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Abstract

Turbulent pipe flows subject to temporal acceleration have been considered in this study.

Large-eddy simulations (LESs) of accelerated turbulent flow in a circular pipe were per-

formed to study the response of the turbulent flow to temporal acceleration. The simula-

tions were started with the fully-developed turbulent pipe flow at an initial Re number,

and then a constant temporal acceleration was applied. During the acceleration, the

Reynolds number of the pipe flow, based on the pipe diameter and the bulk-mean ve-

locity, increased linearly from ReD = 7000 to 36000. A dimensionless response time

for various flow quantities was introduced to measure the delays in the response of the

near-wall turbulence to temporal acceleration. The results reveal distinctive features of

the delays responsible for turbulence production, energy redistribution, and radial prop-

agation. The conditionally-averaged flow fields associated with Reynolds shear stress

producing events were analysed. In the transient flows, sweeps and ejections were closely

linked to the delays of turbulence production and of turbulence propagation away from
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the wall. It is found that strong sweep events were related to the delayed turbulence

production in the near-wall region, while ejection events were associated with the propa-

gation of the turbulence away from the wall. The results show that the anisotropy of the

turbulence was enhanced during the transient, and this would be a challenging problem

to standard turbulence models.

Keywords: pipe flow; transient; large-eddy simulation; acceleration; turbulence;

delay effect
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1 Introduction

Unsteady turbulent flows through a pipe are frequently encountered in engineering appli-

cations such as turbo-machinery and heat exchangers, and also in biomedical applications

such as airflow in the human lungs and blood flow in large arteries. In addition to the

practical implications of achieving a better understanding of flows of this type, the study

of unsteady turbulent flows in pipes provides insight into the underlying physics of tur-

bulent boundary layers. To date, unsteady turbulent pipe flows have received relatively

little attention compared to steady ones despite their importance.

Many experimental and numerical studies of unsteady turbulent pipe (Mizushina

et al., 1973; Ramaprian and Tu, 1983; Shemer et al., 1985) and channel (Tardu et al.,

1994; Scotti and Piomelli, 2001, 2002) flows have focused on periodic pulsating flows

rather than non-periodic transient ones due to their practical applications concerned and

the easy generation of the periodic flows. Mizushina et al. (1973), Ramaprian and Tu

(1983), Shemer et al. (1985), and Tardu et al. (1994) have found that, in pulsating tur-

bulent flow experiments, the effects of the pulsation frequency and the mean flow rate

were significant to the turbulence whereas that of amplitude was small. Scotti and Pi-

omelli (2001, 2002) performed a large-eddy simulations (LES) of pulsating channel flow

and subsequently tested the capability of Reynolds-avegared Navier-Stokes (RANS) equa-

tions simulations. They found that the near-wall turbulence generated by the unsteady

pressure gradient did not propagate beyond a certain distance lt and that the k − ε− v2

turbulence model performed better than other RANS models tested.

As regards the non-periodic transient pipe flow, Kataoka et al. (1975) have inves-

tigated the response to a step input of flow rate using an electrochemical technique.

They found that the time at which transition from laminar to turbulent state occurred

decreased with increasing Reynolds number. Maruyama et al. (1976) carried out an ex-

periment in similar conditions to that of Kataoka et al. (1975). They observed the delay

in the response of turbulence, which was found to propagate from the wall to the centre

of the pipe. A study of He and Jackson (2000) was concerned with flow transients with

increasing and decreasing flow rates in a pipe using laser doppler velocimetry. They ob-
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served three delays in the turbulence: a delay in the turbulence production, a delay in

turbulence energy redistribution, and a delay related to the radial propagation of turbu-

lence. Moreover, they found that the radial propagation of turbulence was determined

by initial flow conditions. Greenblatt and Moss (2004) measured the turbulent pipe flow

with a temporal pressure gradient change which was larger than those considered in the

previous studies (Maruyama et al., 1976; He and Jackson, 2000). They divided the flow

regime into four different phases and identified the reconstitution of the wake, which was

not observed in the previous studies.

