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Abstract

The colours of chromatically homogeneous object surfaces measured by a sensor vary with the illuminant
colour used to illuminate the objects. In contrast, colour constancy enables humans to identify the true
colours of the surfaces under varying illumination. This paper proposes an adaptive colour constancy
algorithm which estimates the illuminant colour from wavelet coefficients at each scale of the decomposition
by discrete wavelet transform of the input image. The angular error between the estimated illuminant colours
in consecutive scales are used to determine the optimum scale for the best estimate of the true illuminant
colour. The estimated illuminant colour is then used to modify the approximation subbands of the image so
as to generate the illuminant-colour corrected image via inverse discrete wavelet transform. The experiments
show that the colour constancy results generated by the proposed algorithm are comparable or better than
those of the state-of-the-art colour constancy algorithms that use low-level image features.
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1. Introduction

The human visual system is able to determine with ease the colour of an object from the spectral power
distribution reflected from its surface. This ability to determine a constant colour or approximately constant
colour descriptor of the object irrespective of the illuminant colour illuminating the object is called colour
constancy [1]. Colour constancy is essential in many colour-based computer vision applications, such as
image retrieval, image classification, object recognition and object tracking [2].

Several colour constancy algorithms have been proposed and they can be categorised into two main
groups. Algorithms in the first group represent images by features which are invariant with respect to the
scene illuminant [3, 4], and it is not necessary to estimate the illuminant colour. Algorithms in the second
group correct images for deviations from a canonical illuminant. These either propose an illuminant colour
estimation and after which the image is corrected [5, 6, 4, 7], or these directly estimate the illuminant-colour
corrected image [8, 9, 10] and after which the illuminant colour is determined. If desired, illuminant invariant
features can be determined from the corrected image. The approach adopted in our colour constancy
algorithm is of the second group.

The gamut of a canonical illuminant is the set of all possible RGB triplets, typically a white illuminant.
It is represented by a convex hull in the RGB colour space [8]. Gamut mapping [8] exploits the observa-
tion that only a limited set of RGB triplets can be observed under a given illuminant, and computes the
transformations that map an observed gamut into the canonical gamut in order to determine the illuminant
colour. The algorithm produces among the best colour constancy results [11]. Gamut constrained illumi-
nation estimation (GCIE) algorithm [9] restricts the above-mentioned transformations to plausible existing
illuminants to produce better colour constancy results. Other approaches to colour constancy include proba-
bilistic methods [5] and learning-based methods [6]. The framework which unifies multiple colour constancy
algorithms in [4] estimates the illuminant colour from the correlation of the image data and uses the prior
knowledge about which colours appear under a specific illuminant.

The aforementioned colour constancy algorithms are complex and require an image dataset of known
illuminants for calibration. In this paper, we focus on a colour constancy algorithm of lesser complexity
and consider fast algorithms that are based on low-level image features. Max-RGB algorithm is one such
algorithm which estimates illuminant colour from the maximum response of the different colour image
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channels of an input image [12]. Another algorithm is based on the Grey-World algorithm [13], which
assumes that the average reflectance in the scene is achromatic. Shades of Grey algorithm [14] is a general
form of the Max-RGB and the Grey-World algorithms. Max-RGB algorithm is equivalent to applying the
L∞ Minkowski norm for the error function of Shades of Grey algorithm, whereas Grey-World algorithm is
equivalent to using the L1 norm. The best colour constancy results are obtained with the L6 norm. These
simple colour constancy algorithms are only slightly outperformed by the more complex algorithms, e.g.,
gamut mapping [2, 11]. The computationally efficient algorithms such as Grey-World algorithm is embedded
into the JPEG2000 coding standard [15] to achieve colour constancy. The colour constancy is applied on
RGB values prior to encoding [15] which is followed by colour space transformation and encoding in discrete
wavelet transform domain. Thus, computationally efficient colour constancy algorithms have potential to
be applied on image/video compression technology with a moderate computational cost.

The above algorithms utilise features extracted directly from RGB values of the images. Different than
the algorithms directly operating on RGB values, the gradient information of colour channels is also used
for the purpose of colour constancy [10]. Grey-Edge algorithm [10] assumes that the average edge difference
in the scene is achromatic and the algorithm is based on the observation that the distribution of colour
derivatives exhibits the largest variation in the direction of the illuminant. The direction is approximated
by the Minkowski norm of the derivatives. The algorithm is further extended to include higher-order
derivatives. In the event that the gradient information of the image cannot be distinguished by a gradient
operator, colour constancy cannot be provided. Another drawback of Grey-Edge algorithm is its dependency
on the edge information detected by a gradient operator which in turn depends on the scale parameter of
the Gaussian kernel used in the local smoothing.

