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Abstract

In this work a high-fidelity low-cost surrogate of a computational fluid dynamics

analysis tool was developed. This computational tool is composed of general and physics-

based approximation methods by which three dimensional high-speed aerodynamic flow-

field predictions are made with high efficiency and an accuracy which is comparable with

that of CFD. The tool makes use of reduced-basis methods that are suitable for both

linear and non-linear problems, whereby the basis vectors are computed via the proper

orthogonal decomposition (POD) of a training dataset or a set of observations.

The surrogate model was applied to two flow problems related to high-speed weapon

aerodynamics. Comparisons of surrogate model predictions with high-fidelity CFD

simulations suggest that POD-based reduced-order modelling together with response

surface methods provide a reliable and robust approach for efficient and accurate

predictions. In contrast to the many modelling efforts reported in the literature, this

surrogate model provides access to information about the whole flow-field.

In an attempt to reduce the up-front cost necessary to generate the training dataset

from which the surrogate model is subsequently developed, a variable-fidelity POD-

based reduced-order modelling method is proposed in this work for the first time. In this

model, the scalar coefficients which are obtained by projecting the solution vectors onto

the basis vectors, are mapped between spaces of low and high fidelities, to achieve high-

fidelity predictions with complete flow-field information. In general, this technique offers
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an automatic way of fusing variable-fidelity data through interpolation and extrapolation

schemes together with reduced-order modelling (ROM).

Furthermore, a study was undertaken to investigate the possibility of modelling the

transonic flow over an aerofoil using a kernel POD–based reduced-order modelling

method. By using this type of ROM it was noticed that the weak non-linear features of

the transonic flow are accurately modelled using a small number of basis vectors. The

strong non-linear features are only modelled accurately by using a large number of basis

vectors.
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Nomenclature

2 variance of a set of data

2
x variance of a set of data points’ projections on the x-axis

2
y variance of a set of data points’ projections on the y-axis

iσ singular value in the singular value decomposition

ij
 is the scalar or projection coefficient of the j-th POD mode

ij
 is the j-th POD basis mode

i
λ eigenvalue of the eigenfunction or POD mode representative of the

variance captured along that eigenfunction

m is the number of realizations or snapshots and POD modes

n is the number of grid points in a mesh

x is a vector of different parameter values

Y is a solution vector of primitive or conservative variables

 xf computationally expensive analysis

 xf̂ approximation to  xf

 r a typical radial basis function RBF

r radial distance from a given centre point

iw weighting coefficient for a typical radial basis function  r

ix centre data point in a typical radial basis function
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 shape parameter in a typical radial basis function

)(xp a polynomial of one degree less than the radial basis function  r

 angle of incidence

 nose deflection angle of the nose-controlled missile configuration

D mid-body diameter

M Mach number

Cx component of the aerodynamic force along the axis of the body

Cz component of the aerodynamic force normal to the axis of the body

Cm pitching moment acting on the body

Xcp centre of pressure coordinate along the body axis

hfy response value from the high-fidelity model

lfy response value from the low-fidelity model

)(γ xi the ratio of the evaluated response values from the high-fidelity model and

the low-fidelity model at the ith data point

)(γ̂ x correction response surface

),( yxK a kernel function

n n - dimensional real data

X input space representation

F feature space representation

 a mapping function from an input space X to an inner product feature

space F, also referred to as dot product space

k projection coefficient onto the kth non-linear basis function

kV kth basis vector in the feature space

n
P projection operator
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Acronyms

ANOVA Analysis of Variance

BILU Block Incomplete Lower-Upper

CFD Computational Fluid Dynamics

CPU Central Processing Unit

CSI Cubic-spline Interpolation

CVT Centroidal Voronoi Tessellations

CVOD Centroidal Voronoi Orthogonal Decomposition

DD Domain Decomposition

DoE Design of Experiment

LHCS Latin Hypercube Sampling

LHS Left-hand side

IMPNS Implicit Multi -block and -grid Parabolised Navier-Stokes

MDO Multi-disciplinary Design and Optimisation

NOD Non-orthogonal Decomposition

PCA Principal Components Analysis

kPCA kernel Principal Components Analysis

PDE Partial Differential Equation

PNS Parabolised Navier-Stokes

POD Proper Orthogonal Decomposition

kPOD kernel Proper Orthogonal Decomposition

RBF Radial Basis Function

RHS Right-hand side

RMS root mean square

ROM Reduced-Order Model

RSM Response Surface Methods

SDE Semi-definite Embedding

SVD Singular Value Decomposition
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Chapter 1

1.0 Introduction to reduced-order

modelling

1.1 Motivation

The solution of non-linear steady or unsteady aerodynamic flows by numerically

solving the Navier-Stokes equations for various applications is a computationally

intensive task even when implemented on modern state-of-the-art computing platforms.

These tasks are very expensive with respect to data storage, data handling and processor

costs. Hence, it can be a significant challenge to deal with a number of situations such as

parametric studies of state solutions, multiple state solutions such as in optimization and

control problems, and real-time state solutions such as in feedback control settings. In

view of this difficulty, considerable attention is paid to reduce both storage and

processing costs of non-linear state solutions by using reduced-order models. Generally, a

reduced-order model is a mathematical model of a physical system that is derived from

computational or at times even experimental data. The reduced-order model contains

fewer degrees of freedom than the discretized partial differential equations and therefore

it is relatively inexpensive to compute. Reduced-order models are developed and used to

provide a more efficient and computationally economic way for investigating these

complex problems. The use of reduced-order models is primarily motivated by the desire
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to have detailed knowledge of the physics of the problem being investigated together with

an efficient and reliable prediction tool.

1.2 Reduced-order modelling

In the reduced-order modelling approach, an approximation to a physical system from

the results of a high-fidelity simulation model is derived. This approximate model is

called a reduced-order model (ROM). Since the ROM contains fewer degrees-of-

freedom1 than the full simulation model, it is inexpensive to compute in comparison with

the high-fidelity model and so this makes it appropriate for prolonged computations in

multidisciplinary environments.

Generally, reduced-order modelling involves the selection of a reduced set of basis

)(xφ
j

from an ensemble of representative datasets N

k

k

1
)}t,(


x{u of real scalar or vector

fields. Once these basis functions are identified and established, an approximation of the

flow-field )}({span xφu
j

 is made as a linear combination of the basis functions as

follows:

)(tt
1

xφ)()(x,u
j

M

j

j
a



 Eq. (1-1)

where M < N. In this, the coefficients
j

a are determined by projecting the solution of the

governing partial differential equations onto the reduced basis. The cost of such a

computation is very small if the off-line computational time required for computing the

reduced basis is not considered.

All reduced-order methods are in fact reduced basis methods, which in turn require the

solution of high-fidelity and therefore very expensive discretized flow governing

1 The number of degrees of freedom is the same as the number of dimensions in a physical system. The two
terms are used interchangeably in this text.
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equations [1]. These expensive calculations can be done off-line before a state prediction

or the optimization of the design parameters or feedback control is attempted. A set of

reduced basis that contains all the essential information of a set of basis of larger

dimension can be extracted by various techniques, amongst which is the proper

orthogonal decomposition (POD). This is an elegant and powerful data reduction

technique which is often used to extract basis functions or ‘mode shapes’ of high-

dimensional systems for subsequent use in Galerkin projections that yield reduced-order

models of non-linear physical systems.

1.3 What is proper orthogonal decomposition?

The representation of eq. (1-1) is not unique. For example, if the domain of x is a

bounded interval Ω , then the basis functions )(xφ
j

can be chosen as a Fourier series, or

Legendre polynomials, or Chebyshev polynomials, and so on. For each choice of the

sequence )(xφ j
that forms a basis for the vector functions t),(xu which are assumed to

be bounded and integrable, the sequence of functions )t(
j

a is different. Note that

although there is no difference between the independent variables x and t in eq. (1-1),

these may be considered as a spatial and a temporal coordinate respectively.

Considering orthonormal2 basis functions, i.e.














21

21

0

1
d)()(

21 jjif

jjif
jj xxφxφ

Ω

then,

xxφxu
Ω

d)()t,()t(  jja Eq. (1-2)

2 Orthonormal basis functions are orthogonal basis functions of unit magnitude ie. normalized to unit
magnitude.
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that is, for orthonormal basis functions, the determination of the coefficient function

)t(
j

a depends only on )(xφ
j

and not on the other φ ’s.

Consequently, selecting orthonormal basis functions would be very useful. Moreover,

while an approximation to any desired accuracy in eq. (1-1) can always be obtained if M

is chosen large enough (the approximation in eq. (1-1) becomes exact in the limit

as M ), )(xφ
j

may be chosen such that the approximation for each M is optimal in a

least squares sense. This means that a sequence of orthonormal functions are found such

that the first two of these basis functions give the best possible two-term approximation,

the first three of these basis functions give the best possible three-term approximation and

the first ten give the best possible ten-term approximation, etc. These ordered

orthonormal basis functions are called the proper orthogonal modes for the vector

function t),(xu . With these basis functions, the expression in eq. (1-1) is called the

proper orthogonal decomposition of t),(xu .

1.4 Dimensionality reduction using POD

Dimensionality reduction is the underpinning of reduced-order modelling and for this

reason it is presented here for a better understanding.

In numerous cases, the initial high-dimensional setting of a collection of scalar or

vector fields, such as snapshots of the complete state of an aerodynamic flow, is a

consequence of a poor coordinate system. Often such data affords a significantly reduced

representation by considering a coordinate system or equivalently a set of basis that is

close to an optimal representation of the data. The search for an optimal or at least a good

basis for the data leads to the application of empirical transform techniques. In this

context, the word empirical implies that the mappings are computed directly from the

data of interest. Essentially, these are an extension of some other analytical methods such

as the Fourier or Laplace transforms in which the new coordinate system is pre-

determined and independent of the data. Since the structure of the data in the input space
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and the size of the input space are problem-dependent, it is appropriate to examine

mappings that are derived from the data. These empirical mappings are normally

determined by imposing appropriate optimality criteria and often provide insight into the

structure of the data because they are directly related to the data itself. By using

dimensionality reduction techniques, the reduction of high-dimensional data that lies in a

subspace of a larger input space is achieved in a methodical way. The following is a

simple quantitative example showing what is meant by dimensionality reduction.

1.4.1 A simple example of dimensionality reduction

In this section a simple example of reducing the number of dimensions (or degrees-of-

freedom) using POD for a set of discrete data points in two-dimensions is presented. This

example gives a straightforward explanation of the POD as a dimensionality reduction

method at an early stage of this text, so as to enable the reader to have a basic

understanding of the technique while going through the initial chapters.

Consider a set of N discrete data points in a d-dimensional space. Suppose that N is

equal to 10 and d is equal to 2. A two-dimensional dataset is considered for the simple

reason that this can be very easily represented by a graphical plot. Table (1-1) shows the

two-dimensional set of data, while figure (1-1) shows a pictorial representation of the

same set of data. This set of data was taken from reference [2].

x 2.50 0.50 2.20 1.90 3.10 2.30 2.00 1.00 1.50 1.10

y 2.40 0.70 2.90 2.20 3.00 2.70 1.60 1.10 1.60 0.90

Table (1-1) Two-dimensional data set
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

X

Y

Figure (1-1) Graphical representation of a two-dimensional data set.

Generally, data points can be projected from the high-dimensional space in which they

are embedded to a lower dimensional space for a better understanding of data structure.

In this particular example the points can be projected at most from a two-dimensional

space (d = 2) to a one-dimensional subspace (d = 1). Here two very simple projections

can be made on the x and y axes, although we are interested mostly in finding vectors on

which data projections are most spread out. As a measure of spread for the projected data

points, the variance of the projections 2σ can be considered. For a set of N points the

mean and the variance are given by





N

i

ix
N

x
1

1
and 







N

i

i xx
N

1

22 )(
1

1
 respectively.

Therefore, for data points projections on the x and y axes, the mean values and the

variances are equal to x = 1.81, y = 1.91, 2

x
 0.6166 and 2

y
 0.7166. From this it

is clear that the variance of the data points depends on the direction onto which the

projections are made. Consequently, there must be some direction such that when the data

points are projected in d dimensions it gives the largest variance. This direction vector

can be determined by constructing the d x d covariance matrix and finding its eigenvalues
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and their corresponding eigenvectors. The covariance matrix is determined by evaluating

the terms according to:

  yyxx
N

C
i

N

i

ixy



 

1
1

1

In this example the 2 x 2 covariance matrix is worked out to be




















7166.06154.0

6154.06166.0

yyxy

yxxx

CC

CC
C

The positive non-diagonal elements of the covariance matrix show that the x and y

variables increase together as shown in figure (1-1). Calculating the eigenvalues
i

λ and

eigenvectors
i

v of the covariance matrix gives the following results,

1
λ = 1.2840;

2
λ = 0.0491; 














7352.0

6779.0
1

v ; 













6779.0

7352.0
2

v

By plotting the two eigenvectors as black intermittent lines on the same plot of the

centred3 data points, it is evident that these are perpendicular to each other. See figure (1-

2). Moreover, the eigenvector corresponding with the biggest eigenvalue provides a line

of best fit through the data. The second eigenvector provides the other relatively much

less important pattern in the data, that all the points follow the main line but are off to the

side of the main line by some small quantity. So, by finding the eigenvectors of the

covariance matrix, lines are extracted that characterise the data.

3 By centred data it is implied that the mean values for x and y were subtracted from the original data
points.
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Figure (1-2) Overlaying the eigenvectors upon the centred data set of points

By multiplying the centred data with the two eigenvectors, the dataset is transformed

in terms of another set of basis vectors and these are the eigenvectors. Thus, a basis

transformation is made.
























































































































1627.02238.1

0178.04380.0

0464.01446.1

3498.00991.0

1753.09129.0

2095.06758.1

1304.02742.0

3844.09922.0

1429.07776.1

1751.08280.0

6779.07352.0

7352.06779.0

01.171.0

31.031.0

81.081.0

31.019.0

79.049.0

09.129.1

29.009.0

99.039.0

21.131.1

49.069.0

If this newly derived data is plotted with the first column along the x-axis and the

second column along the y-axes for each and every data point, figure (1-3) is obtained,

from which one can observe the increase in variance along the horizontal basis.
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Figure (1-3) Data points expressed in terms of the newly obtained basis vectors

The following is the notion of dimensionality reduction. The magnitudes of the

eigenvalues are equivalent to the variance of the projected data points along their

corresponding eigenvector. Therefore, by placing the eigenvalues in descending order,

this ordering sets up the eigenvectors in their order of significance. For this particular

example the eigenvalue of one eigenvector is very much higher than the eigenvalue of the

second one. Consequently, one can ignore the vector of lesser significance. By ignoring

some eigenvectors, the original data set will be described in terms of a reduced set of

dimensions. Thus, generally if the problem has n dimensions initially from which an n x n

covariance matrix is formed hence obtaining n eigenvalues and eigenvectors, one can

choose only the first p eigenvalues and their corresponding eigenvectors so that the final

data set has only p dimensions. In this case a one dimensional dataset can be derived by

multiplying the centred data with the eigenvector having the biggest variance as follows:
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By multiplying these projections with the most significant eigenvector only, a new set

of one-dimensional data points are obtained.

 























































































































8997.08296.0

3220.02969.0

8415.07759.0

0729.00672.0

6712.06189.0

2320.11360.1

2016.01859.0

7294.06726.0

3068.12050.1

6087.05613.0

7352.06779.0

2238.1

4380.0

1446.1

0991.0

9129.0

6758.1

2742.0

9922.0

7776.1

8280.0

Plotting this derived set of data with the first column along the x-axis and the second

column along the y-axis while adding the respective mean values which were subtracted

initially, the result shown in figure (1-4) is obtained. Hence the original data is

reconstructed using only one single eigenvector. It is evident that in the reconstruction

some of the information is lost, but nevertheless an approximate set of data which is a

good representation of the original data is obtained. This approximate set of data is one-

dimensional as it can be represented along one basis vector only. Therefore, the original



Chapter 1 – Introduction to reduced-order modelling
________________________________________________________________________

11

two-dimensional set of data was reduced to a one-dimensional set of data represented by

the slope of the line.
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Figure (1-4) Reconstructing the original data using one single eigenvector

When this technique is applied on very large sets of data such as computational fluid

dynamics (CFD) data, this technique endows us with the capability of reducing the

number of dimensions of a multi-dimensional problem; thus enabling us to approximate

flow solutions with low-cost with respect to both computational time and resources. Here,

by resources it is implied that due to the reduction in the quantity of data attained by

using this technique, a smaller memory is required for storing and handling of data.

Hence, in this project we embark on developing means by which this can be realized.

Such a tool would be very useful most especially in multi-disciplinary studies, where a

vast amount of high-fidelity analyses are required for an accurate assignment within a

reasonable time-frame. Also, this tool may be considered as a potential alternative to the

semi-empirical tools presently in use for trade and trajectory studies.
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1.5 Aim and objectives

The aim of this research work is to develop a computational tool based on a

mathematical model by which three dimensional high-speed aerodynamic flow field

predictions are made with low-cost and acceptable accuracy. This is achieved through the

use of a reduced-order modelling technique, namely the proper orthogonal decomposition

(POD). Ultimately, the tool can be employed in the analysis of complex aerodynamic

flow problems.

In order to meet this aim, a number of objectives were identified and accomplished.

 The application of proper orthogonal decomposition as a reduced-order modelling

method to a simple case of practical interest so as to understand the behaviour of

this technique.

 The development of a mathematical model which integrates the proper orthogonal

decomposition technique with either regression analysis or interpolation methods

to predict aerodynamic flow solutions at various parameters.

 An investigation of the effects on the mathematical model when using different

sampling techniques.

 The application of the developed model to realistic weapon configurations.

 The adaptation and application of the model in a variable-fidelity environment,

where a combination of inexpensive low-fidelity data such as inviscid solutions

with more accurate but expensive high-fidelity data such as viscous solutions is

made.

 An investigation of the behaviour of a non-linear POD algorithm to model the

aerodynamic flow over an aerofoil in the transonic flow regime.
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1.6 Outline of thesis

This research work can be subdivided into three major parts. The first concerns the

development of the computational tool based on mathematical models for making fast

approximate aerodynamic predictions. The second part deals with the application of this

tool to various problems related to high-speed aerodynamics. In this part the performance

of the tool in terms of accuracy and efficiency is investigated. In the third part a variable-

fidelity model and the POD model are combined to form a model which handles reduced

variable-fidelity datasets. Some applications of this model are presented to demonstrate

its effectiveness. Moreover, in this part a further investigation is conducted on the

application of the very recently developed kernel POD method to highly non-linear

problems in aerodynamics.

In the next chapter an extensive review of the available literature about the POD is

presented. In chapter three a detailed description of the mathematical models and the key

elements is made. This includes a brief review of the numerical methods employed in the

flow solver used to generate the ensemble of flow realizations which form the basis for

the POD technique and a review of the sampling, regression and interpolation techniques

considered. In chapter four a detailed account of the POD theory and its properties is

made together with a description of the different methods used in POD analysis. In

chapter five the POD is presented as a reduced-order model (ROM) whereby applications

of the POD as a data compression and a computational time reduction procedure are

presented. In chapter six the developed model is presented as a prediction tool. Moreover,

semi-empirical tools which are in common use by industry for trade and trajectory studies

are discussed and a comparison is made between these tools and the computational tool

developed in this work. In chapter seven, a variable-fidelity model which incorporates the

POD is proposed and a comparison with another variable-fidelity model which includes

POD is made. In chapter eight an attempt is made to model the transonic flow around an

RAE 2822 aerofoil using kernel POD. A direct comparison is made between the reduced-

order modelling effectiveness of the linear and kernel POD methods. This thesis

concludes with a discussion of the main findings of this study and various suggestions for

future work
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Chapter 2

2.0 Literature review

In this chapter a review of the literature on the proper orthogonal decomposition is

presented. The POD is a methodology for the modal decomposition of an ensemble of

functions, usually this is in the form of data obtained from either experiments,

measurements or numerical simulations. A modal decomposition may be useful for

various reasons such as, for the identification of structures in data or for statistical

analysis of sample data or as it is employed here, as a set of modes for the approximation

of the numerical solution of problems with characteristics similar to the ones used in the

construction of the basis modes. The latter is the subject of reduced-order modelling. This

literature review includes examples of these applications together with some relevant

extensions and the most recent developments.

2.1 Model reduction techniques

Antoulas et al. [3] have classified model reduction techniques into two categories,

namely those methods based on the singular value decomposition (SVD) and those

methods based on moment matching. The SVD based methods are the Hankel-norm

approximation, balanced truncation, singular perturbation, cross grammian and the

Karhunen-Loève expansion, while the moment matching based methods are the families
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of Lanczos and Arnoldi procedures. In the first category, the Karhunen-Loève expansion

turns out to be a popular method for both linear and non-linear systems. In the second

category, most of the attempted applications were intended either for some specific type

of non-linear system or have not been applied to general non-linear model order reduction

problems in a practical way. In view of this, it is reasonable to say that for non-linear

systems in aerodynamics governed by the Euler or Navier-Stokes equations, the

Karhunen- Loève expansion could be an appropriate choice for model order reduction.

2.2 The Karhunen – Loève expansion

The Karhunen – Loève expansion was proposed independently by various people at

different times amongst these are Karhunen [4] and Loève [5]. This method is known

under a variety of names in different fields such as; Principal Component Analysis [6],

Empirical Component Analysis [7], Quasiharmonic Modes [8], Proper Orthogonal

Decomposition [9], Singular Value Decomposition [10] and Empirical Eigenfunction

Decomposition [11]. It is important to remark that in mathematics the SVD is a powerful

matrix decomposition that offers a method of solution to the principal component

analysis and therefore these two are strictly not the same. However, the two methods are

so closely related to one another that many times their names are used interchangeably.

From the mathematical point of view the Karhunen – Loève expansion is essentially a

transformation which diagonalizes a given matrix and makes it into a canonical form. A

review of the early history of the Karhunen - Loève expansion can be found in [12]. The

mathematical content of the Karhunen - Loève expansion is classical and is contained in a

paper by Schmidt [13]. The large number of computations required to find the

eigenvectors by this technique, made this method virtually impossible to use until the

middle of the last century. Radical changes came with the appearance of powerful

computers and development of efficient algorithms to compute the eigenvectors. In this
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work, the technique shall be referred to as the proper orthogonal decomposition (POD)

which has been almost generally adopted in fluid flow analysis.

2.3 The proper orthogonal decomposition

The POD is a statistical procedure that provides a mathematical framework by which

the high-energy components of a fluid flow are extracted. This may subsequently lead to

a reduced model. The method provides a low-dimensional representation of a

characteristic large-scale structure by decomposing it into a set of uncorrelated data-

dependent linear components. The components are the eigenfunctions of a two-point

correlation tensor and the expansion is optimal in several senses. For instance, the POD

eigenfunctions minimize the mean square error and maximize the total energy captured in

each co-ordinate direction, subject to orthogonality constraints. Also while the method is

optimal with respect to second-order moments, there is no loss of higher-order moment

information since the eigenfunctions form a complete basis. However, the efficiency with

which higher-order information is captured is not prescribed by any optimality condition.

Therefore, the POD analysis yields a set of empirical modes which describe the dominant

behaviour or dynamics of a given problem. The set of empirical modes retrieved are

variously called proper orthogonal modes, empirical eigenfunctions, empirical basis

functions and empirical orthogonal functions.

Nowadays, the technique is used extensively in various fields such as that of detection,

estimation, pattern recognition, image processing, as an efficient tool to store random

processes and in system controls. The method is also used in stochastic turbulence

problems [9], in which context, the associated eigenfunctions are identified with the

characteristic eddies of the turbulence field. The method has also been used in steady

aerodynamic analysis such as the design of inviscid aerofoils by LeGresley and Alonso

[14], and parametric studies by Epureanu et al. [15] and Bui-Thanh et al. [16] and [17].
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2.3.1 POD-based reduced-order modelling

Sirovich [18] introduced the method of snapshots as a way for efficiently determining

the POD basis functions or modes for large problems. This technique can be used for a

variety of applications, including derivation of reduced-order dynamical models for fluid

dynamic applications as in Holmes et al. [19]. In particular, the method of snapshots has

been widely applied in conjunction with computational fluid dynamic (CFD)

formulations to obtain reduced-order models for unsteady aerodynamic applications as in

Dowell et al. [20], Hall et al. [21], Romanowski [22] and Beran and Silva [23]. In this

technique, a set of instantaneous flow solutions or snapshots is obtained using some

numerical or experimental method. The POD process then computes a set of basis

functions from these snapshots, which is optimal in the sense that, for any given basis

size, the error between the original and reconstructed data is minimized. Reduced-order

models can be derived by projecting the model onto the reduced space spanned by the

POD modes. The original numerical model is usually governed by non-linear partial

differential equations such as Navier-Stokes or Euler equations, which are very

computationally expensive especially for a flow past a complex configuration. Moreover,

the model is computationally intensive and hence unsuitable if coupling of the CFD

model with another disciplinary model is required. The reduced-order model, however, is

just a small system of ordinary differential equations which can be solved efficiently. In

view of this, the application of POD for obtaining a model of reduced complexity has

been extended to many other applications. As is common practice in dealing with non-

linear partial differential equations, the linearized approximate equations are studied

under some assumptions such as small disturbances of the inflow parameters as in Hall et

al. [21]. Although these linearized models are significantly simple compared to the

original non-linear models, they usually have a prohibitively high number of states and

hence they are still very expensive to simulate. More recently, Kim [24] and Willcox et

al. [25] have developed efficient POD methods for linearized systems. In those works,

instead of obtaining the snapshots from a time-dependent simulation which is

computationally expensive, the linearized system in time domain is first transformed to

the frequency domain and then the POD snapshots are computed efficiently and

accurately over the frequency range of interest. However, the major restriction of the
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linearized model is the assumption of small perturbation unsteady flow and hence it is not

suitable for the cases in which the non-linear effect may be important and perturbations

are large. To this end, Thomas et al. [26] proposed a non-linear reduced order model of a

CFD solver. The technique is based on a Taylor series expansion of the flow solver

residual together with a Ritz type expansion using proper orthogonal decomposition

modes. This method was applied to an inviscid transonic aerofoil configuration and

produced better results than a linear reduced-order model when considering large changes

in the flow solver input variables.

