	$(105,000)$		

TYNE AND WEAR (Contd.)

North Shields (North Tyneside)	Presto	$\begin{gathered} 3,900 \\ (42,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	Shared	1978
Washington (Sunderland)	Presto	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 3,400 \\ & (37,000) \end{aligned}$	Shared	1978
Washington (Sunderland)	SavaCentre	$\begin{gathered} 6,500 \\ (70,000) \end{gathered}$	$\begin{aligned} & 15,100 \\ & (163,000) \end{aligned}$	1,300	1977
Washington (Sunderland)	Woolco	$\begin{gathered} 6,300 \\ (68,000) \end{gathered}$	$\begin{aligned} & 10,400 \\ & (112,000) \end{aligned}$	3,000	1973

WARWICKSHIRE

Bedworth (Nuneaton)	Tesco	$\begin{gathered} 3,300 \\ (35,000) \end{gathered}$	$\begin{aligned} & 4,800) \\ & (52,000) \end{aligned}$	450	Planned
Leamington Spa (Warwick)	Asda	$\begin{gathered} 3,300 \\ (35,000) \end{gathered}$	$\begin{aligned} & 5,200 \\ & (56,000) \end{aligned}$	624	Planned

WEST MIDLANDS

(Birmingham City) $_{\text {Aston }}^{\text {Asda }}$	$\begin{gathered} 4,600 \\ (50,000) \end{gathered}$	$\begin{aligned} & 7,200 \\ & (78,000) \end{aligned}$	706	1979
```Birmingham Not Available (Birmingham City)```	-	$\begin{aligned} & 8,700 \\ & (94,000) \end{aligned}$	800	Planned
Birmingham, Edgbaston (Birmingham City)	$\begin{gathered} 4,600 \\ (50,000) \end{gathered}$	$\begin{aligned} & 6,300 \\ & (68,000) \end{aligned}$	-	1979
Birmingham, $\quad$ Co-op    Small Heath (Birmingham   (Birmingham City) Society)	$\begin{gathered} 3,900 \\ (42,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	500	Planned
Brierly Hill Asda (Dudley)	$\begin{gathered} 3,300 \\ (36,000) \end{gathered}$	$\begin{aligned} & 5,400 \\ & (58,000) \end{aligned}$	510	1978
$\begin{aligned} & \text { Coventry } \\ & \text { (Coventry City) Asda } \end{aligned}$	$\begin{gathered} 3,500 \\ (38,000) \end{gathered}$	$\begin{aligned} & 5,900 \\ & (64,000) \end{aligned}$	659	Planned
Coventry (Coventry City) J.Sainsbury	$\begin{gathered} 2,500 \\ (27,000) \end{gathered}$	$\begin{aligned} & 5,300 \\ & (57,000) \end{aligned}$	400	1977


$\begin{aligned} & \frac{\text { Location }}{\text { District })} \\ & \hline \end{aligned}$	Retailer	Net	Gross	Car	$\frac{\text { Opening }}{\text { Date }}$
		F1oorspac	Floorspace	arking	
		$\left(\frac{S q \cdot \mathrm{~m}_{0}}{q \cdot\left(t_{0}\right)}\right.$	$\begin{aligned} & \left.\frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{(\mathrm{Sq} \cdot \mathrm{ft}}\right) \\ & \hline \end{aligned}$	Spaces	
WEST MIDLANDS (Contd.)					
Coventry (Covntry City)	Tesco	$\begin{aligned} & 3,700 \\ & (40,000) \end{aligned}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	500	Planned
Darlaston   (Walsall)	Asda	$\begin{gathered} 3,500 \\ (38,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	270	1978
Minworth   (Birmingham City)	Carrefour	$\begin{gathered} 6,500 \\ (70,000) \end{gathered}$	$\begin{gathered} 13,700 \\ (148,000) \end{gathered}$	1,300	1977
01dbury   (Sandwe11)	SavaCentre	$\begin{gathered} 5,600 \\ (60,000) \end{gathered}$	$\begin{aligned} & 12,100 \\ & (130,000) \end{aligned}$	1,000	Planned
Smethwick (Sandwel1)	Co-op (Birmingham Society)	-	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	-	Planned

## WEST SUSSEX

Worthing	Tesco	2,600	4,400	300	Planned
(Worthing)		$(28,000)$	$(47,000)$		

WEST YORKSHIRE

Bradford   (Bradford City)	Wm.Morrison Supermarkets	$\begin{gathered} 3,300 \\ (36,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	452	1976
Bradford   (Bradford City)	Tesco	$\begin{gathered} 5,600 \\ (60,000) \end{gathered}$	$\begin{aligned} & 7,400 \\ & (80,000) \end{aligned}$	450	Planned
Huddersfield (Kirklees)	Hillards	$\begin{gathered} 3,300 \\ (35,000) \end{gathered}$	$\begin{aligned} & 4,800 \\ & (52,000) \end{aligned}$	450	1979
Huddersfield   Birkby (Kirklees	Asda	$\begin{gathered} 3,600 \\ (39,000) \end{gathered}$	$\begin{aligned} & 7,400 \\ & (80,000) \end{aligned}$	600	1980
Hunslet (Leeds City)	Wm. Morrison Supermarkets	$\begin{gathered} 3,400 \\ (37,000) \end{gathered}$	$\begin{aligned} & 4,900 \\ & (53,000) \end{aligned}$	-	1976
$\begin{aligned} & \text { Leeds (Leeds } \\ & \text { City) } \end{aligned}$	Big I	-	$\begin{aligned} & 5,700 \\ & (61,000) \end{aligned}$	-	Planned
$\begin{aligned} & \text { Leeds (Leeds } \\ & \text { City) } \end{aligned}$	Wm. Morrison Supermarkets	$\begin{gathered} 3,300 \\ (36,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	146	1972


Location	Retailer	Net	Gross	Car	Opening
( District)		Floorspace	Floorspace	Parking	Date
		$\left(S \frac{S q \cdot m_{\bullet}}{q \cdot f t_{\cdot}}\right)$	$\frac{S q \cdot m_{0}}{\left(S q \cdot f t_{0}\right)}$	Spaces	

## WEST YORKSHIRE (Contd.)

Leeds, Meanwood (Leeds City)	Tesco	$\begin{gathered} 3,000 \\ (32,000) \end{gathered}$	$\begin{aligned} & 4,800 \\ & (52,000) \end{aligned}$	400	Planned
Leeds, Middleton (Leeds City)	Tesco	$\begin{gathered} 3,700 \\ (40,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	-	Planned
Pudsey (Leeds City)	Asda	$\begin{gathered} 4,200 \\ (45,000) \end{gathered}$	$\begin{aligned} & 8,300 \\ & (89,000) \end{aligned}$	615	1969
Wetherby (Leeds City)	$\begin{aligned} & \text { Co-op } \\ & \text { (Harrogate Soc.) } \end{aligned}$	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 3,900 \\ & (42,000) \end{aligned}$	150	1978

## WILTSHIRE

Swindon   (Thamesdown)	Carrefour	$\begin{gathered} 4,000 \\ (43,000) \end{gathered}$	$\begin{aligned} & 6,500 \\ & (70,000) \end{aligned}$	-	Planned
Trowbridge   (West Wiltshire)	Tesco	$\begin{gathered} 3,000 \\ (32,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	-	Planned

## WALES

CLWYD

Rinmel Bay (Colwyn)	Asda	$\begin{gathered} 3,500 \\ (38,000) \end{gathered}$	$\begin{aligned} & 5,100 \\ & (55,000) \end{aligned}$	500	Planned
Wrexham   (Wrexham Maelor)	Tesco	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	480	1977
DYFED					
$\begin{aligned} & \text { Llanelli } \\ & \text { (Llanelli) } \end{aligned}$	Tesco	$\begin{gathered} 3,700 \\ (40,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	440	1978
GWENT					
Cwmbran (Torfaen)	Woolco	$\begin{gathered} 6,300 \\ (68,000) \end{gathered}$	$\begin{aligned} & 10,900 \\ & (117,000) \end{aligned}$	900	1975
Newport (Newport)	Asda	$\begin{gathered} 3,100 \\ (33,000) \end{gathered}$	$\begin{aligned} & 5,400 \\ & (58,000) \end{aligned}$	746	1973


$\begin{aligned} & \frac{\text { Location }}{\text { (istrict) }} \\ & \hline \end{aligned}$	Retailer	Net	Gross	Car	$\frac{\text { Opening }}{\text { Date }}$
		Floorspace	Floorspace	rking	
		$\frac{\mathrm{sq} \cdot \mathrm{~m}_{0}}{\left.\mathrm{sq} \cdot \mathrm{ft} \mathrm{t}_{\cdot}\right)}$	$\left.\frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{\mathrm{Sq} \cdot \mathrm{ft}}\right)$	Spaces	
GWYNEDD					
Llandudno (Aberconwy)	Asda	$\begin{gathered} 2,900 \\ (31,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	700	$\begin{aligned} & 1977 \\ & (1975) \end{aligned}$
Bridgend (Ogwr)	Big I	$\begin{gathered} 3,400 \\ (37,000) \end{gathered}$	$\begin{aligned} & 5,500 \\ & (59,000) \end{aligned}$	750	Planned
Bridgend, Pyle (Ogwr)	$\begin{aligned} & \text { Co-op } \\ & \text { (Co-operative } \\ & \text { Retail Services) } \end{aligned}$	$\begin{gathered} 3,100 \\ (33,000) \end{gathered}$	$\begin{aligned} & 3,700 \\ & (40,000) \end{aligned}$	400	1973
```Caerphilly (Rhymney valley)```	Carrefour	$\begin{gathered} 5,100 \\ (55,000) \end{gathered}$	$\begin{aligned} & 10,900 \\ & (117,000) \end{aligned}$	1,100	1972
Llantrisant (Taff Ely)	Tesco	$\begin{gathered} 3,300 \\ (35,000) \end{gathered}$	$\begin{aligned} & 5,000 \\ & (54,000) \end{aligned}$	500	1979
Merthyr Tydfil (Merthyr Tydfil)	Asda	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 4,900 \\ & (53,000) \end{aligned}$	540	1977
SOUTH GLAMORGAN					
Barry (Vale of Glamorgan)	Presto	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 3,300 \\ & (35,000) \end{aligned}$	280	1971
Cärdiff (Cardiff City)	```Co-op (Co-operative Retail Services)```	$\begin{gathered} 4,200 \\ (45,000) \end{gathered}$	$\begin{aligned} & 7,000 \\ & (75,000) \end{aligned}$	500	1973
Cardiff (Cardiff City)	Tesco	$\begin{gathered} 3,000 \\ (32,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	-	Planned

WEST GLAMORGAN

Neath (Neath)	Tesco	4,000 $(43,000)$	5,600 $(60,000)$	Shared 1978	
Swansea	Asda	3,300	5,200	430	Planned
(Swansea City)		$(36,000)$	$(56,000)$		

SCOTLAND

CENTRAL

Falkirk	Fine Fare	4,100	5,600	365	1978
(Falkirk)		$(44,000)$	$(60,000)$		

Location	Retailer	Net	Gross	Car	Opening
(District)		Floorspace	Floorspace	Parking	Date
		$\left(\mathrm{Sq} \frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{\left.q \cdot \mathrm{f} t_{\bullet}\right)}\right.$	$\frac{S q_{\cdot} \cdot m_{0}}{\left(S q \cdot f t_{0}\right)}$	Spaces	

CENTRAL (Contd.)