Numerical studies on the transient turbulent flow with temporal pressure gradient

are relatively scarce. A direct numerical simulation (DNS) of a decelerated turbulent

channel flow subjected to a sudden change of pressure gradient was performed by Chung

(2005, 2006). He found that there are two different relaxations in the decelerated flow:

a fast relaxation at the early stage and a slow one at the later stage. The anisotropic

response of the near-wall turbulence was detected in the early stage, which would be

a troublesome problem to standard turbulence models (Chung and Jafarian, 2005; He

et al., 2008; Khaleghi et al., 2009). Chung and Jafarian (2005) applied several turbulence

models to the decelerated flow with mixed success.

In the present work, large-eddy simulations of an accelerated turbulent pipe flow

were performed to elucidate the delay effect on the near-wall turbulence. This is, to

the best knowledge of the authors, the first LES study of the turbulent pipe flow with

temporal acceleration. The simulation conditions were chosen to be the same as in the

experiments of He and Jackson (2000). Various turbulence statistics were analysed to

study the response of the near-wall turbulent flow. A dimensionless time for the response

of turbulence is proposed to shed light on the delay effect. The results can be useful for

the development of better turbulence models for transient flows.
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2 Numerical methods

The governing equations for LES are the filtered continuity and incompressible Navier-

Stokes equations:

∂ui
∂xi

= 0, (1)

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

− ∂τij
∂xi

, (2)

where an overbar denotes filtered variables, and τij is the subgrid-scale stress:

τij = uiuj − uiuj. (3)

All variables are non-dimensionalised by the pipe radius, R, and the bulk-mean velocity at

the initial Reynolds number, Um0. The subscript 0 indicates values at the initial Reynolds

number. As for the coordinates, x, r and θ are the axial, radial and circumferential

directions, respectively, and u, ur and w are the corresponding velocity components.

For comparison with other wall-bounded turbulent flows, an additional coordinate is

introduced: y = R − r, and v = −ur, where y is the wall-normal coordinate, and v the

corresponding velocity component. The origin of the coordinate is located at the centre

of inlet plane at x = 0.

In the present study, the simulations were started from a fully-developed turbulent

pipe flow at ReD0 = 7000, where the Reynolds number (ReD = UmD/ν) is based on

the pipe diameter and the bulk-mean velocity. The acceleration parameter, f = dUm/dt,

is introduced to represent the non-dimensional change in the bulk-mean velocity. The

mean pressure gradient was dynamically adjusted during the acceleration, so that the

bulk-mean velocity increased linearly in time at a prescribed rate. When f = 0, this

procedure was the same as the method used in a constant mass flow rate simulation.

The acceleration parameter, f , was kept constant throughout the simulations, so the

mass flow rate was increased linearly to the final Reynolds number of ReD1 = 36000.

The acceleration parameter was chosen as f = 0.2 to compare the results with the

experimental data of He and Jackson (2000). In the experiment, the water flow in a pipe of
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diameter 50.8mm was accelerated from ReD0 = 7000 to ReD1 = 45200 over 5 seconds; the

corresponding dimensionless ramp rate parameter is γ = D/uτ0(1/Um0 · dUm/dt) = 6.1,

and they used this parameter as an indication of the departure from the turbulence of

pseudo-steady flow. Much weaker ramp rate parameters were also used in the experiment,

but comparison was restricted to the f = 0.2 case due to computational constraints.

Numerical methods in cylindrical coordinates require significant effort to treat the

singularity at r = 0. In the present formulation, the radial flux qr = rur on a staggered

grid was introduced to simplify the discretisation of this region, since qr = 0 at r = 0

(Verzicco and Orlandi, 1996). Periodic boundary conditions were applied in the axial and

circumferential directions, and a no-slip boundary condition was imposed at the walls.

A dynamic subgrid-scale model (Germano et al., 1991; Lilly, 1992) was used to ac-

count for subgrid-scale stresses. Using the eddy-viscosity assumption, the turbulent eddy

viscosity νt was expressed as νt = Cs∆
2|S|, where |S| =

√
2SijSij. In this study, the

model coefficient Cs was determined using the dynamic eddy viscosity model proposed

by Germano et al. (1991), as modified and extended by Lilly (1992). In this model, the

constant Cs is not given a priori, but is computed from the flow variables during the

simulation. The model constant Cs was averaged over the x and θ directions. A detailed

description of the method for determining the model coefficient can be found in the pa-

pers of Germano et al. (1991) and Lilly (1992). The grid filter width ∆ was taken to be

equal to the grid spacing. The box filter was applied in the streamwise and azimuthal

directions for the test filter (Lund, 1997). No explicit test filtering was applied in the

radial direction. The total viscosity, ν+ νt, was constrained to be non-negative to ensure

numerical stability of the time integration (Germano et al., 1991).