Inspired by the results of Grey-Edge algorithm [10], we propose in this paper an adaptive colour constancy
algorithm using discrete wavelet transform (DWT). The proposed algorithm utilizes the wavelet coefficients
from the multiscale decomposition of the colour image channels via DWT to obtain estimations of the
illuminant colour at different scales of the decomposition. The angular error between the illuminant colour
estimations in consecutive scales is used to determine the optimum scale for estimating the true illuminant
colour. The approximation subbands of the colour image channels are then modified according to the
estimated illuminant colour, and are used in the inverse DWT to obtain the illuminant-colour corrected
image.

The paper is organized as follows. Section 2 discusses colour constancy algorithms based on Grey-World,
Max-RGB, Shades of Grey and Grey-Edge hypotheses. Section 3 presents the details of the proposed
algorithm. Section 4 presents the experimental results of the proposed algorithm together with four other
algorithms on two large datasets of images. Section 5 concludes the paper.

2. Colour Constancy Algorithms Based on Low-level Image Features

Using the same notation in [10], bold font to denote a vector, λ to denote wavelength, and the spatial
locations of image pixels are represented by x, the imaging of Lambertian surfaces is modelled as follows. The
observed value of pixel x, p (x) = (R (x) , G (x), B (x)), on a Lambertian surface depends on the illuminant
e (λ), the surface reflectance r (λ,x), and the camera sensitivity functions c (λ) = (R (λ) , G (λ) , B (λ)), and
is given by [10]

p (x) =

∫

w

e (λ) r (λ,x) c (λ) dλ, (1)

where w is the visible spectrum. For imaging using only one illuminant, the colour constancy problem
reduces to estimating the illuminant colour e (λ), or its projection onto the camera sensitivity functions,
given the observed image pixel values p (x), i.e.,

e =





Re

Ge

Be



 =

∫

w

e (λ) c (λ) dλ. (2)
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2.1. The Grey-World Algorithm

The Grey-World algorithm assumes that the average reflectance in a scene is achromatic [13], i.e.,

∫

r (λ,x) dx
∫

dx
= α, (3)

where the value of the constant α is between 0 for no reflectance (black) and 1 for total reflectance (white)
of the incident illuminant, and the integral is over the domain of the scene. Using Eqn. (3) and Eqn. (1),
and averaging over all pixel values give

R

p(x)dx
R

dx
= 1

R

dx

∫ ∫

w e (λ) r (λ,x) c (λ) dλdx

=
∫

w
e (λ)

(

∫ r(λ,x)dx
R

dx

)

c (λ) dλ

=
∫

w e (λ)αc (λ) dλ
= α

∫

w
e (λ) c (λ) dλ

= αe.

(4)

In other words, the reflected colour is equal to the illuminant colour. The normalized illuminant colour is
thus given by

ê = αe/‖αe‖. (5)

2.2. Max-RGB Algorithm

The Max-RGB algorithm [12] assumes that the maximum reflectance which is achieved for each of the
three colour image channels is equal, i.e.,

max
x

p (x) =
(

max
x

R (x),max
x

G (x),max
x

B (x)
)

= αe,
(6)

where the max operation is applied to the separate channels. The maxima of the separate channels do not
have to be on the same location, thus the algorithm also obtains correct illuminant colour estimation when
the maximum reflectance is equal for the three channels [10].

2.3. Shades of Grey Algorithm

Shades of Grey algorithm [14] is a reformulation of Eqn. (4) according to the Minkowski norm to give

(
∫

pk (x) dx
∫

dx

)1/k

= αe, (7)

where k ∈ R. The Grey-World and Max-RGB formulations respectively given in Eqn. (4) and Eqn. (6) are
instantiations of Shades of Grey algorithm for k = 1 and k = ∞, respectively. It has been shown that the
best colour constancy results are obtained with k = 6 [14].

2.4. Grey-Edge Algorithm

The Grey-Edge algorithm [10] assumes that the average of the reflectance differences in a scene is achro-
matic, i.e.,

∫

|rσ
x

(λ,x) |dx
∫

dx
= α, (8)
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where σ is a scale operator which is the standard deviation of the Gaussian filter used in local smoothing,
| · | is the absolute value operator, and the subscript x indicates spatial derivative. The scene illuminant
colour is computed from the average colour derivative in the image [10], i.e.,

R

|pσ

x
(x)|dx

R

dx
= 1

R

dx

∫ ∫

w e (λ) |rσ
x

(λ,x) |c (λ) dλdx

=
∫

w e (λ)
(

∫ |rσ

x
(λ,x)|dx
R

dx

)

c (λ) dλ

=
∫

w e (λ) (α) c (λ) dλ
= α

∫

w
e (λ) c (λ) dλ

= αe,

(9)

where |pσ
x
| = (|Rσ

x
|, |Gσ

x
|, |Bσ

x
|).

