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ABSTRACT 1 

For the first time, the specific activities of chitinases, esterases, lipases and a serine protease 2 

(VCP1) produced by different isolates of the nematophagous fungus Pochonia 3 

chlamydosporia were quantified and compared. The isolates were grown for different time 4 

periods in a minimal liquid medium or media supplemented with 1 % chitin, 0.2 % gelatin or 5 

2 % olive oil. Enzyme-specific activities were quantified in filtered culture supernatants using 6 

chromogenic p-nitrophenyl substrates (for chitinases, lipases and esterases) and a p-7 

nitroanilide substrate (to measure the activity of the proteinase VCP1). Additionally, 8 

information on parasitic growth (nematode egg parasitism) and saprotrophic growth (plant 9 

rhizosphere colonisation) was collected. Results showed that the production of extracellular 10 

enzymes was influenced by the type of medium (p<0.05) in which P. chlamydosporia was 11 

grown. Enzyme activity differed with time (p<0.05), and significant differences were found 12 

between isolates (p<0.001) and the amounts of enzymes produced (p<0.001). However, no 13 

significant relationships were found between enzyme activities and parasitic or saprotrophic 14 

growth using Kendall’s coefficient of concordance or Spearman rank correlation coefficient. 15 

The results provided new information about enzyme production in P. chlamydosporia and 16 

suggested that the mechanisms which regulate the trophic switch in this fungus are complex 17 

and dependent on several factors.  18 

 19 

 20 

Keywords – Pochonia chlamydosporia, p-nitrophenyl substrates, enzyme activity, proteases, 21 

chitinases, esterases, lipases, Kendall’s coefficient of concordance, Spearman rank correlation 22 

coefficient. 23 

 24 

 25 

 26 

 27 

 28 

 29 
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Introduction 34 

 The anamorphic and facultatively parasitic fungus Pochonia chlamydosporia 35 

(Goddard) Zare & W. Gams (synonym: Verticillium chlamydosporium Goddard) is an 36 

important egg parasite of root-knot (Meloidogyne spp.), false root-knot (Nacobbus spp.) and 37 

cyst (Heterodera spp. and Globodera spp.) nematodes. Since it was first found to be 38 

associated with the infection of plant-parasitic nematodes (Willcox & Tribe 1974; Kerry 39 

1975), this fungus has been extensively studied as a potential biological control agent to 40 

control these pests  (De Leij & Kerry 1991; Sankaranarayanan et al. 2000; Ciancio et al. 2002; 41 

Atkins et al. 2003a; Montes de Oca et al. 2005; Tzortzakakis 2007). In order to provide an 42 

efficient level of control, P. chlamydosporia should become established in the plant 43 

rhizosphere and survive, even in the absence of nematode hosts, and be able to infect (Kerry 44 

et al. 1993), to parasitise and to consume nematode eggs that might be present  (Kerry & 45 

Jaffee 1997).  46 

  Particular extracellular enzymes secreted by P. chlamydosporia are thought to play an 47 

important role in the infection of eggs (Huang et al. 2004; Morton et al. 2004) as they enable 48 

the fungus to degrade the host’s major barrier to infection, the nematode eggshell, which is 49 

mainly composed of an outer protein layer, a middle chitinous layer and an inner lipid layer 50 

(Bird & McClure 1976). The range of enzymes secreted by the fungus enable it to penetrate 51 

the nematode eggshell and the body wall of the juvenile within (Morgan-Jones et al. 1983). 52 

Specific proteases and chitinases have been isolated from P. chlamydosporia and have shown 53 

activity against the nematode eggshell (Segers 1996; Tikhonov et al. 2002). These have been 54 

isolated and purified and are considered to be involved in the infection process serving as 55 

virulence factors (Huang et al. 2004).  56 

 During the infection process, a 33 kDa subtilisin-like serine protease, designated 57 

VCP1, is produced by the fungus (Segers et al. 1994). Immunolocalization of this enzyme at 58 

the penetration site indicates that VCP1 degrades the vitelline membrane on the surface of the 59 

eggshell and exposes the chitin layer (Segers et al. 1996). This enzyme is serologically and 60 

functionally related to Pr1, the much studied enzyme produced by the entomopathogenic 61 

fungus Metarhizium  anisopliae (Segers et al. 1995).  62 

 Chitinolytic activity was detected in Pochonia spp. when grown in a solid and a liquid 63 

medium containing colloidal chitin as an inducer (Dackman et al. 1989). Dupont et al. (1999) 64 

detected the presence of both endo- and exochitinases in cultures of P. chlamydosporia 65 

growing in a chitin-rich medium, and they studied the effects of these chitinases on the 66 

eggshell of M. incognita eggs using fluorescence and scanning electron microscopy. Both 67 
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enzymes weakened the nematode eggshell and caused it to become dented within 24 hours. 68 