2.3.2 POD in image processing

In the context of the characterization of human faces, Kirby and Sirovich [27] have

employed the POD procedure as a useful tool for the image compression of human faces.

In this application, each distinguishable digital picture of a human face or snapshot is

transformed into a rectangular matrix whose elements are integers in the interval [0,

255]. This corresponds to the pixel resolution. The POD procedure is then performed to

obtain the POD modes. After which any image which is not a member of the ensemble, is

projected onto the reduced space spanned by the dominant POD basis vectors to calculate

the POD coefficients. This small number of POD coefficients is used to represent the face

with a small error, instead of a big accurate matrix. The results show that roughly 100:1

compression ratio (ratio between the number of elements of a matrix representing a face

and the number of POD coefficients corresponding with that face is obtained. In addition

to this work, Everson and Sirovich [28] have presented a variation of the basic POD

method that handles incomplete data sets. This method actually makes use of the

conventional POD method for solving an unconstrained optimization problem which

approximately reconstructs the full data from the incomplete one. Given a set of POD

modes, an incomplete data vector can be reconstructed accurately by solving a small

linear system of equations derived from the optimal conditions. It was shown that this

procedure gives an unbiased estimate of the data. Moreover, if the snapshots themselves

are damaged or incomplete, an iterative method can be used to derive the POD basis. The

POD basis is in turn used to reconstruct the incomplete data. This method has been
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successfully applied for the reconstruction of human face images, from partial data with

25% of the data missing. An interesting extension to this application was performed by

Bui-Thanh [17] in external flow transonic aerodynamics.

2.3.3 Flow-field reconstruction using POD

The POD technique has been used for the reconstruction of a flow field from an

incomplete data set [17]. This application is based on the procedure developed by

Everson and Sirovich [28] for the reconstruction of human face images from an

incomplete data set. The case considered is a NACA 0012 aerofoil at a freestream Mach

number of 0.8. The POD bases were created from 51 snapshots. These were computed at

uniformly spaced values of the angle of attack in the interval [-1.25o, 1.25o]. An

incomplete flow field was generated by a computation of the flow solution at an angle of

attack of 0.77o and retaining only 121 surface pressure values out of a total number of

6369 pressure values throughout the whole flow field. With just this limited surface

pressure data available, the complete pressure field was determined accurately with only

six POD modes. Moreover, in this work the authors examined the sensitivity of the

reconstruction result to both the quantity and location of this surface data. In order to

select a limited number of pressure measurements, a heuristic approach as used by Cohen

et al. [29] for unsteady flows was adopted. This approach suggests that sensors should be

located in areas of high modal activity. The POD modes of a flow often exhibit sinusoidal

spatial variation and sensors placed at local POD modal minima and maxima yield

effective flow sensing results. This heuristic procedure was applied in that work to study

the sensitivity of the reconstruction results to the amount of available data. An initial

configuration of 11 measurement points corresponding to spatial optima of the first POD

mode plus a few other points near the leading edge, where all POD modes were seen to

vary rapidly, was chosen. Additional measurements were then considered by adding in

turn the spatial optima of modes 2, 3, 4, 5 and 6 resulting in studies with 15, 21, 29, 31

and 39 sensing points respectively. From this work it was observed that the percentage

error between the exact and reconstructed pressure measurements was very low even with

a very small number of sensors, confirming the effectiveness of the heuristic sensor
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placement algorithm. It was also noticed that subsequent reduction in the error diminishes

as higher modes are considered in the sensing which is consistent with the fact that

subsequent modes constitute progressively less of the total energy. The POD eigenvalues

can therefore be used not only to select the number of modes but also to choose an

appropriate number of sensors.

Another consideration in [17] was the effect of experimental error. To study this

effect, noise was simulated by the addition of a random noise component to each

computed pressure value. Maximum noise levels which were expressed as a percentage

of the freestream pressure value of  1, 2, 5, 10 and 20 % were applied. All

measurements were made with 121 measurement points and with 2, 4, 6 and 8 POD

modes. It was observed that as the magnitude of the sensor noise increases, the magnitude

of the reconstruction error also increases even though the prediction is very good with a

relatively high noise level of 10 %. As more POD modes are used the sensitivity to noise

increases. Using more POD modes in the representation allows the flow-field to be

represented more accurately, but it also allows a greater degree of ‘data matching’ as the

incomplete data formulation attempts to minimize the error between the measured and the

reconstructed data. If very high levels of noise are present, the reconstruction with

smaller number of modes yields more accurate results. In most fluid applications, the

dominant POD modes tend to correspond to flow patterns with low spatial frequency.

These modes do not have the resolution to match the high frequency components of the

sensor data, causing them to naturally filter sensor noise. In practice one should use the

POD eigenvalues to select the minimum possible number of POD modes that will achieve

the desired resolution in nominal cases. Further, if very high levels of sensor noise are

expected, consideration should be given to reducing the number of modes beyond what

might be chosen under nominal circumstances.

A further investigation was conducted by creating a set of POD basis vectors from an

incomplete set of snapshots. Again, the NACA 0012 aerofoil at a freestream Mach

number of 0.8 was considered. A 26 snapshot ensemble was used with steady pressure

solutions at angles of attack in the interval [0o, 1.25o]. To create the incomplete snapshot
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set, 30 % of the pressure data of each snapshot was discarded randomly. The data was

repaired by first repairing the missing data points in each snapshot with the average over

the available data at that point. Thus a new ensemble of data was created which had no

missing values. With the new ensemble, a first approximation to the POD basis was

constructed. Then each snapshot in the ensemble was repaired using the first

approximation of the POD basis. The repaired ensemble was then used to construct a

second approximation to the POD basis. An iterative procedure was adopted and stopped

after 50 iterations. From the convergence of the POD eigenvalue spectrum of the

incomplete ensemble it was observed that after one iteration, the first two eigenvalues

converged. After 45 iterations, only the first five eigenvalues converged; however these

accounted for almost all of the flow energy.

2.3.4 POD in fluid-flow analysis

The proper orthogonal decomposition has been applied by Kirby et al. [30] to the

analysis of an ensemble of snapshots which were obtained from sampling a supersonic

shear layer large-eddy simulation. The computed optimal basis functions were used to

economically characterise the sampled flow realizations. In that work it was observed that

the essential flow features were captured by using 80 % of the energy while smaller-scale

flow features were resolved by retaining more terms in the expansion. In the same work it

is interesting to note that for this unsteady flow problem a great deal of data is necessary

to provide sufficient statistics for the computations of the eigenfunctions. However this

problem has been mitigated in part by exploiting the symmetry of the flow and

consequently extending the data. Moreover, it has been reported that the eigenfunctions

are sensitive to the scaling of the flow variables since these are in different units and have

widely varying magnitudes. Consequently, three scaling factors were evaluated which

make the magnitude of the fluctuating variables to be on average of order 1.

In general, the proper orthogonal decomposition technique provides a reduced order

model of the field, and the subspace represented by this model is the span of the high

energy modes. The goal of POD is to provide an efficient way to capture the most
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information from a high-dimensional process in only a few dominant modes. The results

are then synthesized and related to physical phenomena. The mathematical structure of

POD analysis provides an orthogonal decomposition of this low dimensional subspace,

since the modes are eigenvectors of the covariance matrix. This mathematical structure

follows from the mathematical theory of Gaussian processes, not from the underlying

physics of fluid flow. The orthogonal modes have no straightforward interpretation in

terms of flow since they are the result of an orthogonal ‘mix’ of various flow

mechanisms. In fact POD models of pressure field have in the past been challenged with

questions of interpretation [31]. A new approach has been presented by Dunyak et al.

[32] which seeks to capture independent but non-orthogonal flow mechanisms. This

technique was termed as Non-orthogonal decomposition (NOD). In this technique the

high energy subspace is spanned by a basis chosen to maintain de-correlation of

coefficient time series, as in POD, while increasing the relative independence as indicated

by the difference between the joint distribution and the product of the marginal

distributions. Preliminary results strongly suggest that this technique effectively separates

and identifies separate flow mechanisms in the area of flow vortices over a flat roof. In

this work an example is brought forward in which pressure data is collected over the roof

of an experimental building to capture corner vortices. Using the standard POD analysis

most of the flow energy was in the first two POD modes. From this analysis an

identification of the physical mechanisms for the full-scale pressure field is made. While

the POD mode appears to show a mixture of phenomena; a tightly focused vortex as well

as a larger-scale wake instability, the NOD modes decouple these phenomena by seeking

a nearly independent decomposition. One mode captures the larger-scale wake instability

without the focused vortex effect, while the other NOD mode appears to capture the

vortex alone.

2.3.5 POD-based ROMs in parametric studies

While the use of POD to capture the time variation of fluid dynamic problems has

been widespread, the development of reduced-order models to capture parametric

variation is less commonly available in technical literature. In one of these few works,
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Epureanu et al. [15] has used POD to develop reduced-order models for flows in

turbomachinery with sampling in both time and over a range of inter-blade phase angles.

Although the snapshot ensemble is computed at a single Mach number condition, the

resulting reduced models were applied to flows at varying Mach numbers. Accurate

results were obtained for Mach numbers close to that used in the snapshots set. In another

work that considers parametric variation, Ly and Tran [33] have developed a fast

computation that uses a POD basis to predict the steady-state temperature distribution of

flow in a square cavity as the Rayleigh number is varied. In this case each snapshot is at a

steady temperature distribution corresponding with each value of Rayleigh number. This

method is a simple combination of the POD basis and an interpolation procedure, but it

was shown to be effective and accurate.

The POD technique has also been applied by Bui-Thanh et al. [16] and [17] in a

steady transonic external aerodynamic problem. In both works, all snapshots were

computed by an inviscid steady-state CFD code which uses a finite volume formulation.

In [16] the POD technique was coupled with a cubic-spline interpolation method in order

to develop low-order models that capture the variation in parameters. The problem

considered in this work is steady flow about the NACA 0012 aerofoil with varying angle

of attack and Mach number. The Mach number range considered [0.75, 0.85] was divided

into 20 uniform intervals and the angle of attack range [0, 1.25o] was divided into 10

uniform intervals. This resulted in a total number of snapshots in the ensemble of 231.

Based on this snapshot set, interpolation was used to predict the flow pressure contours at

any Mach number and angle of attack within the range considered. When the pressure

flow field was predicted at an angle of attack of 0.45o which was not one of the snapshots

and a Mach number of 0.8, with twenty-five eigenfunctions the contours of the reduced-

order model matched closely with the computed one. When the pressure flow field was

predicted at an angle of attack of 0.5o and a Mach number of 0.812 which was not one of

the snapshots, thirty eigenfunctions were required to achieve the desired level of

accuracy. This indicated that the prediction is more sensitive to Mach number rather than

the angle of attack. When the pressure flow field was predicted at an angle of attack of

0.45o and a Mach number of 0.812, as none of these values were used to generate the



Chapter 2 – Literature review
________________________________________________________________________

24

snapshots, 40 POD modes offered a satisfactory level of accuracy. These results showed

that the POD method combined with interpolation allows models to be derived that

accurately predict steady-state pressure fields over a range of parameter values. However,

it is emphasized that in order for the interpolated result to be reliable, the properties of

interest must vary smoothly with the parameters under consideration. It has been stated

that the approach can be extended to the case where more than two parameters vary and

which may include geometrical properties in order to apply the models in an optimisation

context.

The POD combined with a response surface method was employed by Tang et al. [34]

for the reconstruction and prediction of aerodynamic and aerothermal solutions of an X-

34 configuration. In this work it has been suggested that this methodology will be used

for the design and optimization of the thermal protection system of the X-34 reusable

launch vehicle.

In that work, a computationally efficient, panel-method based hypersonic aero-

thermoelastic software was developed and used to conduct the structural design and

optimization of the thermal protection system of this reusable launch vehicle. The results

obtained from this software on the windward side of the X-34 were verified with CFD

results. However, discrepancies were found on the leeward side of the X-34 as the

generated results lacked sufficient flow field detail due to the inadequacy of the panel-

based method for representing the non-linear hypersonic effects in the high angle of

attack flow regime. For this reason, they had to look upon high-level CFD methods which

are not computationally efficient enough. Consequently, to predict the lee-side

aerodynamics/aerothermodynamics on the X-34 with high-accuracy and efficiency, a

POD/RSM based aerodynamic module was developed from the high-level CFD solutions

of the X-34 configuration. In this work an extensive CFD solution database for the X-34

was created. Two parameters were considered namely the angle of attack which was

varied between 0 and 30o and Mach number which was varied between 2 and 10. It was

not reported how many snapshots were considered. The POD technique was applied on

this dataset to facilitate reduced-order modelling of steady state super- and hyper-sonic
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aerothermodynamics. A response surface of the scalar coefficients versus the Mach

number and the angles of attack was constructed by using RBF networks. It was reported

that for all Mach numbers considered, the first three POD modes sufficed for a

reasonably accurate reconstruction of the X-34 surface pressure coefficients over the

entire range of angles of attack. This suggests a continuous variation of the solution in the

design space. It was also reported that for the case where the Mach number is 10 and the

angle of attack is 30 degrees, the POD reconstruction resulted in a slightly higher

pressure near the nose than the original CFD solution. The authors failed to remark that

this may have been improved by considering more modes. Alternatively by enriching the

dataset over that region would have also captured the details better. Predictions were

conducted with good efficiency too taking about one second on a 2.4 GHz PC for

determining the surface pressure coefficients. In that work it was reported that this

module proved to be not only computationally more efficient than the low-level

engineering methods, but also as accurate as the high-level CFD methods, making it valid

for MDO and real-time applications.

2.3.6 Aerofoil inverse design optimisation using POD-based ROMs

In the field of aerofoil design, Lighthill [35] was the pioneer in aerofoil inverse design

using the method of conformal mapping. This method was limited to incompressible flow

problems but it was later extended by McFadden [36] to include compressible flows. By

introducing the finite-difference method to evaluate the sensitivity derivatives, Hicks and

Henne [37] were the first to solve a constrained aerodynamic optimization problem. Since

then, gradient based methods have been used for aerodynamic design. Relatively

recently, Jameson [38] has applied control theory in the context of aerofoil shape design

optimization using Euler and Navier-Stokes codes. In this method, although an adjoint

equation needs to be solved to obtain the gradient, the total cost for computing the

gradients is independent of the number of design variables and hence it is more efficient

than finite-difference methods. Significant progress has been reported on the application

of this approach to the design of realistic geometries [39]. However, the use of this
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adjoint-solver approach for situations involving multiple disciplines and a large number

of design constraints, has been somewhat limited. This may be due to the fact that the

adjoint equations, boundary conditions and gradient calculation formulae are cost

function dependent and so need to be re-derived every time the cost function changes.

Moreover, it is not possible to treat arbitrary forms of the cost functions, thus limiting the

applicability of this procedure. Consequently, alternative techniques for aerodynamic

design of wings most especially are sought, such as reduced-order methods. POD has

been used in reduced-order methods for multi-disciplinary design environments where

aerodynamics and structural analysis are included by Pettit and Beran [40], Thomas et al.

[41]. Moreover, the work by LeGresley and Alonso [14] and Bui-Thanh et al. [17]

demonstrated that the POD method could be used as a low-cost, low-order approximation

for aerodynamic shape optimisation. The method proposed by Bui-Thanh et al. is based

on the gappy POD reconstruction procedure of Everson and Sirovich [28] while that used

by LeGresley and Alonso is based on the gradient approach to cost function optimisation.

In both cases, conventional CFD methods were used to generate the data ensemble for the

aerofoil inverse design problem. The POD procedure is then used to compute a set of

optimal eigenfunctions from these snapshots. The two methods differ from each other in

the way the cost function is evaluated and the way the optimal solutions are arrived at.

In particular, LeGresley and Alonso [14] have used the POD technique for both

direct and inverse aerofoil design problems. In that work, a set of pressure field

distributions corresponding to different aerofoil profiles were computed using an Euler

solver. Different aerofoil profiles were created by perturbing the design variables of the

base shape. The POD basis is then computed and used to construct a reduced-order model

for Euler equations to compute new, approximate solutions for any arbitrary aerofoil at

significantly lower computational costs. In this manner, both direct and inverse aerofoil

design problems can be done efficiently using a gradient-based optimization procedure

with the information from the reduced-order model.

Bui-Thanh et al. [17] applied the POD method to the problem of inverse aerofoil

design. In that work, a collection of snapshots was generated by choosing a set of aerofoil
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shapes and computing their corresponding surface pressure distributions. The POD

technique was then used to determine the optimal aerofoil shape that produces a given

target pressure distribution. An important point of this method is that rather than

containing only the flow variables, the snapshots are augmented to contain also the

aerofoil co-ordinates. The minimal solution of the cost function is sought with a target

vector that contains the required target pressure distribution and the unknown

corresponding aerofoil co-ordinates. Thus, the target vector contains both known and

unknown elements and so the procedure of Everson and Sirovich [28] is used to

reconstruct the missing data points.

In [42] a comparison is made between these two POD methods for aerofoil inverse

design optimization. The performance of these two methods on the inverse design of

various aerofoil shapes such as Korn, NACA63212, HQ2010 and GOE117 were

compared and evaluated. From this it was concluded that while both methods are efficient

and accurate once appropriate flow snapshots are collected, with the same data ensemble,

the gradient-based POD optimization method appears to give better results for aerofoil

shape design and surface pressure distribution when compared with the target.

2.3.7 The effect of deforming grids on POD-based ROMs

Since POD-based reduced-order modelling is a space-index transformation from the

physical to the computational domain, it does not account for changes in the grid

boundaries and if possible must somehow be modified to properly reflect the changes in

the physical domain. An investigation of the effect of deforming grids on POD-based

ROMs was conducted by Anttonen [43], whereby various problems were considered such

as potential flow about a uniformly translating 2-D cylinder in still fluid and an

oscillating panel in 2-D subsonic flow. Anttonen reported that deforming grids required

more modes than rigid grids for similar accuracy levels as shown in figure (2-1). Also,

POD-based ROMs are less accurate on grids that differ from the grids at which these

were trained. In that work, a metric was developed which correlates the accuracy of the

POD-based ROM to deformations from the training grids and was used to determine
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when to switch between ROMs of different grids for reduced order models of problems

with deforming grids. The algorithm uses the most appropriate POD-based ROM to

provide the most accurate solution.

(a) Translating grid (Deforming) (b) Rotating grid (Deforming)

( c ) Translating/Rotating Grid (d) Rigid Grid
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(e) POD-based ROM Modal Contribution

Figure (2-1) The grids considered in the analysis and the modal contribution for a
potential flow about a uniformly translating 2-D cylinder in still fluid

2.3.8 POD-based ROMs for moving discontinuities in fluid flow

A significant challenge in the use of POD-based ROMs for high-speed flow

applications is to capture moving shock waves as the flow parameters or boundary

conditions change. Techniques that generate POD-based reduced-order models

(POD/ROM) for subsonic and supersonic flows do not generate a useful ROM for a high-

speed flow application with moving shocks. Excessive data and time are required for

modelling this accurately. For this problem Lucia [44] proposed and used a technique to

exploit POD for accurately treating moving shock waves. This technique involves the

decomposition of the solution domain to isolate those regions that contain shocks and so

produces internal boundaries within the flow-field between the various domains. The

main idea behind this is to use the POD modes for a global approximation of the flow-

field and to use a standard finite volume scheme in the region where the shocks occur. A
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reduced-order model for each region is developed independently and the solution for the

entire domain is formed through a linking of the boundaries of each region, using

optimization based solvers to ensure a smooth solution between overlapping parts of the

internal boundaries.

This technique was applied to a one-dimensional quasi-steady nozzle flow-field by

Lucia [44] for demonstration. However, LeGresley and Alonso [45] applied this

technique for the shape optimisation of a two-dimensional aerofoil. The results attained

are good though some discrepancy could still be detected between the high-fidelity

solution in dashed line and the POD/ROM with domain decomposition POD/ROM/DD as

shown in figure (2-2). Though, it must be emphasized that the discrepancy is not

necessarily due to a shortcoming of the POD/ROM/DD technique, but it could also be

due to the changes in the physical domain.

Figure (2-2) Coefficient of Pressure distribution over the RAE 2822 aerofoil using
POD-based ROM with domain decomposition compared with the full order

solution. Picture taken from reference [45].
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It is thought that by combining POD-based ROMs with conventional spatial

discretization schemes, more efficient multi-scale algorithms for the analysis of some

parameter dependent PDEs can be developed. The idea of multi-scale modelling is to use

two models at least – one to represent the global features of the solution and a detailed

model to capture the local features. The main issues involved in designing a multi-scale

scheme are (1) the numerical method employed to identify the localized regions where a

full-order model should be used and (2) the approach used for handling the coupling

between the two models in order to arrive at consistent values for the flow-field variables

in the interface region. Thus, while it is recognised that this domain-decomposition

technique is reasonably good, it does offer some challenging issues.

2.3.9 POD-based ROMs for aeroelastic analysis of a complete F-16

aircraft configuration

In [46] and [47], Lieu et al. applied POD-based ROMs for an aeroelastic analysis of a

complete F-16 aircraft configuration with clean wings for varying Mach number and low

angles of attack. In that work it has been shown that the POD method produces accurate

ROMs for the aeroelastic analysis of a complete aircraft configuration at a fixed flight

condition. However, changes in the Mach number or the angle of attack often require the

reconstruction of the ROM in order to maintain accuracy. Consequently, all this defeats

the most important and the very much sought-after computational efficiency. In that

work it was shown that straightforward approaches for ROM adaptation lead to

inaccurate POD bases in the transonic flight regime. Thus, a new ROM adaptation

scheme is proposed and evaluated for varying Mach number and angle of attack. This

scheme interpolates the subspace angles between two POD subspaces and then generates

a new POD basis through an orthogonal transformation based on the interpolated

subspace angles. This computational methodology is applied to a complete F-16

configuration in various airstreams. The predicted aeroelastic frequencies and damping

ratio coefficients were compared with counterparts obtained from full-order non-linear

aeroelastic simulations and flight test data. Good correlations are reported in the transonic
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flow regime. It is reported that this technique has a significant potential for accurate, real-

time, aeroelastic predictions.

2.3.10 POD combined with centroidal Voronoi tessellations

The computational cost of the POD methodology may become exorbitant for problems

with a very large number of snapshots. For such problems, Du et al. [48] proposed a

method by which the dominant basis functions are computed using centroidal Voronoi

tessellations (CVT). This approach has the advantage that it does not involve the solution

of an eigenvalue problem and can also be efficiently parallelized. Moreover, Du and

Gunzburger [49] presented an approach for model reduction that hybridizes centroidal

Voronoi tessellations with POD. The idea behind this technique is that the POD have

been used to define reduced bases for low-dimensional approximations of complex

systems, while the CVT have been used in a variety of data compression and clustering

settings. Thus, it is expected that this proposed technique which is referred to as the

centroidal Voronoi orthogonal decomposition CVOD inherits favourable characteristics

from both its parents and so introduces the concept of clustering into the decomposition.

By imposing various clusters within some domain, each sub-CVOD basis for a specific

cluster can be used to capture the dynamics of that cluster. Another interesting feature of

CVOD is that it avoids the over-crowding of the reduced basis into a few dominant

modes which is a possible drawback of POD.
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Chapter 3

3.0 The mathematical model

In this chapter a detailed description of the numerical methods employed in setting up

the mathematical model is presented. We start with a description of the CFD tool utilised

in this work followed by an in-depth account of the various numerical methods adopted

to develop the low-cost surrogate of the CFD tool. These include techniques for sampling

the parametric space using a design-of-experiment approach, a reduced-order model for

the appropriate representation of the dominant characteristics of the fluid-flow structure

and generalized linear models for the construction of response surfaces. The latter

includes both regression and interpolation techniques.

3.1 The CFD analysis tools

One of the objectives of this work was to develop a high-fidelity low-cost surrogate of

a computational fluid dynamics analysis tool, namely the IMPNS (Implicit Multiple in

blocks and grids Parabolised Navier-Stokes) flow solver [51] [52]. This is a parabolised

Navier-Stokes solver which has been developed at Cranfield University. The IMPNS

software has been developed to provide a practical flow solver for problems in high-

speed external weapon aerodynamics. Most of the flow computations in this research

thesis were conducted using the IMPNS, even though the transonic flow computations

over the RAE 2822 aerofoil in chapter 8 were conducted using the commercial software

Fluent [53].
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3.1.1 The IMPNS flow solver

IMPNS provides algorithms for the solution of the Euler, Thin-layer or Parabolized

Navier Stokes equations together with a range of turbulence closures that includes the

algebraic model of Baldwin and Lomax [54] enhanced with modifications due to either

Degani and Schiff [55] or the curvature method of Qin and Jayatunga [56] and variants

of the one-equation model of Spalart and Allmaras [57]. The turbulence closure is

coupled with the mean flow equations in a segregated fashion.