The Grey-Edge algorithm can be adapted to incorporate the Minkowski norm as follows [10]:

(
∫

|pσ
x
|k (x) dx
∫

dx

)1/k

= αe, (10)

assuming that the k-th Minkowski norm of the derivative of the reflectance in a scene is achromatic. Note
that when k = 1, the illuminant colour is determined by an averaging operation over the derivatives of
the channels. When p = ∞, the illuminant colour is computed from the maximum derivative. Note also
the similarity between the derivations of colour constancy from Grey-World and Grey-Edge hypotheses.
Eqn. (10) can be generalized by considering higher order spatial derivatives [10], i.e.,

(

∫

|∂
n
p

σ(x)
∂x

n |kdx
∫

dx

)1/k

= αe, (11)

but the best performance is obtained using the first order partial derivatives [10].

3. Proposed Algorithm

An image p can be decomposed into its approximation (pl = l (p)) and detail (ph = h (p)) components
by using a set of appropriate spatial lowpass filter (l) and highpass filter (h), i.e.,

p (x) = pl (x) + ph (x) , (12)

where the filtering operation is applied to the lattice of the image. By considering that the filtering operation
is applied along the spatial neighbourhood of pixel x, and using Eqn. (1) together with Eqn. (12) one can
derive

pl (x) = l
(∫

w
e (λ) r (λ,x) c (λ) dλ

)

=
∫

w e (λ) l (r (λ,x)) c (λ) dλ
=

∫

w
e (λ) rl (λ,x) c (λ) dλ,

(13)

ph (x) = h
(∫

w
e (λ) r (λ,x) c (λ) dλ

)

=
∫

w e (λ) h (r (λ,x)) c (λ) dλ
=

∫

w e (λ) rh (λ,x) c (λ) dλ,
(14)

where rl (λ,x) and rh (λ,x) are respectively the approximation and detail components of reflectance r (λ,x).
Thus, separating the image into approximation and detail components also separates the scene reflectance
into the corresponding components.

Like the Grey-World algorithm, the proposed algorithm assumes that the average of details of reflectance
in a scene is achromatic, i.e.,

∫

|rh (λ,x) |dx
∫

dx
= α. (15)
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(a) (b)

Figure 1: Structure of the 1D DWT filter bank: Hn (z) and Gn (z) are digital filters; an and dn are respectively the scaling
coefficients and wavelet coefficients; n are integer indices; and down-arrow and up-arrow are respectively downsampling and
upsampling operations.

Using Eqn. (14) together with Eqn. (15), the illuminant colour is estimated as follows:

R

|ph(x)|dx
R

dx
= 1

R

dx

∫ ∫

w
e (λ) |rh (λ,x) |c (λ) dλdx

=
∫

w e (λ)
(

∫ |rh(λ,x)|dx
R

dx

)

c (λ) dλ

=
∫

w
e (λ) (α) c (λ) dλ

= α
∫

w
e (λ) c (λ) dλ

= αe,

(16)

where |ph (x) | = (|Rh (x) | , |Gh (x) |, |Bh (x) |).
Like Shades of Grey and Grey-Edge algorithms, the proposed algorithm can also be adapted to incorpo-

rate the Minkowski norm, i.e.,
(

∫

|ph (x)|k dx
∫

dx

)1/k

= αe. (17)

The colour constancy based on (17) assumes that the k-th Minkowski norm of the details in a scene is
achromatic.

The approximation and detail components are computed using DWT. Specifically, the non-redundant
DWT is employed to separate the image into approximation and detail subbands at different scales of the
decomposition. The one-dimensional (1D) DWT decomposes a signal p (t) ∈ L2 (R) in terms of a shifted
and dilated scaling function φ (t), and mother wavelet ψ (t), i.e.,

p (t) =
∑

k∈Z

aj0,kφj0,k (t) +
∑

j≥j0

∑

k∈Z

dj,kψj,k (t) (18)

where φj0,k (t) ≡ 2j0/2φ
(

2j0t− k
)

and ψj,k (t) ≡ 2j/2ψ
(

2jt− k
)

[16]. The scaling coefficients aj0,k and
wavelet coefficients dj,k can be computed using the standard L2 inner product when the set {φj0,k, ψj,k, j ≥ jo, k ∈ Z}
forms an orthonormal basis for L2 (R), i.e., aj0,k = 〈p, φj0,k〉, and dj,k = 〈p, ψj,k〉.