Tikhonov et al. (2002) were the first to purify and to characterize chitinases from P. 69 

chlamydosporia and Pochonia rubescens. In their study, they were able to identify an 70 

endochitinase (CHI43) from both fungi when grown in a semiliquid medium containing chitin 71 

as the main source of C and N. When eggs of Globodera pallida were treated with CHI43, 72 

scars on the surface of the egg were observed, and these were more pronounced in eggs 73 

treated with both CHI43 and a protease purified from P. rubescens (P32). Similar results were 74 

observed in M. incognita eggs treated with proteases and chitinases from Paecilomyces 75 

lilacinus-treated eggs, suggesting that for effective penetration of nematode eggs, 76 

nematophagous fungi must produce protease and chitinase enzymes at the same time to 77 

degrade different eggshell layers (Khan et al. 2004).  78 

 The importance of lipases and esterases in the infection process of nematophagous 79 

fungi is less clear and studied. Lipolytic activity by P. chlamydosporia was detected after 30 80 

days incubation by Mendonza de Gives et al. (2003) when the fungus was grown in a rich 81 

medium containing soya and peptone. However, Olivares-Bernabeu & Lopez-Llorca (2002) 82 

found lipolytic activity in different isolates of P. chlamydosporia, isolated from Spanish soils, 83 

after seven days of growth in solid media (Olivares-Bernabeu & Lopez-Llorca 2002). They 84 

also found that lipolytic activity varied with the fungal isolate and was always lower than 85 

protease activity.  86 

 In this work, a group of P. chlamydosporia isolates were tested for differences in their 87 

abilities to produce a range of extracellular enzymes. Isolates are known to differ in terms of 88 

their virulence against nematode eggs (Irving & Kerry 1986) and ability to colonise the 89 

rhizosphere (De Leij & Kerry 1991), and it was hypothesised that they may also differ in their 90 

abilities to produce particular extracellular enzymes. The aim of this work was to determine 91 

which nutritional conditions influence enzyme production and to determine if a relationship 92 

could be established between differences in enzyme production, in vitro egg parasitism and 93 

rhizosphere colonisation. Are isolates with the best parasitic performance good rhizosphere 94 

colonisers and enzyme producers, or vice-versa? Can the in vitro production of certain 95 

enzymes be related to saprotrophic /parasitic in vitro growth? 96 

 The specific objectives of this study were: (i) to investigate the production of enzymes 97 

by the fungus on different medium amendments; (ii) to quantify the amounts of enzymes 98 

secreted by the fungus at different times, (iii) to assess whether differences exist between 99 
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fungal isolates in the production of enzymes (types and amounts), and (iv) to determine if 100 

enzyme production is related to in vitro egg parasitism and rhizosphere colonisation. 101 

 102 
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Materials and methods 103 

Origin of cultures and characterisation  104 

 The eleven isolates of P. chlamydosporia used in this study were selected from the 105 

400 different isolates in the Rothamsted Research (England, UK) culture collection. The 106 

selection criteria were based on prior information about each of the isolates in terms of host 107 

nematode and geographic origin, in order to have isolates from different hosts, substrata and 108 

geographic origins. All the isolates (Table 1) were previously tested for the presence of the 109 

specific diagnostic primers derived from the ß-tubulin gene, and confirmed to be P. 110 

chlamydosporia var. chlamydosporia using PCR (Hirsch et al. 2000). DNA fingerprinting 111 

enabled the discrimination between different isolates of  P. chlamydosporia grown in pure 112 

culture (Arora et al. 1996). The isolate 392, originally isolated from Cuba, was identified as P. 113 

chlamydosporia var. catenulata, and could also be distinguished from isolates of P. 114 

chlamydosporia var. chlamydosporia using specific PCR primers (Atkins et al. 2003b).  115 

 116 

Quantitative studies on the production of extracellular enzymes   117 

 Eleven P. chlamydosporia isolates (Table 1) were cultured in minimal liquid medium 118 

(0.3 g l-1 NaCl, 0.3 g l-1 MgSO4.7H2O, 0.3 g l-1 K2HPO4 and 0.2 g l-1 of yeast extract (Merck, 119 

Germany) and in the same medium supplemented with:  120 

 a) 0.2 % gelatin (from porcine skin, Sigma); gelatin was filtered through a Millipore 121 

filter (45 µm aperture) before it was added aseptically into autoclaved medium. 122 

 b) 1 % (w/v) chitin (from crab shells, practical grade, Sigma); chitin sieved through a 123 

30 mesh aperture sieve before use. This medium had to be poured aseptically in constant 124 

agitation to ensure its homogeneity (Segers 1996).  125 

 c) 2 % (v/v) extra virgin olive oil and 0.25 % sodium dodecyl sulphate (SDS) (w/v). 126 