Stirling	Fine Fare	3,200	4,600	180	1974
(Stirling)		$(34,000)$	$(50,000)$		

DUMFRIES AND GALLOWAY

Dumfries	Co-op	2,600	3,500	150	1976
(Nithsdale)	(Dumfries Soc.)	$(28,000)$	$(38,000)$		

FIFE

Dunfermline	Fine Fare	3,000	5,000	400	1975
(Dunfermline)		$(32,000)$	$(54,000)$		

GRAMPIAN

Aberdeen	Co-op (Northern (Aberdeen City) Aberdeen Soc.)	4,600 $(50,000)$	6,400 $(69,000)$	-	1977
Aberdeen,	Fine Fare	3,700	5,600	400	1970
Bridge of Dee		$(40,000)$	$(60,000)$		
(Aberdeen City)					

| Aberdeen, | Fine Fare | $\mathbf{2 , 9 0 0}$ | 4,400 | 210 |
| :--- | :---: | :--- | :--- | :--- | Planned

Aberdeen, Dyce	Asda	3,900	5,900	600
(Aberdeen City)		$(42,000)$	$(63,000)$	

LOTHIAN

Edinburgh (Edinburgh City)	Asda	$\begin{gathered} 3,600 \\ (39,000) \end{gathered}$	$\begin{aligned} & 6,800 \\ & (73,000) \end{aligned}$	528	1972
Edinburgh,	Co-op	2,800	3,700	-	1979
Granton (Edinbugh City)	(St Cuthberts Edinburgh Soc.)	$(30,000)$	$(40,000)$		
Livingston (West Lothian)	$\begin{aligned} & \text { Co-op } \\ & \text { (Blackburn } \\ & \text { Supermarket Ltd.) } \end{aligned}$	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,100 \\ & (44,000) \end{aligned}$	600	1976

($\frac{\text { Location }}{\text { District }}$)	Retailer	Net	Gross	Car	Opening
(District)		Floorspace	Floorspace	Parking	Date
		$\frac{S q \cdot m_{0}}{\left(S q \cdot f t_{0}\right)}$	$\left.\frac{\mathrm{Sq} \cdot \mathrm{~m}_{0}}{(\mathrm{Sq} \cdot \mathrm{ft}}\right)$	Spaces	

Livingston	Woolco	6,200	10,400	2,000	1976
(West Lothian)		$(67,000)$	$(112,000)$		

STRATHCLYDE

$\begin{aligned} & \text { Ayr (Kyle \& } \\ & \text { Carrick) } \end{aligned}$	Tesco	$\begin{gathered} 3,100 \\ (33,000) \end{gathered}$	$\begin{aligned} & 4,700 \\ & (51,000) \end{aligned}$	-	1974
Bishopbriggs (Glasgow City)	Fine Fare	$\begin{gathered} 4,400 \\ (43,000) \end{gathered}$	$\begin{aligned} & 5,400 \\ & (58,000) \end{aligned}$	350	Planned
Blantyre (Hamilton)	Asda	$\begin{gathered} 3,400 \\ (37,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	420	Planned
Clydebank (Clydebank)	Fine Fare	$\begin{gathered} 4,300 \\ (46,000) \end{gathered}$	$\begin{aligned} & 5,900 \\ & (63,000) \end{aligned}$	500	1978
Coatbridge (Monklands)	Asda	$\begin{gathered} 4,000 \\ (43,000) \end{gathered}$	$\begin{aligned} & 6,400 \\ & (69,000) \end{aligned}$	460	1976
Cumbernauld (Cumbernauld \& K	$\begin{array}{r} \text { Wm.Low } \\ \text { Kilsyth) } \end{array}$	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 3,900 \\ & (42,000) \end{aligned}$	440	Planned
Cumbernauld (Cumbernauld \& X	$\begin{array}{r} \text { Woolco } \\ \text { Xilsyth) } \end{array}$	$\begin{gathered} 6,000 \\ (65,000) \end{gathered}$	$\begin{aligned} & 10,000 \\ & (108,000) \end{aligned}$	950	1974
East Rilbride (East Kilbride)	Fine Fare	$\begin{gathered} 2,900 \\ (31,000) \end{gathered}$	$\begin{aligned} & 3,700 \\ & (40,000) \end{aligned}$	1,200	1973
Glasgow, Bearsden (Bearsden \& Miln	Fine Fare gavie)	$\begin{gathered} 4,000 \\ (43,000) \end{gathered}$	$\begin{aligned} & 7,600 \\ & (83,000) \end{aligned}$	350	1977

G1asgow, Maryhill (Glasgow City)	```Co-op (C.W.S. Retail Operations Group)```	$\begin{gathered} 3,700 \\ (40,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	476	Planned
Greenock (Inverclyde)	Tesco	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,400 \\ & (47,000) \end{aligned}$	430	1977
Irvine (Cunninghame)	Tesco	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 4,600 \\ & (50,000) \end{aligned}$	Shared	1975

$\begin{aligned} & \text { Location } \\ & \text { District) } \end{aligned}$	$\underline{\text { Retailer }}$	$\frac{\text { Floo } \frac{\text { Net }}{\text { rspace }}}{\left(\frac{\text { Sq. } \mathrm{m}_{0}}{}\right.}$	$\frac{\text { G1 Gross }}{\text { Forspace }}$	$e \frac{\frac{\text { Car }}{\frac{\text { Parking }}{}}}{\text { Spaces }}$	$\frac{\text { Opening }}{\text { Date }}$
STRATHCLYDE (Contd.)					
Motherwell (Motherwell)	Fine Fare	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 5,600 \\ & (60,000) \end{aligned}$	400	1979
Pollock (Glasgow City)	$\begin{aligned} & \text { Co-op (C.W.S. } \\ & \text { Retail Operations } \\ & \text { Group) } \end{aligned}$	$\begin{gathered} 3,100 \\ (33,000) \end{gathered}$	$\begin{aligned} & 5,200 \\ & (56,000) \end{aligned}$	1,200	1979
Pollock (Glasgow City)	Presto	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 3,700 \\ & (40,000) \end{aligned}$	Shared	1979
Pollock (Glasgow City)	Tesco	$\begin{gathered} 5,100 \\ (55,000) \end{gathered}$	$\begin{aligned} & 7,400 \\ & (80,000) \end{aligned}$	Shared	1979
$\begin{aligned} & \text { Summerston } \\ & \text { (Glasgow City) } \end{aligned}$	As da	$\begin{gathered} 3,200 \\ (34,000) \end{gathered}$	$\begin{aligned} & 4,900 \\ & (53,000) \end{aligned}$	510	1979
TAYSIDE					
Dundee (Dundee City)	Asda	$\begin{gathered} 2,500 \\ (27,000) \end{gathered}$	$\begin{aligned} & 4,000 \\ & (43,000) \end{aligned}$	368	1977
Dundee (Dundee City)	Tesco	$\begin{gathered} 4,700 \\ (51,000) \end{gathered}$	$\begin{aligned} & 6,300 \\ & (68,000) \end{aligned}$	600	1978
NORTHERN IRELAND					
Bangor (North Down)	Stewarts Supermarkets	$\begin{gathered} 2,500 \\ (27,000) \end{gathered}$	$\begin{aligned} & 4,200 \\ & (45,000) \end{aligned}$	900	1975
Glengormley (Newtonabbey)	Stewarts Supermarkets	$\begin{gathered} 2,800 \\ (30,000) \end{gathered}$	$\begin{aligned} & 5,200 \\ & (56,000) \end{aligned}$	1,000	1973
$\begin{aligned} & \text { Newtonards } \\ & \text { (Ards) } \end{aligned}$	Stewarts Supermarkets	$\begin{gathered} 2,600 \\ (28,000) \end{gathered}$	$\begin{aligned} & 4,200 \\ & (45,000) \end{aligned}$	1,400	1976
Newtonards (Ards)	Woolco	$\begin{gathered} 4,100 \\ (44,000) \end{gathered}$	$\begin{aligned} & 7,200 \\ & (78,000) \end{aligned}$	1,400	1976

APPENDIX

Sucio-sconomic groups
Clasaification by socio-economic groupy was incroduced in 1951 and exténsively amended in 1961. The classification aims to bring together people with jobs of similar social and economic status. The classification is applied to the economically active, retired and permanently sick by considering their einployinent status and occupation.
(1) Employers and managers in central and local government, industry, commerce ete - large establishments
1.1 Employers in industry, commerce etc. Persons who employ others in nonagricultural enterprises employing 25 or more persons.
1.2 Managery in central and lucal government, industry, commerce, etc.
Persons who generally plan and supervise in non-agricultural enterprises employing 25 or more persons.
(2) Employers and managers in industry, commerce etc. - small establishments
2.1 Employers in industry, commerce eic. small establishments.
As in 1.1 but in extablishments employing lewer than 25 persons.
2.2 Managers in industry, commerce etc. sinall establishmenis.
As in 1.2 but in establishments employing fewer than 23 persons.
(3) Professional workeri - self-employed Self-employed persons engaged in work normally requiring qualifications of university degree standard.
(4) Professional workers - employecs Employees engaged in work normally requiring qualifications of university degree standard.
(5) Intermediate nóa-manual workerí
5.1 1 . Ancillary' workers and artists

4 Employecsitengaged in non-manual \therefore - occupations ancillary 'to' the professions. - nòt !normally requiring qualifications' of - university degree standard; persons engaged in artustic work and not employing ;iothers therein. iself-employed nurses, - medical auxiliaries, teachers, work study - engineers and technicians are included.
5.2 Foremen and supervisors non-manual Employees (other than managers) engaged in occupations included in group 6, who formally and immediately supervise others engaged in such occupations.
(0) Junior non-manual workers

Einployees, not exercising general planning or superyisory poiwers, engaged in clerical, sales and non-manual communications -occupations, "excluding those who have \because additional 'and' formal supervisory functions
.. i! (these are included in group 5,2).
1
(7) Personal service workera

Employees engaged in service occupations caring for food, drink, cloching and other personal needs.
(8) Foremen and supervisors - manual

Employes (other than managers) who formally and immediately supervise others engaged in manual occupationy, whecher or not theinselveî enğaged in such occupations.
(9) Skilled manual workers

Employees engayed in nianual occupations which require considerable and specific skills.
(10) Semi-skilled manual workers

Employees engaged in manual occupations which require slight but specilic skills.
(II) Uaskilled mañual workers

Other employees engaged in manual uccupalions.
(12) Own aceount workers (other't than profeisional)"
Scll-employed persons engaged in any trade, personal seryice "or'manual occupation not
.... Hormally 'requiring'" 'raining of university degree standard tand having no employes orher ihan family workers:
(13) Farmers A employers and managery Fersons who own, rent or manage farms,
markep gardens or forests, employing péple ather than family "workers in the work of the conerprise:
(14) Farmers, - own'account : :m, , . . . 1

Persons who own or rent farips, market gardens or "forests "and having 'na' employpes :..., other than family wörkers!. I! !..
(15) Agricultural workers

Persons engaged in tending crops, animals, game or forests, or' operating' agricultural or foresiry machinery.
(16) Membert of the Armed Forces.
(17) Inadequately described and not stated occupations.

APPENDIX C

AA	01	1	AE	01	26
	02	2			
	03	3			
	04	4	AF	01	27
	05	5			
	06	6	AG	01	28
	07	7		02	29
	08	8		03	30
	09	9		04	31
	10	10		05	32
AB	01	11	AH	01	33
	02	12		02	34
	03	13		03	35
	04	14		04	36
	05	15 *		05	37
	06	16		06	38
	07	17		07	39
	08			08	40
	09			09	41
	10			10	42
	.			11	43
				12	44
AC	01	18		13	45
	02	19		14	46
	03	20		15	47
	04	21		16	48
	05	22		17	49
	06	23		18	50
	07			19	51
				20	52
AD	01	24		21	53
	02	25		22	

C-1
List of Numbered Ennumeration Districts

AN	01	112	AP	09	144
	02	113		10	145
	03	114		12	146
	04	115		13	147
	05	116		14	148
	06	117		15	149
	07	118		16	150
	08	119		17	151
	09	120		18	152
	10	121		19	153
	11	122		20	154
	12	123		21	155
	13	124		22	156
	14	125		23	157
	15	126		24	158
	16	127		25	159
	17	128		26	160
	18	129		27	161
	19	130		28	162
	20	131		29	
	21	132		30	
	22	133			
	23	134			
	24	135	AQ	01	163
	25			02	164
				03	165
AP	01	136		04	166
	02	137		05	167
	03	138		06	168
	04	139		07	169
	05	140		08	170
	06	141		09	171
	07	142		10	172
	08	143		11	173
				12	174

[^18]

AT	04	329	AV	19	360
	05	330		20	361 *
	06	331		21	362
	07	332		22	363
	08	333			
	09	334	AW	01	364 *
	10	335		02	365
	11	336		03	366
	12	337		04	367
	13	338		05	368
	14	339		06	369
	15	340		07	370
	16	341		08	371
	17				
	18		AX	01	372
				02	373
AU	01	342		03	374
	02	343		04	375
	03	344		05	376
	04	345		06	377
	05	346		07	378
	06	347		08	379
	07	348		09	380
	08	349		10	318
	09	350		11	382
	10	351		12	383
	11	352		13	384
	12	353		14	385
	13	354		15	386
	14	355		16	387
	15	356		17	388
	16	357			
	17	358	AY	01	389
	18	359		02	390
			Con		