The DWT is computed recursively using the filter bank structure shown in Fig. 1(a). The scaling
coefficients at scale j {aj,k, k ∈ Z} are used to compute the scaling coefficients {aj+1,k, k ∈ Z} and wavelet
coefficients {dj+1,k, k ∈ Z} at scale j + 1 by passing {aj,k} through digital filters H0 (z) and H1 (z), and
downsampling by a factor of two. The impulse responses h0 [n] and h1 [n] of H0 (z) and H1 (z), respectively,
are related to the scaling and wavelet basis functions in (18) by φ (t) =

√

(2)
∑

n h0 [n]φ (2t− n), and

ψ (t) =
√

(2)
∑

n h1 [n]φ (2t− n) [17]. To reconstruct the signal from its wavelet (and scaling) coefficients,
we apply the filter bank structure shown in Fig. 1(b), which computes the scaling coefficients aj,k at scale
j by upsampling aj+1,k and dj+1,k, filtering respectively with G0 (z) and G1 (z) (whose impulse responses
are the time reversed versions of h0 and h1 in the orthogonal case), and adding the results.
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The 2-dimensional (2D) DWT decomposes an image p (x) ∈ L2
(

R
2
)

in terms of a set of shifted and

dilated wavelet functions
{

ψ0◦

, ψ90◦

, ψ±45◦
}

and scaling function φ (x), i.e.,

p (x) =
∑

k∈Z2

aj0,kφj0,k (x) +
∑

b∈B

∑

j≥j0

∑

k∈Z2

db
j,kψ

b
j,k (x) (19)

where φj0,k (x) ≡ 2j0φ
(

2j0x − k
)

, ψb
j,k (x) ≡ 2jψb

(

2jx − k
)

, and b ∈ B ≡
{

ψ0◦

, ψ90◦

, ψ±45◦
}

are the wavelet

subbands of the DWT decomposition. For separable 2D DWT, ψ0◦

(x) ≡ ψ0◦

(x1, x2) = φ (x1)ψ (x2),
ψ90◦

(x) ≡ ψ90◦

(x1, x2) = ψ (x1)φ (x2), and ψ±45◦

(x) ≡ ψ±45◦

(x1, x2) = ψ (x1)ψ (x2), where φ, ψ are 1D
scaling and wavelet functions as in (18), and x1, x2 are components of 2D spatial location x, i.e., x = (x1, x2).
A separable 2D DWT can be computed efficiently in discrete time by applying the associated 1D filter bank
to each column of the image, and then applying the filter bank to each row of the result. Thus, one can
consider wavelets as local edge detectors in the horizontal (0◦ subband), vertical (90◦) and diagonal (±45◦)
directions at different scales.

A J-level DWT decomposition of an image p produces a set of wavelet subbands
{

ψ0◦

j , ψ90◦

j , ψ±45◦

j

}

at

each level j, where j = 1, . . . , J , and an approximation subband φJ at the final level J . The original image
p can be perfectly reconstructed from its J-level DWT decomposition using the approximation subband

φJ at the final level and sets of wavelet subbands
{

ψ0◦

j , ψ90◦

j , ψ±45◦

j

}

, j = 1, . . . , J . The wavelet subbands
{

ψ0◦

J , ψ90◦

J , ψ±45◦

J

}

and approximation subband φJ at the final level J are used to create an approximation

subband φJ−1 at the scale J − 1. This procedure is recursively repeated until the image is reconstructed
completely.

For a given 2D image p and its wavelet subbands
{

ψ0◦

j , ψ90◦

j , ψ±45◦

j

}

for j = 1, . . . , J resulted from

J-level DWT decomposition, the detail component pj
h of p at scale j is estimated from the wavelet subbands

as

pj
h =

√

(

ψ0◦

j

)2
+
(

ψ90◦

j

)2
+
(

ψ±45◦

j

)2
. (20)

Thus, the illuminant colour estimation ej at scale j can be calculated using the (17) and (20) as

(

∫

|pj
h (x) |kdx
∫

dx

)1/k

= αjej, (21)

where αj ∈ R, ej ∈ R
3, and |pj

h (x) | =
(

|Rj
h (x) | , |Gj

h (x) |, |Bj
h (x) |

)

.

There will be a total of J estimations of the illuminant colour resulted from J-level DWT decomposition.
However, selecting the correct estimation is not trivial. When the wavelet coefficients at finer scale j − 1
provides statistically strong features for illuminant colour estimation, due to the nature of discrete wavelet
transform, one expects the similar estimation at very coarse scale j. Meanwhile, the estimation in finer scale
is more prone to errors caused from fluctuations on wavelet coefficients. Due to multiscale decomposition,
it is expected that the illuminant colour estimation at scale j is similar to the estimation at scale j − 1.
Thus the difference in illuminant colour estimations between consecutive scales can be used to select the
optimum scale where the estimations in consecutive scales, i.e., j and j − 1, have minimum angular error.
The difference δj,j−1 between two normalized illuminant colour estimations êj and êj−1 from scales j and
j − 1, respectively, can be measured using the angular error