Stock solutions of SDS and olive oil were prepared and were added aseptically to the 127 

autoclaved medium individually. 128 

 The experiment had different aims. The first aim was to study the production of 129 

enzymes by the different isolates on the different medium amendments. The medium, in 130 

which enzyme activity was greatest, for each enzyme, was selected in order to study temporal 131 

changes in enzyme activity and time of secretion (three, five and seven days). After five days 132 

growth, isolates of P. chlamydosporia were compared for the types and amounts of different 133 

enzymes produced. 134 

  135 

 136 
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Experimental conditions and fungal inoculation:  137 

 Twenty millilitres of each medium were poured into 50 ml plastic tubes and were 138 

inoculated with four agar plugs (5 mm) colonised with the fungus (three replicates per isolate, 139 

per medium and per each day of sampling). Samples were incubated in the dark, at 28 °C, in 140 

an orbital shaking incubator at 120 rpm (Gallenkamp). After three, five and seven days, the 141 

supernatant was collected and filtered using filter paper (Whatman N° 1). In order to reduce 142 

the volume of each sample, the supernatant was freeze-dried and re-suspended in 1 ml of 143 

sterile distilled water to be measured for enzyme production.  144 

 Total protein concentration was measured according to Bradford (1976) using the Bio-145 

Rad protein assay kit. A standard curve was calculated using bovine serum albumin (BSA) as 146 

standard at a concentration of between 1.42 to 10 µg ml-1, from a standard solution of 0.1 mg 147 

ml-1 BSA. Absorbance was measured in a multicsan MRX plate reader (Dynex Technologies 148 

Ltd, UK), at 495 nm.  Enzyme activity was determined by using different enzyme assays: 149 

 I. Lipase, esterase and exochitinases activity was accessed using chromogenic p-150 

nitrophenyl substrates (15 mM of 4-nitrophenyl palmitate, 15 mM of 4-nitrophenyl acetate, 151 

and 2 mM of 4-nitrophenyl-N-acetyl-D-glucosaminide, respectively). Enzyme extract, 152 

substrate solution (40 µl) and the appropriate buffer (20 µl; 25 mM l-1 acetate, pH 4.2) were 153 

pipetted into the wells of a 96 well microtitre plate (Bibby Sterilin, UK) and incubated at 37 154 

ºC for 1 h, using a boiled (100 ºC, 10 min.) enzyme extract as a control. The reaction was 155 

stopped by the addition of 5 µl of 1 mol l-1 sodium carbonate solution and left for three 156 

minutes. The enzyme activity was estimated using a MRX multiscan plate reader by 157 

measuring the increase in optical density at 405 nm caused by the liberation of ρ-nitrophenol 158 

by enzymatic hydrolysis of the substrate. Specific activity was expressed as units of enzyme 159 

(U). One unit (U) was defined as the amount of enzyme that liberates 1 nmol p-nitrophenol 160 

min-1 ml-1 µg of protein.  161 

 II. Proteolytic activity was determined using azocasein, a chromogenic substrate. 162 

Enzyme extract (20 µl) and sulphanilamide Azocasein (1 % in 0.2 M Tris-Hcl buffer, pH 7.5) 163 

were pipetted into the wells of a 96 well microtitre plate and incubated at 37 ºC for 1 h using a 164 

boiled enzyme extract as a control, as described above. The reaction was stopped by the 165 

addition of 150 µl of trichloroacetic acid (10 % w/v) and neutralised by adding 50 µl of 1M 166 

NaOH. Plates were centrifuged (3000 rpm, 10 minutes) and supernatants (150 µl) transferred 167 

to a 96 well half-size enzymoimmunoassay plate (175 µl cavities). Blank samples were 168 

prepared similarly but with an inactivated enzyme solution (100 ºC, 10 min.), and absorbance 169 

measured at 440 nm in the MRX multiscan plate reader. A standard curve was calculated 170 
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using commercial protease from Aspergillus oryzae (500 Units g-1; 10 µl = 0.0148 g), at a 171 

concentration between 0.5 to 50 U. Total enzyme activity was calculated from the standard 172 

curve and was expressed as units of proteases ml-1 (U ml-1). One unit of protease activity is 173 

defined as the amount of enzyme that produces an increase in absorbance of 1 in 1h at 440 174 

nm. 175 

 III. VCP1 activity was assayed using N-Succinyl-Ala-Ala-Pro-Phe p-nitroanilide 176 

(Segers et al. 1994). Enzyme extract (2 µl), substrate (100 µl) and buffer (98 µl of 0.1 M Tris 177 

HCl pH 7.9) were mixed in microtubes (500 µl), and absorbance was immediately and 178 

continuously measured at 410 nm for three minutes at room temperature, using a 179 

spectrophotometer (CaryWin UV). One unit of activity (U) was defined as the amount of 180 

enzyme that releases 1 µmol p-nitroanilide min-1ml-1.  181 

Design and statistical analysis:  To compare the effects of different medium amendments, 182 

time of secretion and differences between isolates, analysis of variance (ANOVA) was 183 

applied to the data using GenStat® (2007). The data were checked to ensure the normality of 184 

variance by plotting histograms of residuals and plotting the residuals against the fitted 185 

values. Where data showed a clear skewed distribution, they were log transformed to the 186 

specific enzyme activity plus an adjustment (1) to account for zero observations. Following 187 