The governing equations are formulated for a finite control volume and solved using

an implicit space marching procedure. For flows in which there is no upstream influence

a single sweep is employed starting at the nose of the configuration and proceeding in the

stream-wise direction. The approach has been extended to allow for flows with upstream

influence, for example blunt body flows and flows exhibiting axial separation. In this

case a multi-sweep procedure in which the solver marches backwards and forwards is

employed to capture the elliptic characteristics of the governing equations. A

combination of single sweep and multi-sweep strategies can be used to solve for flows

that contain embedded regions of flow where upstream influence is important.

IMPNS provides a number of schemes that can be employed in the spatial

discretization, see for example Qin and Ludlow [58]. In the present calculations the

spatial discretization is performed using an approximate Riemann solver based on the

work of Osher and Solomon [59] together with a central difference based scheme for the

viscous fluxes.

An implicit system of equations arises at each marching plane following the spatial

discretization. This system is solved using a relaxation approach in which an additional

pseudo-time derivative is added to the steady governing equations. The implicit system is

then solved by marching to the steady state in pseudo-time. Convergence of the pseudo

time relaxation is accelerated through the use of a combination of an implicit Newton-

Krylov method [60] and full multi-grid [61].
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IMPNS uses standard structured multi-block grids. To provide geometric flexibility

and to reduce computational expense non-matching block faces are permitted in the

stream-wise direction. This permits changes of grid topology in the stream-wise direction,

allowing the grid to conform to the geometric characteristics of the configuration being

studied. IMPNS has been used extensively to study the aerodynamics of high-speed

weapon configurations with remarkable success, further details of its development and

application can be found in references [62], [63], [64], [65], [66], [67], [68], [69], [70].

3.1.2 Mathematical formulation of the IMPNS

The governing equations are the Favre-averaged Navier-Stokes equations describing

the conservation of mass, momentum and energy for the steady flow of a compressible

ideal Newtonian fluid. This system of equations can be written in conservative integral

form as,

0F 
S

ndS Eq.(3-1)

in which nF is the flux through the surface of an arbitrary control volume bounded by the

surface S [51] [71]. The flux may be conveniently split into convective, inv
nF , and

diffusive, vis
nF , terms so that,

visinv

Re

1
nnn FFF  Eq.(3-2)

The convective flux inv
nF may be obtained from,

TTTinv ,0)ˆ(0,)ˆ( nunF pn   Eq.(3-3)

where n̂ is the unit vector normal to the surface of the control volume and
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T,1)0,0,0(0,p Q Eq.(3-4)

and  TT ρ,ρ ρ, EuQ  is the vector of conservative variables.

The diffusive flux may be calculated from,
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where the components of the shear-stress are

   3,2,1,
3

2









 jiTuu ijijjiTij u Eq.(3-6)

This system of equations is closed by assuming that air is an ideal Newtonian fluid for

which Stokes’ hypothesis is valid. The coefficients of thermal conductivity and molecular

viscosity are modelled using Sutherland's law.

For a structured grid containing hexahedral cells a discrete form of Eq.(3-1) can be

obtained,

0FFF  
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kji
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kji

kji
kji sss  Eq.(3-7)

where F , F and F are the fluxes through cell faces aligned with the streamwise and

cross-flow directions respectively. By neglecting the viscous flux in the streamwise

direction a reduced form of the Navier-Stokes equations, the Parabolized Navier-Stokes

equations (PNS) [51], can be obtained,
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0FFF  








½,,
½,,

½,,
½,,

,½,
,½,

inv ][][][ kji
kji

kji
kji

kji
kji sss  Eq.(3-8)

In Eq.(3-8) the cross-flow fluxes remain unaltered, except for neglected streamwise

contributions to derivatives in the viscous fluxes. Provided a suitable discretisation of the

streamwise flux is used to maintain stability, Eq.(3-8) may be solved using an implicit

multiple-sweep space-marching methodology, where flow information is propagated in

both directions by marching in both the positive and negative streamwise direction.

If the flow outside of the boundary layer is supersonic in the streamwise direction and

there is no streamwise separation present, an approximation due to Vigneron et al. [72]

enables the PNS equations to be solved by a well-defined (stable) single-sweep space-

marching procedure in the streamwise direction. Vigneron obtained such a procedure by

modifying the pressure gradient in the subsonic portion of the boundary layer to suppress

the elliptic character of Eq. (3-8); this can be done by replacing the streamwise

convective term inv
F by,

Tinvvig ,0)ξ̂(0,])ξ̂,(1[)( pmFQF   Eq.(3-9)

where ξ̂ is a unit vector in the ξ direction and
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  Eq.(3-10)

3.1.2.1 Numerical Method

In order to obtain an efficient solution of the flow governing Eq.(3-9) without stability

restriction on the maximum size of the space step a pseudo time term is introduced,
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Eq.(3-11)

As  the pseudo-time term vanishes and the governing equations are recovered.
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3.1.2.2 Spatial discretization

The streamwise convective flux is evaluated using a simple first order upwind scheme

for single sweep calculations. For multi-sweep calculations in which flow disturbances

are permitted to propagate in both upstream and downstream directions the flux vector

splitting proposed by Steger and Warming [73] is employed. A high-resolution finite

volume scheme based on Osher and Solomon's [59] upwind flux difference splitting is

employed for the spatial discretisation of the convective flux terms in the cross flow

direction. To enhance the spatial resolution in the cross-flow plane, a nominally third-

order accurate slope limited MUSCL interpolation of the primitive variables is employed

[74].

The viscous fluxes are evaluated using a second-order finite volume scheme. Flow

gradients required in the evaluation of the stress tensor and heat flux are obtained using

Gauss' theorem and auxiliary cells constructed around the face for which the data is

required.

3.1.2.3 Pseudo-time discretization

Following spatial discretization a semi-discrete system of ordinary differential

equations is obtained,

0
Q

 kji

kji

RV ,,

,,


Eq.(3-12)

Eq.(3-12) is solved using an efficient implicit method that employs a BILU pre-

conditioned Krylov sub-space method [60]. The multi-grid Full Approximation Scheme

(FAS) is used to further accelerate convergence to the steady state [61].
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3.2 Approximation concepts and surrogates

The computational cost associated with the use of high-fidelity simulation models is

extremely high, most especially when multi-disciplinary studies are conducted. Although

advances in computing hardware and software are constantly being made and have

reduced the costs significantly over the last few decades, the fidelity with which

engineers desire to model engineering systems has also increased considerably.

Consequently, general approximation techniques were developed and are constantly

being developed for improving the efficiency of processes and it has now become popular

to employ computationally cheap approximation models instead of exact calculations in

design and analysis.

In this section a few computational approaches are described for building

approximation models of high-fidelity analysis codes. Here, the high-fidelity analysis

model is represented by the relationship )(xfy  where rx is the vector of inputs to

the simulation code and y is a scalar output. The objective of the approximation is to

construct a model )(ˆˆ αx,fy  that is computationally cheaper to evaluate than the high-

fidelity code. In this model α is a vector of undetermined parameters, which is estimated

either by employing what is called a black-box surrogate approach or a physics-based

surrogate approach.

In the black-box approach the aim is to construct a surrogate without using any

domain-specific knowledge of the analysis code, that is, the code is considered to be a

computational module that cannot be modified. The black-box approach involves running

the analysis code at a number of preselected inputs to generate a set of input-output data.

In this text this data is interchangeably called either the training dataset or observational

data. From this data, a surrogate model is trained to learn the input – output mapping by

minimizing some appropriate loss function. This approach to surrogate construction has a

number of practical advantages, although it has some disadvantages too.
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On the other hand, physics-based approaches exploit to some extent the governing

equations solved by the analysis code either in the continuous or discrete form and

therefore make use of domain-specific knowledge. It is to be remarked that in this text,

the words surrogates and meta-models are used interchangeably and refer to

approximation models.

In this work, an approximation model which couples both the black-box and the

physics-based approaches is considered.

3.2.1 Interpolation versus regression techniques

Generally surrogate models are developed such that it is allowed to either interpolate

or else regress the data. The following is a quantitative description of what is meant by

regression and interpolation of data.

Given a set of data points )(x i r where mi ,......,1 and the corresponding function

values )( )(if x , a global approximation function )(ˆ )(if x can be obtained by

(i) Linear regression

Considering a second order polynomial as a model such as,
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where the c’s are unknown coefficients determined by the least-squares approach. This

response surface equation (3-13) can then be used to determine the approximate function

values at any arbitrary parameter values. This technique is generally inadequate in

providing a globally accurate representation because of its smoothing effect.
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(ii) Interpolation

An interpolating model satisfies the following condition

),()(ˆ )()( ii ff xx  mi ,........,1 Eq. (3-14)

which shows that the function and the approximation are equal at all data points.

In physical experiments, the surrogate models are normally not allowed to interpolate

the data due to the presence of random errors and so regression techniques are used. In

computational experiments, for example, when the analysis CFD solver is run to

incomplete convergence, it is sensible not to use an interpolating surrogate model.

Moreover, numerical errors arising in similar problems are not directly related with

random noise and so the use of regression techniques in similar situations is far from

ideal. This is because it is statistically debatable to treat numerical errors as random

quantities that are independent and identically distributed. It therefore appears that there

is a need for a more accurate framework for surrogate modelling in the presence of

numerical errors. Consequently, it is important that computational experiments for

subsequent use in surrogate modelling are appropriately converged. In addition, one

should be cautious in interpreting the results of model significance based on least-square

residuals and t-statistics etc., since these do not have any statistical meaning for

deterministic experiments. It therefore appears that interpolation techniques are a more

appropriate form for surrogate modelling when training datasets are obtained by running

a deterministic computer model. This does not mean that for a given problem an

interpolation model will necessarily work better than a regression model. In fact what is

more important in practice is the generalization performance of the surrogate model.
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3.2.2 Generalized linear models

Two very common methods for constructing surrogate models are polynomial

response surface models and radial basis functions. Both are examples of generalized

linear models and can be expressed in the following form





m

i

ii
xxy

1

)()(ˆ  Eq. (3-15)

where
i

 i = 1, m denote a set of fixed basis functions and
i

 are unknown coefficients

in the approximation. For information, generalized non-linear models use basis functions

such as  =  ,x where  is a set of hyper-parameters.

3.2.2.1 Response Surface Methods: Linear regression

The response surface methodology (RSM) consists basically of (i) the application of

design of experiments techniques (ii) regression analysis and (iii) analysis of variance

techniques for data interpretation from physical experiments [75] [76]. The origin of

RSM dates back to the early twentieth century when scientists in the field of agriculture

required and developed tools for modelling data from physical experiments [77]. Since

these are subject to measurement errors, least-square regression techniques were

employed under the assumption that the measurement errors for each data point are

independent and identically distributed. In particular RSM is useful in situations where

there are a few observations because the physical experiment is both very expensive and

time consuming to perform. The accuracy of the response surface can be quantified by

examining the statistics of the least-squares residuals.
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3.2.2.1.1 RSM and Physical Experiments

In RSM, the relationship between the observations and the independent variables is

defined as

)( )(ify x Eq. (3-16)

where y is the observed response, )(ix is the vector of vn independent variables defined

as

],......,, 2 vnxxx1[x  , Eq. (3-17)

and )( )(if x is the unknown function. The empirical model of the unknown function

found via the application of RSM is defined as

)(ˆˆ )(ify x Eq. (3-18)

where )(ˆ )(if x typically is a first or second order polynomial in x. Note that the random

error (uncertainty) present in stochastic experimental data is implicit in both )( )(if x and

)(ˆ )(if x .

RSM employs the statistical techniques of regression analysis and analysis of variance

ANOVA to determine )(ˆ )(if x through a systematic decomposition of the variability in

the observed response values. The empirical model is then estimated by assigning

portions of the variability to either the effect of an independent variable or to a random

error.
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3.2.2.1.2 RSM and Computational Experiments

Computer simulations are nowadays very common in science and engineering. In

many instances these simulations require enormous amounts of computer time and

memory when performed. Moreover, a single simulation can necessitate weeks or months

of effort to set-up and debug. As a consequence, it is attractive to consider applying RSM

methods, originally developed for physical experiments, to computer simulations as well.

It should be noted that in this research RSM is applied to the results obtained from

deterministic computer simulations, where simulations performed with identical starting

values and initial conditions produce identical results.

3.2.2.1.3 Polynomial Models for RSM

Normally in RSM applications, either linear or quadratic polynomials are used to

model the observed response values. RSM becomes very expensive when higher-order

polynomials are considered for experiments involving several variables. Giunta [78]

remarks that quadratic polynomials provide the best compromise between modelling

accuracy and computational cost of all models investigated in his work. In addition cubic

and higher-order polynomials may contain one or more inflection points and so in

gradient-based numerical optimization schemes, the optimizer may converge to an

inflection point rather than to an optimum.

If ns analyses are conducted and p = 1, ..., ns, then a quadratic response surface

model has the form
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where  py is the response; )( p
jx and  p

kx are the nv design variables or parameters; and

 kjnjo v
ccc 1,, are the unknown polynomial coefficients. There are nt = (nv+1)(nv+2)/2

coefficients in the quadratic polynomial. This polynomial model may be written in

matrix notation as

  )( pTpy xc , Eq. (3-20)

where c is the vector of length nt of unknown coefficients to be estimated,

],,......,, 110 
tnccc[c Eq. (3-21)

and )( px is the vector of length nt corresponding to the form of the )( p
jx and  p

kx terms in

the polynomial model Eq. (3-19). For the p th observation this is
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ppppp xxxxxx Eq. (3-22)

Note that there is a difference between the pth vector of independent variables, x(p) and

the pth vector of independent variables mapped into the form of the polynomial model,

)( px .

Estimating the unknown coefficients requires ns analyses, where ns  nt. Under such

conditions, the estimation problem may be formulated in matrix notation as

Xcy  Eq. (3-23)

where y is the vector of ns observed response values,

],......,,[ )()2()1( snyyyy  , Eq. (3-24)
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and X is the matrix formed by the p row vectors )( px which is assumed to have rank nt.

Thus, X may be expressed as
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The unique least squares solution to Eq. (3-23) is

Eq. (3-25)

where   1
XXT exists if the rows of X are linearly independent. When ĉ is substituted for

c into Eq. (3-20), values of the response may be predicted at any location x by mapping x

into )( px . In matrix notation this corresponds to

Eq. (3-26)

If ns > nt , the system of equations is over-determined. Thus, the predicted response

values (from the polynomial model) at the original sample locations may differ from the

observed response values at the sampled locations.

In practice, the matrix X may be poorly conditioned, which may cause numerical

instabilities to arise when the normal equations are directly solved to compute the RSM

coefficients. Hence, it is preferable to employ the singular value or QR decomposition

scheme to estimate the coefficients. Further to ensure robust estimates for the

coefficients, the number of training points are chosen to be greater than the number of

unknown coefficients in the model.

  yXXXc TT 1
ˆ




)(ˆˆ pT xcy 
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3.2.2.1.4 ANOVA and regression analysis

Apart from estimating the coefficients in the quadratic polynomial model, ANOVA

and regression analysis also yield a measure of uncertainty in the coefficients. This

uncertainty estimation is achieved by the t-statistic. This is defined in Myers and

Montgomery [76] as

12

1

)(ˆ 




jj
T

jc
t

XX
Eq. (3-27)

where 2̂ is the estimate of the variance in the observed response data and j = 1,..., nt.

Note that the reciprocal of the t-statistic is an estimate of the standard derivation of each

coefficient as a fraction of its value. Accordingly, coefficients with low values for the t-

statistic are not accurately estimated. It is normally the choice of the user to select the

minimum allowable t-statistic. The choice typically depends on the number of observed

response values used to create the response surface model.

A number of applications of RSM in design optimization can be found in the literature,

see for example the dissertations by Balabanov [79], Giunta [78], Venter [80], Vavalle

[81] and the references therein.

This technique is generally inadequate in providing a globally accurate representation

because of its smoothing effect and so is of limited utility when modelling complex input-

output relationship. Hence polynomial models are useful only when it is required to

approximate an input-output relationship over a small region of the parametric space.

However, the drawbacks associated with parametric models can be alleviated to some

extent via non-parametric models that employ more flexible basis functions. The next

section deals with this type of function.
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3.2.2.2 Radial Basis Functions Approximations

A radial basis function (RBF) is a real-valued function whose value depends on the

Euclidean distance from some point called a centre [82] [83]. Radial basis functions are

typically used to build up function approximation of the form

   i

N

i
i xxwxpxf - 

1

)(ˆ Eq. (3-28)

where the approximating function  xf̂ is represented as a sum of N radial basis

functions  , each associated with a different centre
i

x and weighted by an appropriate

coefficient
i

w . )(xp is a polynomial of one degree less than the RBF and is included to

ensure a unique solution for the weight vector. Thus, an RBF is a weighted sum of

translations of a radially symmetric basis function augmented by a polynomial term. The

basis function in this context is a real function of a positive real value r which is the

distance or radius from the origin.

Typical radial basis functions are

i. Gaussian  
2



r

er




ii. multi-quadric  
2

1


r
r 

iii. inverse multi-quadric  
2/12

1
















r
r

iv. poly-harmonics such as the tri-harmonic   3rr  and

v. thin-plate splines   rrr k ln  ,......4,2k

The constant θ in (i), (ii) and (iii) is called the shape parameter. [84] [85]
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Figure (3-1) Shapes of Gaussian, multi-quadric and inverse multi-quadric RBFs as
these vary with the shape parameter. The arrow shows the direction in which θ

increases. Pictures taken from reference [93]

RBFs provide an effective way for interpolating scattered data as the associated

system of linear equations is guaranteed to be invertible under very mild conditions on

the locations of the data points. For example, the thin-plate spline only requires that the

points are not co-linear while the Gaussian and the multi-quadric place no restrictions on

the locations of the points. In particular RBFs do not require that the data lie on any sort

of regular grid. Many researchers remark that RBFs are suitable for problems with up to a

few thousand training data points [86].

The main attraction of RBF-type networks is that the model parameters may be

determined by using linear methods. Another major attraction of such expansion

functions is their flexibility, in fact these may be chosen to be either local such as the

Gaussian and the inverse multi-quadric or global such as the multi-quadric and poly-

harmonics. They may or may not incorporate shape parameters which may be tuned to

reflect the nature of the data.

The type of RBF to use for a given set of data is one of the active areas of research. A

basic question is whether to choose a local or a global function and how to set the

parameters. The parameter values may be determined through solving a non-linear

optimization problem or simply fixed uniformly. In particular, the Gaussian RBF which

is a local basis function has a specific domain of influence which is located at the RBF
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centre and with a size proportional to the radius r. Outside of this domain which is also

called as the receptive field, the Gaussian RBF does not contribute significantly to the

expansion. The locality of the Gaussian RBF leads to the useful feature that each weight

is associated with a region of the input space and is to a large extent unaffected by data

outside its receptive field.

In contrast with the local Gaussian RBF, it is possible to employ the global cubic RBF.

This RBF is attractive in that the global functions tend to require less data for training. In

addition the lack of a radius parameter simplifies the fitting process.

The RBF interpolant  xf̂ is defined by the coefficients of the polynomial p(x) and

the weights wi . Since this produces an under-determined system, the orthogonality

condition

0)(
1




j

N

j

j
xpw Eq.(3-29)

is further imposed on the coefficients w ),......,(
1 N

ww .

Let  lpp ,.....,1 be a basis for the polynomial and let c  
l

cc ,,.........
1

 be the

coefficients that give p(x) in terms of this basis. Then Eq. (3-28) and Eq. (3-29) may be

written in matrix form as
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and ),(, ijji xp ..,.........1,,.......1 ljNi 

Solving Eq. (3-30) determines c and w, hence )(ˆ xf . There are two different

approaches for solving Eq. (3-30), each with its own advantages. Direct methods such as

the SVD and the QR factorizations have a particular appeal. The SVD is most especially

useful if the left-hand side matrix of Eq. (3-30) is ill- conditioned, that is, if the ratio of

its largest to its smallest singular value is large, say 106 - 1010. On the other hand, the QR

factorization is attractive if training data or centres will be added or subtracted since it has

inexpensive update procedures. Iterative methods such as the steepest-descent algorithm

and the conjugate-gradient algorithm for solving Eq. (3-30) determine a sequence of

improving estimates for the solution.

Analysis of the approximation characteristics of a broad class of radial basis functions

can be found in the literature, see for example Liao et al. [87] and the references listed

therein. The results in that work suggest that by using suitable radial basis functions in a

generalized linear model, it is possible to approximate any function to an arbitrary degree

of accuracy.

Franke [88] compared a variety of RBF interpolation techniques of two-dimensional

problems for a scattered set of data. The comparison of the algorithms was made

according to various criteria such as accuracy, visual aspect, sensitivity to parameters,

execution time, storage requirements and ease of implementation. It was shown that

multi-quadrics give best results compared with the other techniques. This observation has

then led to the widespread application of multi-quadrics for modelling complex two- and

three dimensional surfaces in various scientific areas [89]. Essentially, multi-quadrics are

continuously differentiable, integrable and are capable of representing with very high

accuracy functions with steep gradients. Monotonicity and convexity are some observed

properties as a result of such high accuracy. Kansa [90] proposed a modified multi-

quadric scheme which is an excellent method for both accurate interpolation and partial

derivative estimate.
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Michelli [91] showed that the Gram matrix is guaranteed to be non-singular only for a

class of RBFs, when the set of input vectors in the training dataset are distinct.

Specifically, non-singularity can be guaranteed only if positive-definite kernels are used

such as the Gaussian and the inverse multi-quadric. If a positive-definite RBF is used,

then the Gram matrix is symmetric positive definite. Such basis functions are also

commonly referred to as Mercer kernels in learning theory. Nevertheless, for high values

of  , that is as the basis functions become flatter, the Ψ matrix can become ill-

conditioned. A monotonic relationship between the condition number of Ψ and the

shape parameter for multi-quadrics was proved by Wang [92]. In practice, it is often

observed that high accuracy is achieved only at the verge of numerical stability.

In this work, a relatively small number of training points were considered and so the

computational time to evaluate the weights of the RBF was small. However, when

dealing with a few thousand training points, the computational cost and memory

requirements become considerable. The construction of RBF approximations requires

O(n2) memory and O(n3) operations. Such costs are increased when there is also the need

to establish suitable values of  for a given dataset. Consequently some other approaches

for constructing RBF approximations such as the greedy approach [86] [93], which

significantly reduces the computational cost and memory requirements for large datasets

have been proposed.

Krishnamurthy [94] investigated and compared the ability of RBFs, Kriging and least

squares methods for function and function’s derivative estimation by considering some

numerical examples. Krishnamurthy concluded that Kriging yield the best results

followed closely by RBFs, but the free parameter in Kriging was optimised while the free

parameter in Gaussians and multi-quadric RBFs was maintained constant at one. The

optimisation process of the free parameter in Kriging was expensive.

To the best of the author’s knowledge RBFs were not extensively used in

aerodynamics related work, but one particular example will be discussed in detail in

chapter seven where variable-fidelity modelling is considered.
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3.2.2.2.1 Pre-conditioning techniques

The radial basis function interpolation matrix Ψ suffers many times from ill-

conditioning when the discrete set of data points is a large set and when the radial basis

function is for example the multi-quadric function, its reciprocal or the thin-plate spline.

In the case of the multi-quadric function, the conditioning is bad for any value of the

parameter, but the situation gets worse for larger parameters. In this section, a possibility

of how the matrix’s condition number may be improved before beginning the computation

of the interpolation coefficients is mentioned. This is the standard approach when large

linear systems of whatever origin become numerically intractable due to large condition

numbers and ensuing serious numerical problems with rounding errors. However, there is

significant influence of the form of  on the preconditioning technique we choose.

Assuming that Ψ is positive definite, as is the case when  is the reciprocal multi-

quadric function. In principle this can be solved using a standard conjugate gradient

method or even a direct method such as a Cholesky factorisation4. The convergence speed

of conjugate gradients, however, depends on the condition number of the matrix of the

linear system which is being solved. Convergence under these conditions may therefore

be slow or may fail completely due to rounding errors.

In order to improve the condition number of the positive definite matrix Ψ , the

following can be solved

Pf P Ψ P w Eq. (3-31)

where P is a preconditioning matrix, non-singular and usually symmetric- if it is non

symmetric, the left–multiplication in Eq. (3-31) would have to be by PT. P is chosen such

that it is not too expensive to compute the matrix product on the left-hand side and such

that the product is positive definite ie. a banded matrix. If P is symmetric and P2 = C, then

4 A symmetric positive-definite matrix can be decomposed into a lower triangular matrix and the transpose
of the lower triangular matrix.
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the matrix product C Ψ should ideally have a spectrum on the positive real half-axis

consisting of a small number of clusters, one of them near one, because the conjugate

gradient algorithm can deal particularly well with such situations and because P2 Ψ ≈ I is

equivalent to P Ψ P = I. Of course, the choice of C= Ψ -1 would be optimal, C Ψ being

the identity matrix. If P is chosen suitably, then the condition number of the

preconditioned matrix is usually also small. There are always several choices of P

possible and having made one choice, the desired coefficient vector is wPλ  which is

evaluated at the end.

This subject is vast but the interested reader may consult reference [83] or [95] for

further details.

3.2.2.2.2 Parameter optimization in multi-quadric response surface
approximation

In general the performance of an RBF to approximate a response surface depends to a

great extent on the shape parameter. Hence, some form of shape parameter tuning is

important and consequently techniques for optimizing the shape parameter are constantly

sought. An efficient method of computing the optimal shift parameter based on the leave-

one-out cross validation technique is proposed by Wang [92] and was implemented in

this work. A detailed exposition of this method is presented in Appendix A.