δj,j−1 = ∆θ (êj , êj−1) = arccos (êj · êj−1) , (22)

where (êj · êj−1) is the dot product of êj and êj−1, and δ1,0 = δ1,J . Using the consecutive illuminant colour
estimation differences δj,j−1 for j = 1, . . . , J , the optimum scale jo is selected according to the minimum
estimation difference

jo = arg min
j∈{1,...,J}

δj,j−1 (23)
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and the normalized true illuminant colour ê is estimated using the optimum scale jo as

ê = êjo
. (24)

Colour constancy algorithms modify the colour image channels according to the normalized illuminant
colour. This operation is carried out on the full image lattice, and requires a large amount of division
operations. Unlike the other colour constancy algorithms, the proposed algorithm only modifies the ap-
proximation subbands at the coarsest level (i.e., the final level) of the colour image channels resulted from
J-level DWT decompositions according to estimated illuminant colour in (24), i.e.,

φR
J ⇐ φR

J /
(√

3êR
jo

)

,

φG
J ⇐ φG

J /
(√

3êG
jo

)

,

φB
J ⇐ φB

J /
(√

3êB
jo

)

,

(25)

where φp
J , p ∈ {R,G,B}, is the approximation subband resulted from J-level DWT decomposition of colour

image channel p, and ê
p
jo

is the component of êjo
that belongs to the colour image channel p. Using

the updated approximation subband φp
J according to (25) and the corresponding wavelet subbands, the

illuminant-colour corrected image is reconstructed using the inverse DWT. The main advantage of the
proposed algorithm is its efficient computational structure.

The maximum DWT decomposition levels, J , of an a× b input image is given by

J = min (⌊log2 (a/8)⌋, ⌊log2 (b/8)⌋) , (26)

where ⌊ ⌋ rounds the input parameter toward the lowest integer number. The factor 8 defines the smallest
size of the approximation subband. It is found experimentally that using a factor smaller than 8 produces
visual artifacts in the reconstructed image.

4. Experiments

The performances of the proposed and four other colour constancy algorithms of similar complexity are
evaluated for various parameter settings on a dataset of images of colourful objects under a controlled indoor
setting, and on a real-world dataset containing images of mainly outdoor scenes. For both datasets, the
illuminant colours of the scenes are provided as additional information (i.e., ground truths).

In the experiments, the angular error ∆θ computed according to (22) between the estimated normalized
illuminant colour êe and the normalized actual illuminant colour êa is used as an error measure. For the two
datasets, the median angular error is considered to be appropriate for assessing the performance of colour
constancy algorithms [18, 10]. We used the implementations of Grey-World, Max-RGB, Shades of Grey and
Grey-Edge algorithms available from [10]. Furthermore, the Daubechies (db) wavelet filters with different
lengths are used to study the effects of employing different lengths of wavelet filters on colour constancy.

4.1. Quantitative Assessment

4.1.1. Controlled Indoor Dataset

The colour constancy algorithms are first evaluated on a dataset [19] of 530 images of colourful objects,
with either matte or specular surfaces, captured under different illuminants. All the objects are placed on a
dark background, and the pose of each object is changed whenever the illuminant is changed. Some sample
images from the indoor dataset [19] are shown in Fig. 2.

Different parameter settings of Shades of Grey, Grey-Edge, and the proposed algorithms give different
colour constancy results. The dependency of median angular error on different parameters of the algorithms
is shown in Fig. 3, where as expected the Minkowski norm has the highest influence on the performance of the
different algorithms. For example, the wavelet coefficients employed in the proposed algorithm to estimate
the illuminant colour have values ranging from small to large. The small values are generally insignificant
and are mainly due to the noise inherent in images. The large values on the other hand have the major
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Figure 2: Sample images from the controlled indoor dataset [19].

123456
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

Minkowski norm (k)

−
m

ed
ia

n 
an

gu
la

r 
er

ro
r 

(−
∆θ

)

(a)

1
2

3
4

5
6

1

2

3

4

5

6
−6.5

−6

−5.5

−5

Local smoothing (σ)Minkowski norm (k)

−
m

ed
ia

n 
an

gu
la

r 
er

ro
r 

(−
∆θ

)

(b)

1
2

3
4

5
6

1

2

3

4

5

6
−5.5

−5

−4.5

−4

−3.5

Filter lengthMinkowski norm (k)

−
m

ed
ia

n 
an

gu
la

r 
er

ro
r 

(−
∆θ

)

(c)

Figure 3: Dependency of median angular error on parameter settings of the colour constancy algorithms on the controlled
indoor dataset [19]: (a) Shades of Grey; (b) Grey-Edge; and (c) the proposed algorithm. The angular error axis is inverted
for visualization purpose. Since Shades of Grey algorithm is only dependent on Minkowski norm k, both the x- and y-axis of
Shades of Grey graph refer to the Minkowski norm.
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Table 1: Performances of different colour constancy algorithms in term of median angular error (in degrees) on the controlled
indoor dataset.