AY	03	391	BA	01	424
	04	392		02	425
	05	393		03	426
	06	394		04	427
	07	395		05	428
	08	396		. 06	429
	09	397		07	430
	10	398		08	431
	11	399		09	432
	12	400		10	433
	13	401		11	434
	14	402		12	435
	15	403		13	436
	16	404		14	437
	17	405		15	438
	18			16	439
				17	440
AZ	01	406		18	441
	02	407		19	442
	03	408		20	443
	04	409		21	444
	05	410		22	445
	06	411		23	446
	07	412		24	447
	08	413		25	448
	09	414		26	449
	10	415		27	450
	11	416		28	451
	12	417		29	452
	13	418		30	453
	14	419			
	15	420	BB	01	454
	16	421		02	455
	17	422		03	456
	18	423			

C-1 (CONTD.)
List of Numbered Ennumeration Districts

BB	04	457	BD	01	488
	05	458		02	489
	06	459		03	490
	07	460		04	491
	08	461		05	492
	09	462		06	493
	10	463		07	494
	11	464		08	495
	12	465		09	496
	13	466		10	494
	14	467		11	
	15	468			
	16	469	BE	01	498
	17	470		02	499
	18	471		03	500
	19	472		04	501
				05	502
BC	01	473		06	503
	02	474		07	504
	03	475		08	505
	04	476		09	506
	05	477		10	507
	06	478		11	508
	07	479		12	509
	08	480		13	510
	09	481		14	511
	10	482		15	512
	11	483		16	513
	12	484		17	514
	13	485		18	515
	14	486		19	516
	15	487		20	517
	16			21	518
				22	519

C-1 (CONTD.)
List of Numbered Ennumeration Districts

BE	23	520	BF	21	553
	24	521		22	554
	25	522		23	555
	26	523		24	556
	27	524		25	557
	28	525			
	29	526	BG	01	558
	30	527		02	559
	31	528		03	560
	32	529		04	561
	33	530		05	562
	34	531		06	563
	35	532		07	564
				08	565
BF	01	533		09	566
	02	534		10	567
	03	535		11	568
	04	536		12	569
	05	537		13	570
	06	538		14	571
	07	539		15	572
	08	540		16	573
	09	541		17	574
	10	542		18	575
	11	543		19	576
	12	544		20	577
	13	545		21	578
	14	546		22	579
	15	547		23	580
	16	548		24	581
	17	549		25	582
	18	550		26	583
	19	551		27	584
	20	552		28	585

[^19]| BJ | 13 | 652 | BK | 11 | 685 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 14 | 653 | | 12 | 686 |
| | 15 | 654 | | 13 | |
| | 16 | 655 | | 14 | 687 |
| | 17 | 656 | | 15 | |
| | 18 | 657 | | 16 | |
| | 19 | 658 | | | |
| | 20 | 659 | BL | 01 | 688 |
| | 21 | 660 | | 02 | 689 |
| | 22 | 661 | | 03 | 690 |
| | 23 | 662 | | 04 | 691 |
| | 24 | 663 | | 05 | 692 |
| | 25 | 664 | | 06 | 692 |
| | 26 | 665 | | 07 | 693 |
| | 28 | 667 | | 08 | 694 |
| | 29 | 668 | | 09 | 695 |
| | 30 | 669 | | 10 | 696 |
| | 31 | 670 | | 11 | 697 |
| | 32 | 671 | | 12 | 698 |
| | 33 | 672 | | 13 | 699 |
| | 34 | 673 | | 14 | 700 |
| | 35 | 674 | | 15 | 701 |
| | | | | 16 | 702 |
| BK | 01 | 675 | | 17 | 703 |
| | 02 | 676 | | 18 | 704 |
| | 03 | 677 | | 19 | 705 |
| | 04 | 678 | | 20 | 706 |
| | 05 | 679 | | 21 | 707 |
| | 06 | 680 | | 22 | 708 |
| | 07 | 681 | | 23 | 709 |
| | 08 | 682 | | 24 | 710 |
| | 09 | 683 | | 25 | 711 |
| | 10 | 684 | | 26 | 712 |
| | | | | 27 | |
| | | | CON | | |

$$
\mathrm{c}-1 \text { (Contd.) }
$$

List of Numbered Ennumeration Districts

[^20]| BQ | 01 | 776 | BR | 03 | 809 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 02 | 777 | | 04 | 810 |
| | 03 | 778 | | 05 | 811 |
| | 04 | 779 | | 06 | 812 |
| | 05 | 780 | | 07 | 813 |
| | 06 | 781 | | 08 | 814 |
| | 07 | 782 | | 09 | 815 |
| | 08 | 783 | | 10 | 816 |
| | 09 | 784 | | 11 | 817 |
| | 10 | 785 | | 12 | 818 |
| | 11 | 786 | | 13 | 819 |
| | 12 | 787 | | 14 | 820 |
| | 13 | 788 | | 15 | 821 |
| | 14 | 789 | | 16 | 822 |
| | 15 | 790 | | 17 | 823 |
| | 16 | 791 | | 18 | 824 |
| | 17 | 792 | | 19 | 825 |
| | 18 | 793 | | 20 | 826 |
| | 19 | 794 | | 21 | 827 |
| | 20 | 795 | | 22 | 828 |
| | 21 | 796 | | 23 | 829 |
| | 22 | 797 | | 24 | 830 |
| | 23 | 798 | | 25 | 831 |
| | 24 | 799 | | 26 | |
| | 25 | 800 | | 27 | |
| | 26 | 801 | | 28 | |
| | 27 | 802 | | 29 | . |
| | 28 | 803 | | 30 | 832 |
| | 29 | 804 | | | |
| | 30 | 805 | BS | 01 | 833 |
| | 31 | 806 | | 02 | 834 |
| | | | | 03 | 835 |
| BR | 01 | 807 | | 04 | 836 |
| | 02 | 808 | | 05 | 837 |

[^21]| BS | 06 | 838 | BU | 10 | 869 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 07 | 839 | | 11 | 870 |
| | 08 | 840 | | 12 | 871 |
| | 09 | 841 | | 13 | 872 * |
| | 10 | 842 | | 14 | 873 |
| | 11 | 843 | | 15 | 874 |
| | 12 | 844 | | 16 | 875 |
| | 13 | 845 | | 17 | 876 |
| | 14 | 846 | | 18 | 877 |
| | 15 | 847 | | 19 | 878 |
| | 16 | 848 | | 20 | 879 |
| | 17 | 849 | | 21 | 880 |
| | 18 | 850 | | 22 | 881 |
| | 19 | 851 | | 23 | 882 |
| | 20 | 852 | | 24 | 883 |
| | 21 | 853 | | 25 | 884 |
| | | | | 26 | 885 |
| BT | 01 | 854 | | 27 | 886 |
| | 02 | 855 | | 28 | 887 |
| | 03 | 856 | | 29 | 888 |
| | 04 | 857 | | 30 | 889 |
| | 05 | 858 | | 31 | 890 |
| | 06 | 859 | | 32 | 891 * |
| | 07 | | | 33 | 892 |
| | | | | 34 | 893 |
| BU | 01 | 860 | | 35 | 894 |
| | 02 | 861 | | 36 | 895 |
| | 03 | 862 | | 37 | 896 |
| | 04 | 863 | | 38 | 897 |
| | 05 | 864 | | 39 | 898 |
| | 06 | 865 | | 40 | 899 |
| | 07 | 866 | | 41 | 900 |
| | 08 | 867 | | 42 | 901 |
| | 09 | 868 | | 43 | 902 |

[^22]
40

CB	06^{\prime}	1030	CC	10	1063
	07	1031		11	1064
	08	1032		12	1065
	09	1033		13	1066
	10	1034		14	1067
	11	1035		15	1068
	12	1036		16	1069
	13	1037		17	1070
	14	1038		18	1071
	15	1039		19	1072
	16	1040		20	1073
	17	1041		21	1074
	18	1042		22	1075
	19	1043		23	1076
	20	1044		24	1077
	21	1045		25	1078
	22	1046		26	1079
	23	1047		27	1080
	24	1048		28	1081
	25	1049		29	1082
	26	1050		30	1083
	27	1051		31	1084
	28	1052		32	1085
	29	1053		33	
				34	
CC	01	1054			
	02	1055 *	$C D$	01	1086
	03	1056		02	1087
	04	1057		03	1088
	05	1058		04	1089
	06	1059		05	1090
	07	1060		06	1091
	08	1061		07	1092
	09	1062		08	1093
				09	

C-1 (CONTD.)
List of Numbered Ennumeration Districts

CE	01	1094	CG	04	1225
	02			05	1126
				06	1127
CF	01	1095		07	1128
	02	1096		08	1129
	03	1097		09	1130
	04	1098		10	1131
	05	1099		11	1132
	06	1100		12	1133
	07	1101		13	1134
	08	1102		14	1135
	09	1103		15	1136
	10	1104		16	1137
	11	1105		17	1138
	12	1106		18	1139
	13	1107		19	1140
	14	1108		20	
	15	1109		21	
	16	1110			
	17	1111	CH	01	1141
	18	1112		02	1142
	19	1113		03	1143
	20	1114		04	1144
	21	1115		05	1145
	22	1116		06	1146
	23	1117		07	1147
	24	1118		08	1148
	25	1119		09	1149
	26	1120		10	1150
	27	1121		11	1151
				12	1152
CG	01	1122		13	1153
	02	1123		14	1154
	03	1124		15	1155

C-1 (CONTD.)
List of Numbered Ennumeration Districts

CH	16	1156	CJ	26	1188
	17	1157		27	1189
	18	1158		28	1190
	19	1159		29	1191
	20	1160		30	1192
	21	1161		31	1193
	22	1162		32	1194
	23			33	1195
CJ	01	1163 *	CK	01	1196
	02	1164		02	1197
	03	1165		03	1198
	04	1166		04	1199
	05	1167		05	1200
	06	1168		06	1201
	07	1169		07	1202
	08	1170		08	1203
	09	1171		09	1204
	10	1172		10	1205
	11	1174		11	1206
	12	1174		12	1207
	13	1175		13	1208
	14	1176		14	1209
	15	1177		15	1210
	16	1178		16	1211
	17	1179		17	1212
	18	1180		18	1213
	19	1181		19	1214
	20	1182		20	1215
	21	1183			
	22	1184	CL	01	1216
	23	1185		02	
	24	1186			
	25	1187			

C-1 (CONTD.)
List of Numbered Ennumeration Districts

CR	01	1282	CS	17	1314
	02	1283		18	1315
	03	1284		19	1316
	04	1285		20	1317
	05	1286		21	1318
	06	1287		22	1319
	07	1288			
	08	1289	CT	01	1320
	09	1290		02	1321
	10	1291		03	1322
	11	1292		04	1323 *
	12	1293		05	1324
	13	1294		06	1325
	14	1295		07	1326
	15	1296		08	1327
	16	1297		09	1328
	17			10	1329
				11	1330
CS	01	1298		12	1331
	02	1299		13	1332
	03	1300		14	1333
	04	1301		15	1334
	05	1302		16	1335
	06	1303		17	1336
	07	1304		18	1337
	08	1305		19	1338
	09	1306		20	1339
	10	1307		21	1340
	11	1308		22	1341
	12	1309		23	1342
	13	1310		24	1343
	14	1311		25	1344
	15	1312		26	1345
	16	1313		27	1346