ANOVA, least significant differences (LSD) were used to statistically separate the means at 5 188 

% level of confidence. 189 

 190 

Enzyme production and relationship with in vitro egg parasitism (parasitic growth) and 191 

rhizosphere colonisation (saprotrophic growth) 192 

 To determine if there was a relationship between enzyme production (proteases, 193 

chitinases, lipases and esterases), parasitic growth and saprotrophic growth, data for enzyme 194 

production, in vitro egg parasitism and rhizosphere colonisation were collected and analysed 195 

using Kendall’s coefficient of concordance and the Spearman rank correlation coefficient. 196 

Kendall’s coefficient of concordance measures the degree of correspondence between two or 197 

more rankings and assesses the significance of this correspondence (Kendall & Gibbons 198 

1990). This test was used to rank nine isolates of P. chlamydosporia (10, 16, 60, 132, 104, 199 

280, 392, 399 and 400), from one (smallest in the rank) to nine (greatest in the rank), 200 

according to their individual abilities to colonise the rhizosphere, parasitise nematode eggs 201 

and to produce different enzymes in vitro, in order to determine if isolates with the greatest 202 

virulence also colonised the rhizosphere most extensively and/or produced large amounts of 203 

specific enzymes. Spearman rank correlation coefficients were calculated for the relationship 204 
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between different enzymes produced by the isolates and their rhizosphere colonisation and 205 

egg parasitism abilities.  206 

 207 

Assessment of parasitic growth using an in vitro test 208 

Egg parasitism was measured using an in vitro bioassay, following the protocol described by 209 

Abrantes et al. (1998). The test was performed using nine isolates of P. chlamydosporia (10, 210 

16, 60, 104, 132, 280, 392, 399 and 400) against Meloidogyne spp. and Globodera pallida 211 

eggs. Meloidogyne eggs were obtained from egg masses cultured on Lycopersicum 212 

esculentum L. (tomato cv. Tiny Tim) grown in a temperature-controlled glasshouse, at 25 °C. 213 

G.  pallida cysts were separated from infested soil, using the Fenwick can method (Fenwick 214 

1940). The soil was kindly supplied by Andy Barker (Rothamsted Research, UK). To release 215 

the eggs, cysts were crushed using a cyst crusher (Reid 1955) and were suspended in water, 216 

passed through a 125 µm aperture sieve to remove any soil or cyst debris and were collected 217 

on a 30 µm aperture sieve before being used in the experiment. Briefly, Pochonia 218 

chlamydosporia cultures growing on corn meal agar were flooded with 5 ml of sterile distilled 219 

water, and aliquots of 0.2 ml of fungal suspension were spread onto Petri dishes (9 cm 220 

diameter) containing 0.8 % water agar with antibiotics. After 2 days of incubation at 25 °C , 221 

approximately 200 root-knot nematode eggs (Meloidogyne spp.) or cyst nematode eggs (G. 222 

pallida) were added to each plate. The Petri dishes were incubated at 25°C and after 3 days 223 

the number of parasitised eggs was counted. Three plates per isolate per nematode species 224 

were made, and the experiment was repeated twice. To compare differences between isolates, 225 

ANOVA was applied to the data using GenStat® (2007). The analysis used a logit 226 

transformation to ensure the normality of variance (Gomez & Gomez 1984). 227 

 228 

 229 

Assessment of saprotrophic growth (rhizosphere colonisation test) 230 

Root colonisation was measured in maize, adapting the protocol described by Abrantes et al. 231 

(1998). Maize seeds were surface-sterilised in an 8% solution of sodium hypochlorite with 232 

one drop of Tween 20 and shaken in a wrist shaker for 1 h. The seeds were then washed five 233 

times in sterile distilled water and dried for 30 minutes inside a laminar flow cabinet. The 234 

sterilised maize seeds (Zea mays L., cv.  Katumani) were inoculated with chlamydospores 235 

from P. chlamydosporia at a rate of 3x104 spores per seed and planted in pots containing 236 

approximately 250 ml of sterilised moist vermiculite. After eight days, roots were taken out 237 

from the pots, cut in 1 cm sections and plated on water agar with antibiotics (0.05 g l-1 238 
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streptomycin sulphate, 0.05 g l-1 chloramphenicol and 0.05 g l-1 chlortetracycline). The 239 

number of colonised roots and percentage of root colonisation were determined after two days 240 

incubation at 25 °C. The experiment contained three replicates for each treatment 241 

combination and was repeated twice. To compare differences between isolates, ANOVA was 242 

applied to the data using GenStat® (2007). The analysis used a logit transformation to ensure 243 

the normality of variance (Gomez & Gomez 1984).  244 

 245 

Results 246 

Quantitative studies on the production of extracellular enzymes      247 

Enzyme activity in response to medium amendments 248 

 The amounts of enzymes which were produced by P. chlamydosporia isolates during 249 

five days of growth in liquid media varied according to the media (p<0.05) in which the fungi 250 

were grown. Proteolytic activity was significantly greater (p<0.05, using LSD) in minimal 251 

medium than in a medium containing gelatin (Fig 1-A) (means of proteases on the log scale 252 

for the media: minimal medium 1.018, chitin 0.419, gelatin 0.543, olive oil 0.480; LSD (5 %) 253 