3.2.2.2.3 Hermite interpolation using RBFs

If the sensitivity of some response function can be computed efficiently, it would make

sense to construct surrogate models with sensitivity data as these can be more accurate

than those built using function values only. In generalized linear models, the output

sensitivities can be incorporated into the surrogate model using the idea of Hermite

interpolation [96]. A description of this interpolation method is presented in Appendix B.
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3.2.3 Physics-based approximations

The approximation methods described previously are general in scope and being so

can be applied to various simulation codes since no assumptions are made to the

governing equations being solved. In this section a consideration is made to physics-

based approximation concepts, which in general require a deeper understanding of the

governing equations and the numerical methods employed for their solution. These

physics-based approximation methods are another attempt to circumvent the curse of

dimensionality associated with certain surrogate modelling by exploiting domain-specific

knowledge. One example of physics-based approximation methods are reduced basis

methods of linear and non-linear systems. Keane and Nair [93] claim that a notable

advantage of most physics-based approaches is that they do not suffer from the curse of

dimensionality and can hence be readily applied to problems with greater numbers of

design variables.

3.2.3.1 Reduced basis methods

By using reduced basis methods it is possible to build models with fewer unknowns than

the original high-fidelity model. To illustrate reduced basis methods consider the discrete

mathematical model of a physical system written in the form

  0xw,R Eq. (3-32)

where nRw denotes the discretized vector of field variables and pRx denotes the

vector of design variables. Note that w is an implicit function of the design variables. The

above form of discrete equations is normally obtained by spatial and temporal

discretization of PDEs governing the system response and so it is a representative of a

wide class of problems encountered in structural analysis, fluid mechanics, heat transfer,

etc.
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The main idea used in reduced basis methods is to approximate the field variable vector

w as

cΦw c.....ccˆ
2211  mm Eq. (3-33)

where   mn
m R x

21 ,....,,  Φ denotes a matrix of known basis vectors and

  mT

m R c,....,c,c 21c is a vector of undetermined coefficients.

An assumption is made in reduced basis methods that the response vector lies

somewhere in the subspace spanned by a set of basis vectors. This allows the original

problem with n unknowns to be recast into a problem with m unknowns and so if nm 

then it is possible to approximate w very efficiently. Generally, the undetermined

coefficients are estimated so that the governing equations are satisfied in some way for

example by minimizing the integral of an appropriate error norm evaluated over the

parametric space thus ensuring that the reduced basis approximation is global in nature.

Moreover, the model parameters are evaluated using the governing equations, hence

explains the reason why reduced basis methods belong to the class of physics-based

approximation methods.

Thus, the main elements of reduced basis methods are the choice of the basis vectors

and the numerical scheme employed to compute the vector of undetermined coefficients.

Both the accuracy and the convergence rate depend on this choice. The following

sections outline the possible choices associated with these elements.

3.2.3.1.1 Choice of basis vectors

A good set of basis vectors is a set of vectors which is easy to compute as well as

guaranteed to be linearly independent. For the general form of discrete governing



Chapter 3 – The mathematical models
________________________________________________________________________

57

equations specified in Eq. (3-32) there are three commonly used options for the basis

vectors. Considering the case when there is only one parameter, say x.

The Lagrange subspace is formed by using state solutions of the discrete governing

equations which correspond to various different values of the parameters say x(1), x(2),....,

x(m), that is,

Eq. (3-34)

These solutions are obtained by standard techniques such as finite element or finite

volume methods.

The Hermite subspace is formed by combining the Lagrange subspace together with the

first-order derivatives of the field variable vector w at x(1), x(2),....,x(m), that is,

Eq. (3-35)

The state and sensitivity approximations are obtained through standard techniques such as

finite element or finite volume methods.

The Taylor subspace is written in terms of the Hermite subspace together with the higher

derivatives of the field variable vector w (sensitivities and higher-order sensitivities) at x

(1),

Eq. (3-36)

The state and derivative approximations are obtained through expensive techniques

such as finite element or finite volume methods. The Taylor basis may be somewhat

complicated to program due to the complexity of the partial differential equations that

determine the higher-order sensitivities. In addition, the number of higher-order

derivatives grows very rapidly with the number of design parameters, e.g., if one has 10
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design parameters, there are 55 different second derivative sensitivities. Thus, the

dimension of the Taylor reduced basis grows quickly with the number of parameters and

the number of derivatives used.

In general, the Lagrange subspace is the most attractive from a practical viewpoint

since the basis vectors spanning this subspace can be easily computed. A small point of

concern with all three subspaces is the possibility that some of the basis vectors could be

linearly dependent but this can be overcome for example by employing the SVD scheme.

Reduced basis methods using the subspaces aforementioned were applied to solve a wide

range of problems including fluid flow and structural mechanics for example, Balmes

[97], Ito and Ravindran [98] and Prud’homme et al. [99].

3.2.3.1.2 Schemes for computing the coefficients

Once a set of linearly independent basis vectors is developed, a scheme for computing

the vector of unknown coefficients is required. The main objective of this scheme is that

an estimation of the coefficients is made such that the discrete governing equations are

satisfied in some sense, in contrast with the general approximation concepts mentioned

earlier where the coefficients in the surrogate model are computed without regard to the

governing equations. Two schemes in particular are the Bubnov-Galerkin scheme and the

Petrov-Galerkin scheme.

In the Bubnov-Galerkin scheme, c is computed such that the residual error vector

obtained by substituting Φcw ˆ into the governing equations is orthogonal to the

approximating subspace. For the discrete governing equations considered earlier, this

implies that the following condition is imposed 0),( xΦcRφ
T

i
, i = 1,2,......m.

In the Petrov-Galerkin scheme c is computed by directly minimizing the L2 norm of the

residual error, that is,  
2

, xΦcR .
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It must be pointed out that when the governing equations are non-linear, then the

residual error vector is a non-linear function of the vector c and therefore ideally non-

linear least-squares minimization techniques must be employed to estimate the unknown

coefficients. However, if the governing equations are linear, then linear regression

techniques can be used to solve for the vector c.

3.2.3.2 Reduced basis methods for non-linear problems

It is possible to apply linear reduced basis methods to non-linear problems provided a

suitably rich set of basis vectors is available. This is apparent from section 3.2.3.1 where

a general discrete governing equation is considered to introduce the idea of reduced basis

approximations. Moreover, most numerical algorithms for analyzing non-linear systems

are based on the solution of a sequence of linear sub-problems and so makes it possible to

employ a reduced basis method developed for linear systems to solve a series of linear

sub-problems encountered in non-linear problems. In this thesis, an approach that uses

the proper orthogonal decomposition method to derive the basis vectors is considered.

This methodology has already been introduced in chapter 1 and a further detailed

mathematical description is presented in the next chapter.

3.2.3.2.1 The reduced-order modelling approach

In the reduced-order modelling approach an approximation to the physical system

from some limited results of the high-fidelity simulation model is sought. This

approximate model is called a reduced-order model (ROM). A reduced-order model is an

inexpensive mathematical model of a physical system that is derived from experimental

or numerical simulation data. The aim of the ROM is to reproduce the behaviour of the

original system of PDEs over a range of input parameters as accurately as possible, but at

a much smaller cost than the cost for solving the PDEs. The reduced-order model

contains many fewer degrees of freedom than the full simulation and is therefore

inexpensive to compute.
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Reduced-order models can be constructed using basis vectors generated via POD.

Assuming that the reduced basis approximation is applied to the discrete form of the

governing equations and substituting the approximation into the discrete governing

equations   0xw,R , the residual can be expressed in terms of the undetermined

coefficients in the reduced basis approximation as x)Φc,R ( . Subsequently, the vector of

coefficients can be computed by minimizing  xΦcR , using a non-linear least squares

minimizing technique.

3.2.3.2.1.1 Error Estimation

The usefulness of a reduced-order model is measured by its ability to reproduce the

behaviour of a high-fidelity simulation model at a much lower cost. Therefore one

possible definition of the error of a reduced-order model is the difference between the

solution of the reduced-order model and the solution that would be obtained by running a

high-fidelity simulation for the same input parameters, initial conditions and boundary

conditions. This error estimation was adopted in this work.

3.3 Design-of-Experiment Theory

In the description of the surrogate modelling techniques covered so far, it has been

assumed that a set of observational data was generated by some technique and is already

available. In the development of any surrogate model, the location of sample points

within the parametric space has an important influence on both the cost of constructing

the model and on the accuracy of model predictions. In this section, the problem of

generating training data that leads to approximation models that generalize well is

examined.



Chapter 3 – The mathematical models
________________________________________________________________________

61

Design-of-Experiment theory (DoE) [100] is a branch of statistics which provides the

statistician with methods for selecting the independent variable values for a limited

number of experiments, while achieving a good representation over the parametric space

of interest. The various experimental design methods create certain combinations of

analyses in which the independent variables are prescribed at specific values or levels.

The results of these planned experiments are then used to study and investigate the

response and sensitivity of some dependent quantity to the independent variables.

Classical DoE techniques include full- and fractional-factorial designs. A common

feature of these techniques is that the sample points are placed at the extremes of the

parameter space to alleviate the effects of noise and so these are appropriate if the data is

contaminated by noise, which make it necessary to employ regression techniques to filter

noise. In contrast to physical experiments, observations made using computer

experiments are not subject to random errors and so to extract the maximum information

about the input-output relationship, the sample points are chosen to fill the design space

in an optimal sense.

In this work we have investigated the performance of two different sampling

strategies; the full factorial and the Latin Hyper-Cube design-of-experiments. The

following sections deal with these two sampling methods.

3.3.1 The Full-Factorial Experimental Design

Prior to creating an experimental design, the allowable range of each of the nv

variables is defined by lower and upper bounds. The allowable range is then discretized at

equally-spaced intervals, thus forming different levels. The region enclosed by the lower

and upper bounds on the variables is termed the design or parametric space, the vertices

of which determine an nv - dimensional cube. If each of the variables is specified at only

the lower and upper bounds (two levels), the experimental design is called a vn2 full

factorial. Similarly, a vn3 full factorial design is created by specifying the lower bound,

mid-point and upper bound (three levels) for each of the nv variables.
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The full factorial design of experiment uniformly samples the design parameters

across the whole parameter space of interest. This technique while easy to implement is

expensive requiring 1
1




n

i

i
m samples where

i
m is the number of intervals used to

resolve the individual parameters and n is the number of parameters. This number can

become excessively large for even a modest number of design parameters.

Figure (3-2) A 33 full factorial experimental design resulting in 27 points

3.3.2 Monte Carlo Techniques

Monte Carlo techniques are probably the most straightforward of all DoE methods, in

which the main purpose is to use a random number generator to sample the parametric

space. When the parametric space is regular, Monte Carlo techniques are relatively easy

to implement but the implementation turns out to be difficult for irregular parametric

spaces. Moreover, the implementation becomes more involved with an assumed joint

probability distribution of the input vector. The major drawback of the Monte Carlo

technique is that the points generated may not fill the parametric space uniformly and so

large areas of the space may be left unexplored. In some other variants of the Monte Carlo
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technique such as the stratified sampling methods, the sampling points are generated more

uniformly by dividing the parametric space into bins of equal probability and at least one

point is placed within a bin. Thus, if each parameter has two intervals, the total number of

bins is 2n. This method suffers from the same disadvantage as full-factorial designs.

3.3.3 The Latin Hyper-Cube Sampling

The Latin Hyper-Cube sampling (LHCS) technique was first proposed by McKay et

al. [101] as an alternative to Monte Carlo techniques for the design of computer

experiments. In LHCS, each parameter range is divided into m intervals or bins of equal

probability. This leads to a total of m n bins in the whole space. Subsequently, m samples

are generated such that for each parameter, when a one-dimensional projection is taken,

there will be only one sample in each bin. The LHCS algorithm produces samples as

follows:

,
)()(

)(

m
x

i

j

i

ji

j

 
  ,1 nj  mi 1 Eq. (3-37)

where m is the number of samples,  [ 0,1 ] is a random number and π is an

independent random number permutation. The subscript denotes the parameter number

and the superscript in brackets denotes the sample number. From each parameter, one of

the points on the interval is selected randomly and the response is evaluated. This is done

until all points are used up. This method is useful because there is no correlation between

parameters and the samples are chosen randomly. However, the space-filling

characteristics produced using the standard LHCS are not guaranteed to be optimal. In an

effort to provide an optimal LHCS design, the algorithm is modified using the approach

of Audze and Englais [102] . In this approach a m n grid is first generated and then the

sample points are placed so that no two points lie along the same grid line and the metric,
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Eq. (3-38)

is minimized. In Eq. (3-38) dij is the Euclidean distance between points i and j. In order to

ensure that each point generated is placed in the centre of its bin, a lattice sampling

technique is adopted in which the value of  is set equal to 0.5.

(a) Distribution of points generated using the standard LHS method

(b) Distribution of points generated using the optimized LHS method

Figure (3-3) Comparison of the space-filling capability between the standard LHS
algorithm and the optimized LHS algorithm.

Pictures taken from reference [91]
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Chapter 4

4.0 The proper orthogonal decomposition

In this chapter a review of the mathematical theory of the proper orthogonal

decomposition is presented. As it has already been stated earlier, the proper orthogonal

decomposition is a mathematical procedure that provides a basis for the modal

decomposition of an ensemble of multi-dimensional data. This data may be either

experimental or numerical solutions of a system of partial differential equations, which

allow a reduction in the order of the system under consideration. A modal decomposition

may be required for various reasons such as for the identification of structures in the data,

or for the statistical analysis of sample data, or as it is employed in this work, as a set of

basis modes for approximating the solution of numerical problems with characteristics

similar to the ones used in the construction of the basis modes. The mathematical

development of POD for fluid flow applications in particular is described in some detail

in [19] and [103]. The essentials of this development and the properties of POD, in

particular those most important to reduced-order modelling, are presented in this chapter.

Here, the POD is also described for steady-state problems in terms of the singular value

decomposition, which is a more straightforward method.

Note that although the POD methodology is almost exclusively applied to non-linear

problems, it is important that one recognizes that it is a linear procedure, and the nested

sequence of subspaces are linear spaces, even if the data that generates it, is non-linear.
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4.1 The POD theory

Consider an ensemble  )(xuk of real vector fields on the domain x  . Here, it is

assumed that the ensemble consists of a set of instantaneous snapshots of a numerical

simulation solution field. In seeking good representations of members of  )(xuk , it is

required to project each u onto candidate basis functions and so it is assumed that the u

‘s belong to an inner product space: the linear, infinite-dimensional Hilbert space  H

of square integrable functions with inner product

  dxxgxf )()(, 


gf Eq. (4-1)

The POD basis is a set of functions  )(xφ j that is the best linear set of basis for

describing the ensemble of observations. Since the basis is linear, a flow-field u

span jφ can be represented as a linear combination of the POD modes,


j

jja )()t()t,( xφxu Eq. (4-2)

The POD modes, or empirical eigenfunctions, are defined by requiring that the

averaged projection of the ensemble ku onto φ is a maximum:

2

2

)(

),(max

φ

φu

φ H

, Eq. (4-3)

where . is the norm generated by the inner product. The averaging operator . used in

Eq. (4-3) could be an ensemble average over many numerical or experimental

realizations, or it could be a time-average taken from different samples of a single

experiment. The main assumption regarding the averaging operator is that it commutes

with the inner product. This assumption is shown to hold for the scalar case defined on

the Hilbert space 2L under certain conditions on u.
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The constrained optimization problem Eq. (4-3) with constraint φ = 1 reduces to the

eigenvalue problem

φRφ λ Eq. (4-4)

where

),( φuuRφ kk Eq. (4-5)

The operator R is self-adjoint and non-negative definite; if we further assume that R is

compact, then there exists a countable set of non-negative eigenvalues ,λ
i

with

associated eigenfunctions
i

φ . The eigenfunctions, appropriately normalized, form an

orthonormal subspace of H, i.e.
ijji
δ),( φφ . The notions of compactness of operators

and spaces, as well as the theory of self-adjoint operators, come from the mathematical

discipline of functional analysis; see, e.g., [104]. For more details on the compactness of

R and the required assumptions, refer to section 3.8.2 of [19].

The POD modes are the eigenfunctions
i

φ associated with non-zero
i

λ . Taking the 

inner product of Eq.(4-4) withφ , it is straightforward to show that ii

k λ),( 2 φu .In

other words, the magnitude of the eigenvalue is equivalent to the average energy of the

projection of the ensemble onto the associated eigenfunction, where the square of the

inner product is interpreted as an energy measure. It is important to remark that in

incompressible fluid mechanics with velocity measurements, this energy is related to the

fluid’s kinetic energy. However, in structural dynamics problems with, say, displacement

and/or velocity measurements, there is generally no direct correspondence between this

energy and either the system’s kinetic energy or its potential energy or any combination

thereof. Therefore, thinking of the eigenvalues as ‘energies’ in a general mechanical

context is incorrect in principle and may be misleading [105]. In signal processing, this

energy is not a physical energy. The POD modes may be ordered according to the

magnitude of their eigenvalue, with
1

λ /
1

φ equal to the eigenvalue/eigenfunction pair

with the largest eigenvalue, nλ  equal to the smallest non-zero eigenvalue, and 
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nn λ...λ...λλ 21  . In building reduced order models one is interested in

truncating the POD basis and retaining only the most energetic modes. It can be shown

that the sequence of truncated POD bases form an optimal set, in the sense that a POD

basis comprised of K modes describes more energy (on average) of the ensemble than

any other linear basis of the same dimension K. This compression of the ensemble energy

into a minimum number of modes makes the POD basis attractive for reduced order

modelling.

The span of the POD basis is not complete in )(H , but it is complete in the sense

that, on average, any snapshot used to construct it can be represented, i.e.

0),( 
j

jj

kk φφuu . Conversely, each POD mode can be reconstructed as a linear

combination of the observations used to construct the basis. Thus,





m

k

k
ka

1

)()( xuxφ Eq. (4-6)

Eq. (4-6) is a mathematical expression of the intuitive argument that the POD basis

contains only information on the kinematics of the flow-field that were already encoded

in the observations. Further down the road in the reduced order modelling process, the

dynamical features of a model will depend critically on the observations used to construct

the reduced basis. A consequence of Eq. (4-6) is that the POD eigenfunctions share any

closed linear property shared by all the ensemble members ku . Examples of such

properties are the divergence-free property of incompressible flow and satisfaction of

linear boundary conditions such as the no-slip surface condition.

In practice, the ku are vectors of state variables at discrete grid point locations, each

containing a single solution from the numerical simulation. They will have length nl,

where n is the total number of grid points and l is the number of dependent variables

describing the flow state. Thus, the discretized version of Eq. (4-4) will be an eigenvalue
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problem of order nl. For n >> m, where m is the number of flow-field snapshots used,

this procedure is costly and, it turns out, inefficient.

Sirovich [106] showed how the eigenvalue problem Eq.(4-4) can be reduced to order

m, resulting in a much more efficient procedure for n >> m. Assume that the averaging

operator . is a time average over a finite number of samples. Substituting the modal

decomposition Eq. (4-2) into Eq. (4-4) to obtain
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Using the property (x +y,z)=(x,z)+(y,z),
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A sufficient condition for the solution of Eq. (4-4) is then

  ;,
1

1
i

m

k
k

ki aa
m




uu mi ,........,1 Eq. (4-10)

Equation (4-10) is one row of a new eigenvalue problem with row index i and column

index k. Once the eigenvectors for Eq. (4-10) are computed, the POD modes are

computed using Eq. (4-6). This is the so-called ‘method of snapshots’ for computing a

POD basis.
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4.1.1 The POD analysis for snapshots with a changing physical domain

When the physical domain between snapshots is different, that is there exists a

geometrical change between snapshots, the modes derived from the snapshots will no

longer remain at fixed places within the computational domain and consequently an error

is introduced in this modelling technique being a space-index transformation. The inner

product is computed as

   


dkiki )()(, xuxuuu Eq. (4-11)

For simplicity, here we consider a steady-state problem ie. )(xuu  only.

The evaluation of the inner product in Eq. (4-11) is a problem when the domain of the i

and k snapshots are not the same. One approach to this problem is to use a common

domain for every snapshot and apply transpiration boundary conditions to account for the

changes in the boundary [107]. However, in this work the method as suggested and

adopted by LeGresley and Alonso [14] has been considered. In this case, the structured

physical mesh is transformed into the computational domain with indices denoted by

ζη,ξ, . The state variables are considered to be constant in each cell and so the discrete

equivalent of Eq. (4-11) is as follows

  )ζη,ξ,(  )ζη,ξ,()ζη,ξ,(,
ζη,ξ,

Vuuuu  kiki Eq. (4-12)

where )ζη,ξ,(V is the ensemble average of the ζη,ξ, -th cell volume as calculated in

the physical domain. In case that the physical domain is the same for all snapshots, Eq.

(4-12) is then equivalent to the continuous definition given in Eq. (4-11) . Once this is

completed, the flow solution variables can be expanded in the form of


j

jja )zy,x,()zy,x,( φu Eq. (4-13)
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4.2 The POD in terms of the SVD

In this section, the POD is described for steady-state problems in terms of the singular

value decomposition (SVD). This approach is normally preferred as it is more

straightforward and easy to be implemented.

Considering an ensemble of data  Y(x)A where mxnRA is obtained from the

solutions Y(x) of a high-fidelity model at various design points )((2)(1) xxx ,.......,,
m where

nRY represents the solution vector of primitive or conservative field variables and

rRx represents the vector of different design variables or parameters. From these the

ensemble of data is formed as follows,

 

 
 

 























)(

(2)

(1)

xY

.

.

xY

xY

Y(x)A

m

Eq. (4-14)

where         )()(

2

)(

1

)( xY,,.........xY,xYxY i

n

iii  , n is the number of grid points over which

the computational calculation is performed and m is the number of realizations or

parameters combination.

The sub-space spanned by these solutions can be used to approximate Y by representing

it in terms of orthogonal basis functions or vectors Φ which span the parameter space of

interest.

        )((3)(2)(1) xY,........,xY,xY,xYspanΦ m Eq. (4-15)

In POD each realization or solution vector is referred to as a snapshot.

The objective of the POD is to obtain a set of m optimal basis vectors which span the

subspace formed by m snapshots. In this context the snapshots are obtained for different
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values of the parameters, so that the solution at a particular parameter can be

reconstructed as

i

m

i

iΦαYY 


 
1

Eq. (4-16)

where  



m

i

i

m 1

)(xYY
1

is the arithmetic mean of the vector of field variables at

each grid point across the whole set of snapshots,
i

Φ , i = 1, 2, ……,m denotes the set of

basis vectors at a particular grid point and
i

α , i = 1, 2,……,m are scalar coefficients to be

determined. Hence a snapshot can be reconstructed by adding up the contribution from

each basis vector in turn at each grid point.

Defining a set of modified snapshots obtained by subtracting Y from )Y(x )( i ,

miii 1,2,.....,
~

 ,Y)Y(xY )()( Eq. (4-17)

where m is total number of snapshots.

Let mxnRA denote the matrix whose rows are the modified snapshots. Each snapshot

is constructed by placing in order the solution at each grid point for the whole grid. This

order can be determined arbitrarily, but is subject to the constraint that it must be

consistent throughout the whole set of snapshots.
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The SVD of A can be written as

ΣUA  TV Eq. (4-19)

where U mxmR and V nxnR are orthogonal matrices. These matrices are the left and

right singular vectors respectively. mxnRΣ is a diagonal matrix whose diagonal

elements consist of  m,nq min non-negative numbers
i

σ arranged in decreasing order,

that is,

qσ....
3

σ
2

σ
1
σ 

i
σ are referred to as the singular values of A , hence the name singular value

decomposition. In expanded matrix form the SVD of A can be expressed as follows,
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This is the full form of the SVD. Since Σ is a diagonal m x n matrix, then the above

matrix equation can be written in reduced form as follows if we assume that m < n,
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where the matricesΣ and TV are reduced in size. The columns of V and hence the rows of

TV are the proper orthogonal modes of the system. Hence the set of basis vectors

  n
i i R:,  VΦ T . These basis vectors are of unit magnitude and orthogonal, hence

orthonormal.

Writing the product of U and Σ as a matrix  ij
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Eq. (4-20)

which has the form of
jk

m

j

ij

i

k

vαY
~

1

)( 


 . Thus, the scalar coefficients are obtained directly

from the multiplication of U andΣ . From the SVD of A it can be noticed that since V is

an orthogonal matrix, the transpose of V is equal to its inverse ie. 1-T VV  , therefore

UΣAV  Eq. (4-21)
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that is,

j

i

ij

ΦY .
)(~

α  Eq. (4-22)

where n

j
j R)(:,  VΦ . The scalar coefficients

ijα are also referred to as projection

coefficients because these are obtained by projecting the solution vector onto the basis

vectors.

Figure (4-1) Vector representation of the solution vectors and the POD modes

A complete reconstruction of the snapshots can be obtained from

YYY
~

 Eq. (4-23)

Now, Y may represent a vector of scalar functions such as the primitive or

conservative variables and therefore the method described can be applied to each variable

in turn to form a distinct basis for each variable. However, an improvement in the ability

of the basis to represent the system may be achieved by considering not only how the

individual variables vary from one snapshot to another but also how variables change

relative to one another. Hence Y is developed from state variable vectors consisting of

all the primitive or conservative variables [14]. In this case, the POD modes are sensitive

to the scaling of the flow variables as these are in different units and have significantly
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varying magnitudes. Consequently, appropriate scaling factors are necessary for each

fluctuating flow variable which makes their magnitude of the same order [30].

If a problem is represented by a suitable number of snapshots from which a suitably

rich set of basis vectors is available, the singular values become small rapidly and a small

number of basis vectors are adequate to reconstruct and approximate the snapshots. In

this way, POD provides an efficient means of capturing the dominant features of a multi-

degree of freedom system and representing it to the desired precision by using the

relevant set of modes, thus reducing the order of the system. In other words, the reduced-

order model is derived by projecting the CFD model onto a reduced space spanned by

only some of the proper orthogonal modes or POD eigenfunctions.