Method Median Angular Error

Grey-World 7.08
Max-RGB 6.74
Shades of Grey 4.26
Grey-Edge 5.17
Proposed 3.65

influence on estimating the correct illuminant colour. The higher values of Minkowski norm suppress the
small coefficient values while further enhance the large coefficient values. Thus significant number of high
coefficient values are automatically selected. As a result, the higher values of Minkowski norm results in
better performances of the algorithm at the expense of computation costs incurred by a large number of
power operations.

Fig. 3 also reveals that Shades of Grey algorithm is more sensitive to the Minkowski norm than Grey-Edge
and the proposed algorithms. This is mainly because Shades of Grey algorithm utilizes image intensity values
directly, whereas Grey-Edge and the proposed algorithms operate on image details which are enhanced by the
corresponding operators. Thus, the significant details can be easily enhanced with low values of Minkowski
norm, whereas enhancing significant image intensity values requires larger values of Minkowski norm.

The best performances of the colour constancy algorithms on the controlled indoor dataset is shown
in Table 1. The Minkowski norm and local smoothing operator used for Shades of Grey and Grey-Edge
algorithms are set as k = 6 and σ = 2 to provide the best performance among all the possible combinations
for the controlled indoor dataset. For the proposed algorithm, the wavelet filters are selected as Daubechies
“db6” filters, and the same Minkowski norm of k = 6 is used. The 39% improvement in the performance
of Shades of Grey algorithm over that of Grey-World algorithm is achieved at the expense of higher com-
putational cost incurred by employing Minkowski norm of k = 6. Grey-Edge algorithm improves over the
performance of Grey-World algorithm by 27%. This improvement is mainly due to the appropriate selection
of the local smoothing operator σ and Minkowski norm k. However, its performance is not as good as
Shades of Grey algorithm. This is because Grey-Edge algorithm depends mainly on edge information, and
the dataset has samples which have weak edge information. Table 1 shows the proposed algorithm gives the
best illuminant colour estimates. Again, a significant drop in the error is obtained by an appropriate choice
of the Minkowski norm and wavelet filters. The proposed algorithm achieves 17% and 42% performance
improvements over Shades of Grey and Grey-Edge algorithms, respectively. The improvements are mainly
due to the multiscale structure of the estimation.

The performances of the proposed algorithm for different parameter settings is shown in Table 2 where the
corresponding dependency graph is shown in Fig. 3(c). The worst performance of the proposed algorithm is
with a median angular error of 5.24, which is significantly better than Grey-World and Max-RGB algorithms,
and similar to the best performance of Grey-Edge algorithm. The worst performance is achieved with
Minkowski norm of k = 1 and Daubechies wavelet filter of “db1”. This indicates that the proposed algorithm
with the basic settings of Minkowski norm of k = 1 and Daubechies wavelet filter of “db1” can produce results
which are significantly better than that of Grey-World and Max-RGB algorithms, and comparable with that
of the best performance provided by Grey-Edge algorithm. Thus the proposed algorithm outperforms the
other algorithms on the controlled indoor dataset.

4.1.2. Real-World Dataset

The colour constancy algorithms are also evaluated on a dataset which represents a wide variation of
typical indoor and outdoor scenes. The Grey Ball dataset [20] consists of 11,346 images extracted from
fifteen video sequences, 6490 of which are outdoor scenes and 4856 are indoor scenes. A small grey sphere
is placed at the bottom right corner of every scene and used as a colour reference. The sphere is used to
estimate the scene illuminant colour. The estimated illuminant colours for all scenes are provided with the
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Table 2: Performance of the proposed colour constancy algorithm in terms of median angular error (in degrees) against different
parameters on the controlled indoor dataset.

Minkowski norm Daubechies Wavelet Filter
k “db1” “db2” “db3” “db4” “db5” “db6”

1 5.24 5.22 5.19 5.00 5.16 5.07
2 4.89 4.44 4.60 4.41 4.53 4.27
3 4.56 4.16 4.41 4.31 4.29 4.25
4 4.19 3.94 4.12 3.98 4.00 3.81
5 4.14 3.83 4.01 3.73 4.08 3.73
6 3.88 3.93 3.96 3.82 4.13 3.65

Figure 4: Sample images from the Grey Ball dataset [20].

database and are used as the ground truths in our experiments. Due to the high correlation among the
images in a video sequence, the experiments are performed on a subset of 600 images corresponding to forty
images from each of the fifteen video sequences. The pixels which encompass the grey sphere are excluded
from the colour constancy computation. Some sample images from the Grey Ball dataset [20] are shown in
Fig. 4.