= 0.1947). The secretion of chitinases was greater (p<0.05) in a medium supplemented with 254 

gelatin than in one enriched with chitin, or when the fungi were grown in minimal medium 255 

(Fig 1-B) (means of chitinases on the log scale for the media: minimal medium 0.260, chitin 256 

0.007, gelatin 1.395; LSD (5 %) = 0.1005). The greatest amounts of chitinases were produced 257 

by isolates 16, 69, 132 and 280, whereas the least amounts were measured in isolates 60, 392, 258 

399 and 400 (Fig 1-B). Lipolytic activity was low in most of the isolates and in all the media 259 

tested, being significantly greater (p<0.05) in the medium supplemented with olive oil (Fig 1-260 

C) (means of lipases on the log scale for the media: minimal medium 0.040, gelatin 0.087, 261 

olive oil 0.234; LSD (5 %) = 0.1295). Isolates 69, 104, 132, 280 and 309 did not produce this 262 

enzyme in any of the media tested (Fig 1-C). Esterase production was higher (p<0.05) in the 263 

medium supplemented with gelatin but was repressed in media enriched with the olive oil, 264 

where this enzyme was not detected in most of the isolates (Fig 1-D) (means of esterases on 265 

the log scale for the media: minimal medium 0.421, gelatin 1.078, olive oil 0.056; LSD (5 %) 266 

= 0.1283). The activity of VCP1 was detected in all the isolates when grown in the medium 267 

supplemented with chitin, but its production was more variable when isolates were grown in 268 

minimal medium or medium enriched with gelatin (Fig 2) (means of VCP1 on the log scale 269 

for the media: minimal medium 0.307, chitin 0.575, gelatin 0.212; LSD (5 %) = 0.0792). In 270 

medium supplemented with chitin, isolate 69 showed the highest VCP1 activity among all 271 

isolates, equivalent to 5.3 U (Fig 2).  272 
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 273 

Enzyme activity and time of secretion       274 

 Enzyme activity differed with time and isolate. For the majority of the isolates, the 275 

production of proteases in a non-supplemented medium, did not differ significantly (p>0.05) 276 

between the first two sampling occasions but decreased significantly by day seven (Fig 3-A) 277 

(means of proteases on the log scale for days: day three 0.945, day five 1.018, day seven 278 

0.795; LSD = 0.1412). Chitinolytic activity was greater after five days of growth for the 279 

majority of the isolates (p<0.05), and then decreased significantly (p<0.05) after this time (Fig 280 

3-B) (means of chitinases on the log scale for days: day three 0.599, day five 1.395, day seven 281 

1.199; LSD = 0.1462). Lipases were secreted in small amounts when compared with the 282 

production of the other enzymes assayed, and were in general produced later (Fig 3-C). 283 

However, differences between days five and seven were not significant (means of lipases on 284 

the log scale for days: day three 0.103, day five 0.234, day seven 0.304; LSD = 0.1354). 285 

There were no significant differences between secretion of esterases and time (p>0.05) (Fig 3-286 

D) (means of esterases on the log scale for days: day three 0.966, day five 1.078, day seven 287 

0.958; LSD = 0.1605). 288 

 289 

Enzyme activity in different isolates of Pochonia chlamydosporia after five days of 290 

growth  291 

 The comparison between isolates of P. chlamydosporia on the production of 292 

extracellular enzymes revealed significant differences between isolates (F10, 85 = 7.71, 293 

p<0.001) and amounts of enzymes produced (F3, 85 = 114.86, p<0.001) when data were 294 

analysed using ANOVA. Significantly greater amounts of chitinases were produced (mean 295 

35.27 U ± 2.5; log mean 1.395), compared with esterases (18.49 U ± 2.0; log mean 1.078) and 296 

proteases (10.78 U ± 1.6; log mean 1.018) which were produced in similar quantities (p>0.05, 297 

using LSD = 0.1295). Lipases (1.41 U ± 0.7, log mean 0.234) were the least secreted enzymes 298 

(Fig 4). Also there was a highly significant interaction between isolates and enzymes (F30, 85 = 299 

4.27; p<0.001). 300 

 301 

Enzyme production and relationship with in vitro egg parasitism and rhizosphere 302 

colonisation 303 

 Highly significant differences were found between isolates on the ability to parasitise 304 

nematode eggs in vitro (Meloidogyne eggs: F 8, 26 = 23.59, p< 0.001; G. pallida: F 8, 26 = 305 