Assuming that p modes which correspond to the largest p singular values are

dominant, then the energy E or variance in the data captured by the first p modes can be

computed as
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σ

σ

E Eq. (4-24)

If this energy is high say over 99% of the total energy, then p modes are adequate to

capture the principal features and approximately reconstruct the dataset. Thus, a reduced

subspace is formed which is only spanned by p modes.

Instead of the SVD approach, the proper orthogonal modes can also be computed by

solving for the largest p eigenvalues and corresponding eigenvectors of the matrix

nxnRAAK T  where T2T VVΣAA  . Hence it follows that V is the matrix of

eigenvectors of K and
2

σi , i = 1, 2,………., m are its eigenvalues. For cases where

m<<n, instead of using the SVD procedure, it is computationally more efficient to use the

‘method of snapshots’ proposed by Sirovich [106]. In this approach an m x m eigenvalue

problem UΣUAA 2T
 is formed, from which U is computed. Hence, pre-multiplying
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by TU Eq. (4-19) we get TT ΣVAU  . Therefore, the first m rows of AUT normalized to

unit magnitude represent the proper orthogonal modes.

Using this model reduction technique a low dimensional system is produced that has

the same essential characteristics as the original system but with far less storage

requirements and a much lower evaluation time. In the next chapter the proper orthogonal

decomposition is applied as a reduced-order modelling method to a simple case of

practical interest so as to understand its behaviour and subtlety.

4.2.1 Pseudo-Continuous Representation

The use of reduced-order models based upon the proper orthogonal decomposition for

prediction requires the transformation of the projection coefficients,
i

 from the discrete

sample space for which they have been computed to a continuous space. If
i

 varies as a

smooth function with the change in parameters then a meta-model may be used to

determine the POD projection coefficients at intermediate parametric values not included

in the original data ensemble. The predicted solution vector  )(xY  for any variable 

within the parametric space is given by,

 
i

p

i

i
α ΦYxY )( 






1

 Eq. (4-25)

where p is normally greater than p and the weighting coefficients


i
α are found using the

meta-model.

A variety of meta-modeling techniques suitable for this purpose are described in the

literature of which the response surface methodology (RSM) has found general

acceptance. The RSM is a statistical tool originally developed for experimental design

and subsequently adapted to approximate computational simulations. The RSM is

founded on the assumption that the data can be described by a set of simple basis
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functions, such as second-order polynomials, that are fitted to the data ensemble using a

least-squares regression technique.

While regression techniques work well for experimental data, where noise due to

random errors is smoothed out from the data, they are less appropriate when dealing with

the results from deterministic numerical simulations or when working with complex data

sets. Of particular concern in the context of the present work are two problems; firstly that

the response surface constructed using regression analysis may not exactly fit the sample

data from which it has been constructed and secondly that the method smoothes local

variations in the data.

To investigate and understand these problems further parametric/non-parametric meta-

models are also explored, in particular spline interpolation methods and radial basis

functions. In the latter case multi-quadric, polyharmonic and Gaussian kernels were

considered. All these models produce an interpolative fit through all of the sample points

and provide improved representations of data sets that have localized minima and

maxima. This is dealt with in detail in chapter 6.
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Chapter 5

5.0 POD-based reduced order modelling

In this chapter the model described in the preceding one is used to exhibit the utility of

POD-based ROMs for high-speed aerodynamic problems. This is demonstrated by

considering an inviscid steady flow about an axi-symmetric flare stabilized projectile

similar to the one studied by Schmidt et al. [108] and Plostins et al. [109]. This case was

selected as it is one for which the industry standard semi-empirical modelling tools

perform poorly, most especially in determining the axial force and the pitch damping

coefficients [113] and therefore poses a reasonable challenge to the proposed approach,

particularly as a prediction tool. Moreover, the semi-empirical tools output only those

properties defined in the code. In addition this methodology offers an effective and

valuable data management system for both data storage and handling. This is

demonstrated by an illustration.

5.1 Inviscid flow over an axi-symmetric projectile

To demonstrate the effectiveness of POD-based ROMs, an inviscid steady flow over

an axi-symmetric flare stabilized projectile with a parametric variation of the inflow

Mach number (flow condition) and the flare base radius (geometry) was considered. It is

well-known that the forces acting on a cone-cylinder-flare body at hypersonic speeds

vary linearly provided no flow separation develops ahead of the flare due to for example

a large flare angle, in which case the forces start to deviate from a linear relationship. In
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this work, the flare angle was maintained low enough so as to create an attached shock at

the flare. Moreover, an angle of incidence of 0º was considered resulting in an axi-

symmetric flow over the projectile.

5.1.1 Generation of the dataset of observations

A Lagrangian sub-space was developed by generating snapshot sets for two varying

parameters using the IMPNS software. Snapshot sets consist of state solutions

corresponding to several sets of parameter values that emerge from the problem

specification and must contain sufficient information to accurately represent the

characteristics of the solutions of the full-order equations. For this problem, the Mach

number range [4.0, 6.0] was divided into 20 uniform intervals while the non-

dimensionalized flare base radius r/D range [0.75, 1.25] was divided into 10 uniform

intervals. The full factorial design-of-experiment (Section 3.3.1) was employed to

generate the sample points resulting in an ensemble containing a total of 231 snapshots.

This was used as yet no systematic and effective procedure is available in generating

snapshot sets. However, this problem is investigated in the next chapter.

5.1.2 Geometry and the computational grid

Figure (5-1) shows the geometry of the projectile with the maximum and minimum

flare angles considered, while Figure (5-2) shows an example of the grid on which the

axi-symmetric inviscid computations were accomplished.
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(a) r/D = 1.25

(b) r/D = 0.75

Figure (5-1) Geometry of the axi-symmetric projectile

Figure (5-2) Two-dimensional grid with 41 x 101 grid points used
for the Euler computations at r/D = 1.25

Nose tip included angle = 18.9º

Nose tip included angle = 18.9º Flare included angle = 9.5º

Flare included angle = 28.1º
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5.1.3 Investigation of the problem behaviour

In order to investigate the linear/non-linear behaviour of this particular problem, a

comparison of the variance as captured by the POD modes for each of the primitive

variables and using datasets with a different number of snapshots was conducted. POD

analysis was applied on two subsets of the generated dataset of observations with one

varying parameter, that is, the Mach number. A constant flare angle corresponding to a

flare base radius r/D of 0.75 was considered. One set of data had 21 snapshots with the

Mach number varying within the range [4.0, 6.0] with 20 uniform intervals, while the

other set of data had 5 snapshots with 4 uniform intervals within the same Mach number

range. The POD was applied on centered data. By centered data it is meant that the

average value of the primitive variables over the series of snapshots is subtracted from

each computed raw value.

From these analyses, plots were made of the percentage energy or variance in data

captured versus the percentage number of POD modes utilised for each of the primitive

variables. Now, it is expected that if the primitive variables vary linearly across the set of

snapshots, then the variance in data captured from the two analyses should be the same

and hence superimpose. Figure (5-3)(a) reveals that indeed the static pressure varies

linearly across the set of snapshots since the percentage variance in the data as captured

by the percentage number of POD modes for both analyses superimpose, but there exists

some considerable difference in the percentage variance for the density, u-velocity and v-

velocity. This implies that the latter primitive variables vary non-linearly across the set of

snapshots. Thus, from this investigation it can be concluded that this problem is non-

linear from a POD analysis point of view.
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Figure (5-3) – Percentage variance captured versus the percentage number of POD
modes for each of the primitive variables for different snapshot sets

From these analyses it was observed that for the 21 snapshot dataset, 47.6 % of the

POD modes were required to capture over 99.9 % of the variance in the data for all the

variables, while for the 5 snapshots dataset, close to 80 % of the POD modes are required

to capture the same amount of variance in the data. These values were mostly determined

by the cross-flow velocity. It is expected that the introduction of the second parameter

would affect these results, causing a further increase in the percentage number of POD

modes to capture the 99.9 % of the variance in the data.
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5.1.4 Data reconstruction

In this case the whole dataset of observations was considered. The POD-based ROM

method was applied to the resulting dataset and a model containing 231 orthogonal basis

vectors or POD modes was obtained. This model was used to reconstruct the solution at a

Mach number of 4.0 and a flare base radius of r/D = 0.75. The results are pictorially

represented in Figures (5-4) to (5-6). Figure (5-4) shows the variation of the energy

defined in Eq. (4-21) captured by the POD modes against the number of POD modes for

each of the primitive variables. It is evident that most of the energy that is 99.9 % is

captured within the first 16 POD modes. This indicates that the dataset of observations is

rich enough to capture the flow details. Moreover the number of numerically significant

singular values gives an estimate of the effective dimension of the Lagrangian sub-space

or snapshots set.
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Figure (5-4) Percentage Energy captured versus the number of POD modes for each
of the primitive variables

While the energy captured by a given set of basis vectors provides some understanding

of the relative accuracy of the model, the actual error remains unquantified. This quantity

can be determined by comparing the original sample data with that generated by the

reduced-order model. In this work an assessment is made by determining the percentage

variation of the root mean square value of the global error in the whole flow field as it

varies with the number of POD modes. This was calculated according to the following;



Chapter 5 – POD-based reduced-order modelling
________________________________________________________________________

86

 






 


 


m

i
i

FiHi

i
FiHi

i
ROM

RMS
var

varvar

m
ErrorGlobal

1

2

1
Eq. (5-1)

where m is the number of grid points and var represent the primitive variable.

For this case the percentage root mean square global error in the whole flow field

reduces to approximately 0.1% when using only 60 of the 231 available POD modes. The

biggest error was registered by the cross flow v-velocity. Refer to Figure (5-5).
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Figure (5-5) R.M.S. Error versus the number of POD modes for each of the
primitive variables
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Figure (5-6) illustrates this more clearly by comparing static pressure contours

obtained from the model using 1, 25 and 35 POD modes (upper-part) with those of the

original Euler computation (lower-part). A comparison of the normalized static pressure

distribution at the outflow is also included. Note that the static pressure is normalized

using the free-stream pressure. Using a single POD mode, the main flow features, the

conical shock at the nose and the compression over the flare, are reasonably represented

though there is considerable disagreement in the outflow pressure distribution. For one

single POD mode, the RMS global error in the whole static pressure flow field is 4.0 %.

With 25 POD modes significant improvements are obtained. The conical shock is now

essentially identical to that of the Euler computation, while the detail of the compression

is much better represented than with just one mode. In this case, only slight discrepancies

are noticeable in the static pressure distribution at the outflow. In fact the RMS global

error within the whole pressure field is only 0.09 %. Further improvements are obtained

with 35 POD modes, with the entire flow field now essentially identical to that obtained

by solution of the Euler equations. This is also evident from the outflow pressure

distribution. The RMS global error within the whole static pressure field is 0.03 %.

Thus, in this section it has been shown that the complete static pressure field has been

reconstructed to a very high level of accuracy using only 16 % of the POD modes or basis

vectors derived from the set of snapshots. Consequently, the pressure field is now

represented or modelled by a reduced set of basis vectors.
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Figure (5-6) Comparison of pressure contours and outflow pressures at M = 4.0 and
r/D = 0.75 using the POD/ROM (upper-half) and Euler computation (lower-half).
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5.1.5 Data de-noising

For a set of noisy data such as some physical response from an experiment, the same

method can also be applied to de-noise it by retaining the essential information while

neglecting the least energetic POD modes, which may be considered noise. Note that this

applies to data with random errors which may be considered as a Gaussian noise.

Unfortunately, this does not apply to incompletely converged computer simulations in

which the error is normally biased.

5.2 POD as a data and time management system

5.2.1 Data compression

A useful application of this technique is that of data compression. This is achieved by

keeping the most informative POD modes whilst neglecting the rest without much loss of

detail. Figure (5-7) shows pictorially this potential by making a direct comparison

between the percentage RMS global error in the cross-flow field and the percentage

effective data in use versus the number of POD modes. With the consideration of only ten

POD modes and hence only 4.4 % of the total amount of data, the global RMS error in

the cross-flow velocity field is 7.0 %. By considering one hundred POD modes and

therefore using 43.4 % of the total data, the RMS global error in the cross-flow velocity

field goes down to 0.01 %. This shows that by using 43.4 % of the data only, the

solutions can be reconstructed with very high accuracy. Thus, this methodology offers an

effective and valuable data management system for both data storage and handling by

compressing the data.
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Figure (5-7) Data compression capability of the POD/ROM

5.2.2 Computational Efficiency

Apart from providing a means for data compression, the POD-based ROM

methodology offers a significant on-line computational time reduction. Examples of this

POD-based ROM feature will be presented and discussed in the following chapter,

wherein model predictions are considered and therefore this aspect comes out more

clearly.



Chapter 5 – POD-based reduced-order modelling
________________________________________________________________________

91

5.3 Concluding remarks

In this chapter the utility of POD-based ROMs is demonstrated by considering an

inviscid steady flow about an axi-symmetric flare stabilized projectile. It was shown that

the complete solutions for the snapshots which formed part of the original dataset of

observations were reconstructed by using a few POD modes. In addition it was illustrated

that this methodology offers an effective and valuable data management system for both

data storage and handling.

In this work all the POD analysis was conducted on the primitive variables after the

data was centred. In the literature one finds that some do refer to the centralization of data

but some others do not. While this has some important application in the interpretation of

the data, it is important to remark that the eigenvalues of the Gram matrix or equivalently

the square of the singular values extracted from the singular value decomposition

represent the variance in the data if and only if the data is centred.

During POD analysis, some difference has been noted in the RMS errors between

performing the decomposition on centred and raw data. The difference is greatest along

the first few POD modes but becomes negligible as the number of POD modes increases.
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Chapter 6

6.0 The surrogate model predictions

In the previous chapter it has been established that the POD method can be used as an

effective reduced-order modelling technique. This is so because it provides highly

accurate reconstructions of the snapshots that are used in the ensemble of observations,

with a small number of POD modes. In this chapter the attention is now directed towards

making fast and approximate predictions at parameter combinations not considered when

generating the dataset of observations, using the same POD method coupled with either

an interpolation or a regression technique. For model predictions, the scalar coefficients

obtained by projecting the solution vectors onto the basis vectors are used to generate an

interpolated or regressed response surface. In doing so, the projection coefficients are

transformed from a discrete space into a pseudo-continuous one, thus creating a

foundation for computing the flow field at any parameter value encompassed within the

sampled space.

In this chapter, the meta-model is applied to two flow problems related to high-speed

weapon aerodynamics; inviscid flow around the flare stabilized hypersonic projectile

considered earlier and supersonic turbulent flow around a fin stabilized projectile with

drooping nose control. Comparisons of model predictions with high-fidelity CFD

simulations are presented. In the end of this chapter a comparison is made between the

accuracy and efficiency of the meta-modelling tool with the industry’s standard semi-

empirical modelling tools.
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6.1 Predicting the inviscid axi-symmetric flow over the flare

stabilized projectile

In this section the full dataset of observations used in the preceding chapter for

snapshots reconstruction was used again and therefore parametric variation of both flow

condition (Mach number) and geometry (flare base radius) were considered. The Mach

number range [4.0, 6.0] was divided into 20 uniform intervals while the non-

dimensionalized flare base radius r/D range [0.75, 1.25] was divided into 10 uniform

intervals. The full factorial design-of-experiment was employed to generate the sample

points resulting in an ensemble containing a total of 231 snapshots. Again, an axi-

symmetric flow about the projectile is considered since the angle of incidence was

maintained at 0º.

6.1.1 One-dimensional interpolation using cubic-splines

Comparisons of the model predicted static pressure fields with high-fidelity (CFD)

solutions for a Mach number of 5.37 and a non-dimensionalized base radius r/D of 1.25

are presented in figure (6-1). The interpolation in this example is accomplished by using

cubic-splines along one parameter which is the Mach number as data exists at this base

radius. For this case, the predicted solution’s behaviour with increasing number of POD

modes is similar to that of the previous one, with as few as 11 POD modes a reasonable

representation of the main flow features can be obtained, while increasing the number of

POD modes leads to successive improvements in the detail of the captured pressure

variation. A comparison of the outflow pressure normalized by the free-stream value

between that predicted by the meta-model and the high-fidelity solution is also included.

For this case, just 71 of the 231 available POD modes resulted in a global RMS error in

the pressure field of 0.012 %. This compares with a typical global RMS error in the

pressure field of 0.0025 % when the model is used to re-construct members of the

ensemble from which it has been deduced.
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Figure (6-1) Comparison of pressure contours and outflow pressure at M = 5.37

and r/D = 1.25 obtained using the reduced-order model (upper) and Euler
computation (lower)
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6.1.2 Two-dimensional interpolation using cubic-splines

Predictions carried out by interpolating along both parameters show similar behaviour.

For a Mach number of 4.87 and a base flare radius r/D of 1.03, the use of 71 POD modes

resulted in a global RMS error between the meta-model predicted and CFD pressure

fields of 0.016 %. As expected the global RMS error for a two-dimensional interpolation

is greater than that for a one-dimensional interpolation at a fixed number of POD modes

due to the errors associated with each interpolation.

6.1.3 Relationship between the number of samples and model accuracy

The influence of the number of samples in the initial ensemble on the model

predictions was investigated. Proper orthogonal decompositions employing 21, 11 and 5

samples at equal intervals to discretize the Mach number range were considered. The

same numbers of samples as in the previous case were considered along the geometric

parameter, thus resulting in 231, 121 and 55 snapshots. In an effort to isolate the effects

of sample size, it was ensured that the predictions obtained for individual ensembles were

independent of the number of modes in the reduced model. This was typically obtained

using just 40% of the available POD modes. A strong relationship between the sample

size and error was found. For the smallest ensemble the global RMS error in the pressure

field was found to be 0.68% while for 121 and 231 snapshots the error reduced to 0.15%

and 0.016% respectively.
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6.2 Meta-model predictions for three-dimensional inviscid

flow over the flare stabilized projectile

6.2.1 Full-factorial design-of-experiment

In an effort to understand more clearly the relationship between the predictions of the

meta-model and the method used to obtain a pseudo-continuous representation of the

scalar coefficients a second study was undertaken. For this case the parameters of interest

were extended to include incidence. The Mach number range [4.0, 6.0] was divided into 4

uniform intervals instead of the 20 used in the previous axi-symmetric study, the

incidence range [0.0º, 4.0º] was also divided into 4 uniform intervals and the non-

dimensionalized flare base radius range [r/D=0.8, r/D=1.2] was divided using a further 4

intervals, instead of the 8 intervals used previously. The observations in this case were

sampled according to a full factorial design-of-experiment requiring a total of 125

evaluations of the IMPNS analysis code.

Predictions were made at two points in the parameter space, a point towards the centre

of the space (α=2.2˚, M=5.3, r/D=1.05) and a point close to the boundary of the sampled

space (α=0.7˚, M=4.2, r/D=0.85). In both cases, none of the parameters of interest

correspond to values used to generate the ensemble of snapshots. The predictions

obtained for four different modelling approaches (linear regression, linear spline

interpolation, cubic spline interpolation and a polynomial augmented multi-quadric radial

basis function) are summarized in Table (6-1). In this table, forces and moments are

presented that have been obtained by integrating the predicted surface pressures. The

reduced-order model used 40 of the 125 available POD modes, increasing this number

had no significant effect on the predicted values.
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α=2.2º M=5.3 r/D=1.05 α=0.7º M=4.2 r/D=0.85
Meta-
Model

CFD % Error Meta-
Model

CFD % Error

Cx 0.3518 0.3536 0.51 0.1670 0.1658 0.72
Cz 0.2591 0.2580 0.43 0.0566 0.0570 0.70
Cm -2.7795 -2.7709 0.31 -0.4714 -0.4557 3.45

Linear
Regression

Xcp 10.7257 10.7414 0.15 8.3290 7.9985 4.13

Cx 0.3573 0.3536 1.05 0.1694 0.1658 2.17
Cz 0.2594 0.2580 0.54 0.0575 0.0570 0.88
Cm -2.7897 -2.7709 0.67 -0.4658 -0.4557 2.22

Linear
Spline
Interpolation

Xcp 10.7559 10.7414 0.13 8.1002 7.9985 1.27

Cx 0.3526 0.3536 0.28 0.1682 0.1658 1.45
Cz 0.2575 0.2580 0.19 0.0572 0.0570 0.35
Cm -2.7644 -2.7709 0.23 -0.4616 -0.4557 1.29

Cubic
Spline
Interpolation

Xcp 10.7345 10.7414 0.06 8.0715 7.9985 0.91

Cx 0.3537 0.3536 0.03 0.1660 0.1658 0.12
Cz 0.2579 0.2580 0.04 0.0570 0.0570 0.00
Cm -2.7702 -2.7709 0.03 -0.4570 -0.4557 0.29

Polynomial
Augmented
Multi-
quadric RBF Xcp 10.7402 10.7414 0.01 8.0197 7.9985 0.27

Table (6-1) Comparison of model predictions with CFD simulations with various
modelling strategies

The results suggest that of the methods considered, the response surface constructed

using a polynomial augmented multi-quadric radial basis function is most accurate.

Surprisingly the linear regression, which employs quadratic polynomials, performs no

better than the linear spline interpolation. This is attributed to the global nature of the

regression analysis used to obtain the response surface which appears to excessively

smooth the projection coefficients. As the interpolation schemes pass through the

supporting data exactly they provide a much better representation of local variations in

the data.

To confirm this hypothesis the effects of data locality on the predictions obtained from

the linear regression based model were investigated. In this case the parameters’ range

was reduced in size as shown in Table (6-2). Each parameters’ range was discretized

using two equal intervals resulting in a total ensemble of 27 snapshots. By successively

localizing the data, improved predictions were obtained. This behaviour is attributed to

improved representation of the local parametric variations by the response surface rather

than improvements in the reduced-order model.
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Table (6-2) Effect of data localization on model predictions

6.2.2 Latin Hyper-Cube Sampling

The use of parameter sampling techniques based upon the full factorial design-of-

experiment can be prohibitively expensive for problems involving large numbers of

parameters. To overcome this problem sampling techniques based upon Latin Hyper-

Cube sampling were explored. In this approach a given number of samples are distributed

in an optimal manner within the parameter space as described earlier. Refer to Vavalle

[81] for a more detailed discussion. Table (6-3) presents results obtained using the Latin

Hyper-Cube sampling. For this example the parameter space considered was that with an

angle of attack varying between [1º, 3º], a Mach number between [5.0, 6.0] and a base

flare radius r/D between 0.9 and 1.1. The parameter space was populated using only 27

snapshots. Despite the limited number of snapshots considered, the achieved accuracy is

better than that obtained for the examples presented earlier which used many more or the

same number of snapshots. This is evident from both response surface construction

methods utilized in this section. In particular, the prediction obtained by using the

polynomial augmented multi-quadric RBF is highly accurate.

α = 2.2º M = 5.3 r/D = 1.05Parameters’
Range Meta-Model CFD % Error

Cx 0.3542 0.3536 0.17
Cz 0.2556 0.2580 0.93
Cm -2.7266 -2.7709 1.60

α = [2º, 4º]
M = [5, 6]

r/D = [0.9, 1.1]
Xcp 10.6681 10.7414 0.68

Cx 0.3540 0.3536 0.11
Cz 0.2563 0.2580 0.66
Cm -2.7395 -2.7709 1.13

α = [2º, 4º]
M = [5, 6]

r/D = [1.0, 1.1]
Xcp 10.6901 10.7414 0.48

Cx 0.3540 0.3536 0.11
Cz 0.2575 0.2580 0.19
Cm -2.7611 -2.7709 0.35

α = [1º, 3º]
M = [5, 6]

r/D = [1.0, 1.1]
Xcp 10.7230 10.7414 0.17
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α = 2.2 M = 5.3 r/D = 1.05
Model CFD % Error

Cx 0.3538 0.3536 0.06
Cz 0.2577 0.2580 0.12
Cm -2.7647 -2.7709 0.22

Linear
Regression

Xcp 10.7281 10.7414 0.12

Cx 0.3536 0.3536 0.00
Cz 0.2581 0.2580 0.04
Cm -2.7722 -2.7709 0.05

Polynomial
Augmented

Multi-quadric
RBF Xcp 10.7404 10.7414 0.01

Table (6-3) Comparison of model predictions with CFD computations using the
Latin Hyper-Cube Sampling technique

6.2.3 Predicting the individual integrated forces by a response surface
method

For this particular example a meta-model of the individual integrated forces, pitching

moment and centre of pressure was also developed by generating response surfaces for

each property using a linear regression method employing a second-order model. This

model was used to predict the forces, moment, and centre of pressure at the previous

point. A comparison with computed data is presented in Table (6-4).

α = 2.2 M = 5.3 r/D = 1.05
Predicted CFD % Error

Cx 0.3536 0.3536 0.00
Cz 0.2577 0.2580 0.12
Cm -2.7645 -2.7709 0.23

Linear
Regression

Xcp 10.7282 10.7414 0.12

Table (6-4) Comparison of a RSM based meta-model for the forces and
moments with CFD computations

From tables (6-3) and (6-4), it is evident that the two regression methods provide

results that are almost identical. While the evaluation of forces and moments from a

meta-model of the individual integrated forces and moment data is less expensive than

from the POD model based on the full CFD output, the resulting information is limited to
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that in the model. In the case of the POD model any result that can be deduced from the

CFD data can now be also deduced from the POD model. This represents a significant

advantage in many practical design situations.

6.3 Fin stabilized projectile with nose control

The second problem considered in the current study relates to supersonic turbulent

flow around a realistic weapon configuration which was investigated experimentally by

Landers et al. [110] and computationally by Meunier [111] and Shoesmith et al. [112].