[^23]| CM | 01 | 1217 | CP | 03 | 1249 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 02 | 1218 * | | 04 | 1250 |
| | 03 | 1219 | | 05 | 1251 |
| | 04 | 1220 | | 06 | 1252 |
| | 05 | 1221 | | 07 | 1253 |
| | 06 | 1222 | | 08 | 1254 |
| | 07 | 1223 | | 09 | 1255 |
| | 08 | 1224 | | 10 | 1256 |
| | 09 | 1225 | | 11 | 1257 |
| | 10 | 1226 | | 12 | 1258 |
| | 11 | 1227 | | 13 | 1259 |
| | 12 | 1228 | | 14 | 1260 |
| | 13 | 1229 | | | |
| | 14 | 1230 | CQ | 01 | 1261 |
| | 15 | 1231 | | 02 | 1262 |
| | 16 | 1232 | | 03 | 1263 |
| | 17 | 1233 | | 04 | 1264 |
| | 18 | 1234 | | 05 | 1265 |
| | 19 | 1235 | | 06 | 1266 |
| | 20 | 1236 | | 07 | 1267 |
| | 21 | 1237 | | 08 | 1268 |
| | 22 | 1238 | | 09 | 1269 |
| | 23 | 1239 | | 10 | 1270 |
| | 24 | 1240 | | 11 | 1271 |
| | 25 | 1241 | | 12 | 1272 |
| | 26 | 1242 | | 13 | 1273 |
| | | | | 14 | 1274 |
| CN | 01 | 1243 | | 15 | 1275 |
| | 02 | 1244 * | | 16 | 1276 |
| | 03 | 1245 | | 17 | 1277 |
| | 04 | 1246 | | 18 | 1278 |
| | | | | 19 | 1279 |
| CP | 01 | 1247 | | 20 | 1280 |
| | 02 | 1248 | | 21 | 1281 |

CT	28	1347	Cu	19	1380
	29	1348		20	1381
	30	1349		21	1382
	31	1350		22	1383
	32	1351		23	1384
	33	1352		24	1385
	34	1353		25	1386
	35	1354		26	1387
	36	1355.		27	
	37	1356		28	
	38	1357		29	
	39	1358			
	40	1359	CW	01	1388
	41	1360		02	1389
	42	1361		03	1390
				04	1391
CU	01	1362		05	1392
	02	1363		06	1393
	03	1364		07	1394
	04	1365		08	1395
	05	1366		09	1396
	06	1367		10	1397
	07	1368		11	1398
	08	1369		12	1399
	09	1370		13	1400
	10	1371		14	1401
	11	1372		15	1402
	12	1373		16	1403
	13	1374		17	1404
	14	1375		18	1405
	15	1376		19	1406
	16	1377		20	1407
	17	1378		21	1408
	18	1379		22	1409

C-1 (CONTD.)
List of Numbered Ennumeration Districts

CW	23	1410		04	1442
	24	1411		05	1443
	25	14112		06	1444
	26	1413		07	1445
	27	1414		08	1446
	28	1415		09	1447
	29	1416		10	1448
	30	1417		11	1449
	31	1418		12	1450
				13	1451
CX	01	1419		14	1452
	02	1420		15	1453
	03	1421		16	1454
	04	1422		17	1455
	05	1423		18	1456
	06	1424 *		19	1457
	07	1425		20	1458
	08	1426		21	1459
	09	1427		22	1460
	10	1428		23	1461
	11	1429		24	1462
	12	1430		25	1463
	13	1431		26	1464
	14	1432		27	1465
	15	1433			
	16	1434	CZ	01	1466
	17	1435			
	18	1436	DA	01	1467
	19	1437			
	20	1438	DB	01	1468
CY	01.	1439	DC	01	1469
	02	1440			
	03	1441			

C-1 (CONTD.)
List of Numbered Ennumeration Districts

DE	01	1470	DH	01	1500
	02	1471		02	1501
				03	1502
DF	01	1472		04	1503
	02	1473		05	1504
	03	1474		06	1505
	04	1475		07	1506
	05	1476		08	1507
	06	1477		09	1508
	07	1478		10	1509
	08	1479		11	1510
	09	1480		12	1511
	10	1481		12	1512
	11	1482		14	1513
	12	1483		15	1514
	13	1484		16	1515
	14	1485		17	1516
	15	1486		18	1517
	16			19	1518
				20	1519
DG	01	1487		21	1520
	02	1488		22	1521
	03	1489		23	1522
	04	1490		24	1523
	05	1491		25	1524
	06	1492		26	1525
	07	1493		27	1526
	08	1494	-		
	09	1495	DJ	01	1527
	10	1496			
	11	1497	DK	01	1528
	12	1498			
	13	1499	DL	1529	

C-1 (CONTD.)

List of Numbered Ennumeration Districts

Inutatutional Enumeration Diatrict	Lid of whach Inutitution forias part	Poutcout Unit	Inetirutimat
29 d 11	＜g ui 00	SH1 1 CN	Curlten Hotel
くり吨	¢ 1	bilit sida	CいJ．y liebel
¢	Uu لهن	Elll ${ }^{\text {dHJ }}$	Caszia Primus Hocel
U10 لف ¢	U4 له 4 ¢	1：小l 1 ¢PP	Chureh of ijcutlan．a hotumbly locur 8 （Gollery）
29 07	－9 mus		Kirus Jimes Hotel
＜！an ${ }^{\text {¢ }}$	¢ 01	EH2 5 SH	Herbn Brizish Hotal
－	¢ 4	HH3 SPE	Pidanuarigh Aceulany，Dwaduy Howew
\therefore ask 1.0	＂y itive	Eill 374	Hutimy llotel
： 5 － 5 － 11		Ell ${ }^{\text {cip }}$	
\therefore－ 4	29 An lic	PH3 SR2	Huyal taflimury
¢9 whas	<9 an 10	EH3 5 cix	Simpeon＇s Haternazy llungitsl
29 ar 8.6	29 dN 03	Hid3 gix	St．Josemh＇y Uld Puopln＇w home
＜9 25	29 all 04	Ell 4 148	Futten College
29 4P 29	2940	B14 202	Hoyal Victoria Houpital
25ip 30	29819	514205	Weusera Coneral Hoapstel
29 18 18	29407	［14 2 H	Eurocrest hotel，Qumenaferry ind．
29 ill 17	＜9 4f 04	E14 Ofirs	Cargilfield School
33^{4} Ad 18	25 ditou	EH_{4} OJH	Dunfermilne Collese
29 iy 10	＇3y 4×17	Ell5 200	Northern Generul llospital
4ybe 1c	29 BC 17	billó ato	Loith Hoepstal
－ 6 b1 11	49 U6 4	Bitu 7L0	buetern Cenaral Hoapmal
29 山6 13	29 UK 02	Ely max	Quearuberry Houee Houpatil
29 Dx 15	29 UK 00	EILO EUP	Vaterana Hesidence
29 al 16	25 Ex 10	EHS UEW	Elaze Inclis Maternsty Hosmeud
29 9 ¢ 7	29 UL． 17	EHS 9HR	Deaconess Houpatal
29 明35	49 BH：	EH9 149	Slack Crildren＇o Hosplial
＜y 6416	29 th 31	E119 154	Lonimare Hacpstul
29 bide	29 UN 01	E119 2 HB	Autloy Axaulie Hoapital
29 5h＜ 6	29 UR 62	bill 10 5ad	St．Donde Schood
29 UH：	29 HE 2 J	Ell 10 548	Royul Edtaburgh Houpttal
cy uil ic	＜9）ill 09	EH 10 SL＊	Crus dhouse
29 bu 49	<9 blt प＇	BH10 SR2	City Mospztal
iy bre 07	49 E． 05	Bu10 74\％	Princesu Marguret howe Howpitul
29 8x 30	29 日x 19	EH11 31	Cuwht on Prisan
＜9 B2 22	$29 \mathrm{B2} 2 \mathrm{C}$	EH 12 5LU	Grasvanor Hotel
$3 ¢ \mathrm{Ci} 16$	29 Ca 07	EH 12 ots	Gorstorphine Hospatal
≥ 9 CL 33	29 CC 30゙	EH12 6TY	St．Herparet＇a Collecm
2y CC 34	296601	2112 لW	Royel Stot Kotel
＜CD CS	29 CD． 07	패12 9at	Cogarbura hospltal
29 CE C2	<9 CE 01	EH12 OAO	Turf．lioute Airport， Tornimal Dusldange
	29 co 02	2H13 OPD	Convent of the Cood She preme
$\therefore 4$ CC 21	$\because 9 \mathrm{CS} 09$	SH 13 OPR	Kodford Basracks
29 CH 23	29 CH 02	Ell 14 1DW	Sacied Hieert Convent
$\therefore 9 \mathrm{CL} \mathrm{O}$	29 CL 01	EH14 4AP	Rzccarten Compus－Herzotathas University
29 CR 17	29 CR 01	EH 15 2NJ	Leith Jautical College
29 CU 27	29 CU 25	5416580	Pollock Halls of Ressdence
29 Cu 25	290011	ㅂH16 5L2	Royal Blind School
29 Cu 29	29 CU 12	1316 5PM	Edinburch Woman＇s Hortel
29 DF 16	29 DP 12	M126 40	Cliftonhall School．

C－2
List of Institutional Ennumeration Districts

Napier College
 OF

COMMERCE\&TECHNOLOGY

Please reply to

- Colinton Road. Edinburgh, EHIU SDT osi-44• 0 OO

O Sighthill Court. Edinburgh, EHII diN 0sf-443 Ontic

Your ref

Our ref

Date
Dear Sir/Madam

The Traffic Impact of Superstores:
Letter of Authorisation

This is to certify that has been employed by Napier College as an interviewer on the above research project.

If there are any queries or problems arising from the survey please do not hesitate to call me at Napier College - telephone number 031-447-7070 Ext. 252.

Yours sincerely

George Hazel BSa MS CEng MICE MCIT MIHE
Lecturer
Department of Civil Engineering

D-1
Letter of Authorisation given to Interviewer

Dear Sir/Madam

The Traffic Impact of Superstores
I am at present a lecturer at Napier College involved in researching the traffic impact of superstores in Edinburgh for a part-time Ph.D. degree.

As you may appreciate these large stores cause parking and road safety problems to their immediate surroundings and can be damaging to the local envirorment. The research I am engaged in is trying to forecast the level of traffic generated by these superstores so that the local authority and the developer can ensure the optimum siting for the store.

An essential part of the research is relating usage, or non-usage, of these stores with household characteristics and for that I need your help. Your area has been chosen at random from GPO postal codes and an interviewer will be calling on you in the near future with a questionaire and shopping diary. . The questionaire will take approximately ten minutes to complete and the shopping diary requires to be filled in for a period of one week. The interviewer will be carrying a letter of authorisation which you can ask to be shown.

The information is strictiy confidential and tha guestionaires/ shopping diaries have no names and addresses attached to them. I do not know the origin of any questionairest this is of no consequence to my research. There is therefore no way survey decails can be traced to a particular housa.

The survey, however, is entirely voluntary and you may decline to take part if you so desire. The eurvey also only applies to car-owning households so if there is no car or van attached to your household tell the interviewer and he/she will pass to the naxt house.

I thank you in advance for your trouble and hope you will agree to take part in the research.