18.11, p<0.001) and to colonise the rhizosphere of maize (F 8, 25 = 11.07, p<0.001) using 306 
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ANOVA. However, the analysis of data using Kendall’s coefficient of concordance and 307 

Spearman’s rank of correlation showed no significant relationships between enzyme 308 

production, egg parasitism or saprotrophic growth (rhizosphere colonisation) (coefficient = 309 

0.110, adjusted for ties 0.113; p= 0.611) (Tables 2 and 3). Isolate 16 was the highest ranked 310 

among the nine isolates analysed, and although it was the most extensive rhizosphere 311 

coloniser and the best producer of proteases and chitinases, it was only average in terms of 312 

parasitizing eggs (Table 2). In contrast, the second ranked isolate 280, a poor saprotroph in 313 

the rhizosphere of maize, was the most virulent egg parasite in the in vitro tests and the best 314 

producer of chitinases (Table 2). Isolate 400 was the lowest ranked, and although it was a 315 

weak parasite and a good rhizosphere coloniser, it produced very small amounts of enzymes, 316 

with the exception of lipases (Table 2). Furthermore, Spearman’s rank correlation coefficient 317 

showed no significant correlations between the different enzymes studied, parasitism or 318 

saprotrophic growth (Table 3) apart from a strong correlation (p =0.001) found between 319 

protease and lipase production. 320 

 321 

Discussion 322 

Quantitative studies on the production of extracellular enzymes   323 

Pochonia chlamydosporia isolates produced varied amounts of enzymes and 324 

responded differently when supplements were added to the medium. Gelatin induced the 325 

production of chitinases and esterases but surprisingly did not increase the production of 326 

proteases and VCP1. The gelatin was obtained from porcine skin and may have favoured the 327 

production of other enzymes apart from proteases. In a previous study, the use of a higher 328 

concentration of gelatin (1% instead of 0.2% used in this study) strongly repressed VCP1 329 

activity, as did albumin, whereas fibrous collagen enhanced protease production (Segers 330 

1996). It was concluded that the inductive effect of protein was not a generic response, and 331 

that the response depended on the source of protein used.  332 

 Similarly, chitinase activity was not induced in the medium amended with chitin but 333 

increased the activity of VCP1. The type of chitin used was of practical grade (from crab 334 

shell), and although it was washed and sieved before use, it may have contained other 335 

nutrients apart from chitin which could have induced other enzymes such as VCP1. Because 336 

chitin is insoluble in water, it  may have been less accessible to the fungus and did not induce 337 

the production of chitinases. The physical presence of chitin in suspension, absent in other 338 

media tested, may have provided physical support for fungal growth, and this may have been 339 

another reason for the production of the serine protease VCP1 being favoured. High VCP1 340 
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titres were also found by Segers (1996) using a similar source of chitin in suspension. 341 

Furthermore, in the same study, the combined use of chitin and collagen, both insoluble, 342 

resulted in an increased VCP1 activity (Segers 1996). Interestingly, all the isolates tested 343 

showed VCP1 activity in the medium containing chitin. In contrast, the cyst nematode isolate 344 

isolated from spores in New Zealand (isolate 69) and the root-knot nematode isolate isolated 345 

from soil in Cuba (isolate 392) which is a variant, P. chlamydosporia var. catenulata, had 346 

significantly lower VCP1 activity in the minimal medium and the medium amended with 347 

gelatin. The apparently lower activity of the enzyme in these two isolates could be due to 348 

reduced substrate affinity rather than a less active serine protease and, therefore, the results 349 

may have been influenced by the substrate used in the assay [Suc-(Ala)2-Pro-Phe-pNA]. 350 

Morton (2003) showed differences in the structure of VCP1 enzyme between isolates isolated 351 

from root-knot and cyst nematodes. Differences were observed on the rim of the substrate-352 

binding region where a glycine in the enzyme from isolates from root-knot nematodes was 353 

replaced by a larger alanine in isolates from cyst nematodes. Polymorphisms were also found 354 

at position 57, where a glutamic acid in the enzyme from isolates from root-knot nematodes 355 

was replaced by a glutamine in isolates isolated from cyst nematodes. Therefore, it is possible 356 

that the serine proteases produced by the two isolates, 69 and 392 are substantially different 357 

from proteases produced by the other isolates tested.  358 

 In this study, the production of enzymes secreted in amended and non-amended media 359 

varied with time. Although the enzyme activities were detected using artificial substrates, they 360 

might mimic the response of P. chlamydosporia when in contact with nematode eggs. 361 