The configuration consists of a 0.7 power series nose followed by a cylindrical body with

8 stabilizing fins. The nose is free to rotate in the pitch plane, providing a means of

control. Figure (6-2) presents a visualization of the geometry and a typical grid for a nose

deflection of 8º. Two parameters, the nose deflection and the flow angle of attack were

varied. The nose deflection was allowed to vary in the range [0º, 8º] while the flow angle

of attack was varied in the range [0º, 6º]. In this case a full factorial design-of-experiment

was used to sample the parameters space since the grids which were originally generated

for those nose deflections considered in the physical experiment for the validation of the

computational results were used. All of the computations were performed with an inflow

Mach number of 3.0, a free-stream static temperature of 110 ºK and a Reynolds number

of 9.5 million per foot. All these were computed in accordance with the experimental

conditions of Landers et al. [110].
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Figure (6-2) Nose controlled weapon configuration with a nose deflection of 8º
and the computational grid with approx. 1 million grid points.

6.3.1 Meta-model predictions

For the first prediction a subset of the available data was employed. The nose

deflection was varied in the range [2º, 8º] while angle of attack was varied between [0º,

6º], uniform intervals of 2º were used for both parameters. A proper orthogonal

decomposition was performed on the ensemble of computational experiments. In this

example all sixteen of the available POD modes were utilized and so this problem can be

considered as a basis transformation rather than a basis reduction. Pseudo-continuous

models of the projection coefficients were obtained using cubic-spline interpolation and a

tri-harmonic radial basis function. These two modelling methods were used as (i) they are

non-parametric and (ii) they offered good generalization ability. Predictions are compared

with high-fidelity simulations in Table (6-5) for a nose deflection of 5º at an angle of

attack of 1º, 3º and 5º. The comparisons are considered to be acceptable given the small

number of modes available within the proper orthogonal decomposition.
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δ = 5º
α = 1º α = 3º α = 5º

Model CFD
%
Error Model CFD

%
Error Model CFD

%
Error

Cx 0.1864 0.1868 0.21 0.1904 0.1934 1.55 0.2034 0.2044 0.49
Cz 0.1944 0.1916 1.46 0.5040 0.5048 0.16 0.9262 0.9191 0.77
Cm -1.497 -1.491 0.40 -5.755 -5.717 0.66 -11.320 -11.261 0.53

CSI

Xcp 7.701 7.779 1.01 11.419 11.324 0.84 12.222 12.252 0.25

Cx 0.1853 0.1868 0.80 0.1860 0.1934 3.83 0.2029 0.2044 0.73
Cz 0.1921 0.1916 0.26 0.5035 0.5048 0.26 0.9189 0.9191 0.02
Cm -1.451 -1.491 2.68 -5.752 -5.717 0.61 -11.243 -11.261 0.16

Tri-har.
RBF

Xcp 7.553 7.779 2.92 11.424 11.324 0.89 12.235 12.252 0.14

Table (6-5) Comparison of model predictions with CFD simulations for
δ = 5º and α = 1º, α = 3º, α = 5º

As seen before, improving the locality of the data results in slight improved

predictions, although in this case it is thought that, the errors arise principally as a

consequence of grid deformation. This can be seen in Table (6-6) in which predictions

obtained from an ensemble with the nose deflection varying between [4º, 6º] in intervals

of 1º and an angle of attack varying between [0º, 6º] in intervals of 2º are compared with

CFD simulations. In addition to the previously mentioned two interpolating techniques, a

Gaussian kernel was considered in this as well. A comparison between the results

obtained by the cubic splines and the Gaussian RBF shows that indeed the cubic splines

provide a good generalization ability in this problem.

δ = 5º
α = 1º α = 3º α = 5º

Model CFD
%

Error Model CFD
%

Error Model CFD
%

Error

Cx 0.1881 0.1868 0.70 0.1918 0.1934 0.83 0.2051 0.2044 0.34
Cz 0.1941 0.1916 1.30 0.5041 0.5048 0.14 0.9278 0.9191 0.95
Cm -1.486 -1.491 0.30 -5.747 -5.717 0.54 -11.324 -11.261 0.56

CSI

Xcp 7.660 7.779 1.54 11.401 11.324 0.68 12.205 12.252 0.38

Cx 0.1906 0.1868 2.03 0.1894 0.1934 2.07 0.2087 0.2044 2.10
Cz 0.1961 0.1916 2.35 0.5033 0.5048 0.30 0.9236 0.9191 0.49
Cm -1.497 -1.491 0.38 -5.739 -5.717 0.38 -11.286 -11.261 0.22

Tri-
harmonic

RBF
Xcp 7.630 7.779 1.92 11.403 11.324 0.70 12.2185 12.2517 0.27

Cx 0.1898 0.1868 1.61 0.1911 0.1934 1.19 0.2058 0.2044 0.68
Cz 0.1923 0.1916 0.37 0.5043 0.5048 0.10 0.9212 0.9191 0.23
Cm -1.431 -1.491 4.00 -5.750 -5.717 0.59 -11.282 -11.261 0.19

Gaussian
RBF

Xcp 7.441 7.780 4.37 11.402 11.324 0.68 12.247 12.252 0.04

Table (6-6) Comparison of model predictions with CFD simulations due to
improved data locality, δ = 5º and α = 1º, α = 3º, α = 5º
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Improving the resolution of incidence  from 2º to 1º intervals provides further

improvements in the predicted data, Table (6-7). Tables (6-5), (6-6) and (6-7) show that

the cubic-spline interpolation and the tri-harmonic RBF are of comparable accuracy as

expected since the tri-harmonic radial basis function is in fact a cubic-spline. These

results suggest that by using suitable kernels in a generalized linear model it is possible to

approximate any function to an acceptable degree of accuracy [87].

α = 2.5º δ= 5º
Model CFD % Error

Cx 0.1901 0.1904 0.16
Cz 0.4160 0.4162 0.05
Cm -4.5013 -4.5072 0.13

CSI

Xcp 10.8197 10.8293 0.09

Cx 0.1901 0.1904 0.16
Cz 0.4159 0.4162 0.07
Cm -4.5003 -4.5072 0.15

Tri-
harmonic

RBF
Xcp 10.8212 10.8293 0.07

Cx 0.1901 0.1904 0.16
Cz 0.4161 0.4162 0.02
Cm -4.5074 -4.5072 0.00

Gaussian
RBF

Xcp 10.8316 10.8293 0.02

Table (6-7) Comparison of model predictions with CFD simulations,
δ = 5º and α = 2.5º

Figure (6-3) compares the axial pressure and density distributions obtained from the

meta-model using cubic-splines interpolation with CFD simulations at 0º and 180º

azimuth angles. The agreement is generally excellent with the exception of the shock

intensity at the fin. Figure (6-4) compares the circumferential pressure distributions at

stations located 1, 3 and 10.5 calibres downstream of the nose. The agreement is

generally good over most of the body, but some small discrepancies are observed in the

secondary flow separation and re-attachment at 10.5 calibres (Figure 6-4 (d)). The

prediction is improved at the re-attachment by using Gaussian radial basis functions for

interpolation (Figure 6-4 (e)) and so this indicates that the discrepancies result from the

pseudo-continuous representation of the scalar coefficients. Predicted density and

pressure contours compared with CFD simulations at two stream-wise locations are

presented in figure (6-5). The first is located well downstream of the nose cylinder

junction while the second is located at the trailing edge of the fins. This figure, together

with Table (6-7) and figures (6-3) and (6-4) suggests that the meta-model provides an
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acceptable surrogate for the IMPNS flow solver and illustrates the potential of the

method.
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Nose deflection angle δ°

α°
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(c) Angles definition

Figure (6-3) (a) and (b) Comparison of predicted axial distribution of pressure and
density with CFD simulations, δ = 5º and α = 2.5º (c) angles definition
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Figure (6-4) Circumferential pressure distributions, δ = 5º and α = 2.5º
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x/D = 10. 5 x/D = xmax

( a ) Density contours (left – meta-model, right – Navier-Stokes)

x/D = 10. 5 x/D = xmax

( b ) Pressure Contours (left – meta-model, right – Navier-Stokes)

Figure (6-5) Comparison of pressure and density contours, δ = 5º and α = 2.5º
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6.3.2 Computational time

In this particular example the full CFD output from the meta-model was obtained in

107 seconds of CPU time on a 3.3 GHz processor. This compares favourably to the

18,000 seconds of CPU time necessary for making one complete evaluation ie. one single

computation of a snapshot using the CFD code. It must be emphasized that in this case, a

space-marching code was used. In case the CFD code is a time marching one, the

difference in CPU time would be considerably higher provided both are at par, for

example both are parallelised. Consequently the meta-model becomes much more useful.

In such case the output from the meta-model could also be used to restart the computation

and hence it would assist in further reducing the overall computational time of the CFD

code.

6.4 Comparison between the meta-model and the semi-

empirical modelling tools

One possible application of this meta-modelling tool is as an alternative to the existing

semi-empirical modelling tools, which tools are frequently used in industry to conduct

trade and trajectory studies most especially. This section is aimed at making an objective

comparison between these two different computational tools by exploring the relative

advantages and disadvantages.

6.4.1 The semi-empirical aerodynamic codes

The U.S. Air Force Missile DATCOM and the Naval Surface Warfare Center

Aeroprediction codes are two semi-empirical aerodynamic prediction codes that calculate

aerodynamic forces, moments and stability derivatives as a function of the angle of attack

and Mach number for a variety of axi-symmetric and non-axi-symmetric missile

configurations. Both codes offer the facility to predict the static pressure and interference



Chapter 6 – The surrogate model predictions
________________________________________________________________________

111

factors as well as the capability for the user to easily change aerodynamic parameters to

fit specific applications for a broad range of flight conditions. Flight conditions and

aerodynamic parameters range from subsonic to hypersonic speeds, angles of attack up to

90 degrees and control deflections from -35 to +35 degrees. The output gives the

aerodynamic forces and moments in addition to the location of the centre-of-pressure,

interference factors and geometric data.

In particular, Missile DATCOM has trim capabilities and the ability to numerically

model a configuration by inserting experimental data. DATCOM also has the ability to

model aerofoils including both user defined types and NACA ones. In addition, it has the

capability to develop aerodynamic data for air-breathing systems. The Aeroprediction

code features include a plotting program for aerodynamic coefficients as well as a

geometric sketch of the input configuration. The Aeroprediction code has a better axial

force coefficient prediction capability than DATCOM and produces both structural

loading and aerothermal output [114] [115].

Moore & Hymer [113] [114] claim that the AeroPrediction code predicts the static

aerodynamic coefficients for missile configurations with flares and wings/tails within an

average accuracy of +/- 10 % for axial and normal force, and +/- 4 % of the body length

for the centre of pressure. The average accuracy for the pitch damping coefficients is

within +/- 20 %. By average accuracy it is meant that enough AoAs or Mach numbers are

considered to get a good statistical sample. In [115], Schmidt and Sooy compare AP98

and DATCOM 97 for various configurations. For these configurations it was reported

that the predicted normal force for both codes have minimal error. The axial force is more

difficult to predict and results within an error of +/- 10 % for the AP code and within +/-

12 % for DATCOM were achieved.

6.4.2 Trajectory studies

The evaluation of the flight performance of a missile or a projectile is typically a two

step iterative process. In the first step, the aerodynamic coefficients for the airframe are
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determined over the flight envelope. This may be accomplished through either

experiment or by using some software which predicts the aerodynamics. Secondly, the

aerodynamic coefficients are input into a trajectory model so that the aerodynamic forces

acting upon the missile may be determined for any flight condition. The trajectory model

is then executed and the results are analysed. If the flight performance as predicted by the

trajectory model is not satisfactory, changes are made to the airframe. These changes will

in turn affect the aerodynamics, thereby requiring a new set of aerodynamic data to be

inserted into the trajectory model. This process continues until an airframe is found which

optimizes some desired aspect of the flight performance.

Depending on the flight regime over which the aerodynamics are to be computed, a

set of trim aerodynamics is normally generated in a matter of minutes using the

AeroPrediction code version 2005 [116]. The term ‘trim’ implies that the aerodynamic

coefficients correspond to a state in which the pitching moment coefficient Cm is equal to

zero. These aerodynamic data is then input into the flight dynamics model for the

optimization of the desired aspect with the actual amount of time it takes depends on the

amount of aerodynamic data to be inserted as well as the experience level of the engineer.

The process featured in the preceding paragraph is for one iteration only. If the

performance of the concept is adequate, this would probably complete the initial phase of

the design, including the aerodynamic and performance assessment of the concept.

However, in most cases, several design iterations are required to investigate the effect on

the aerodynamics and performance of each design change. By combining the

Aeroprediction code with the trajectory models for automatic trajectory generation of a

given design concept, a large cost saving was reported in [114], [116].

Thus, it can be concluded that semi-empirical tools are highly efficient though not so

accurate and the output information from these codes is limited. In the next section a

comparison is made between the semi-empirical tools and the meta-modelling tool.
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6.4.3 The meta-modelling tool versus the semi-empirical tool

From the previous section it is apparent that the semi-empirical tool is amply more

efficient than the developed computational tool. This is being remarked on the premise

that a whole trajectory study was conducted in 1 hour, which included 56 trim point

evaluations. Possibly, comparable on-line computational time may be achieved between

the two computational methods if faster algorithms are implemented in the meta-model

which include also the parallelisation of the developed code. However, if the off-line

computational time consumed in generating the snapshots for the meta-model is taken

into consideration, there would be no comparison in time between the two methods.

Notwithstanding this drawback, the meta-model does offer significant advantages over

the semi-empirical tools. Provided the reduced-basis is rich enough within the parametric

space of interest and a suitable interpolation method is adopted, an accuracy close to the

high-fidelity CFD solutions is normally attained. However, the accuracy of the meta-

model will deteriorate as the reduced-basis is leaned. Moreover, the meta-model offers

a complete solution for the whole flow-field just like in CFD while the semi-empirical

methods provide only those properties defined in the tool. Furthermore, the meta-

modelling tool has the capability of modelling various complex flow features and

structures encountered in weapon aerodynamics such as

 flow separation and re-attachment with the subsequent heat flux generation,

 flow interaction between the main body flows and other parts such as wings and

fins with the subsequent effects on control,

 flow interaction between multi-bodies,

 flow over stores in open bays and stores release etc.

 flow over bodies with any geometrical shape of interest including protuberances

without limitations.

Finally, it must be remarked that the meta-modelling tool offers a more general

computational tool whereas various kinds of problems can be simulated and predicted.
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This makes it much more powerful than any other semi-empirical computational tool

which caters for particular geometries only.

6.5 Concluding remarks

In this chapter a high-fidelity, low-cost aerodynamic model was presented for use in

parametric studies of weapon aerodynamics. The model has been applied to two flow

problems related to high-speed weapon aerodynamics; inviscid flow around a flare

stabilized hypersonic projectile and supersonic turbulent flow around a fin stabilized

projectile with drooping nose control.

The method employs a reduced-order model obtained from the proper orthogonal

decomposition of an ensemble of CFD solutions. This decomposition produces an

optimal linear set of orthogonal basis functions that best describe the ensemble of

numerical solutions. These solutions are then projected onto this set of basis functions to

provide a finite set of scalar coefficients that represent the solutions. A pseudo-

continuous representation of these projection coefficients is constructed for each mode

which allows predictions to be made of parameter combinations not in the original set of

observations. It has been shown that by using generalized linear models for the pseudo-

continuous representation of the projection coefficients describing the reduced-order

model, predictions of parameter combinations not in the original set of observations are

made efficiently.

Four different approaches to the construction of a response surface of the projection

coefficients were investigated, a linear regression based method and three interpolation

techniques employing linear spline, cubic spline and radial basis functions. The computed

data suggest that interpolation based techniques provide a significant advantage over the

regression method. This is attributed to the fact that the interpolation schemes pass

through all of the sample points providing an improved representation of local minima
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and maxima, while the global fit of the regression technique produces some unnecessary

smoothing. This observation is supported by studies of data localization that suggest the

regression method can provide similar accuracy to the interpolation schemes when

employed over a reduced parameter space. In general, the radial basis function

interpolation offered the most accurate prediction.

The use of Latin Hyper-Cube sampling methods was found to offer improved accuracy

for a given number of sample points. For problems involving large numbers of

parameters the LHCS may provide a practical approach to reduce the number of samples

required to populate the design space. However, for problems involving geometric

variation the LHCS requires a means of automatically generating high-quality grids. For

this reason a more practical tool may incorporate a hybrid approach, a design-of-

experiment technique in which the geometry variables are prescribed at specific levels

and an LHCS technique which is used for other parameters.

The results of this study suggest that meta-models based upon POD of a small number

of computational experiments together with response surface methods can provide a

reliable low-cost high-fidelity prediction tool. In contrast to many of the modelling efforts

reported in the literature, this model provides access to information about the whole flow-

field. The current approach reduces the computational time by more than two orders of

magnitude and potentially a further reduction can be made by implementing faster

algorithms and parallelising various parts of the code.
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Chapter 7

7.0 A hierarchical type model using POD-

based ROMs
A significant disadvantage of POD-based reduced-order modelling is the up-front cost

necessary to generate the dataset of observations from which subsequently an adequately

rich set of basis and hence the surrogate model, are developed. One may even comment

that the on-line computational efficiency of the POD-based ROM is offset to a large

extent by the off-line computational time necessary to generate the original ensemble of

data. As Beran and Silva remarked in [23], the trade-off can be favourable only when,

after the initial computational investment, a compact ROM is constructed which can be

used many times, and is valid over a useful range of parametric values. Consequently,

some method which restricts the time duration in generating this training dataset without

much loss of accuracy is of interest. In an effort to limit this initial computational

encumbrance, a hierarchical type model which incorporates POD-based ROMs is

proposed in this chapter so as to manage and control the up-front cost involved.

Furthermore, this model provides a means for fusing computational data of variable-

complexity while yielding solutions with the complete flow-field.

7.1 Some hierarchical type modelling concepts

The hierarchical type modelling concept was introduced by Alexandrov et al. [117]

[118] [119] [120] [121] from the NASA Langley Research Center for solving
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optimisation problems using an engineering approach rather than a rigorous mathematical

one. In general, hierarchical type models (which are also referred to as multi-fidelity,

variable-fidelity and variable-complexity) combine inexpensive low-fidelity analyses

with more accurate but expensive high-fidelity solutions. This combination is sought as

the evaluation of high-fidelity flow simulations can be very expensive and therefore it is

of great interest to devise methodologies, most especially in design and analysis,

involving as few high-fidelity analyses as possible. The hierarchical type modelling

strategy generally uses multi-dimensional response surface technology to model the

different fidelities. In this concept, a model of lower-fidelity such as coarser

discretization, relaxed convergence tolerances, lower order of accuracy and omitted

physics are used as the surrogate in place of the high-fidelity model. As a result, the

original implicit problem is replaced by explicit approximations thus offering means by

which the computational cost can be considerably reduced.

There are various strategies for reducing the number of expensive high-fidelity

analyses. One strategy entails using low-fidelity models to reduce the region in the design

space and once this is reduced a high-fidelity response surface is constructed over this

reduced space [122]. Another possibility is to use low-fidelity models for identifying

unimportant response surface terms or for identifying proper intervening variables that

reduce the problem dimensionality [122].

Another strategy was proposed by Haftka [123]. In his work Haftka introduced the

notion of employing a linearly varying scaling factor between models of variable-fidelity.

Since then the concept of correction response surfaces has been applied by various

people. In this, a high number of points are selected for the relatively inexpensive low-

fidelity analyses and from these points a subset is chosen for high-fidelity analyses. The

low-fidelity results are used to fit a response surface while the high-fidelity analyses are

used to fit a linear correction response surface. For the common ith design point

considered between the two models, the ratio of evaluated response values  is evaluated

as follows:
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The correction response surface  x̂ can then be used for establishing the following

variable-fidelity approximation, which may then be used for various purposes.

 x
vf

ŷ =  x
lf

ŷ .  x̂ Eq. (7-2)

Another approach which is related to this consists in using additive corrections, that is

approximating the difference between low- and high-fidelity models and then adding this

correction to the low-fidelity response surface constructed. A comparison between

multiplicative and additive correction response surfaces was compiled by Toropov and

Markine [124] who suggested that the former method leads to better approximations.

A different approach which utilises radial basis functions to fuse integrated

experimental and computational data was proposed quite recently by Reisenthel et al.

[125]. In the following section a review of Reisenthel’s variable-fidelity model is made

followed by a comprehensive study to understand its behaviour when using deterministic

data such as a computational one.

7.2 Fusion between experimental and computational data

Validation of computational databases by experimental tests is widespread and of

significant importance to develop a good level of confidence in the computed results. In

general, the integration of experimental and computational data is essential to support

decisions during the development phase of aerodynamic devices. An innovative data

integration technique to fuse experimental and computational results has been proposed

by Reisenthel et al. [125]. In this technique, instead of using the experimental data to

validate the computational data directly, the point of view adopted is to recognize and

accept that there will always be some differences between these two streams of data,
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mainly due to approximations in the physical models used, as well as experimental

limitations. Li et al. [126] defined data fusion as “the combination of a group of inputs

with the objective of producing a single output of greater quality and reliability”. With

this general notion in mind, Reisenthel et al. fused the two sets of data together to assist

in developing a global understanding of it. In that work, a typical situation was

considered where sparse experimental data is obtained from very expensive wind-tunnel

tests at a limited number of configurations and conditions along with a large quantity of

computational data which is relatively more affordable. A response surface methodology

has been used to perform data fusion and subsequently enhance the effectiveness of the

limited experimental test data with the aid of physics–based computational information.

In addition, an important application of this technology is the use of sparse data points

from limited wind tunnel tests to correct and fine tune or better still calibrate

computational databases. Reisenthel et al. demonstrated the utility of this technique.

In this technique a dimensionality augmented response surface is developed which

functions as a global interpolant for a heterogeneous set of data incorporating both

computational and experimental information. The modelling of the experimental and

computational data is achieved by adding an additional variable to the N dimensional

problem. This auxiliary variable is binary in nature and is practically used to identify

whether the data is either computational or else experimental. A single global response

surface is then generated in the N+1 dimensions. Reisenthel et al. did not specifically

state what type of RBF was used in his work but from the explanation conducted in his

presentation it is evident that a local RBF similar to a Gaussian or an inverse multi-

quadric was considered. By interrogating the response surface projected along the

experimental data, a model is established which represents the correctness of the

experimental data while at the same time inherits the essential features of the

computational model.

As an illustration of this technique, Reisenthel et al. presented a case for the correction

of computational aerodynamic databases using sparse experimental data of a generic

body-tail missile configuration. Computational databases for integrated forces and
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moments which varied over a wide range of angles of attack, roll angles and Mach

numbers were considered. From this methodology an error database was developed.

In this research a simplified model of Reisenthel et al. was developed to study and

understand his model. The simplification was achieved by assuming that the variable-

fidelity data is all obtained deterministically. The following is an academic example

which was considered and studied in this work.

7.3 An academic example showing a simplified Reisenthel’s
model

In this case two exponentially decaying sinusoidal sets of data were generated with

relative phase shift, different amplitude and decay rate. In this example it is assumed that

one set of data represents the low-fidelity training data while the other set of data

represents the high-fidelity one. Figure (7-1) shows the two sets of data. The low-fidelity

training data was calculated according to the following:

015.0)2(exp04.0)( )15.0(     Sinf

where θ is in radians. The high-fidelity data was generated with a slightly different

amplitude and phase shift. Such data may be considered as a close representation of the

static rolling moment of a body-tail missile.
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Figure (7-1) – Exponentially decaying sinusoidal sets of data with relative phase
shift
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Using the model described in the previous section with two variables namely, the

angle of rotation in degrees and the auxiliary variable which denotes whether the training

data is of low- or high-fidelity, a global response surface is generated using local radial

basis functions. In this case Gaussian radial basis functions were considered with a shape

parameter set at a constant value of 0.03. This value was arrived at after a few trials to set

the most appropriate value using the low-fidelity training points. Thus, the equation used

was  
2

03.0

r

er


 .

Three predictions were made using all the low-fidelity data together with three or four

high-fidelity data points. Figures (7-2) and (7-3) show the predictions obtained using this

model with three and four high-fidelity data points respectively. In this case the high-

fidelity points chosen correspond to the points at which the low-fidelity data curve

reaches its peak value.
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Figure (7-2) – Prediction using three high-fidelity data points
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Figure (7-3) – Prediction using four high-fidelity data points
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The prediction is considerably improved by considering the four high-fidelity training

points very close to those points at which the high-fidelity data curve reaches its peak

values. See figure (7-4). The occurrence of this feature is due to the phase shift between

the two sets of data. In particular this feature emphasizes that the low-fidelity set of data

must follow the same trend as the high-fidelity set of data for effective data fusion when

using sparse high-fidelity data points. Otherwise, this can be compensated by considering

a greater number of high-fidelity data points.
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Figure (7-4) – Prediction using four high-fidelity data points close to peak values

In general, this technique offers an automatic way of fusing variable-fidelity data

through the construction of interpolation and extrapolation schemes.