George Hazel BSc MSc CEng MICE MCIT MIEE
Lecturer
Department of Civil Enginearing

BEST COPY

AVAILABLE

Variable print quality

[^24]E-I
00201.5004 .50034 .25051 .2500 .2503 .2501101030 2j03 19
00201. 5004. 50034. 25051. 2500. 2503. 2501101030203 00200 0002. 00000.00015. 2000, 0005. 0001001020102 00201.1001 .10012 .50012 .5001 .0001 .0001001020101 00201.5001 .50034 .00034 .0001 .0001 .0001101040203 002erergo2. 50000 . 00016. 7000.0005. 0001101020102 002004002.50000 . 00012. 5000.0005. 0001101020101 00201.0001 .50013 .50021 .5001 .0002 .0001001020101 00202. 00902. 00025.00025. 0001.0001.0001001020102 00200 . 3901. 38015.00080. 0000. 2501. 2501102060202 00300 . 5000. 50015. 00015.0000. 5000. 5001001020205 00202 . 0004. 50111. 50026. 0001.0006. 0001002020104 00200.6701 .17030 .00055 . 0000. 5001 . 5001101040102 00201 . 0001. 00023. 50023. 5001. 0001. 0001101020101 00200 :0003. 000003. 00042. 00003.0006.0001001030103 00201.00101 .001040 .00040 .0001 .0001 .00010010302041 00202. 0002. 501017.00022. 0001.0002.0003001020101 00200. 0002. 500005. 00011.0005:0002. 0001001010101 00202. 00022. 00015.09015. 0901. 0901.0001101020001: 00200.7500 .75037 .50037 .5900 .2500 .2501101040304

9007019008

9007010008 0017009018 001700018 12003010018 10017000018 001700018 0004010013 001700018 10004020008 26009010008 20017020018 0005020008 0007010008 27012015013 27012010008 0018000008 0017000018 0017009008 18017020018

E-2

Data File for Area 2 - Spottiswoode
 00303.0003 .00012 .00012 .0001 .0001 .0001101040101 00301.0001.00028. 00028.0001.0001.0002101020202 00302.0002. 00018.00018. 0001.0001.0002101030101 00302. 0005. 00030.00057.0001.0006. 0002001030204 00301.0001.00035.00035.0001.0001.0002001030102 $00300 \mathrm{r001}$. 00000 -00008. 0000-0001.0002001030101 00301.0001 .00017 .00017 .0001 .0001 .0002101020102 $00300 \cdot 0001$. 00000: 00015. 2000, 0001. 0002001020102 $00300 \cdot 0002$. $50000 \cdot 00017.0000$:001.001.002001030203 00300 ب001. 25000. 00027.0000.0001. 0002001020102 00301. 5003. 50015.00024.0001.0003.0002001020102 00301.0001.00016.00016.0001.0001.0002001020102 00301. 0002. 50017. 00027.5001.0004.0002001020102 00300 :0001.00000.00033.0000 0001:0002001030203 00301.0003 . 50045. 00077.0001.0005. 0002001040105 00300.0001. 50000.00029.0000:0002: 0002001020105 00301. 5001. 50015. 00015.0001 .0001 .0002001020102 00302. 0002. 00025.00025.0001.0001.0002101030102 00302. 5002. 5q043. 00043.0001.0001.0001101040102 $003004001.50000 .00028 .0000 \cdot 0001.0001101030103$ 00301 . 2501.25028. 00028. 0001.0001.0002001030102 00300.0001 .50000 .00021 .0000 .0003 . 0002001020109
odo10010pos

0010010008 0005010009 0007015008 0017000016 18005020018 0009020008 0005010008 0019000018 0009012008 18007022008 0010010018 0017010018 0019010018 10005008013 1000702500日 12002035008 16012015008 0017000018 9009020009 0002010008 1800902000日 0009022008 0017000018
20400. 75b1. 75b20. 00028. 0001. 0002. 0001102060205 00400.7501 .75020 .0028 .00 00400.7501 .75020 .00228 .0001 .0902 .000 00401.0003 .50016 .09031 .5001 .0904 .090 00401.0001 .00035 .0035 . 0001. 0d01.000 00401.0001 . 00020. 0020. 0001. ogot. ogo 00401.0001 .00015 .09015 .0901 . og 01. 0go 00401.0001 .00018 .0018 . ogo1. ogo1. ogo1 004600002.0004000021 . 0000:003. 0001 101060304 00401 . 0001. 00020. 00020. 0001.0001.0001101040203 00401.0001. 00040. 00040.0002.0002.0001102060202 00401. 2502. 75020. 09026. 0001. 0002.0001102060202 00404. 2504. 25049. 00049. 0002. 1202. 1201101030203 00401. 5001. 50050. 00050. 0001.0001. 0001101060304 00401.7501.75020.00020.0901.0901.0901901020101 00402. 0002.00035. 00035.0001.0901.0901902040202 00400. 7503. 75019. 00034. 5001. 0003. 0001001.030202 004003.0003 .00000 .00023 . 0000.0002.0901001020102 00400. 3802. 13016. 25017. 7500. 2501. 2501102040305 00401.0002. 00021.00026. 0d01. 0d02.0002001030103 00400:0004. 00000.00028.0000:0002.0001101020203 00401. 5002. 00030. 00045.0001.00102.0001101050303 00400:0061.00000.00025.0000:0001.00011.02050202 00401.0006. 5012. 50053. 5000. 5004. 50011:02040204 00401.0001.001019.00019.001.0001.00011102040204 00400 . 7502. 75019. 00039. 0000. 5d03. 50020101040105 00401 . 5006. 001017. 50039. 9001. 0d09.0001.0010301:04 00401.5001.25035.00051.9901.0903.00030010101:03
$101040=24$ 10y040104 101030203 103060303

24
 2 19 48 23 24 56 56 27 70 56 31 70 34 55 35 33 56 23 23 30 23 70

22004020008 22004020008 17004019018 23006015013 9004010018 18004020008 17005010019 18004010018 15004010019 0004010008 0001020008 17005010019 14014020006 0017000008 900s010018 10005020008 0017000018 21004012008 27017010018 18017010018 8005020018 00040101 E 17004010018 17,004010018 9011035008 17004010008 0017004014

E-5

Data File for Area 5 - Waverley

E-7

Data File for Area 7 - St Peters

 00870.2501 .75005 .40020 .4000 .2501 .2502122030202056000 ga 1001518

 08801.0001 .02030 .00030 .0001 .0001 .00021010301030290024005020006

 00801.0001 .00820 .00020 .0201 .00101 .06021010301020470012006012008 60801. 日201. 00036.02030.0801. 0001.00021010201040360024007022008

 00800.7500 .75040 .09040 .0601 .0901 .020214018501030450018014032008

E-8

Data File for Area 8 - Saughton

[^25]E-9

[^26]

$$
E-11
$$

E-12

 $01301.50101 .50125 .00025 \cdot 0001.0001 .0601001030102031001$ ब007010008

 $01300 \cdot 3802.38010 .09032 .0 \boxminus 00 \cdot 2502.250100103020510200016004010908$ 01301.5091 .50025 .00025 .00101 .0001 .001010010301020380006009010008 01301.5002 . 00025. 00027.06101.0092. 00011010202040350015009010618

 01301.5064 .06020 .09039 .50101 . 0604. 060400 1030 1030280017012012006 01300 . 4000.40009 .50009 . 50100 . 2500. 25, 01:10206.02040230017004012005 01301.2501 .75018 .20028 .7001 .0002 .0001001030102076000017000018 $01300.00117 \cdot 75000.06076 \cdot 8500.0010 .00011010301030400027010015008$

$$
E-13
$$

 01401.0201 .00940 .09040 .0061 .0001 .001014036803030450018001032089 01401.2501 .25840 .0040 .0001 .0001 .0001422040203028001700601018 01401.0602 .00620 .00940 .0001 .0062 .02014010702050320018001020008 61401.5001.50038.09038.00101.2501.2501.1020602050220016001014018 01401.0601 .75020 .06029 .5060 .5003 .52014026602050200016002014014 01401.2501 .25037 .501037 .50102 .0002 .020140102020206300101017000018
 01402.5063 .50665 .50672 .50193 .00104 .0801101070203045001891700614
 01401.2502 .00623 .50636 .0061 .00102 .001011010402020560000604014014
 01401.50102 .50920 .09025 .2401 .0003 .001014010401020560006004019007

 01401.2502 .75644 .56054 .5601 .0002 .00011 1016302030350018019019018 01406.0603 .50606 .09621 .5899 .0694 .00611101 .0502620560001004010016
 01400.3001 .30864 .0015 .5000 .1001 .1901101 .020102679000001700618

$$
E-14
$$

 01595.3804 .38907 .50030 .0200 .2505 .2501201030203028061706501618

 015 20．7500．7502g．日g1020．0日01．0001．00030010302020240000018010008 01506.7502 .00010 .0 ge26．2001．0004．000120103011030240014006014086
 01501.5012 .50010 .00013 .50101 .0003 .0011101020102078000001700018 01501.5001 .50040 .50040 .5102 .00102 .0001002030103045018009024008 01501. 日012．25023．06043．0001．0003．00011010401040230017009010008
 01501.0003 .06023 .06043 .0001 .0604 .00010010502040230017004010018 01502.0012 .00022 .00022 .0011 .0001 .0001101020102070000017000218 01501.5001 .75027 .06030 .5602 .0603 .00011010302020630010017000013
 01500.7538 .75020 .00020 .0401 .0601 .0001 g 102010207000001700818

$$
E-15
$$

Data File for Area 15 －Easter

APPENDIX F

TEXT BOUND INTO THE SPINE

8
$\dot{8}$
$\stackrel{\otimes}{\stackrel{\circ}{\circ}}$
$\stackrel{8}{i}$
$\stackrel{8}{i}$
$\stackrel{i}{i}$
\vdots
i
$\stackrel{\stackrel{8}{\circ}}{\stackrel{-}{-}}$
$\stackrel{\square}{\square}$
$\stackrel{+}{\circ}$
$\stackrel{8}{\circ}$

No. of License Holders (L) v. No. of Half Days Employed (Q) - Area 1 (Moredun)

0	0	0	0	0	0	0	0	0
$\dot{0}$	$\dot{0}$	$\dot{0}$	$\dot{0}$	0	$\dot{0}$	$\dot{0}$	$\dot{0}$	$\dot{0}$
$\dot{\sim}$	$\dot{\sim}$	$\dot{0}$	0	$\dot{0}$	$\dot{0}$	$\dot{0}$	\dot{N}	$\dot{0}$

FACTOR 1

$\lambda=1$		$\lambda=2$		$\lambda=3$	
F	$+0.85$	I	$+0.93$	I	$+0.94$
B	$+0.84$	R	$+0.89$	R	$+0.89$
D	$+0.63$	K	$+0.78$	K	$+0.78$
S	$+0.57$	L	+ 0.75	L	$+0.76$
L	$+0.43$	D	$+0.45$	D	$+0.41$
K	+ 0.42	E	$+0.36$	E	$+0.40$
0	$+0.35$	F	$+0.33$	N	+ 0.35
	+ 0.24	N	+ 0.32	F	+ 0.29
R	$+0.21$	B	+ 0.26	0	+ 0.27
E	$+0.18$	0	$+0.24$	B	+ 0.26
Q	$+0.05$	M	- 0.03	M	$+0.02$
	$+0.01$	G	- 0.06	G	- 0.03
G	- 0.00	Q	- 0.08	* S	- 0.04
C	- 0.02	C	- 0.26	Q	- 0.04
	- 0.67	* S	- 0.30	C	- 0.17
	- 0.69	P	- 0.32	P	- 0.31

$$
G-1
$$

Principle Components Analysis for all Variables for $\lambda=1,2$, and 3

PCA - FACTOR 2

$\lambda=1$		$\lambda=2$		$\lambda=3$	
I	$+0.94$		$+0.93$	M	$+0.88$
R	$+0.88$	E	$+0.77$	Q	+ 0.74
K	$+0.78$	0	+ 0.68	E	+ 0.71
L	$+0.75$	Q	+ 0.66	* S	$+0.63$
D	+ 0.41	D	+ 0.48	0	+ 0.62
E	$+0.38$	C	+ 0.34	D	+ 0.48
N	$+0.36$	L	+ 0.29	K	$+0.31$
F	$+0.28$	K	+ 0.28	L	$+0.30$
B	$+0.25$	F	$+0.27$	F	$+0.25$
0	$+0.25$	* S	$+0.16$	C	+ 0.24
S	+ 0.09 *	I	$+0.15$	I	$+0.13$
	- 0.00	B	$+0.14$	B	$+0.09$
G	- 0.02	G	$+0.14$	G	$+0.04$
Q	- 0.06	P	- 0.08	P	- 0.14
	- 0.18	R	- 0.09	R	- 0.20
P	- 0.31	N	- 0.35	N	- 0.41

G-1 (Contd.)

Principle Components Analysis for all Variables for $\lambda=1,2$, and 3

```
PCA - FACTOR 3
```

$\lambda=1 \quad \lambda=2 \quad \lambda=3$

NOTE:

```
        Factor (2) for = 3
```

> G-1 (Contd.)