The governing equations were integrated in time using the fractional step method

with the implicit velocity decoupling procedure proposed by Kim et al. (2002). In this

approach, the terms in the momentum equations were first discretised in time using the

Crank-Nicolson method, and then the coupled velocity components in the convection

terms were decoupled using the implicit velocity decoupling procedure. The decoupled

velocity components were then solved without iteration. Because the implicit decoupling

procedure relieved the Courant-Friedrichs-Lewy (CFL) restriction, the computation time
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was reduced significantly. In the preliminary calculation of the present flow configuration,

the comparison between the iterative numerical scheme (Choi and Moin, 1994) and the

present one was made. Usually, three or four iterations were needed to obtain a con-

verged solution with the coupled velocity components, and the computational time of the

iterative scheme was 1.6 ∼ 1.9 times larger than that of Kim et al. (2002). The overall

accuracy of the present numerical methods was second-order in time. All terms were

resolved using a second-order central difference scheme in space on a staggered mesh.

Details regarding the numerical algorithm can be found in Kim et al. (2002).

3 Results and Discussion

First, a DNS of steady turbulent pipe flow at ReD = 5300 was conducted to ascertain the

reliability and accuracy of the present numerical methods. The computational domain

length was 10R in the streamwise direction and the grid points used were 257(x) ×

69(r)× 129(θ). The domain size and the grid resolution were the same as in the DNS of

Akselvoll and Moin (1996). As shown in Figure 1, the root-mean-squared (rms) velocity

fluctuations (ui,rms) are in excellent agreement with the previous DNS data of Akselvoll

and Moin (1996), demonstrating that the numerical methods employed in this study are

adequate for the steady turbulent pipe flow simulation.

In the accelerated turbulent flow, the Re number increases in time, and consequently,

the grid resolution calculated in local wall units varied during the simulation. The grid

resolution was finest at the initial Re number, and even comparable to the one used in

the DNS of Akselvoll and Moin (1996). Then, the grid resolution became coarser with the

increase ofRe, and would eventually become too coarse to resolve turbulent structures. To

find the Re number range which could be resolved accurately, preliminary simulations of

transient turbulent pipe flow were performed with 6.3×106 (medium) and 8.4×106 (fine)

grid points (Jung and Chung, 2007, 2009; Chung, 2008). The domain sizes of L = 10R

was used for the medium grid while L = 8R was used for the fine grid to improve the

resolution. For this test, the same initial Re number of ReD0 = 7000 and the acceleration

parameter of f = 0.2 were used. The simulations were run up to a non-dimensional time
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Te = 27.2R/Um0 with a final Re number of ReD = 45200. From the preliminary tests,

little difference was observed between the simulations for 7000 ≤ ReD ≤ 36000, and a

small difference appeared only at the later stage of transient, where the Re numbers were

relatively high (ReD > 36000).

The results presented in this paper were obtained with the 8.4 × 106 grid points

for 7000 ≤ ReD ≤ 36000. The computational domain in the streamwise direction was

L = 8R. The number of grid points used was 128×256×256 in the x, r, and θ directions,

respectively. In the wall-normal direction, grid points were clustered according to a

hyperbolic tangent distribution. The grid resolution at the initial Re number (ReD0 =

7000) was ∆x+ = 14.38, ∆y+
min = 0.02, ∆y+

max = 2.9, and ∆z+
max(≡ R∆θ+) = 5.65. This

is comparable to the resolution used in the DNS of Akselvoll and Moin (1996), indicating

that the grid resolution is very fine at the initial Re number. At the final Reynolds

numbers (ReD1 = 36000), the resolution was ∆x+ = 61.0, ∆y+
min = 0.08 , ∆y+

max = 12.2,

and ∆z+
max = 23.95. A time step size of 0.0005R/Um0 was used and the total excursion

time was Te = 20.6R/Um0. All statistics were obtained using plane averaging in the

streamwise and azimuthal directions. The ensemble averages were based on databases

consisting of eight independent realisations.