7.4 Fusion between experimental and computational data for
the nose -controlled finned missile configuration

In this section an example of Reisenthel’s variable-fidelity method is presented for a

simple but realistic aerodynamic problem. In this example experimental and

computational data are fused together for the nose-controlled finned missile configuration

considered earlier, that is, with a nose deflection angle of 8º. The data considered is the

integrated axial force coefficient as the greatest discrepancies between the experimental

and computational data were recorded in this particular force coefficient. The force

coefficients obtained experimentally for the nose-controlled finned missile configuration

are used together with the integrated force coefficients obtained by computation using the
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IMPNS software to populate a sub-space at two different fidelity levels. Multi-quadric

radial basis functions (i.e. global RBFs) are used in this example to develop the pseudo-

continuous representation through which high-fidelity predictions (based on the

experimental results) are made. This differs from the work of Reisenthel et al. where

local type RBFs were considered. It must be pointed out that in this section the high-

fidelity training data is considered as a deterministic set of data as it was interpolated

rather than regressed. Strictly, experimental data should be regressed.
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Figure (7-5) – Axial force coefficient prediction using three high-fidelity data points
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Figure (7-6) – Axial force coefficient prediction using six high-fidelity data points

Figures (7-5) and (7-6) show the predictions with a fixed number of low-fidelity

(computational) data and with either three or six high-fidelity (experimental) training

points. As expected, some slight improvement in the representation of the high-fidelity

data is attained with an increasing number of training points as the predicted values

follow closer to experiment. Interestingly, the global radial basis functions introduce
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some favourable smoothing in the predictions as it can be observed from figures (7-5)

and (7-6). In these figures the highlighted green data points are the training points while

the red points are the actual experimental data with which the prediction is compared. In

getting these responses from the data fusion technique, a numerical weight was

introduced between the two levels so as to control the influence of the training dataset

onto the prediction. In this analysis it has been observed that as the number of high-

fidelity training points is increased, the weighting factor is reduced in magnitude. Figure

(7-7) shows the Reisenthel’s model response with three high-fidelity training data points

corresponding with figure (7-5) and with different weighting factors.
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Figure (7-7) – Response from varying weight factors

From this section it can be concluded that variable-fidelity data fusion can be achieved

by global radial basis functions as long as a faithful representation of the low-fidelity data

is obtained by the radial basis function considered. In this case the response was

relatively simple.

7.5 A variable-fidelity model incorporating POD-based
ROMs

In this section POD-based ROMs created with snapshots at different fidelities are

integrated together through the use of the variable-fidelity model of Reisenthel et al. with

the objective of developing a new method by which variable-fidelity computational data

is fused together and tuned high-fidelity predictions are made. This modified model has
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the major advantage that while Reisenthel’s model can be applied over individual or

integrated properties at different fidelities, this model can be applied over the whole

CFD solutions at different fidelities such that the complete flow-field over the whole

domain is output, just like the solution from a CFD calculation. To the best of the

author’s knowledge, this is a new method which is being proposed for the first time in

this thesis and is a contribution towards the body of knowledge.

Considering an ordered ensemble of heterogeneous data A where mxnRA is

obtained from the solution vectors of low- and high-fidelity models at various parameter

values with the total number of realizations or parameters combination
21

mmm  ,

where
1

m is the number of snapshots obtained from the high-fidelity model and
2

m is the

number of snapshots obtained from the low-fidelity model. It is assumed that 21 mm 

and n is the number of grid points over which the computational calculation is performed.

Let mxnRA denote the matrix whose rows are the modified snapshots as stated

earlier in chapter 4 where the primed entries denote the high-fidelity solution vectors,

from row 1 to row
1

m while the non-primed entries represent the low-fidelity solution

vectors, from row
1

m + 1 to m where
21

mmm  . In this case the parameters

combination between the low and high-fidelity model solutions can be different and it is

not necessary to have common snapshots between the variable-fidelities.
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The SVD of A which is equal to UΣ TV can be written in reduced form as
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The rows of TV are the proper orthogonal modes of the system. Multiplying the first two

matrices on the RHS to obtain the projection coefficient matrix  
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From this matrix, the set of scalar coefficients
constji ,

α are considered in turn for j

varying from 1 to m to develop multi-dimensional response surfaces for variable-fidelity

data fusion. Note that the high-fidelity response surface is formed by the projection

coefficients ji,α for 11 mj  while the low-fidelity response surface is formed by the

projection coefficients ji,α for mjm 11 . This is achieved by the introduction of an

auxiliary variable ε ≡
1N

x to the N-dimensional problem with variables ),......,,(
21 N

xxx .

This auxiliary variable simply denotes whether the data is of low-fidelity (ε = 0) or high-

fidelity (ε = 1). From this a global response surface is then computed in the N+1

dimensions using radial basis functions. By interrogating the newly developed response

surface projected along ε = 1 at any arbitrary parameter value not in the original set of

observations, predictions can be made. The resulting model representation respects the
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accuracy of the high-fidelity data while following the features of the low-fidelity data. In

this model the introduction of the low-fidelity sub-space by making use of an additional

variable allows us to perform an interpolation-based extrapolation. In other words, an

extrapolation at high-fidelity based on interpolation at low-fidelity is conducted. Figure

(7-8) shows a schematic diagram of the model aforementioned. It is to be noted that the

influence of the low-fidelity data on the high-fidelity one can be controlled by a

weighting factor. This weighting factor has the analogous effect of moving the two

datasets closer together in which case ε is no longer equal to 1, ie. ( ε < 1 ).

Figure (7-8) Pictorial representation of the variable-fidelity POD-based ROM
method

Following this, the predicted solution vector â is determined by

constjk

q

k
kconsticonstjk

m

k
kconsti 





   ,

1
,,

1
, vvˆ

1

aa Eq. (7- 5)

where q < m2 and a is the mean vector. This model gives access to the full flow-field data

in contrast with the other variable-fidelity models reported in the literature.

Hi-Fi POD-based ROM

Lo-Fi POD-based ROM

Hi-Fi sub-space
ε ≤ 1

Output
Full-Flowfield

Solution

Lo-Fi sub-space
ε = 0
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7.6 Applications of the proposed model for fusing
computational experiments

In this section the model proposed previously is applied to two high-speed

aerodynamic flow problems with a fixed flow domain but having different boundary

conditions. Firstly, the model is applied to a variable-fidelity problem where low- and

high- order accurate viscous flow computations are considered. This particular problem is

of interest because PNS flow solvers tend to become quite difficult to use at high angles

of incidence at a high-order of accuracy. In this case the boundary conditions are

everywhere the same between the low-fidelity and the high-fidelity analyses. In addition

the flow physics is the same too. Secondly, the model is applied to a variable-fidelity

problem where the flow physics and one of the boundary conditions between the low-

and high- fidelities are different. In this latter case, the low-fidelity analyses are inviscid

flow computations while the high-fidelity analyses are viscous flow computations. The

different boundary condition at the wall between inviscid and viscous flow is obvious.

7.6.1 Low- and high-order accurate viscous flow computations

The application considered in this section is that of the cone-cylinder-flare looked at

previously in chapters 5 and 6, although here a viscous flow problem is studied rather

than an inviscid one. In this problem, the parameters were the angle of incidence which

was varied within the range [0º, 10º] and the Mach number which was varied within the

range [2, 6]. Here, the flare angle was maintained constant so that no errors are

introduced in the model’s outcome due to domain changes i.e., grid deformations. For

this problem two Lagrange sub-spaces were generated by running the IMPNS software

over the entire space at a constant Reynolds number, one with a set of low-fidelity

snapshots and the other one with a set of high-fidelity snapshots. The low-fidelity

snapshots were generated by computing nominally first-order accurate calculations, while

the high-fidelity snapshots were calculated using a nominally third order in the cross-flow

directions and second order in the streamwise. As explained in the previous section an

auxiliary variable denoting whether the data is of low- or high- fidelity was added to the
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problem, giving rise to a three-dimensional problem ie., the two parameters and the

auxiliary variable. With this training data a global response surface of the projection

coefficients was generated using Gaussian radial basis functions with a shape parameter

of 1.0 from which a meta-model was developed in three-dimensions.

In this section two problems were considered with a different set of snapshots for the

high-fidelity data. For the first case the training dataset was as follows:

 For the low-fidelity dataset, the Mach number was varied at intervals of one

across the range [2, 6], while the angle of incidence was varied at intervals of 2º

across the range [0º, 10º]. A full-factorial design-of-experiment was set up with

30 snapshots in total.

 For the high-fidelity data, five snapshots were considered one at each Mach

number. The five snapshots are at a constant angle of incidence of 5º.

This set of observations was used to train a three-dimensional response surface which

was used as a global interpolant along the three-dimensions. The following results were

attained.

Figure (7-9) (a) to (e) shows the variation of the axial force coefficient Cx and the

normal force coefficient Cz with the angle of incidence for the cone-cylinder-flare body at

the different Mach numbers. The high-order accurate (high-fidelity) solution which is

included for comparison is shown in red, the first-order accurate (low-fidelity) is shown

in pink and the prediction achieved using the variable-fidelity/POD-based ROM method

is shown in black. The training data which is input into the model is shown in light green.
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M = 3
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M = 6
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Figure (7-9) – Prediction of Cx & Cz
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From figure (7-9) one can observe that the Cx predictions follow the features of the

low-fidelity data while passing through the high-fidelity point used in the training dataset

at an angle of incidence of 5º. In general, there is reasonably good prediction most

especially over the range from 0º to 6º. Beyond an angle of attack of 6º the difference

between the low- and high- fidelity data increases, thus causing a poorer prediction. For

the normal force coefficient Cz prediction, coincidentally the Mach number of 2 and 3

cases show a very accurate prediction but do not strongly follow the features of the low-

fidelity. The other cases at M = 4, M = 5 and M = 6 show a prediction where the features

of the low-fidelity data are conspicuous. In the latter three cases, the prediction is

superimposed on the high-fidelity training data point at an angle of incidence of 5º. In this

work, it has been noticed that the closer together the low- and high-fidelity data are, the

more the prediction follows the features of the low-fidelity. This effect can also be

achieved numerically by controlling the magnitude of the introduced auxiliary variable,

though one must be cautious not to ill-condition the radial basis function matrix

mentioned in chapter 3.

These results once again emphasize the importance of using low-fidelity models which

incorporate the correct trends, as the biggest errors were registered in those regions where

the low- and high-fidelity follow different trends and have different features. This is

most especially important when performing sparse data interpolation, since the reliance

on the low-fidelity solutions is considerably greater. This observation was also made by

Reisenthel et al. in their work.

Figures (7-10) and (7-11) show the projected carpet plots of the force coefficients as

predicted using the variable-fidelity/POD-based ROM method, the high-order accurate

calculation using the IMPNS software and the percentage error of the prediction relative

to the high-fidelity calculation. It is clear that the biggest errors occur towards the ends of

the parametric ranges. In particular, the very high error recorded in the normal force

coefficient at angles of incidence of 0º and 1º is due to the very small values rather than

some flaw in the variable-fidelity/POD-based ROM method.
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Figure (7-10) – Projected carpet plots of the axial force coefficient with five high-
fidelity data points
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Figure (7-11) – Projected carpet plots of the normal force coefficient with five high-
fidelity data points
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In the second case the training dataset considered is as follows:

 The low-fidelity dataset considered in the previous case was considered once

again.

 For the high-fidelity data, fifteen snapshots in total were considered. A full-

factorial design-of-experiment was set up with Mach numbers at 2,3,4,5,6 and an

angle of incidence of 2º, 5º and 8º. These angles of incidence were chosen so

that the high-fidelity Lagrangian sub-space will only partially cover the whole

parametric space. Therefore, this would provide a problem where some regions

would be predicted by interpolation and some others by extrapolation.

This dataset of observations was used to train a three-dimensional response surface

which was used as a global interpolant along the three-dimensions. The following are the

results obtained by using this training dataset.
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Figure (7-12) – Prediction of Cx & Cz
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Figure (7-12) shows the variation of the axial and normal force coefficients with the

angle of attack at different Mach numbers. While general significant improvement is

achieved when using more high-fidelity data points over a wider area as expected, from

these figures it is clear that by using the variable-fidelity/POD-based ROM model, a

reasonable improvement is registered at regions beyond the high-fidelity Lagrangian sub-

space. This improvement is achieved due to the introduction of the low-fidelity sub-space

to the problem which allows us to conduct an extrapolation of the high-fidelity sub-space

based on an interpolation of the low-fidelity sub-space. The resulting dimensionality

augmented response surface is ultimately globally interpolated. In addition, some minor

improvement is noticeable most especially from the normal force coefficient within the

high-fidelity data points range.

Figures (7-13) and (7-14) show the carpet plots of the force coefficients. In this latter

example there exists a very good agreement between the ones predicted and the ones

calculated using CFD (high-fidelity). This observation is reinforced by the percentage

error plots, wherein the error magnitude is relatively small compared with the previous

example. The error is generally approximately within +/- 2.0 % for both force coefficients

except for a few small regions. Once again it must be remarked that the high error values

in the normal force coefficient at low angles of incidence is due to the very small

numerical values calculated.
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Figure (7-13) – Projected carpet plots of the axial force coefficient with fifteen
high-fidelity data points
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Figure (7-14) – Projected carpet plots of the normal force coefficient with fifteen
high-fidelity data points
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Further plots of the derivatives of the forces with fifteen high-fidelity data points are

presented in figures (7-15) and (7-16). Predictions are presented at angles of incidence of

6° and 9° for the most extreme Mach number values considered ie. 2 and 6. The

agreement between the ones predicted using the variable-fidelity/POD-based ROM

method (solid line in figures) and the ones calculated using CFD (diamonds) is excellent

for both the axial and normal force derivatives.
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Figure (7-15) Plots of the derivative of the axial force coefficient versus the number

of calibres
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Figure (7-16) Plots of the derivative of the normal force coefficient versus the

number of calibres
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Moreover for the latter case, flow-field comparisons are presented between the

predictions obtained by the variable-fidelity/POD-based ROM method and the high-

fidelity simulations. Comparisons of the total pressure contours were made at the two

most extreme Mach number values ie., 2 and 6 and at angles of incidence of 6° and 9°.

The former angle of incidence is situated within the high-fidelity training dataset while

the latter angle of incidence is situated beyond. At these parametric values, reasonably

accurate axial and normal force coefficients and their derivatives were attained and so it

was interesting to observe the flow-field predictions. In this case the total pressure was

considered since it is a sensible indication of the accuracy by which all the primitive

variables are predicted. The comparisons show that the predicted total pressure contours

are only very slightly different from the ones calculated over certain regions of the flow-

field, hence the predictions are satisfactory. In the following figures (7-17) to (7-21), the

upper part (a) represent the prediction from the variable-fidelity/POD-based ROM

method and lower part (b) is obtained from the full-order CFD.
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(a) Predicted total pressure contours at M = 2 and alpha = 6°

(b) PNS total pressure contours at M = 2 and alpha = 6°

Figure (7-17) Comparison of the total pressure contours at
M = 2 and alpha = 6°
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(a) Predicted total pressure contours at M = 2 and alpha = 9°

(b) PNS total pressure contours at M = 2 and alpha = 9°

Figure (7-18) Comparison of the total pressure contours (64) at
M = 2 and alpha = 9°



Chapter 7 - A hierarchical type model using POD-based ROMs
________________________________________________________________________

153

(a) Predicted total pressure contours at M = 2 and alpha = 9°

(b) PNS total pressure contours at M = 2 and alpha = 9°

Figure (7-19) Comparison of the total pressure contours (128) at
M = 2 and alpha = 9°
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(a) Predicted total pressure contours at M = 6 and alpha = 6°

(b) PNS total pressure contours at M = 6 and alpha = 6°

Figure (7-20) Comparison of the total pressure contours at
M = 6 and alpha = 6°
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(a) Predicted total pressure contours at M = 6 and alpha = 9°

(b) PNS total pressure contours at M = 6 and alpha = 9°

Figure (7-21) Comparison of the total pressure contours at
M = 6 and alpha = 9°
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In general, this new method is composed of two models ie. the variable-fidelity model

of Reisenthel et al. and POD-based ROMs. Being so, it inherits all the advantages and

disadvantages from both its parents. No beneficial interaction was observed between the

two models. For example, the POD-based reduced-order modelling limitations are still

present within the proposed method. In particular, it has been observed that this model

behaves pretty much like the variable-fidelity model of Reisenthel et al., that is, the

prediction follows very closely the trend of the low-fidelity training data points and so it

relies to a great extent on it, most especially when the high-fidelity training data is sparse.

However, the influence of the low-fidelity data upon the high-fidelity one drops down as

the number of high-fidelity training data points is increased. Possibly, a way to verify

whether the model is adequately representing a particular application is by increasing in

steps the number of high-fidelity training data and monitoring the discrepancies from its

output. As the number of the high-fidelity training data is increased, the response from

the model must tend towards some limiting value, which will be within some

approximation error. This bounded error results from the radial basis function network.

It is well known that POD-based ROMs work well in an interpolatory setting. This

was confirmed in chapters 5 and 6 of this work. However, it is not clear whether this

ROM technique works well in an extrapolatory setting unless the physics of the problem

change linearly beyond the parametric range, even because there is no published research

work about this to the author’s knowledge [1]. Therefore, by using this variable-

fidelity/POD-based ROM method, a transformation of the problem is made from an

extrapolatory setting into an interpolatory one by the introduction of the auxiliary

variable, hence making it possible for the POD-based ROM to work well. Thus, this

technique may be considered as a first step towards achieving a POD-based ROM to

work well for a linear or non-linear problem in an extrapolatory setting.
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7.6.2 Inviscid and viscous flow computations

Fusing inviscid and viscous flow computational data is more challenging than the type

of fusion considered earlier due to the different problem formulation where the physics

and boundary conditions at the wall are different, ie. the slip and non-slip condition for

inviscid and viscous flows respectively. Although it would still be possible to fuse

inviscid and viscous data in the way suggested in the previous section, the problem would

not be well posed and so the outcome is generally less accurate than what is being

suggested in this section. Consequently, the data fusion technique adopted earlier can be

applied for the pressure and the density variables but strictly not to the three components

of velocity. Therefore, some way of getting around this problem must be found before

attempting to fuse data with different physics. The following method was adopted to

conduct data fusion in this case.

7.6.2.1 Description of the method

In this method a variable-fidelity dataset of observations is generated by conducting

inviscid and viscous flow computations over the same computational mesh of a particular

problem of interest. The same computational mesh is considered so that the modes or

basis vectors which are a function of the position in space will be at fixed places across

the whole set of snapshots for both fidelities. This will ensure that the locations of the

POD modes are the same and hence no errors will be introduced due to different

locations. A POD of this ensemble of CFD solutions is performed from which the basis

vectors are obtained. By projecting the CFD solutions onto the basis vectors, a set of

projection coefficients is achieved. This set of projection coefficients is a set of discrete

data at two different levels of fidelity (one with scalar coefficients for inviscid data and

the other one with scalar coefficients for viscous data). A pseudo-continuous

representation of these coefficients is generated by radial basis functions to provide

means by which high-fidelity predictions are made at parameter combinations not in the

original set of observations.
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The method adopted to fuse the primitive variables of the inviscid and viscous

computations is as follows;

1. A POD of the inviscid and viscous snapshots is accomplished for the density and

pressure field variables only. The derived inviscid and viscous projection

coefficients are then modelled using radial basis function networks so that two

response surfaces are generated at two different levels representing the inviscid

and viscous projection coefficients. The various fidelity levels in the radial basis

function networks are represented by the inclusion of another auxiliary variable in

addition to the physical or geometric parameters.

2. Another POD of the velocities of the viscous flow field only is performed. In this

case the velocity fields are not fused together as in the case of the pressure and

density due to the different physics of the problem. Predictions were made using a

multi-quadric radial basis function with a shift parameter equal to zero. A bi-

linear spline interpolation can also be applied. It is suggested that if a one- or a

two-equation turbulence model is used, the output parameters from the turbulence

model are treated in the same way the velocities are predicted. In this example, an

algebraic turbulence model was used.

7.6.2.2 Application of the proposed method

The application considered in this section is again that of the cone-cylinder-flare

looked at previously. Once again the parameters were the angle of incidence which was

varied within the range [0º, 10º] and the Mach number which was varied within the range

[2, 6]. The flare angle was maintained constant so that no errors are introduced in the

model’s outcome due to domain changes i.e., grid deformations. Two Lagrange sub-

spaces were generated by running the IMPNS software over the entire space, one with a

set of low-fidelity snapshots and the other one with a set of high-fidelity snapshots. The
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low-fidelity snapshots were generated by computing high-order accurate inviscid flow

calculations, while the high-fidelity snapshots were calculated using high-order accurate

viscous flow computations. In both sets of computations the order of space-wise

discretization in the streamwise flux was calculated to a second order of accuracy while

the order of spacewise discretization in each of the cross-flow fluxes was calculated to a

third order of accuracy. As explained in the previous section an auxiliary variable

denoting whether the data is of low- or high- fidelity was augmented with the other input

variables, giving rise to a three-dimensional problem ie., the two parameters mentioned

earlier and the auxiliary variable. With this training data a global response surface of the

projection coefficients was generated using Gaussian radial basis functions with a shape

parameter of 1.0.

For the problem considered here a training dataset was generated as follows:

 For the low-fidelity dataset, the Mach number was varied at intervals of one

across the range [2, 6], while the angle of incidence was varied at intervals of 2º

across the range [0º, 10º]. A full-factorial design-of-experiment was set up with

30 snapshots in total.

 For the high-fidelity data, fifteen snapshots in total were considered. A full-

factorial design-of-experiment was set up with Mach numbers at 2, 3, 4, 5, 6 and

an angle of incidence of 2º, 5º and 8º. These angles of incidence were chosen so

that the high-fidelity Lagrangian sub-space will only partially cover the low-

fidelity parametric space. Thus, this would provide a problem where some regions

would be predicted by interpolation and some others by extrapolation.

This set of observations was used to train a three-dimensional response surface. The

following results shown in figure (7-22) were obtained.



Chapter 7 - A hierarchical type model using POD-based ROMs
________________________________________________________________________

160

M = 2

0.32

0.33

0.34

0.35

0.36

0.0 2.0 4.0 6.0 8.0 10.0

Angle of Incidence (Degrees)

Cx

Viscous Inviscid Prediction Prediction V-S only Training Data

M = 2

0.00

0.10

0.20

0.30

0.0 2.0 4.0 6.0 8.0 10.0

Angle of Incidence (Degrees)

Cz

Viscous Inviscid Prediction Prediction V-S only Training Data

(a)



Chapter 7 - A hierarchical type model using POD-based ROMs
________________________________________________________________________

161

M = 3

0.27

0.28

0.29

0.30

0.31

0.0 2.0 4.0 6.0 8.0 10.0

Angle of Incidence (Degrees)

Cx

Viscous Inviscid Prediction Prediction V-S only Training Data

M = 3

0.00

0.10

0.20

0.30

0.40

0.0 2.0 4.0 6.0 8.0 10.0

Angle of Incidence (Degrees)

Cz

Viscous Inviscid Prediction Prediction V-S only Training Data

(b)



Chapter 7 - A hierarchical type model using POD-based ROMs
________________________________________________________________________

162

M = 4

0.24

0.25

0.26

0.27

0.28

0.0 2.0 4.0 6.0 8.0 10.0

Angle of Incidence (Degrees)

Cx

Viscous Inviscid Prediction Prediction V-S only Training Data

M = 4

0.00

0.10

0.20

0.30

0.40

0.0 2.0 4.0 6.0 8.0 10.0

Angle of Incidence (Degrees)

Cz

Viscous Inviscid Prediction Prediction V-S only Training Data

(c)



Chapter 7 - A hierarchical type model using POD-based ROMs
________________________________________________________________________

163

M = 5

0.24

0.25

0.26

0.27

0.28

0.0 2.0 4.0 6.0 8.0 10.0

Angle of Incidence (Degrees)

Cx

Viscous Inviscid Prediction Prediction V-S only Training Data

M = 5

0.00

0.10

0.20

0.30

0.40

0.50

0.0 2.0 4.0 6.0 8.0 10.0

Angle of Incidence (Degrees)

Cz

Viscous Inviscid Prediction Prediction V-S only Training Data

(d)



Chapter 7 - A hierarchical type model using POD-based ROMs
________________________________________________________________________

164

M = 6

0.24

0.25

0.26

0.27

0.28

0.0 2.0 4.0 6.0 8.0 10.0

Angle of Incidence (Degrees)

Cx

Viscous Inviscid Prediction Prediction V-S only Training Data

M = 6

0.00

0.10

0.20

0.30

0.40

0.50

0.0 2.0 4.0 6.0 8.0 10.0

Angle of Incidence (Degrees)

Cz

Viscous Inviscid Prediction Prediction V-S only Training Data

(e)

Figure (7-22) – Prediction of Cx and Cz
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Plots of the axial and normal force coefficients are displayed in figure (7-22). In the

figures the highlighted green points are the training data points (input) which are used by

the variable-fidelity/POD-based reduced-order modelling method to effect the prediction.

The predicted values (output) from the model are in black while the high-fidelity set of

data which is in red are included so that a comparison can be made between the

prediction (black line) and the high-fidelity data (red line). The blue line is the prediction

obtained by a POD-based ROM derived from the viscous snapshots of the same problem,

ie. from the fifteen viscous snapshots only. Generally, the predictions from the variable-

fidelity/POD-based ROM method are accurate and better than the predictions from the

POD-based ROM, except for two small regions as revealed by the axial force coefficient.

One of these regions is at M = 3 and at an angle of incidence greater than 8º. Here the

prediction follows the trend of the low-fidelity data which diverts away from the high-

fidelity set of data. The other region is at M = 6 and an angle of incidence of less than 2º.

Here the main source of error is the viscous part of the axial force coefficient which was

determined very poorly. Note that the predicted normal force coefficient does not pass

through the point (0,0) since this technique is only an approximation. However, it can be

forced to go through (0,0) by including a snapshot at this point.