Principle Components Analysis for all Variables for $\lambda=1,2$, and 3

PCA - FACTOR 4

$\lambda=1$		$\lambda=2$		$\lambda=3$	
G	$+0.90$	G	$+0.87$	G	$+0.90$
C	$+0.83$	C	$+0.70$	C	$+0.81$
S	+ 0.44 *	P	+ 0.48	P	+ 0.46
P	$+0.44$	N	$+0.35$	E	+ 0.30
N	$+0.32$	R	$+0.24$	N	+ 0.35
E	$+0.36$	E	$+0.23$	M	$+0.26$
M	$+0.31$	B	$+0.23$	B	+ 0.20
B	$+0.21$	M	$+0.15$	* S	$+0.16$
R	$+0.12$	F	$+0.11$	R	+ 0.15
0	$+0.08$	0	$+0.02$	0	$+0.05$
F	$+0.06$	I	- 0.14	F	+ 0.05
I	- 0.11	* S	- 0.14	I	- 0.13
D	- 0.17	D	- 0.17	D	- 0.20
K	- 0.19	K	- 0.26	K	- 0.24
L	- 0.26	L	- 0.31	L	- 0.29
Q	- 0.36	Q	- 0.56	Q	- 0.42

G-1 (Contd.)
Principle Components Analysis for all Variables for $\lambda=1,2$, and 3

PCA - FACTOR 5

G-1 (Contd.)
Principle Components Analysis for all Variables for $\lambda=1,2$, and 3

Eigenvalue	Canonical Correlation Coefficient	Chi-Square	D.F.	Significance Level
$\lambda=2:$				
1.0	1.0	9999.00	66	0
1.0	1.0	9999.00	50	0
1.0	1.0	9999.00	36	0
0.96	0.98	25.18	24	0.396
0.81	0.90	9.53	14	0.796
0.23	0.48	1.33	6	0.970
$\lambda=1:$				
1.0	1.0	9999.00	66	0
1.0	1.0	9999.00	50	0
1.0	1.0	84.67	36	0
0.89	0.95	18.50	24	0.778
0.69	0.83	7.26	14	0.924
0.24	0.49	1.37	6	0.968
$\lambda=3:$				
1.0	1.0	9999.00	66	0
1.0	1.0	9999.00	50	0
1.0	1.0	83.21	36	0
0.85	0.92	14.49	24	0.935
0.51	0.71	5.15	14	0.984
0.28	0.53	1.62	6	0.951
	-			

G-2
Canonical Correlation Analysis for $\lambda=1,2$ and 3

CONVAR (1) for :

$\lambda=1$		$\lambda=2$		$\lambda=3$	
L	- 3.14	L	- 2.49	L	+ 3.35
P	- 1.50	P	- 1.33	* S	+ 0.93
N	- 0.53	N	- 0.41	R	+ 0.88
M	- 0.17	M	- 0.20	N	+ 0.45
* S	$+0.09$	* S	- 0.16	Q	$+0.42$
Q	+ 0.22	I	- 0.12	P	+ 0.06
J	$+0.27$	J	- 0.09	0	$+0.01$
I	+ 0.34	Q	+ 0.26	M	- 0.36
0	$+0.54$	0	$+0.26$	1	- 0.57
K	$+0.67$	K	+ 0.92	K	- 1.33
R	$+1.36$	R	$+1.30$	J	- 1.82
B	+ 0.99	B	$+0.95$	E	$+0.98$
D	$+0.39$	D	$+0.31$	B	+ 0.75
G	+ 0.25	G	- 0.03	F	$+0.03$
F	- 0.14	F	- 0.08	G	- 0.31
E	- 0.34	C	- 0.15	D	- 0.50
	- 0.36	E	- 0.28	C	- 0.58

G-3
Canonical Variate Structures for $\lambda=1,2$ and 3

CONVAR (2) for :

$\lambda=1$	$\lambda=2$

$\mathrm{L}-4.94$	$\mathrm{~L}+5.38$	$\mathrm{~L}+4.04$
$\mathrm{~N}-1.01$	$\mathrm{P}+1.22$	$\mathrm{P}+1.08$
$\mathrm{P}-0.97$	$\mathrm{~N}+1.06$	$\mathrm{~N}+0.93$
$\mathrm{O}-0.47$	$\mathrm{O}+0.36$	$\mathrm{~K}+0.53$
$\mathrm{Q}-0.15$	$\mathrm{Q}+0.13$	$\mathrm{O}+0.50$
$\mathrm{~S}-0.05$	$\mathrm{~K}-0.03$	$\mathrm{Q}-0.05$
$\mathrm{M}+0.35$	$\mathrm{M}-0.1$	$\mathrm{M}-0.21$
$\mathrm{R}+0.91$	$\mathrm{R}-1.05$	* -0.34
$\mathrm{I}+1.75$	$\mathrm{I}-1.88$	$\mathrm{~J}-1.32$
$\mathrm{~J}+1.93$	$\mathrm{~J}-2.01$	$\mathrm{I}-1.67$

$G+1.40$	$G-1.45$	$G-1.40$
$B+0.75$	$B-0.81$	$B-1.22$
$E-0.05$	$E-0.19$	$E-0.40$
$F-0.36$	$F+0.37$	$F+0.38$
$D-0.65$	$D+0.41$	$D+0.96$
$C-1.29$	$C+1.28$	$C+1.71$

G-3 (Contd.)
Canonical Variate Structures for $\lambda=1,2$ and 3

CONVAR (3) for :

$\lambda=1 \quad \lambda=2 \quad \lambda=3$

$\mathrm{L}-4.15$	$\mathrm{~L}+1.30$	$\mathrm{~L}+5.74$
$\mathrm{O}+0.93$	$\mathrm{R}+0.90$	$\mathrm{P}+\mathrm{l} .73$
$\mathrm{~S}+0.86$	$\mathrm{Q}+0.50$	$\mathrm{~S}+0.85$
$\mathrm{Q}+0.63$	$\mathrm{P}+0.50$	$\mathrm{~N}+0.74$
$\mathrm{R}+0.43$	$\mathrm{~K}+0.16$	$\mathrm{Q}+0.14$
$\mathrm{~N}+0.37$	$\mathrm{M}-0.02$	$\mathrm{M}-0.02$
$\mathrm{I}-0.13$	$\mathrm{~N}-0.11$	$\mathrm{I}-0.26$
$\mathrm{M}-0.32$	$\mathrm{O}-0.57$	$\mathrm{R}-0.49$
$\mathrm{O}-0.84$	$\mathrm{~S}-0.89$	$\mathrm{O}-1.02$
$\mathrm{~J}-1.54$	$\mathrm{I}-0.92$	$\mathrm{~J}-1.47$
$\mathrm{~K}-1.94$	$\mathrm{~J}-1.12$	$\mathrm{~K}-2.38$

$\mathrm{E}+2.02$	$\mathrm{E}+1.64$	$\mathrm{E}+1.64$
$\mathrm{~B}+1.13$	$\mathrm{~B}+1.39$	$\mathrm{~F}+0.05$
$\mathrm{G}+0.05$	$\mathrm{~F}-0.10$	$\mathrm{G}-0.02$
$\mathrm{~F}-0.13$	$\mathrm{~F}-0.14$	$\mathrm{~B}-0.08$
$\mathrm{C}-1.68$	$\mathrm{C}-1.29$	$\mathrm{C}-1.58$
$\mathrm{D}-2.22$	$\mathrm{D}-2.56$	$\mathrm{D}-1.58$

G-3 (Contd.)
Canonical Variate Structures for $\lambda=1,2$ and 3

BEST COPY

AVAILABLE

Variable print quality

Area 1 - Multiple Regression Analysis F with I to R; F with $B, D ; B$ with \mathcal{F} to R; and D with I to R
Til

H-1 (Contd.)
Area 1 - Multiple Regression Analysis F with I to R; F with $B, D ; B$ with I to R; and D with I to $R ~$

Area 1 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

$\therefore 1$

H-2 (Contd.)
Area 2 - Multiple Regression Analysis F with I to R; F with B, D; with I to R; and D with I to R
TPI
FPL
FILE
FILE F

H-2 (Contd.)
0.13414
3.35732
3.30636
0.34752
6.47457
0.44628
0.54067
0.54451
haltiple p r sfuafe

R
$\stackrel{\circ}{4}$
I YIIM a pue ey
flle fi (cceatic. idate = cg/u7/bs)
He $\cdot \quad$.

H-2 (Contd.)
Area 2 - Multiple Regression Analysis F with I to R; F with $B, D ; B$ with I to R; and D with I to $R ~$

FILC Fi (CO: i.....ATE= 35197/63)
-••••

Elame
C:2it
$\because: 11: E$
Area 3 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

$+1$

-

Area 3 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

filf fi

R

H-5 (Contd.)

H-6 (Contd.)
Area 6 - Multiple Regression Analysis F with I to R; F with $B, D ; B$ with I to R; and D with I to R

FIL: FI

$=1 \mathrm{~L}$.
$-m$
$\because \because$
$\because-$
$\because-$
$\because \because$
$\because \because$
\because

1:.12:1: =
\ddot{r}
$\because \because!$ if $\because \cdot i: 1$.
ULTIPL: ©

\qquad

1

H-7 (Contd.)
Area 7 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

Area 7 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

シ.. I.! L: ! ! ! ! !
Area 7 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

Area 8 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

($8.1 ; 8 . .1)$

Area 9 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R
y O7 I YวJM a pue ؛y

$$
\begin{aligned}
& \text { O } \\
& \text { H } \\
& \frac{5}{3}
\end{aligned}
$$

 $\begin{array}{r}\because \\ \hdashline \\ \hdashline \\ \hdashline\end{array}$

H-10 (Contd.)
Area 10 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

∞

$$
\text { (ratialion rist }=: 2 / 471,1
$$

$$
\begin{array}{cc:c:c}
1 & 1: 1 \\
\ldots & 1 & 1 & 1
\end{array}
$$

$$
\text { Area } 10 \text { - Multiple Regression Analysis } F \text { with } I \text { to } R ; F \text { with } B, D ; B \text { with } I \text { to } R \text {; and } D \text { with } I \text { to } R
$$

H-11 (Contd.)
Area 11 - Multiple Regression Analysis F with I to R; F with $B, D ; B$ with I to R; and D with I to R

Area 11 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R
VAPIAGLELIST
PFEFESIONLIST

R

- - . -
$\ldots, \ldots 5$

$n-1<$ (conca.)

Lit FI

suymary tacle				
A 71 in - LC		sulte.	:	E.th
curs.en		$\begin{array}{r} 846.8 \\ r .76 \% i 4 \end{array}$		$: 9 .$

H-13 (Contd.)
Area 13 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

Area 13 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

FIL rl

R
07

y 07 I Y7jM a pae
Area 14 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

. $\because \cdot 1=101$

Area 15 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

$\pm \boxed{~(~ 1 ~}$

su:Mary riole						
4:812 Lic:	multipler r	P Souate	psg chante	SI"Fle f	.	16.10
-	c. 23074	-05: 04	0.ce:cia	-¢.:ここc74	-r.e 11.	-r: $\because 111$
3	A.33037	$\because \cdot 114{ }^{\circ}$	0.7610	2.OC71i	$40^{\circ} \mathrm{C}$ 9-5:	1.214
,	9.410) 0.47153	¢. 117311 0.22814				1.34:
1	9.47017	¢.240:\%	Ooghetz	Botoct	r.actar	reces
	0.40540	0.24E42	0 Onasif	$0.1679{ }^{\text {c }}$	9.130701:	¢09n:
?	C. 50004	$0.25 \mathrm{cc4}$	0 ouises	0.0.8545		- $-1 \cdot 01$
?	3.50234 $n-50500$	0.252. ${ }^{\text {a }}$	$0.092 ? 1$	-n.05385	-6.14032tr	-10ipist
	O.50500	D. 2 E563	0.00268	-.13981	S.12R43:i	-.co...?