3.1 Transient

An LES of steady pipe flow at ReD = 7000 was performed to provide the initial conditions

for the main simulations. The corresponding Re number based on the friction velocity

was Reτ = 230. The mean velocity (Um) and rms fluctuations (ui,rms) compared very

well with the DNS results of ReD = 5300 as shwon in Figure 1. Now, the flow rate of the

pipe flow was increased linearly in time from the initial value of ReD = 7000 to the final

value of ReD = 36000 (or Reτ = 960) over a total excursion time of Te = 20.6R/Um0.

Figure 2 shows the temporal development of the skin friction coefficient, Cf = τw/(
1
2
U2
m),

during the transient period. Blasius’ law of Cf = 0.0791Re
−1/4
D is employed to compare

the present results with those of the steady pipe flow. LES results of steady pipe flow at

five ReD numbers are also included in the figure for comparison. As shown in Figure 2,
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the response of the wall shear stress to the temporal acceleration is rather complex, and

can be divided into three different stages: an initial weak time-dependence (WT) stage, a

strong time-dependence (ST) stage, and a pseudo-steady (PS) stage. Note that the local

Reynolds number is equivalent to the time elapsed after the onset of the acceleration

since the mass flow rate increases linearly in time: ReD = ReD0 + (ReD1 − ReD0)ξ/Te,

where ξ is the time measured from the onset of the acceleration.

In the initial WT stage (7000 < ReD < 21000, or 0 < ξ < 10), the main feature

is a delay effect. The increase in the wall shear stress is much weaker than the steady

pipe flow case, and the rate of change in the wall shear stress (dτw/dt) is roughly half

of the corresponding steady value. At the end of the WT stage (ReD = 21000), Cf is

about 70% of the corresponding steady value due to the slow response of the near-wall

turbulence (He and Jackson, 2000). During the ST stage (21000 < ReD < 28000, or

10 < ξ < 15), the most striking feature is a rapid increase in Cf . The rate of change in

the wall shear stress is twice as high as the steady value, and this suggests that turbulence

production near the wall is significantly enhanced at this stage. At the end of the ST

stage (ξ = 15), the Cf value has recovered almost the corresponding steady value at

ReD = 28000. In the PS stage (ReD > 28000, or ξ > 15), the skin-friction decreases at

the same rate as in the steady state case, and this indicates that the near-wall turbulence

has approached the pseudo-steady state. Note that the classification in Figure 2 is based

on the skin friction, and it represents the response of near-wall turbulence. As shown

later, however, the response of turbulence away from the near-wall region is much slower,

and the pseudo-steady state is not achieved until much later at ξ = 20 (or ReD = 35000).

3.2 Mean velocity

Figure 3 shows the local mean streamwise velocity profiles at several time instants dur-

ing the acceleration with the experimental data of He and Jackson (2000). It is worth

noting that near-wall measurement (y/R < 0.55) is not available in their experiment.

The numerical results are in good agreement with the experimental data. During the

acceleration, the local bulk-mean velocity has increased by about 5.1 times. In the WT
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stage, it is clear that the local bulk-mean velocity increases by the same amount in all

radial locations apart from the near-wall region (y < 0.1). As the influence of the wall

grows in the ST stage, the rate of increase starts to reduce in most areas apart from the

pipe centre region. In the experiment of He and Jackson (2000), the streamwise velocity

was measured at 12 radial locations, and the first measurement location was at y = 0.055,

which corresponds to y+ = 13 at ReD0 = 7000, and y+ = 53 at ReD1 = 36000. This

location lies outside the buffer layer, where most near-wall turbulence production takes

place. So, the temporal development of the near-wall turbulence (in the viscous sublayer

and the buffer layer) can not be compared directly with the measurements of He and

Jackson (2000).