Because the first layer of the nematode eggshell contains mainly protein, proteases may be the 362 

first enzymes to be secreted by the germinating fungus but they are also required through time 363 

in order to degrade the middle and inner eggshell layers that also contain protein, chitin and 364 

lipids. Proteases may also be required to degrade the protein contained in the juvenile 365 

nematode within the egg and to emerge from the eggshell after the egg’s contents are 366 

consumed. The time of secretion of these two enzymes is also considered to be important in 367 

entomopathogenic fungi, in which proteases are secreted in the initial stages of infection, 368 

followed by chitinases (St. Leger et al. 1986). The production by mycopathogens of 369 

exochitinases in the late stage of infection may play a role in inhibiting the development of 370 

other microbial competitors for chitin (Wattanalai et al. 2004). In this study, chitinases were 371 

the enzymes secreted with greatest specific activity, followed by esterases and proteases. The 372 

eggshell layer which contains chitin is the thickest of the three layers (Bird & Bird 1991) and 373 

is probably the reason why the fungus produces large amounts of this enzyme.  374 
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 The role of esterases in the physiology of this fungus is not clear. Segers (1996) 375 

detected high esterase activity in culture filtrates of P. chlamydosporia and in pure VCP1 376 

enzyme and found that VCP1 was highly active in the hydrolisation of short (C4-C6) and 377 

medium (C7-C10) chain esters whereas Pr1, a serine protease secreted by M. anisopliae, was 378 

active against short chain esters only. The ability to degrade both long and short chains of 379 

esters may reflect the nutritional versatility of P. chlamydosporia. Esterases are known to be 380 

important in fungal metabolic processes and in substrate degradation but their role in 381 

virulence has not been investigated in nematophagous fungi. However, these results are the 382 

first to quantify the production of these enzymes by this fungus. Furthermore, a high 383 

competitive saprotrophic ability, rapid spore germination and high growth rate can depend on 384 

a high production of extracellular enzymes (Faull 1988). Pochonia chlamydosporia might not 385 

be considered a fungus with great saprotrophic ability (Widden 1997) since it is a weak 386 

competitor in soil, (Bourne & Kerry 2000), however, it must produce enzymes to survive as a 387 

saprotroph. 388 

 Although lipolytic activity was low, there was the suggestion that lipases might have 389 

been produced later in time, with most of the isolates increasing activity for degradation of 390 

lipids after seven days of growth in the medium amended with olive oil. Extra virgin olive oil 391 

was chosen among other types of lipid sources because it was shown to increase lipolytic 392 

activity in Fusarium solani (Maia et al. 1999) and  M.  anisopliae (Silva et al. 2005). 393 

Different results might have been achieved if a different source of lipid or substrate had been 394 

used.  395 

 The selection of isolates for potential biocontrol of nematodes and insects has included 396 

studies on enzyme production (Barranco-Florido et al. 2002; Olivares-Bernabeu & Lopez-397 

Llorca 2002). Such studies may help to differentiate isolates to some extent (Carder et al. 398 

1993) but other parameters such as virulence, saprotrophic ability and spore production 399 

should be considered in the selection of potential biocontrol agents. In this study, differences 400 

in enzyme production were found between isolates of P. chlamydosporia. However, the 401 

amounts and types of enzymes secreted by individual isolates were shown to differ with 402 

nutrition and time; therefore, cultural conditions appear to have an important effect on the 403 

results obtained and must always be standardised for meaningful comparisons to be made. 404 

Although a strong correlation was found between proteolytic and lipolytic activity, there was 405 

no correlation between enzyme activity with in vitro egg parasitism or saprotrophic growth 406 

(rhizosphere colonisation). Complex interactions occur between different abiotic and biotic 407 
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factors, which influence pathogenicity, and more work is required to identify the factors 408 

affecting the virulence and saprotrophic growth of P. chlamydosporia isolates. 409 

 The research presented in this paper provides new information about the influence of 410 

enzyme inducers, times of secretion and amounts of extracellular enzymes (proteases, 411 

chitinases, lipases and esterases) which are produced by different P. chlamydosporia isolates. 412 

Such information is important to increase understanding about the physiology of the fungus. 413 

The existence of differences between isolates in their ability to produce enzymes, parasitise 414 

nematode eggs and colonized roots in vitro reinforces the need for careful selection when 415 

screening for potential biocontrol agents.  416 

 417 
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 574 
 575 
 576 
Fig 1 - Specific activities (nmol ρ-nitrophenol min-1ml-1µg protein) of proteases (A), 577 

chitinases (B), lipases (C) and esterases (D), produced by eleven isolates of Pochonia 578 

chlamydosporia (isolates 10, 16, 60, 69, 132, 104, 280, 309, 392, 399 and 400) after five days 579 

of growth in different media (minimal medium and medium supplemented with gelatin, chitin 580 

and olive oil). (bar = SEM means). 581 

 582 

Fig 2 - Measurement of VCP1 specific activity (µmol p-nitroanilide min-1ml-1µg protein) in 583 

eleven isolates of Pochonia chlamydosporia (isolates 10, 16, 60, 69, 132, 104, 280, 309, 392, 584 