H-15 (Contd.)
Area 15 - Multiple Regression Analysis F with I to R; F with B, D; B with I to R; and D with I to R

APPENDIX I

I-2
Area 2 - Plot of standardised residuals and table of observed and predicted values

sənโen pajofpaid pue paniasqo $\ddagger 0$ əIqeł pue sienpjsəa pasfpiepuejs jo $70 I d-7$ eaxy

\because	
－i ．	1こ．．72．）
1＂．：${ }^{\prime \prime} 7$	
$\because .1,7$	：2． 1 ＋18
\therefore ：	$\therefore 20 \%-1 \%$
－1：${ }^{\prime} 1$	$\because \therefore 1$ ：73
－：：	－－．？？505
1．34i	－16．3．3460
S．01＇．${ }^{\text {a }}$ ：	－12．1：899
17．73n：1	22．2135．5
$\cdots-3=-1$	1.450939
$\because 4 . \cdots 7676$	$\therefore .640241$
11．41～7＝	26．cecst
$\therefore \therefore \triangle \therefore 000$	－53．3ャ氏0\％
	4.3 － 4.284
1）．0．4：－	
－7．731－2	c． 3 ¢． 711^{n}
17．74，7！	－11．74311
コ．－• 11	15．9＋913
\therefore ． $1:+3$	
	－1\％．osces
$1 . .1-17$	－10．1：732
1． 74	－．．M ¢ ¢
－ 41 ： 11	－05：＋as
：－．1．1．	－1ヶ0：1こ7\％
＊．$\cdot \therefore$	－4．－2：$=431$
1＇．．．＇＊	

Area 8 －Plot of standardised residuals and table of observed and predicted values

 Area 11 - Plot of standardised residuals and table of observed and predicted values

Area 12 - Plot of standardised residuals and table of observed and predicted values

DUKiIN-BATERN TRST 2.02456 puhtrin-inisian Tist 2.42361
1.77476
Area 14 - Plot of standardised residuals and table of observed and predicted values

TEXT BOUND INTO THE SPINE

その天

Naj

OBSERVED

J-1 (Contd.)
Plot of standardised residuals and table of observed and predicted values for total data matrix with respect
FILE Fi (CREATION DATE $=10 / 17 / 83)$

Multiple Regression Analysis - T with I to R for the Total Data Matrix

RESIDUAL

0
i
$\mathrm{K}-2$

$10-35011008 \mathrm{O}$
$08109 \mathrm{Cl}^{\circ}$

0
0
0
0
0
0
\vdots
\vdots

\qquad Plot of standardised residuals and table of observed and predicted values for total data matrix
with respect to the variable T

$\stackrel{1}{03 n 83580}$

0.0000000
0.0000000
0000000 : 0 $00000{ }^{\circ} \mathrm{zz}$
$0000 \mathrm{c}^{\circ} \mathrm{cs}$ 22.00000
0.0000000
0.0000000
808
808
88
88
0.
0. 38.00000
0.0000000
0.0000000 $000000^{\circ} \mathrm{S}$
$0000000^{\circ} \cdot 0$ $0000000 \cdot 0$
$000000 \cdot \mathrm{~s}$ 980
688
080
0 N
N
N
N
808
888
088
$N 88$
108
00
00 900
888
808
81
0.
0.

 989
888
080
108
Ni
0.
$0000000^{\circ} 0$ 00000 it 11.00000
0.0000000
0.0000000
 $0000000^{\circ} \%$

47	0.0000000
48	8.000000
19	0.0000000
50	15.20000
51	17.00000
52	27.00000
53	9.000000
54	0.0000000
55	10.50000
56	33.00000
57	32.00000
58	29.00000
59	0.0000000
60	0.0000000
61	0.0000000
62	28.00000
63	0.0000000
64	21.00000
65	9.000000
66	15.50000
67	0.0000000
68	0.0000000
69	0.0000000
70	0.000000
71	21.00000
72	0.0000000
73	0.0000000
74	6.000000
75	0.0000000
76	0.0000000
77	0.0000000
78	0.0000000
79	15.50000
80	23.00000
81	1.500000
82	5.000000
83	.28 .00000
84	15.00000
85	25.00000
86	41.00000
87	0.0000000
88	20.00000
89	22.39999
90	16.89999
91	48.25000
92	11.00000
93	40.70000
94	0.0000000
93	30.07000
96	0.0000000
97	33.63000

K-2 (Contd.)
durbin-hatson test of residual differences compared by case drder (seanuml.
Plot of standardised residuals and table of observed and predicted values for total data matrix
with respect to the variable T

APPENDIX L

H
$\stackrel{5}{4}$
$\stackrel{3}{3}$
0
FILE FI (EREMTIUI. تATE = OU/UI/EJ)

Plot of standardised residuals and table of observed and predicted values for means data
FILE FI CEREATICNCATE = OG/C2/H3)

surhafy taile

	surmafy taile					
	pultirle ${ }^{\text {a }}$	k ¢ouhie	heg chanes	surita	:	Y [1.
		C.6E44E $0.8 \in B .3$	$0.6544 f$ 0.1796	R.pasat Coprij		retors

FILE FI CCHEATION DATE $=16 / 12 / 830$

[^27]
JEPEYDENT VARIARLE:

$\begin{array}{rr}1 & 17.90000 \\ 2 & 17.00000 \\ 3 & 15.70000 \\ 4 & 21.00000 \\ 7 & 13.90000 \\ 6 & 28.20000 \\ 7 & 20.80000 \\ 8 & 21.60030 \\ 9 & 18.70000 \\ 10 & 18.50000 \\ 11 & 26.30000 \\ 12 & 28.10000 \\ 13 & 16.70300 \\ 14 & 25.30000 \\ 15 & 20.10000\end{array}$

JURBIN-UATSON TEST OF RESIJUAL JIFFE天ENCES COMPARED BY CASE ORCER (SEGNUM)

Plot of standardised residuals and table of observed and predicted values for means data with respect to variable D
EILE FI (CREATION DATE $=06,102183$)

$L-5$
:s
© '0

 S for Means Data Matrix P,
0,

File Fi (CREATIJN OATE = NG/CI/ES)
File
$* * * *$
=-pEsijeyt Vafiaile.
VA.NIA+LE

L-5 (Contd.)

=ILE FI TCREATIONDATE = 0E/02/83)

L-5 (Contd.)

Multiple Regression Analysis - F with $J, L, M, N, O, P, Q, S ; F$ with $B, D ; B$ with J, L, M, N, O, P, Q, S; with respect to variable

$$
\begin{aligned}
& 12 E E \subset \text { O- } \\
& 866 E 6 \text { O- } \\
& 66665
\end{aligned}
$$

summary table

$$
\begin{aligned}
& \text { SIMPLE R } \\
& -0.45760
\end{aligned}
$$

Area 1 - Plot of standardised residuals and table of observed and predicted U values
File Fi
VARIABLE LIST
RECRESS!
1
Area 2 - Multiple Regression Analysis for U with Variables I to R

FROM

75. 18785
34.27403
27.91931
70.42160
27.14344
27.91931
43.20814
34.27403
107.9179
58.62397
46.13788
90.59552
45.66135
49.66096
63.92683
51.80769
18.63775
37.19427
80.68802
DURBIN-WATSON TEST OF RESIDUAL DIFFERENCES COMPARED EY CASE ORDER (SEGNUM).
FILE
(CREATION DATE $=10 / 06 / 83)$
DEPENDENT VARIABLE.
DEPENDENT VARIABLE. . U
variable
(Constant)
Area 3 - Multiple Regression Analysis for U with Variables I to R

57. 02057
55.14252
48.36849
26.47993
93.50320
46.26452
23.52203
40.07262
24.94701
24.53598
63.73740
42.86617
36.90295
26.82182
50.09229
129.2673
40.67883
29.42926
62.97109
80.87341
35.67133
48.95190
29.42926

File fi

[^28]Area 4 - Multiple Regression Analysis for U with Variables I to R
$\stackrel{\circ}{i}$

FILE Fi

(CREATION DATE $=$ 10/06/83)

Area 5 - Multiple Regression Analysis for U with Variables I to R

M-9
RESIDUAL
57.64842
10.3531
-3.579079
10.
-3. 579079
4. 94195
4. 941905
6.958099
-11.06396
6. 9568296
-11.06396
-6.551241
-31.15914
-3.92188

31. 15414
19. 82188
-26.98590

-26.98590
-2.30952
-11.76775

 11.76775
 3. 00416
20.79633
3. 0061163
4. 79633
-1.152508
3.989633
-1.152508
3.989633
-6.292486
-1.51033
-6.292486
-10.51033
-1.442525
-1.442525
-0.1777956
-25.12844
-1.17240
$\begin{array}{r}-25.12844 \\ -2.485895 \\ 14.75260 \\ \hline\end{array}$
durbin-hatson test of residual differences compared by case order (seanum).

$$
\begin{aligned}
& 14.75260 \\
& -6.235895 \\
& 4.534036
\end{aligned}
$$

(CREATION DATE - 10/06/83)

Vartable
 VARIABLE LIST 1 VARIABLE LIST
REGRESSION LIST RESIDUAL
-7.632384 -7.632384
-1.749868
-9.547701 -9.547701
-2.274551 -2.274551
-6.139051
-11.83346 -11.83346
-0.1930019
2.863652 2.863652
27.57528
3.365010

$\angle 88920^{\circ}$
$\angle 0 \angle 1 \angle 0^{\circ}$
$8626686^{\circ} 0-$

PREDICTED
U
76. 13237 00
0
0
0
N
N
$i n$
0
0
 66.27454
40.13905
75.08345 35.69299
65.13634 65.15634
93.42471
73.63498 73. 63498
74.43689
74.42078 74.42078
75.79912
67.64017 67.64017
106.7971 98. 63518
74.48991 74. 489828
72.73112
40.95419
49.30107
DURBIN-WATSON TEST OF RESIDUAL DIFFERENCES COMPARED BY CASE ORDER (SEGNUM).
VARIABLE LIST 1. REGRESSION LIST 1. DURBIN-WATSON TEST 1.69998

-

M-13
Area 7 - Multiple Regression Analysis for U with Variables I to

FILE F1 (CREATION DATE $=10106 / 83$)

$\because *$

20
0
$\dot{\sim}$

\qquad
Dependent variable:

DURBIN-WATSON TEST OF RESIDUAL DIFFERENCES COMPARED BY CASE ORDER (SEGNHM).
VARIABLE LIST 1. REGRESSION LIST 1. DURBIN-WATSON TEST 2.07500

FILE Fi (CREATION DATE $=$ 10/06/83)

summary table							
variable	!	multiple r	R square	rsa changė	simple r	-	aeta
${ }^{\circ}$		-0.76723	0. 58864	O. 58864	0. 76723	4. 581838	1. 29109
${ }^{\mathbf{R}}$		-0. 88146	0. 77697	0. 18833	-0. 13595	5. 838750	0. 64035
P -		-0.93523	0. 87465	0. 09767	-0. 71724	-2. 013790	-0. 38944
k		-0.95227	-. 89761	0.02236	-. 70989	-0. 4200732	-0.09331
L		-0.95519	0.91239	0.00556	0. 73799	-13. 23523	0. 03747 -0.36238
1		-0.95566	0. 91329	0. 00091	0.30944	-4.668842	-0. 04109
${ }_{\mathbf{N}}$		$)^{-0.95590}$	0.91375	0.00045	0. 70290	2. 790170	0. 10093
(COngtant)		0.95654	0. 91497	0.00122	-0.4744	0.2342089 -44.96823	0.111e9

Area 11 - Multiple Regression Analysis for U with Variables I to R

F1

FILE
(CREATION DATE = 10/06/83) VARIABLE LIST
REGRESSION LIST

* * * *

SUMMARY TABLE

səiqejxen ч7fm a ioj
2. 0
PLOT OF STANDARDIZED RESIDUNL
-1.0
0.0
1.0

FILE
(CREATION DATE $=10 / 06 / 83$)
UARIABLE LIST
REGRESIION LISt

	\sum_{2}^{5} 岂	

[^29]sanien \cap pəəofpaxd pue panxasqo fo olqei pue stenpfsax pastpxepuefs fo foid - Ei eaxy
FILE Fi
(CREATION DATE $=$ 10/06/83)
UARIABLE LIBT
REOREGGION LIET

m

DURBIN-WATSON TEST OF RESIDUAL DIFFERENCES COMPARED BY CASE ORDER (SEGNUM).
VARIABLE LIST 1. REGRESSION LIST 1. DURBIN-WATSON TEST 1.70757
Area 14 - Plot of standardised residuals and table of observed and predicted U values
FILE Fi (CREATION DATE $=10 / 06 / 83)$
都

 $\begin{array}{r}\text { ヘ } \\ \hline\end{array}$
to R
DEPENDENT VARIABLE: u FROA
PREDICTED
UARIABLE LIST
RESIDUAL
22. 57261
14.75358
13.68373
-7.991124
9.260462
9.260462
1.682979
-5.541762
LIIE9 2 C
$91028 \cdot 12$
29LIts•
$86 \angle \angle C^{\circ} 92-$
$2196 S \angle{ }^{\circ} \mathrm{E}$
$\angle 1129^{\circ} \angle 己$
-26.27798
2.207062

2L668
LO2も9
11

t $\angle 8888^{\circ} 91-$
28.49664
-10.83951
-17.25112
2.286591
$7 \angle 6022 \cdot 8$
$792919 \cdot 1$
169982.2