Figure 4 shows the mean velocity at several time instants, using wall units u+ = u/uτ

and y+ = yuτ/ν, where uτ is the local friction velocity. There is an undershoot in the

log-law profile in the early WT stage (ReD = 7350) due to the sudden increase in uτ

as shown in Figure 2. As the wall shear stress has not recovered its steady value, an

overshoot in the velocity profiles is observed in the late WT stage and the ST stage

(ReD = 14000 and 21000). As expected, the mean velocity follows the steady profile

in the PS stage. It is worthwhile to mention that some similarities between temporally

accelerating flow and spatially accelerating flow have been observed in this study. For

example, the local log-law profiles showed an overshoot in the early transient region of

the favourable pressure-gradient boundary layer (Fernholz and Warnack, 1998; Piomelli

et al., 2000).

3.3 Velocity fluctuations

The rms velocity fluctuations are shown in Figure 5. The velocities are normalised by the

initial bulk-mean velocity, ui,rms/Um0. One of the important features of the response of

velocity fluctuations to the acceleration is a delay effect (He and Jackson, 2000; Jung and

Chung, 2009). It is clear from Figure 5 that the magnitudes of all velocity fluctuations

change very little during the early WT period, indicating that the turbulence is frozen in

this early stage. When the turbulence intensities are normalised by the local bulk-mean
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velocity, ui,rms/Um is actually attenuated, as pointed out in the previous studies (He and

Jackson, 2000; Jung and Chung, 2009). This clearly indicate that turbulence production

is delayed at the WT stage of the transient (see also Figure 6).

It is found that the response to the temporal acceleration of different velocity compo-

nents is different from each other, although the vrms and wrms components display similar

behaviour. In the wall region (y < 0.2), urms increases after the initial delay whereas

vrms and wrms do not change much in the WT stage. This suggests that the anisotropy

of the turbulence near the wall becomes manifest during the transient moving towards to

a single component state, which would be a challenge to conventional turbulence models

(Chung and Jafarian, 2005; Khaleghi et al., 2009). The axial velocity fluctuations first

respond to the temporal acceleration: A strong increase in urms occurs in the near-wall

region, and this is closely associated with the turbulence production near the wall. The

radial and azimuthal velocity fluctuations shown in Figures 5b and 5c also show delayed

responses. Compared to the axial velocity fluctuations, vrms and wrms exhibit longer

delays, and this can be explained by the fact that these velocity components have no

production term in their transport equations (Mansour et al., 1988; Chung, 2005). As a

result, vrms and wrms start to increase much later, and the energy redistribution mech-

anism between velocity components is responsible for the delayed increase in vrms and

wrms (He and Jackson, 2000).

To achieve a better understanding of transient turbulent flows, the relative rate of

change of rms velocity fluctuations is calculated from Figure 5. The non-dimensional

rate of change of a flow quantity φ is defined as:

g(φ) =
R

Um0φt

φt+∆t − φt
∆t

, (4)

where ∆t = 0.25R/Um0 is chosen to evaluate the time derivative. It is found that all

three velocity components increase drastically very close to the wall (y < 0.05) for

20000 < ReD < 25000. This reflects the augmentation of turbulence production and

energy redistribution in this region. The increased near-wall turbulence generation prop-

agates towards the pipe centre in both the ST and PS stages, displaying a banded region
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of high rate of change from the wall to the pipe centre, which represents the radial prop-

agation of turbulence. This radial propagation explains the delay in the core region

(y > 0.2) (Maruyama et al., 1976; He and Jackson, 2000).

Figure 6 shows the production term in the turbulence kinetic energy transport equa-

tion in local wall units, −u′v′(dU/dy)ν/u4
τ . The delay effect and the non-equilibrium

state of turbulence are again evident in the production term. In the early WT stage, the

production term is frozen due to the slow response of the Reynolds shear stress and the

mean velocity field, and the location of the peak does not change in time but remains at

the initial location. When expressed in local wall units, however, the peak location moves

gradually away from the wall, and the magnitude of the production decreases due to the

increase in uτ . The production term starts to increase at ReD = 10000, and this is when

the urms component begins to increase. As the near-wall turbulence activities become

stronger in the ST stage, the location of the peak moves towards the wall, and the peak

is located at around y+ = 12 in the PS stage as in the steady turbulent boundary layer

(Kim et al., 1987), indicating that the near-wall turbulence has recovered the equilibrium

state.