399 and 400) after seven days of growth in minimal medium (A) and medium supplemented 585 

with gelatin and chitin. (bar = SEM means). 586 

 587 

Fig 3 - Specific activities (nmol ρ-nitrophenol min-1 ml-1 µg protein) of proteases (A), 588 

chitinases (B), lipases (C) and esterases (D), produced by eleven isolates of Pochonia 589 

chlamydosporia (isolates 10, 16, 60, 69, 132, 104, 280, 309, 392, 399 and 400) after 3, 5 and 590 

7 days of growth in non supplemented medium (A) and medium supplemented with gelatin (B 591 

and D), and olive oil. 592 

 593 

Fig 4 - Comparison between eleven isolates of Pochonia chlamydosporia (isolates 10, 16, 60, 594 

69, 132, 104, 280, 309, 392, 399 and 400) on enzyme specific activities (nmol ρ-nitrophenol 595 

min-1 ml-1 µg protein). Chitinases, lipases and esterases were measured after five days of 596 

growth. Proteolytic activity was measured in non-amended medium; chitinase and esterase 597 

activity were measured in medium induced with gelatin; and lipase activity was measured in 598 

medium containing olive oil. (bar = SEM means). 599 
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 613 
 614 
Table 1 - Isolates of Pochonia chlamydosporia examined. 615 
 616 

Table 2 - Kendall’s coefficient of concordance of nine Pochonia chlamydosporia isolates (10, 617 

16, 60, 104, 132, 280, 392, 399 and 400) based on their saprotrophic growth (rhizosphere 618 

colonisation), parasitic growth (egg parasitism) and ability to produce selected enzymes in 619 

vitro. Values ranging from 1 (smallest in the rank) to 9 (greatest in the rank) were attributed to 620 

each isolate according their activity. The ranking was originated from means of rhizosphere 621 

colonisation ability, parasitism on Meloidogyne spp. and Globodera pallida eggs and specific 622 

enzymatic activity produced by individual isolates. The logit of mean percentages of 623 

colonisation and parasitism are shown in brackets.  624 

 625 

Table 3 - Spearman’s rank correlation coefficient of nine Pochonia chlamydosporia isolates 626 

(10, 16, 60, 104, 132, 280, 392, 399 and 400) based on their saprotrophic growth (rhizosphere 627 

colonisation), parasitic growth (egg parasitism) and ability to produce selected enzymes in 628 

vitro. Spearman’s rank correlation coefficient was calculated with Genstat®. 629 

 630 

 631 

 632 

 633 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

 
 
Table 1 
 

Isolate number Host nematode Substratum Country of Origin 
10 Meloidogyne incognita Eggs Brazil 
16 Meloidogyne spp. Soil Cuba 
60 Heterodera avenae Eggs UK 
69 Heterodera avenae Spore New Zealand 
104 Heterodera schachtii Spore UK 
132 Meloidogyne spp. Soil Kenya 
280 Globodera rostochiensis Eggs UK 
309 Meloidogyne spp. Eggs Zimbabwe 
392 Meloidogyne incognita Eggs Cuba 
399 Meloidogyne spp. Eggs China 
400 Meloidogyne spp. No information Bulgaria 
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Table 2. 
 
 

 
Ranks 

Isolate Rhizosphere
colonisation Proteases Chitinases Lipases Esterases 

Egg 
parasitism 

(Meloidogyne) 

Egg 
parasitism 
(G. pallida) 

Mean 

 
16 

 
9 (0.47) 

 
9 

 
9 

 
3 

 
8 

 
6 (-0.95) 

 
3 (-1.02) 

 
6.7 

280 2 (-0.16) 6 8 3 4 8 (-0.08) 9 (1.28) 5.7 
399 7 (0.07) 2 4 8 2 7 (-0.16) 8 (-0.37) 5.4 
10 5 (0.04) 3 5 6 3 9 (-0.08) 6 (-0.71) 5.3 

132 8 (0.12) 8 7 3 5 4 (-1.11) 1 (-1.20) 5.1 
104 1 (-0.27) 5 6 3 9 3 (-1.13) 4 (-1.01) 4.4 
392 3 (-0.11) 4 2 7 7 5 (-0.97) 2 (-1.14) 4.3 
60 4 (-0.11) 7 3 3 6 1 (-1.22) 5 (-0.85) 4.1 

400 6 (0.16) 1 1 9 1 2 (-1.14) 7 (-0.67) 3.9 
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Table 3. 
 

 
Spearman’s rank correlation coefficient 
P-values 
 Chitinases 1  *       
Egg parasitism (Meloidogyne) 2  0.224  *      
Egg parasitism (G. pallida) 3  0.765  0.381  *     
 Esterases 4  0.286  0.546  0.058  *    
 Lipases 5  0.020  0.852  0.388  0.046  *   
 Proteases 6  0.030  0.798  0.139  0.050  0.001  *  
 Rhizosphere colonisation 7  0.637  0.831  0.546  0.488  0.708  0.606  * 
    1 2 3 4 5 6 7 
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Figure 1 
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Figure 3 
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Figure 4 
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