The dependency of median error on different parameters of the algorithms on the Grey Ball dataset [20]
is shown in Fig. 5. For Shades of Grey algorithm, the higher performances are achieved using larger values
of the Minkowski norm (k). These are achieved with a tradeoff between performance and computational
load. For Grey-Edge algorithm, the lower the values of Minkowski norm k and local smoothing operator
σ, the better the performance. Similar to Grey-Edge algorithm, the lower values of Minkowski norm and
length of Daubechies wavelet filters for the proposed algorithm provide the better performances. The similar
performances of Grey-Edge and the proposed algorithms on the Grey Ball dataset are mainly because the
image size in the dataset is relatively small which makes it difficult to detect significant image details with
higher values of both local support σ for Grey-Edge algorithm and wavelet filter length for the proposed
algorithm.

The best performances of the colour constancy algorithms on the Grey Ball dataset is shown in Table 3.
For Shades of Grey algorithm, the Minkowski norm is set to k = 6. The Minkowski norm and local smoothing
operator used for Grey-Edge algorithm are set as k = 1 and σ = 1 to provide the best performance among all
the possible combinations on the controlled indoor dataset. For the proposed algorithm, the wavelet filters
are selected as Daubechies “db1” filters, and the Minkowski norm of k = 1 is used. On average, Shades
of Grey, Grey-Edge and the proposed algorithms have similar performances on the Grey Ball dataset.
Their performances are significantly better than Grey-World and Max-RGB algorithms. The improvement
provided by the proposed algorithm is mainly due to the adaptive illuminant colour estimation using the
multiscale structure.
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Figure 5: Dependency of median angular error on parameter settings of the colour constancy algorithms on the Grey Ball
dataset [20]: (a) Shades of Grey; (b) Grey-Edge; and (c) the proposed algorithm. The angular error axis is inverted for
visualization purpose. Since Shades of Grey algorithm is only dependent on Minkowski norm k, both the x- and y-axis of
Shades of Grey graph refer to the Minkowski norm.

Table 3: Performances of different colour constancy algorithms in terms of median angular error (in degrees) on the Grey Ball
dataset.

Method Median Angular Error

Grey-World 6.23

Max-RGB 6.52

Shades of Grey 4.36

Grey-Edge 4.35

Proposed 4.29
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(a) (b) (c)

(d) (e) (f)

Figure 6: Colour constancy results and the corresponding angular errors between estimated and ground-truth illuminant colours
using different algorithms on an input image from the Grey Ball dataset [20]. (a) Input image. Illuminant-colour corrected
images obtained using: (b) Grey-World (∆θ = 9.5◦); (c) Max-RGB (∆θ = 8.0◦); (d) Shades of Grey (∆θ = 3.2◦); (e) Grey-Edge
(∆θ = 1.1◦); and (f) proposed algorithm (∆θ = 0.6◦).

4.2. Qualitative Assessment

We also evaluate the performances of the different colour constancy algorithms subjectively. Sample im-
ages from the Grey Ball dataset are selected, and the optimum parameter settings for the best performances
of the different algorithms reported in the previous section are used.

Fig. 6 shows the illuminant-colour images generated using Grey-World, Max-RGB, Shades of Grey, Grey-
Edge and the proposed algorithms, and the corresponding angular errors between estimated and ground-
truth illuminant colours. The colour of the image corrected by Grey-World algorithm is shifted toward
blue, thus resulting in the highest angular error of ∆θ = 9.5◦. The Max-RGB algorithm provides a minor
improvement over Grey-World algorithm in terms of visual quality and angular error. Shades of Grey,
Grey-Edge and proposed algorithms provide similar results in terms of visual quality. However, the best
illuminant-colour corrected image is obtained using the proposed algorithm, which is supported by the lowest
angular error value.

In Fig. 7, similar to Fig. 6, the result of Grey-World algorithm is shifted toward blue, and Max-RGB
algorithm provides almost no improvement in terms of visual quality. Shades of Grey algorithm provides
satisfactory results. However, the grey-coloured regions on the image is still perceived as blueish. This is
apparent on the grey-coloured object around the bottom-left corner of the image. Grey-Edge algorithm
provides a minor improvement. The proposed algorithm outperforms the other algorithms in terms of visual
quality and the lowest angular error. Furthermore, the coloured regions in the resultant corrected image
look natural.