Figure 7 displays the rms velocity fluctuations near the wall along with the experimen-

tal data of He and Jackson (2000). It is worth noting that there is a significant difference

in the initial rms velocity fluctuations between the LES and the experiment: The initial

rms values of the experiment, vrms and wrms in particular, are found to be much larger

than the available DNS data at a similar Re number, while the initial condition used in

this study compares very well with the DNS data as shown in Figure 1. The noise in the

LDA signal in the experiment could have contributed to high levels of Reynolds normal

stresses. Considering this difference, there is reasonably good qualitative agreement be-

tween the LES results with the experimental data. The delay effect in the WT stage is

clearly seen in all three velocity components. In Figure 7a, the magnitude of the axial

velocity fluctuations changes gradually during the WT stage, followed by a rapid increase

in the ST stage. As mentioned above when discussing Figure 6, this rapid increase of the

axial velocity fluctuations is closely associated with the near-wall turbulence production

(He and Jackson, 2000; Jung and Chung, 2009). It is also interesting to note that the
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delay in the early WT stage is rather short at y = 0.075, while there is a longer delay

at y = 0.173. It should be noted that y = 0.075 and y = 0.173 corresponds to y+
0 = 17

and 40, based on the initial friction velocity. It is found that the delay time for the urms

component in the wall region (y < 0.2) increases with the distance from the wall (see also

Figure 9).

It is worth mentioning that a plateau in the near-wall axial velocity fluctuations at

y = 0.075 is correctly predicted in the ST stage (Figure 7a). This plateau region can

be explained by the development of urms profiles for 24500 < ReD < 28000. It is found

that the urms fluctuations at y = 0.075 remain unchanged in this Re range while near

the wall (y < 0.075), urms increases with increasing Re due to the enhancement of new

turbulence production. The maximum urms value increases by 10% during this period

and its location moves towards the wall while the local friction velocity, uτ , increases by

20%.

The radial and azimuthal velocity fluctuations shown in Figures 7b and 7c exhibit

delayed responses, and the delay in the vrms and wrms components are much longer than

that of urms, apart from the pipe centre region, where similar delays are observed in all

three velocity components. After the onset of the acceleration, vrms and wrms remain

constant for most part of the WT stage, and this delay is attributed to the lack of the

production terms in their transport equations (He and Jackson, 2000). It is worth noting

that, unlike urms, the behaviour of vrms and wrms at the two radial locations (y = 0.075

and 0.173) shows similar trends to each other, demonstrating different responses of the

velocity fluctuations to the acceleration.

The behaviour of the Reynolds shear stress, −u′v′, is found to be similar to that

of vrms and wrms. Figure 8 shows the Reynolds shear stress normalised by the initial

bulk-mean velocity, −u′v′/U2
m0. −u′v′ exhibits a significant delay and does not change

in the early WT stage. This clearly shows that the turbulence is slower to respond to

the acceleration than the mean velocity, and becomes less efficient to extract energy from

the mean flow field in the WT stage. This becomes clearer when the local bulk-mean

velocity is used instead of the initial bulk-mean velocity: −u′v′/U2
m decreases in the WT

stage due to the linear increase in the local bulk-mean velocity (Jung and Chung, 2009).
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After the initial delay, −u′v′ starts to increase at ReD = 17000. It is interesting to note

that this Reynolds number is roughly when vrms and wrms also begin to increase.

3.4 Time delay

To obtain a quantitative measure of the time delay in the response of a flow variable,

dimensionless delay time ξ∗ corresponding to (φ−φ0)/φ0 > aφ is calculated as a function

of its distance from the wall in Figure 9. Greenblatt and Moss Greenblatt and Moss

(2004) used a threshold value of aφ = 0.15 in their analysis. To find an appropriate

threshold value for aφ, values in the range of 0.15 ≤ aφ ≤ 0.8 were tested in this study.