DURBIN-WATSON TEST OF RESIDUAL DIFFERENCES COMPARED BY CASE ORDER (SEGMMM).
84.29999
73.50000
78.64999
91.00000
47.75999
44.50000
40.50000
28.00000
92.00000
101.5000
39.50000
48.25000
43.50000
43.95000
38.50000
31.50000
88.00000
73.25000
38.50000
75.00000
50.00000
65.75000
60.00000
43.50000
37.00000
42.50000
38.00000
QBSERVED

[^30]
вeta

\qquad

RESIDUAL

[^31]

N-1
Area 16 - Multiple Regression Analysis for U with Unweighted El, Sl, Hl
FiLE F1 (CPEATIDA UATE $=. j 6 / 17 / 83)$

- * - -

RIAULE
oristaity
Area 16 - Multiple Regression Analysis for U with Weighted El, S1, H1
FILE FI CCREATION DATE $=06 / 21 / 83$)

[^32]| seqnum | $\underset{u}{\text { OB SERVED }}$ |
| :---: | :---: |
| 1 | 22.00000 |
| 2 | 25.85000 |
| 3 | 46.00000 |
| 4 | 0.0000000 |
| 5 | 0.0000000 |
| 6 | 22.50000 |
| 7 | 15.75000 |
| 8 | 0.0000000 |
| 9 | 0.0000000 |
| 10 | 28.00000 |
| 11 | 37.00000 |
| 12 | 38.00000 |
| 13 | 0.0000000 |
| 14 | 0.0000000 |
| 15 | 42.00000 |
| 16 | 27.50000 |
| 17 | 22.00000 |
| 18 | 0.0000000 |
| 19 | 32.00000 |
| 20 | 22.50000 |
| 21 | 15.50000 |
| 22 | 32.00000 |

FILE FI SCREATION DATE $=06 / 21 / 83$)
VARIABLE LIST 1
REGRESSION LIST 1
BETA
-0.38544
0.14691
0.04900

$$
\begin{aligned}
& \\
& \text { SIMPLE R } \\
& -0.54138 \\
& 0.47818 \\
& 0.44289
\end{aligned}
$$

REGRESSION
MULTIPLE
summary table
U
U
志
0
0
d

DURBIN-YATSON TEST OF RESIDUAL DIFFERENCES COMPARED BY CASE ORDER (SEONUA).
VARIABLE LIST 1, REGRESSION LIST 1. DURBIN-WATSON TEST 2.40997

dURBIN-WATSON TEST OF RESIDUAL DIFFERENCES COMPARED GY CASE ORDER (SEGNUM).
VARIABLE LIST 1. REGRESSION LIST 1. DURBIN-YATSON TEST 2.43354
Area 3 - Plot of standardised residuals and table of observed and predicted U values
FILE FI (CREATION DATE = 06/21/83)

2.0
x

DURBIM-YATSON TEST OF RESIDUAL DIFFERENCES COMPARED BY CASE ORDER (SEQNUM).
VARIABLE LIST 1. REGRESSION LIST 1. DURBIN-UATSON TEST 1.77820

FILE FI
(CREATION DATE $=06 / 21 / 83$)

- * * DEPENDENT VARIABLE.E

YARIABLE
H1
SI
ICONSTANT)
Area 5 - Multiple Regression Analysis for U with El, S1, Hl (Area Weighted)

FILE F1 (CREATION DATE $=06 / 21 / 83)$
FILE FI
DEPENDENT
VARIABLE
H1
E1
S1
(CONSTAMT:
Area 6 - Multiple Regression Analysis for U with El, Si, H1 (Area Weighted)
Area 6 - Multiple Regression Analysis for U with E1, Si, H1 (Area Weighted)

DEPENDEMT VARIABLE:
OBSERVED
U
27.00000
31.75000
3.270000
32.00000
17.00000
27.00000
18.25000
34.00000
60.50000
31.00000
29.00000
32.00000
31.75000
35.75000
46.25000
30.36000
37.00000
37.00000
42.50000
33.25000
0.0000000
seanum

OURBIN-YATSON TEST OF RESIDUAL DIFFEREACES COMPARED BY CASE ORDER (SEQNUM).
0-12

File fi (creation oate = 06/21/83)

0-13
Area 7 - Multiple Regression Analysis for U with El; S1, Hl (Area Weighted)

[^33]-ugarisit JatE = (a)17/ti)

$0-15$
(рәృч8fəM [E7OL) IH 'IS

DEPENDENP VARIÁLEE U
SEONUM

> OrISEPVEA U

$$
\begin{array}{r}
22.00003 \\
2=.85000 \\
48.00100 \\
0.0330100 \\
0.0000000 \\
22.53 .100 \\
15.75000 \\
0.0003000 \\
0.0000000 \\
28.00000 \\
37.00000 \\
38.00300 \\
0.0000030 \\
0.0000000 \\
42.00000 \\
27.50000 \\
22.00000 \\
0.0000000 \\
32.00000 \\
22.5000 .0 \\
15.50000 \\
32.00000
\end{array}
$$

durbin-ination test of resijual differences compareg by case oroer esecmumi.
variable list 1, recaesilav list 1. derbin-hatson test 2.04906
0-16

$=1$
FIL:

0-18
Area 2 - Plot of standardised residuals and table of observed and predicted U values

[^34]
3A：RRVER
－・フノ
－vinj：？？
14・づこに号 $3=023030$
c． 303030 c． 7303000
0.3100310 $1=.53370$
20.50900 $15-i 3000$ 15053000
16.30300 16.5050102
31.17000 31.17000
25.50005
0000060°
20005° ouros．cz
uccosez 20.000300
0.0000309 0.0000309
$10.03 j 3 j$
$36.5 n 7 J 0$
$$
5: 4 \cdot 0
$$

2.41812

FILEFI
II
$-\quad . \quad$.

Vi?13:~LE
41
$\vdots 1$
51
$\because C O B C T A B T)$
Area 5 - Multiple Regression Analysis for U with El, Sl, H1 (Total Weighted) E1,
ソターロールー

（こ：r．tiju ristE＝3i／17／3j）

－ETA
S．42：74
$1.2<7: 2$

\therefore にGごらて
Area 6 －Multiple Regression Analysis for U with Fi，Sl，Hi（Total Welghted）

Area 6 - Plot of standardised residuals and table of observed and predicted U values

Area 7 - Multiple Regression Analysis for U with E1, S1, H1 (Total Weighted)

APPENDIX P

FILs FI

Multiple Regression Analysis for USAGE with HOUSE, EMPLOY \& SEG
(Means Data Without Variable S)
 REDICrEO
USASE RESICUAL -1.272671
-1.172671
-0.362069
$-0.04756575-01$
-4.325589
0.4 .5458381
0.909734
6.269734
-1.455266

1.772835
-3.657532

VARIAELELIST 1. QEEUESSIUHLIST 1. DUREIN-NATSONTEST 2.G1651
P-2
Plot of standardised residuals and table of observed and predicted USAGE values w.r.t. HOUSE, EMPLOYMENT AND SEG (Means Data without variable S)

Multiple Regression Analysis for USAGE with HOUSE, EMPLOY \& SEG

P-4

Plot of standardised residuals and table of observed and predicted USAGE values w.r.t. HOUSE, EMPLOYMENT AND SEG (Means Data with variable S)

[^0]: Source: Maltby \& Johnson. (25)

[^1]: 2.6.3 The implication of ease of application suggests a model based on area characteristics which can be abstracted from census data. The model must be of a general nature enabling interaction with a general distribution model, taking into account the competitive framework existing between stores in the area. Before discussing the conceptual theory behind this hypothesised relationship it is necessary to identify from consumer behaviour theory and known research findings the characteristics within an area that influence store usage. Once these have been identified the conceptual design and research objectives can be established.

[^2]: Hours of Week at Store
 Total Hours/Week
 Total Expenditure/Week
 Total Frequency/Week

[^3]: OF Age
 S. D. OF
 S. E. G.

 Employment

 " 1 n "
 $000 \approx$

[^4]: $\begin{aligned} \mathbf{B} & =\text { Hours of Week at Store } \\ \mathbf{C} & =\text { Total Hours／Week } \\ \mathbf{D} & =\text { Expenditure／Week at Store } \\ \mathbf{E} & =\text { Total Expenditure／Week } \\ \mathbf{F} & =\text { Frequency／Week at Store } \\ \mathbf{G} & =\text { Total Frequency／Week }\end{aligned}$

[^5]: * Food Only

[^6]: table 49
 Canonical Correlation Analysis for -

 1) All variables
 2) Three Store Dependent and All Dependent Varafbles

 - 3) Three Store Dependent and Three Independent Varfables

[^7]: $\mathrm{N}=$ Mean Age of Household
 $0=$ S. D. of Ages
 $N=S . D$. of Ages
 $P=S . E$ G
 Q - Number of half days employed
 $R=$ Personal Accessibility
 $S=$ Spatial Access
 $I=$ Freezer Ownership
 $J=$ Number of Cars
 K = Income
 $\mathbf{L}=$ Number of Licences
 $M=$ Number In Household

 $$
 \text { TABLE } 42
 $$

 Means Data Matrix in Order of Store Duration of Stay

[^8]: B $=$ Hours/Week at Store
 C Total Hours/Week
 C = Total Hours/Week
 D

 F = Frequency/Week at Store
 G = Total Frequency/Week

[^9]: = Mean Age of Household
 $0=$ S.D. of Ages
 $P=$ S. E. G.
 Q - Number of half days employed
 R - Personal Accescibility
 $S=$ Spatial Access
 $I=$ Freezer Ownership
 $J=$ Nuaber of Cars
 $K=$ Incoae
 $L=$ Nuaber of Licences
 $M=$ Nuaber in Household
 TABLE 43

[^10]: table 52
 Multiple Regression Analysis - Table of Pearson Correlation Coefficients

[^11]: table 56
 Multiple Regression Analysis - Table of Pearson Correlation Coefficients

[^12]: table 57
 Multiple Regression Analysis - Table of Pearson Correlation Coefficients

[^13]: 85 319va
 Multiple Regression Analysis - Table of Pearson Correlation Coefficients

[^14]: table 61
 Multiple Regression Analysis - Table of Pearson Correlation Coefficients

[^15]: table 62

[^16]: E9 atavi
 Multiple Regresaion Analysis - Table of Pearson Correlation Coefficients

[^17]: 79 a7qui
 Multiple Regression Analyais - Table of Pearson Correlation Coefficients

[^18]: C-1 (Contd.)
 List of Numbered Ennumeration Districts

[^19]: C-1 (CONTD.)
 List of Numbered Ennumeration Districts

[^20]: C-1 (CONTD.)
 List of Numbered Ennumeration Districts

[^21]: C-1 (CONTD.)
 List of Numbered Ennumeration Districts

[^22]: C-1 (CONTD.)
 List of Numbered Ennumeration Districts

[^23]: C-1 (CONTD.)
 List of Numbered Ennumeration Districts

[^24]: in
 55 45 63 2종 28 32

[^25]:

 009月0.2500.25025.06025.0000.2500.25011010402040270014012034008 00932.0003.09035.00042.0001.0002.001011010301050180013012017004

 00908.2500 .25014 .30014 .3000 .2500 .25014010601030280017002015008

[^26]:

[^27]: L-3 (Contd.)
 S;
 R,
 0
 ~"
 '0'
 Means Data Matrix
 s S 'y ' b d '0
 Q, R, S
 F with $\mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}$,
 with $\mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$,
 Multiple Regression Analysis

[^28]: variable
 (CONETANT)

[^29]: DURBIN-WATSON TEST OF RESIDUAL DIFFERENCES COMPARED BY CASE ORDER (SEQNuM).
 VARIABLE LIST 1. REGRESSION LIST 1. DURBIN-WATSON TEST 1.96801

[^30]: VARIABLE LIST 1. REGRESSION LIST 1. DURBIN-WATSON TEST 1.57257

[^31]: 000000
 808808
 08808
 080808
 1080

[^32]: Area 1 - Multiple Regression Analysis for U with El, Sl, Hl (Area Weighted)

[^33]: DURBIN-HATSON TEST OF RESIDUAL DIFFERENCES COMPARED BY CASE ORDER (SEQNUM).

[^34]: (рә74872M [870L)