In Fig. 8, Max-RGB algorithm provides the minimum angular error. This is an expected result because
the white yacht is used as the reference colour in Max-RGB algorithm and the image correction is applied
accordingly. The visual quality of the illuminant-colour corrected images of Grey-Edge and proposed algo-
rithms are similar to that of Max-RGB algorithm. However, their angular errors are slightly higher. It is
also clear that Grey-World and Shades of Grey algorithms provide the worst two performances in terms of
visual quality and high angular errors.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Colour constancy results and the corresponding angular errors between estimated and ground-truth illuminant colours
using different algorithms on an input image from the Grey Ball dataset [20]. (a) Input image. Illuminant-colour corrected
images obtained using: (b) Grey-World (∆θ = 7.6◦); (c) Max-RGB (∆θ = 14.7◦); (d) Shades of Grey (∆θ = 3.0◦); (e)
Grey-Edge (∆θ = 8.1◦); and (f) proposed algorithm (∆θ = 1.6◦).

(a) (b) (c)

(d) (e) (f)

Figure 8: Colour constancy results and the corresponding angular errors between estimated and ground-truth illuminant colours
using different algorithms on an input image from the Grey Ball dataset [20]. (a) Input image. Illuminant-colour corrected
images obtained using: (b) Grey-World (∆θ = 9.8◦); (c) Max-RGB (∆θ = 1.5◦); (d) Shades of Grey (∆θ = 6.4◦); (e) Grey-Edge
(∆θ = 2.3◦); and (f) proposed algorithm (∆θ = 2.2◦).
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Figure 9: Colour constancy results and the corresponding angular errors between estimated and ground-truth illuminant colours
using different algorithms on an input image from the Grey Ball dataset [20]. (a) Input image. Illuminant-colour corrected
images obtained using: (b) Grey-World (∆θ = 4.3◦); (c) Max-RGB (∆θ = 10.6◦); (d) Shades of Grey (∆θ = 10.9◦); (e)
Grey-Edge (∆θ = 7.3◦); and (f) proposed algorithm (∆θ = 4.9◦).

Finally, Fig. 9 shows the performances of the colour constancy algorithms on an image containing highly
specular objects. The best performance is provided by Grey-World algorithm with an angular error of
∆θ = 4.3◦. Max-RGB algorithm fails to provide a satisfactory result since it recognises the specular objects
as white objects. Similar to Max-RGB algorithm, Shades of Grey and Grey-Edge algorithms also fail to
estimate the correct illuminant colour. The proposed algorithm achieves an angular error of ∆θ = 4.9◦,
which is so close to that of Grey-World algorithm. However, when the results are compared visually, the
colour of the image corrected by Grey-World algorithm is slightly shifted toward blue, which is not the case
for the result of the proposed algorithm. Further results of the proposed algorithm on sample pictures from
Kodak’s “Picture of the Day” dataset are shown in Fig. 10.

The proposed algorithm employs DWT and Minkowski norm to estimate the illuminant colour. Thus
it’s computational cost mainly depends on the image size and the degree of the Minkowski norm. The larger
the size of the image and/or the higher the degree of Minkowski norm, the higher the computational cost is.
The algorithm is implemented in MATLAB on a PC with 2-GHz Intel(R) Core(TM)2 Duo CPU, and 2-GB
RAM. It takes less than 100 ms to process a colour image of size 350× 350 pixels with the basic settings of
Minkowski norm of k = 1 and Daubechies wavelet filter of “db1”. The computational cost can be further
reduced if the DWT is computed at hardware level, and a look-up table is used in computing Minkowski
norm.

5. Conclusions

In this paper we propose a colour constancy algorithm which benefits from the DWT multiscale decom-
position of an input colour image. The adaptiveness of the algorithm is achieved by using the angular error
between estimated illuminant colours in consecutive scales to determine the optimum scale for the best esti-
mate of the true illuminant colour. The inverse DWT of the wavelet and approximation subbands modified
according to the estimated illuminant colour of the colour image channels generates the illuminant-colour
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Figure 10: Results of the proposed algorithm on sample images from Kodak’s “Picture of the Day” dataset. For each pair or
images, the left and right ones are referring to the original and the processed images, respectively.

15



corrected image. Since the proposed algorithm uses low level image features, it is of much lesser complexity
than gamut mapping and GCIE algorithm. It does not require a dataset with known illuminant colour for
calibration.

Using test images of indoor and outdoor scenes, the proposed algorithm has been shown, both quantita-
tively and subjectively, to produce colour constancy results at least comparable and mostly better than those
produced by four state-of-the-art colour constancy algorithms of similar complexity. The performances are
evaluated in term of accuracy of the estimated illuminant colours and visual quality of the illuminant-colour
corrected images obtained by the different algorithms.

The colour constancy framework can be easily applied in real-time since hardware implementation of
DWT decomposition and reconstruction are widely available. Thus it can be easily adapted to real-time
applications which requires colour constancy, such as JPEG2000. As a future work, it is worth exploring
the application of the proposed framework to other multiscale transforms such as ridgelet and curvelet.
Furthermore, it will be useful to determine the performances of the proposed framework using different
wavelet filters so as to determine the wavelet filter set which gives the best performance.
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