Although similar results were obtained for aφ = 0.15, 0.5 and 0.8, with a small value of aφ

being associated with a short delay, aφ = 0.8 was found to show the most similar trend of

delay and propagation characteristics shown in Figures 5 and 7. The mean velocity shows

the fastest response among all flow quantities in Figure 9. In the pipe centre region, the

delay time of Um is about ξ∗ = 5.5R/Um0, while the near-wall region has a delay time of

ξ∗ = 2.7R/Um0. It is worth noting that the delay time for the bulk-mean velocity is about

ξ∗ = 3.4R/Um0, which is a little larger than the near-wall delay time, and much smaller

than the centre-line velocity delay time. It is notable that apart from the wall region

there is relatively small variation of the response of the mean velocity along the radial

direction when compared to the variations of velocity fluctuations. This is consistent

with the findings in Figure 3 that the mean velocity responds to the acceleration like a

slug flow (He and Jackson, 2000).

Unlike the mean velocity, the changes in the velocity fluctuations are gradual and

much slower. Turbulence is observed to increases in the near-wall region first, and then

propagates towards the pipe centre. This is clearly seen in Figure 9, where the delay

time increases almost linearly with the distance from the nearest wall for 0.2 < y < 0.7.

However, this linear behaviour does not continue in the pipe centre region (y > 0.7).

Instead, the delay time in the pipe centre region (y > 0.7) is found to be much smaller

than expected from the linear relationship. This is because the flow in the pipe centre

region is influenced by the propagation from all radial directions. It should also be
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noted that away from the wall, the propagation speeds of the three velocity components

are almost the same in the ST stage. For 0.2 < y < 0.7, the response of the velocity

fluctuations propagates from the wall to the pipe centre at the speed of c = 0.1Um0 or

c+
0 = 1.5 (based on uτ0). The propagation starts at ReD = 21000 or ξ = 10, so the

propagation velocity based on ReD = 21000 is about c+ = 0.7. It is interesting to note

that the new turbulence structures propagated at a constant speed in the acceleration

phase of the pulsating turbulent channel flow (Scotti and Piomelli, 2001). At low pulsating

frequencies, the propagation speed in the pulsating flow was c+ = 2κ, where κ is the von

Karman constant. However, a direct comparison should be taken with caution due to the

obvious differences between the two cases.

In the wall region (y < 0.2), urms responds to the imposed acceleration first and

then vrms and wrms follow. This tendency represents the delays of turbulence production

for urms, and of energy redistribution by pressure strain for vrms and wrms. The axial

component of turbulent energy is directly supplied from the mean flow through the mean

shear and the Reynolds shear stress, while the main source of the radial and azimuthal

components of turbulent energy stems from the redistribution of the axial component by

the pressure strain mechanism. It is found that the delay time for the urms component

in the wall region (y < 0.2) increases almost linearly away from the wall (see Figure 9).

The propagation speed of urms in the wall region (y < 0.2) is about cx = 0.03Um0 or

0.5uτ0 , a third of the core region value. This explains the differences in the response of

urms at two locations (y = 0.075 and 0.173), as shown in Figure 7a. The delay between

the two locations (d = 0.098) is ∆τ = d/cx = 3.3, and this delay time is equivalent

to ∆ReD = 4500 in Reynolds number difference, as shown in Figure 7a. The near-wall

responses of the vrms and wrms components are even slower than urms very near the wall

due to the lack of turbulence production. This is consistent with the findings in Figures

5 and 7. At y < 0.05, the propagation speed of vrms is about cy = 0.01Um0 or 0.15uτ0 ,

but for 0.05 < y < 0.2 the propagation speeds of vrms and wrms are much faster than the

urms value.
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3.5 Quadrant analysis

Quadrant analysis of the Reynolds shear stress −u′v′ provides detailed information on the

contribution of flow events to the production (or destruction) of turbulent kinetic energy

(Willmarth and Lu, 1972; Brodkey et al., 1974). The analysis divides the Reynolds shear

stress into four categories according to the signs of urms and vrms. The first quadrant

(Q1), u′ > 0 and v′ > 0, contains outward motion of high-speed fluid; the second quadrant

(Q2), u′ < 0 and v′ > 0, contains outward motion of low-speed fluid referred to as the

ejection events; the third quadrant (Q3), u′ < 0 and v′ < 0, contains inward motion of

low-speed fluid; the fourth quadrant (Q4), u′ > 0 and v′ < 0, contains an inrush of high-

speed fluid referred to as the sweep events. Here, Q1 and Q3 events contribute to the

negative Reynolds shear stress (negative production) while Q2 and Q4 events contribute

to the positive Reynolds shear stress (positive production).

The contribution to the Reynolds shear stress from each quadrant is shown in Figure

10. Here, the local friction velocity has been used to calculate y+ values. The crossover

point between the dominance of Q2 and Q4 events is located at y+ ≈ 13 for ReD = 7000.

This is very similar to the numerical results for turbulent channel flow (Kim et al.,

1987), indicating that the initial near-wall turbulence is in the equilibrium state. It is

notable that the position of the crossover point moves away from the wall with increasing

Reynolds number. The Q4 events near the wall increase gradually with the introduction

of the acceleration, and strong Q4 events take place in the late WT and early ST stages

(17500 ≤ ReD ≤ 24500). The contribution of Q4 becomes much larger than that of Q2

at the end of the WT stage at ReD = 21000.

The joint weighted probability density functions (pdf) are also examined at y = 0.04

and 0.5 in Figure 11. The y = 0.04 location corresponds to y+ = 9 at ReD0 = 7000,

and y+ = 20 at ReD1 = 21000. The pdf results in Figure 11a show that the increase in

Q4 is attributed mainly to the large amplitude of the radial velocity fluctuations, and

this indicates that the strong Q4 events in the transient flow are closely related to the

sudden change in near-wall turbulence (Figures 5 and 7). However, the large increase in

near-wall vrms could not be detected in the previous experiment of He and Jackson (2000)
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due to measurement constraints. From the pdf study in Figure 11b, it is also found that

strong Q2 events occur in the ST stage (21000 ≤ ReD ≤ 28000) away from the wall. This

suggests that Q2 events are associated with the propagation of turbulence from the wall

towards the pipe centre.

4 Conclusions

In this study, numerical simulations of transient turbulent pipe flow were performed using

LES to investigate the response of unsteady turbulence to temporal acceleration. The

response of the transient flow after the onset of the acceleration was divided into three

stages, based on the unsteady skin-friction behaviour: weak time-dependence (WT),

strong time-dependence (ST), and pseudo-steady (PS) stages. After an initial delay, flow

quantities increased rapidly in the ST stage, and recovered almost the corresponding

steady value at the end of the ST stage. From the analysis of velocity fluctuations,

three delays responsible for the turbulence production, energy redistribution, and radial

propagation were identified. A dimensionless time for the response of turbulence was

employed to quantify the delay effects, and the speed of the radial propagation was found

to be c+
0 = 1.5uτ0 in the core region (0.2 < y < 0.7). The conditionally-averaged flow

fields associated with Reynolds shear stress producing events showed that sweeps and

ejections were closely related to the delays of turbulence production and the turbulence

propagation towards the pipe centre. It was found that the anisotropy of the turbulence

was enhanced during the acceleration. Some similarities between temporally accelerating

flow and spatially accelerating flow have been observed in this study.
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Figure 1: Velocity fluctuations of DNS pipe flow at ReD = 5300. The DNS data of
Akselvoll and Moin (1996) are included for comparison.
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Figure 2: Distribution of skin friction coefficient during the acceleration.
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Figure 3: Mean velocity profiles at several Re numbers. Velocity is normalised by the
initial bulk-mean velocity, Um0. The Reynolds numbers of the data are ReD = 7000,
14000, 21000, 28000, and 35000.
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Figure 4: Mean velocity profiles in local wall units, u+ = u/uτ vs. y+ = yuτ/ν, where uτ
is the local friction velocity.
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Figure 5: Velocity fluctuations normalised by the initial bulk-mean velocity. a) urms/Um0,
b) vrms/Um0, and c) wrms/Um0.
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Figure 6: The production term in the turbulence kinetic energy transport equation in
local wall units, −u′v′(dU/dy)ν/u4
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Figure 7: Time history of rms velocity fluctuations. a) urms, b) vrms, and c) wrms.
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Figure 9: Dimensionless delay time as a function of the distance from the wall.
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Figure 10: Quadrant analysis for Reynolds shear stress during the acceleration at ReD =
7000 and 21000.
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Figure 11: Joint weighted probability density functions of velocity fluctuations during
acceleration at a) y = 0.04, and b) y = 0.5.
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