Figure (7-23) shows the variation of the pitching moment with angle of incidence at

the various Mach numbers considered. The agreement between the variable-

fidelity/POD-based ROM and the high-fidelity set of data is good. Moreover, the

prediction from the variable-fidelity/POD-based ROM (black line) is better than that of

the POD-based ROM developed from the viscous snapshots only (blue line) both within

the region of the high-fidelity set of data and beyond it.
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Figure (7-23) – Prediction of Cm

In this section the same observations were perceived as in the previous one. The

technique offers a general improvement in the prediction. In the region beyond the high-

fidelity data points, the prediction is normally better than that performed using the

viscous snapshots only. Where this is not the case it is due to the fact that the prediction

follows the same trend of the inviscid computations which have a trend which is slightly

different from the high fidelity one. This trait is evident most especially from the axial

force coefficients. From the normal force coefficients it is noticeable that the proposed

methodology offers improvement both beyond and within the high-fidelity data. It is

evident that the prediction within the high-fidelity data points region is damped, ie. one

could not observe the oscillations predicted using the viscous snapshots only. So it is

quite conspicuous that an improvement is obtainable by using this technique.
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Plots of the axial and normal force derivatives are shown in figures (7-24) and (7-25)

at two different Mach numbers which correspond to the extreme values. The angles of

incidence were chosen such that one set will be enclosed by the high fidelity data while

the other sets will be beyond the high-fidelity data but will be enclosed by the low-

fidelity (inviscid) solutions. Again the agreement between the predicted derivatives and

the IMPNS computed ones is good.



Chapter 7 - A hierarchical type model using POD-based ROMs
________________________________________________________________________

170

M = 2 Alpha = 1

0.00

0.10

0.20

0.30

0.40

0.50

0.0 5.0 10.0 15.0 20.0 25.0
x/D

d
C

x
/d

x

PNS Prediction

M = 6 Alpha = 1

0.00

0.10

0.20

0.30

0.40

0.0 5.0 10.0 15.0 20.0 25.0x/D

d
C

x
/d

x

PNS Prediction

(a)

M = 2 Alpha = 9

0.00

0.10

0.20

0.30

0.40

0.0 5.0 10.0 15.0 20.0 25.0
x/D

d
C

z
/d

x

PNS PRED

M = 2 Alpha = 9

0.00

0.10

0.20

0.30

0.40

0.0 5.0 10.0 15.0 20.0 25.0
x/D

d
C

z
/d

x

PNS PRED

(b)



Chapter 7 - A hierarchical type model using POD-based ROMs
________________________________________________________________________

171

M = 2 Alpha = 9

0.00

0.10

0.20

0.30

0.40

0.0 5.0 10.0 15.0 20.0 25.0
x/D

d
C

z
/d

x

PNS PRED

M = 2 Alpha = 9

0.00

0.10

0.20

0.30

0.40

0.0 5.0 10.0 15.0 20.0 25.0
x/D

d
C

z
/d

x

PNS PRED

(c)

Figure (7-24) Plots of the axial force derivative against axial distance in calibres
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Figure (7-25) Plots of the normal force derivative versus the axial distance in

calibres

In particular, the prevailing advantage from this method is that the entire flow-field

can be predicted in contrast with other variable-fidelity models which are available in the

literature. Consequently, flow-field comparisons are once again presented between the

predictions obtained by the variable-fidelity/POD-based ROMs method and the high-

fidelity simulations. In this case comparisons of the static pressure, total pressure and

entropy at different axial locations are made. The axial locations considered were (i) at

the end of the cylindrical part that is x/D = 18.4 where the vortical flow is well developed

and (ii) at the very end of the projectile where one could observe the vortical flow and the

flare’s shock interact. The comparisons were made at the two extreme Mach number

values and again at incidences of 6° and 9°. In all the figures, the left-hand side part of

the figure is obtained from the approximation method while the right-hand side is
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obtained from CFD. The comparisons between the predicted flooded contours and the

high-fidelity CFD calculated ones vary from reasonably comparable to relatively poor.

Refer to figures (7-26) to (7-31). These figures together with the previous force

coefficients’ charts suggest that the main source of error in these predictions is due to

inaccurate prediction of the velocities.
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(a) Static pressure contours at
an axial location of 18.4

(b) Total pressure contours at
an axial location of 18.4

(c) Entropy contours at (d) x/D = 18.4
an axial location of 18.4

Figure (7-26) Comparison at M = 2 and Alpha = 6° between approximate method on
the left-hand half part of the figure and PNS solution on the right-hand part
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(a) Static pressure contours at the
end of the projectile

(b) Total pressure contours at the
end of the projectile

(c) Entropy contours at the end
of the projectile

Figure (7-27) Comparison at M = 2 and Alpha = 6° between approximate method on
the left-hand half part of the figure and PNS solution on the right-hand part
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(a) Static pressure contours at an axial
location of 18.4

( b) Total pressure contours at an
axial location of 18.4

( c ) Entropy contours at an
axial location of 18.4

Figure (7-28) Comparison at M = 2 and Alpha = 9° between approximate method on
the left-hand half part of the figure and PNS solution on the right-hand part
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(a) Static pressure contours at the end
of the projectile

(b) Total pressure contours at the end
of the projectile

( c) Entropy contours at the end
of the projectile

Figure (7-29) Comparison at M = 2 and Alpha = 9° between approximate method on
the left-hand half part of the figure and PNS solution on the right-hand part
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(a) Static pressure contours at the end
of the projectile

(b) Total pressure contours at the end
of the projectile

(c)Entropy contours at the
end of the projectile

Figure (7-30) Comparison at M = 6 and Alpha = 6° between approximate method on
the left-hand half part of the figure and PNS solution on the right-hand part
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(a) Static pressure contours at the end
of the projectile

(b) Total pressure contours at the end
of the projectile

(c)Entropy contours at the end
of the projectile

Figure (7-31) Comparison at M = 6 and Alpha = 9° between approximate method on
the left-hand half part of the figure and PNS solution on the right-hand part
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In general, this procedure offers the significant advantage that the whole prediction

process is automatic. This implies that instead of fitting or tuning a radial basis function

to represent as accurately as possible the response surface of the projection coefficients,

the problem is addressed in terms of the inviscid calculations. The response surface is

generated by considering a number of inviscid snapshots while the tuning is achieved by

the few viscous snapshots considered. However, a drawback that this technique may have

is that in order to increase the influence of the trend of the low-fidelity data upon the

high-fidelity one, the separation between the two response surfaces may require some

form of adjustment by controlling the magnitude of ε. For example in this case the

auxiliary variable ε was varied from 0.2 to 1.0 as the Mach number was increased from 2

to 6.

In addition this technique is on the one hand less robust when compared with that of

the previous task, ie. fusing low-order and high-order accurate data, where the projection

coefficients of all the primitive variables are fused together. In fact some integrated

coefficients at the extreme ends of the parametric space of the inviscid/viscous data

fusion were not evaluated. On the other hand this technique is more accurate than if the

method of section 7.6.1 was adopted.

7.6.3 Investigating the behaviour of the predicted response when the

number of inviscid computations is increased

A study was conducted to investigate what would happen on increasing the number of

inviscid snapshots. From this investigation it was observed that when the inviscid

snapshots were increased from 30 to 55 in total, such that the inviscid snapshots are at

intervals of 1º within the range [0 º, 10 º] for the angle of incidence and the Mach number

is again at intervals of 1 within the range [2, 6], there was a very slight improvement

almost insignificant in the prediction. This implies that when the pseudo-representation is

already offering a good representation with the original number of snapshots, then no

significant further improvement can be achieved from considering a greater number of

inviscid snapshots.
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7.7 Comparison with Robinson’s POD mapping variable-
fidelity model

In the literature, variable-fidelity models using POD are not common but one in

particular was suggested by Robinson et al. in [127] and [128]. This variable-fidelity

model is based on the missing point or gappy POD method for the reconstruction of

incomplete datasets. A detailed description of this POD mapping variable-fidelity model

is made in Appendix C. In this section a qualitative comparison between the method

proposed in this thesis and the one proposed by Robinson et al. is made.

A drawback of Robinson’s et al. model is that it requires datasets be generated in pairs

ie., the low-fidelity and high-fidelity training points must be at the same input parameters,

which is not a necessity for the proposed model in this thesis. Moreover, the method of

Robinson does not allow for problems with different boundary conditions. Therefore, it

follows that the proposed model in this thesis offers more flexibility. Robinson’s model

will start to be accurate when the number of high-fidelity training data is considerably

higher than the model proposed in this thesis, thus making it less practical. Although it

must be emphasized that the accuracy level reached by Robinson’s method is higher than

the one proposed here, as the accuracy of the latter would be determined by the response

surface approximation. In addition, the prediction from the variable-fidelity POD-based

ROM method follows very closely the trend of the low-fidelity training data points and so

it relies to a great extent on it, most especially when the high-fidelity training data is

sparse.
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7.8 Concluding remarks

In this chapter a hierarchical type/POD-based ROM model is proposed and applied to

two high-speed weapon aerodynamics problems. In this method a hierarchical type model

which incorporates POD-based ROMs is constructed which makes use of interpolation

schemes for dealing with extrapolatory problems. In general, this new method is

composed of two models ie. the variable-fidelity model of Reisenthel et al. and two

POD-based ROMs, one is constructed with the high-fidelity data while the other is

constructed with the low-fidelity one. In particular it was observed that this model

behaves similarly to the variable-fidelity model of Reisenthel et al., that is, the prediction

follows very closely the trend of the low-fidelity training data points and so it relies to a

great extent on it, most especially when the high-fidelity training data is sparse. However,

the predictions get more and more accurate as the number of high-fidelity data points is

increased. Besides this, the POD-based reduced-order modelling limitations do persist

within the proposed methodology.

In section 7.6.1 the variable-fidelity problem considered was set-up between low-order

and high-order accurate solutions. Therefore, in this case both the physics and the

boundary conditions of the variable-fidelity data were similar. The model was applied

directly on all the primitive variables and very good predictions were achieved. Thus, it

was demonstrated that this technique works well when dealing with the same physical

conditions throughout the whole set of data. Similarly, the same method should work well

for problems between coarse and fine grids. In such cases some form of interpolation

would be necessary to evaluate the variables at those fine grid points which fall at

intermediate places. But this should not impose any problem at all as linear interpolation

will do the job.

In section 7.6.2 the variable-fidelity problem considered was set-up between inviscid

and viscous solutions. Consequently, both the physics and the boundary condition at the

wall of the variable-fidelity solutions are different in this case. Although it would still be

possible to fuse inviscid and viscous data in the way suggested in section 7.6.1, the
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problem would not be well posed. Therefore, the data fusion technique adopted in section

7.6.1 was applied on the pressure and the density variables only. The velocities were then

predicted using the POD-based ROM for the viscous snapshots only. This method

predicts accurate force coefficients but flow-fields with relatively low accuracy.

In general, this procedure offers the significant advantage that the prediction process is

automatic. This implies that instead of fitting or tuning a radial basis function to represent

as accurately as possible the response surface of the projection coefficients, the problem

is addressed in terms of the low-cost and low-fidelity calculations. The response surface

is generated by considering a considerable number of low-fidelity snapshots while the

calibration is then achieved by a few viscous snapshots. Potentially this method offers a

reduction in the up-front cost required to generate the training dataset for a POD-based

ROM.
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Chapter 8

8.0 The kernel POD

The preceding chapters dealt with the common and most popular form of POD. This is

essentially a linear reduced basis method which is suitable for non-linear problems

provided a suitably rich set of basis vectors is available. This technique is analogous with

the many numerical algorithms used for analyzing non-linear systems which are based on

the solution of a sequence of linear sub-problems. However, for strong non-linear

problems such reduced basis method would require the generation of a large number of

snapshots to create a rich set of basis vectors which capture and model the strong non-

linearity appropriately. In this chapter a different approach for modelling non-linear

aerodynamic problems is considered and investigated. An attempt is made to model both

the weak and strong non-linear features, particularly in the transonic flow regime. In this

approach a non-linear kernel is integrated into the linear POD algorithm to transform the

linear algorithm into a non-linear one, hence making it possible to model the non-linear

features in the input space with a smaller number of basis vectors. The basic idea behind

this method is to map the data in the input space to a feature space via some non-linear

map, and then apply the linear method in the feature space for further analysis. In this

chapter, an aerodynamic application of this technique is presented. It must be pointed out

that this chapter deals with the relatively recent research niche of kernel methods in

machine learning. In the literature this technique is generally referred to as kernel PCA,

however in this work the term kernel POD has been introduced and used interchangeably

with the former one. Interestingly, the term PCA is normally used by mathematicians,

while the term POD is used by engineers.
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8.1 Introduction to kernels and kernel methods

In the field of data classification, data is separated into different classes by a plane in

the input space. Sometimes it is an easy task to correctly separate the data when it is

linearly separable. However, it may be impossible to separate the data without errors if

the data is non-linearly separable as shown in figure (8-1). In this case, some curve such

as an ellipse is required to correctly separate the crosses and circles in 2 that is, in two-

dimensions.

Figure (8-1) Data in 2

It is obvious that the circles and the crosses cannot be correctly separated by a straight

line but they can be separated by a plane when the data is mapped into a higher

dimension 3 by some mapping function as shown in figure (8-2). In this example, the

mapping is performed according to the following:

32:Φ  FX

   2222 ,,, yxyxyx 
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Thus, a non-linearly separable case in the input space is converted into a linearly

separable case in the feature space. The feature space is the space a mapping function

maps to.

Figure (8-2) Data mapped into 3

In multi-dimensional datasets, a hyper-plane is always required to separate the data

and according to the Vapnik-Chervonenkis [129] dimension theorem, theoretically n+1

dimensional data can be separated in n . Therefore, the higher the dimension some data

is mapped to, the more data can be correctly separated in the feature space. Theoretically,

it is possible to map data into infinite dimensions to correctly separate infinite data. From

this, a question crops up. How can such a mapping function be implemented? Definitely,

it is impossible to do any calculation on a vector with infinite elements and store this in

memory. Luckily, in many classifiers, a dot product between two data vectors can be

implemented. But still if the vectors are infinitely long, this cannot be performed.

Consequently a function is needed to handle this situation and take advantage of dot

products. Kernel functions are functions which make it possible to calculate infinite or

high–dimensional inner (dot) products [130][131]. Kernels are defined as follows:
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A kernel is a function K such that for all Xyx ,

  )().(, yxyx K , Eq.(8-1)

where  is a mapping from X to an inner product feature space F, also referred to as dot

product space.

From this function an infinite or highly-dimensional inner product of the right-hand

side of Eq. (8-1) is evaluated by some n times inner products of the left-hand side of Eq.

(8-1) if nyx, . Therefore, the kernel function is a very convenient form for the

implementation of a mapping function.

In recent years there has been a lot of interest in the study of kernel methods [130]

[131]. The basic idea is to map the data in the input space X to a feature space F via some

non-linear map function , and after that a linear method is applied in the feature space.

This computational procedure depends on the inner products )().( yx  in the feature

space (where Xyx , ), which are obtained efficiently from a suitable kernel function.

Besides this kernel methods have the important computational advantage that non-convex

non-linear optimization is not involved, thus provide an elegant non-linear generalization

of many existing linear algorithms. Therefore, kernels offer a powerful tool to extend the

use of linear algorithms to non-linear problems and there are some very good performing

linear algorithms which can also be used in the non-linear case by the application of

kernels. Some well-known examples are support vector machines in supervised learning

and kernel PCA in unsupervised learning. [132]

Another important advantage of kernels is that they simplify the representation

problem. Kernels simplify the representation because a direct map to the feature space is

not required but only a positive definite similarity measure is required. Another

advantage is that data from different sources are represented in one framework and

consequently will be easier to combine the data.
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8.2 Various types of kernels

An important issue in kernel POD lies in choosing the kernel function  yx,K or

otherwise specifying the kernel matrix
ij

K . Some widely used kernels are the linear which

is essentially POD, polynomial, Gaussian and sigmoidal kernels, [131] given by

i. The linear kernel

 yx,K = yx . Eq.(8-2)

which simply identifies the feature space with the input space;

ii. The polynomial kernel is defined as

 yx,K =   1).(
p

yx Eq.(8-3)

or

 yx,K =   1

2).(
p

pyx  Eq.(8-4)

where
1

p and
2

p are both integers.
1

p is the degree of the polynomial. The former

polynomial kernel of degree 2 corresponds to a feature space spanned by all products of

two variables, that is,  22 ,, yxyx . The other polynomial kernel of degree 2 corresponds to

a feature space spanned by all products of at most 2 variables, that is,  22 ,,,,,1 yxyxyx .

More generally the former kernel corresponds to a feature space spanned by all products

of exactly
1

p variables, while the latter corresponds to a feature space spanned by all

products of at most
1

p variables. The following is an example of a polynomial kernel.

Assuming
1

p = 2 and
2

p = 0 in Eq. (8-4), then

2

2
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iii. The radial basis function RBF kernel is defined as

 yx,K =
2

2

2

yx

e Eq.(8-5)

which maps the inputs onto the surface of an infinite-dimensional sphere. The following

is a proof showing that the Gaussian kernels are indeed infinitely dimensional.

Proof:
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This type of kernel is considered as a general purpose kernel in the machine learning

field.

iv. The sigmoid kernel is defined by

 yx,K =  θ  ).(κ Tanh yx Eq.(8-6)

for suitable values of gain  0 κ  and threshold 0  θ  . The sigmoid kernel is not always

positive definite, but it is still used in practice.
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8.3 The Kernel POD: Theory and Explanation

Schoelkopf, Smola and Mueller [132] introduced the kernel PCA as a non-linear

generalization of PCA and therefore somehow it can be used in the reconstruction,

compression and de-noising of data, which are common applications of PCA. Linear

PCA assumes a Gaussian distribution for the variations in the training data set but in

reality the distribution could be more complex and so it is better captured using non-

linear methods like kernel PCA.

The generalization is achieved by mapping the original input space into a higher and

possibly infinite dimensional feature space F before extracting the linear basis functions.

In particular, consider snapshots
N

xx ,.......,
1

 DR and features  ,Φ 1x ….,  NxΦ  F

computed by some mapping DR:Φ F. Kernel PCA is based on the insight that the

basis functions in F can be computed for mappings  xΦ that are only implicitly defined

by specifying the inner product in feature space, that is the kernel function  yx,K =

)(ΦΦ y(x). .

To perform the POD in feature space, the eigenvalues λ > 0 and eigenvectors V 0 

F must satisfy λV = C V where T
kkC )(Φ).(Φ xx . For simplicity it is assumed that the

mapped data is centered in F. When substituting C into the eigenvector equation this

shows that all solutions V must lie in the span of  - mappings of the training data. This

implies that we can consider the equivalent system

   VxVx Ckk ).(Φ).(Φ λ  for all k = 1, ……, l Eq.(8-7)

and that there exist coefficients
l

 ,.......,,
21

such that





l

i

ii

1

)(xV  Eq.(8-8)
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Substituting C and Eq. (8-8) into Eq. (8-7), and defining an l x l matrix K

by   ),()().(
jijiij

kK xxxx  , then a problem which is cast in terms of dot products is

formed;

solve αα Kl  λ Eq.(8-9)

where T

l
),,.........(

1
α . Normalizing the solutions kV , i.e.   1. kk VV , translates into

  1.λ kk

k
αα .

To extract non-linear basis functions for the  -mapping of a test point x , the

projection onto the k-th basis function is computed by

   
i

l

i

k

i

k

k
k xxxV ,)(.

1




  .

For feature extraction, l kernel functions are evaluated instead of a dot product in F

which is expensive if F is high-dimensional (or, as for Gaussian kernels, infinite-

dimensional). To reconstruct the  -image of a vector x from its projections
k

 onto the

first n basis functions in F (assuming that the eigenvectors are ordered by decreasing

eigenvalue size), a projection operator
n

P is defined as





n

i

k

kn
VP

1

)( x Eq. (8-10)

If n is large enough to take into account all directions belonging to eigenvectors with

non-zero eigenvalue, then )()(
iin

P xx  . Otherwise kernel POD still satisfies (i) that

the overall squared reconstruction error  
i iin
P

2
)()( xx is minimal and (ii) the

retained variance is maximal among all projections onto orthogonal directions in F. In

most applications one is interested in reconstructing data in the input space rather than in
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F. This can be achieved by computing a vector z satisfying )()(
in

P xz  with the hope

that for the kernel used, such a z will be a good approximation of x in the input space.

However, such a solution vector z will not always exist and if it exists, it may not be

unique.

When the vector )(
in

P x has no inverse mapped solution vector, an approximation

can be made by minimizing

2
)()()( xzz 

n
P Eq. (8-11)

This can be expanded into

  22
)()().(2)()( xxzzz 

nn
PP Eq. (8-12)

Substituting Eq. (8-8) and Eq. (8-10) into Eq. (8-12), we get an expression which is

written in terms of dot products. Consequently, a kernel can be introduced to obtain a

formula for  and therefore for 
z

 which does not rely on carrying out  explicitly





l

i

i

k

i

n

k

k
kk

11

),(2),()( xzzzz 
2

)(x
n

P Eq. (8-13)

In this section it has been assumed that the features are centred on the origin and

therefore the dominant eigenvalues of the kernel matrix
ij

K measure the variance along

the principal components in feature space. The features can always be centred by

subtracting out their mean, namely, by the transformation     
j ji

N
xx

1  
i

x .

When the mapping  xΦ is only implicitly specified by the kernel function, the centering

transformation can be applied directly to the kernel matrix as shown in section 8.3.5.
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For a centred kernel matrix, the relative weight of the leading d eigenvalues, obtained

by dividing their sum by the trace measures the relative variance captured by the leading

d eigenvectors. When this ratio is nearly unity, the data can be viewed as inhabiting a d-

dimensional sub-space of the feature space or equivalently a d-dimensional manifold of

the input space.

8.3.1 Inverse mapping for Gaussian Kernels

To optimize Eq. (8-13) standard gradient descent methods can be employed [133].

Considering kernels of the form  2

),( yxyx  kk and therefore constant),( xxk for

all x, an optimal z can be determined as follows;

From Eq.(8-12) and Eq.(8-13) it can be deduced that

   )().()( xzz
n

P = 


 ),(γ
1

l

i

ii
k xz Eq. (8-14)

where 



n

k

k

iki

1

γ  . For an extremum, the gradient with respect to z vanishes, ie.

     0
2

1

 


ii

l

i

i
k xzxzγz

z
 . This leads to a necessary condition for the

extremum:  j jii i
 /xz , with  2

γ
iii

k xz  . For a Gaussian kernel

 ck /exp),(
2

yxyx  we get

.

)/( expγ

)/( expγ

1

2

1

2














l

i

ii

l

i

iii

c

c

xz

xxz

z Eq. (8-15)

Note that the denominator is equal to   )(x.z  nP . Assuming that 0)(  x
n

P then,

    )().()(. xxxx 
nnn

PPP > 0. Since k is smooth, then there exists a
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neighbourhood of the extremum of Eq. (8-14) in which the denominator of Eq. (8-15) is

0 . Thus, an iteration scheme for z can be devised as follows
















l

i

iti

l

i

iiti

t

c

c

1

2

1

2

1

)/exp(γ

)/exp(γ

xz

xxz

z Eq. (8-16)

Numerical instabilities related to  )().( xz 
n

P being small can be dealt with by

restarting the iteration with a different starting value. Furthermore, it can be noticed that

any fixed-point of Eq.(8-16) will be a linear combination of the kernel PCA training data

i
x .

8.3.2 Inverse mapping for polynomial kernels

Following the previous exposition, an iterative scheme for polynomial kernels can be

devised. Eq. (8-13) can now be written as

)(z      


d

i

N

i

i

d
1γ21

1

xzzz

On putting the derivative w.r.t. z equal to 0 for an extremum, an iterative formula for the

inverse mapping of a polynomial kernel is achieved as follows

i

d

tt

it

N

i

it
x

zz

xz
z

1

1

1
1

1
γ





 











 Eq. (8-17)

8.3.3 Inverse mapping for sigmoid kernels

Similarly, an iterative scheme for sigmoid kernels can be devised as follows. Eq. (8-13)

can be written as
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)(z      


θ),(κTanhγ2θ),(κTanh
1

i

N

i

i
xzzz

Again, on putting the derivative w.r.t. z equal to 0 for an extremum, an iterative formula

for an inverse mapping of a sigmoid kernel is obtained as follows :

  
   i

N

i

i

it x
zz

xz
z

tt

t








1

2

2

1
θ),(κ Tanh1

θ),(κ Tanh1
γ Eq. (8-18)

8.3.4 Inverse mapping using non-iterative methods

The kPOD is a non-linear feature extractor and when linear POD is performed in the

feature space, it is equivalent to making non-linear POD in the input-space. While the

mapping from the input space to feature space is of primary importance in kernel based

methods, the reverse mapping from the feature space to the input space is almost always

necessary. As demonstrated by Mika et al. [133], the exact ‘pre-image’ typically does

not exist and one can only settle for an approximate solution. But even this may not be

trivial as the dimensionality of the feature space can be infinite. For certain invertible

kernels, this non-linear problem can be solved using a fixed point iteration method as

described in the previous sections 8.3.1, 8.3.2 and 8.3.3 for different kernels. However

this method is dependent on the initial starting point and is highly susceptible to local

minima. To circumvent this problem, two algorithms were proposed, one by Kwok et al.

[134] and the other by Rathi et al. [135]. Both algorithms are based on the relationship

between the feature-space and the input-space distances. These are both non-iterative,

involve only linear algebra and do not suffer from numerical instability or local minimum

problems which are sometimes experienced by the fixed point iteration method. The

algorithm proposed by Kwok et al. uses multi-dimensional scaling and an expensive

computation in the input space to obtain the co-ordinates of the pre-image. Rathi et al.

reconstruct the pre-image of a vector by first finding the distance of this point to all

training points in the feature space. Then a new co-ordinate system to represent the data

in the input space by performing SVD on a matrix of n nearest neighbours is found and

multi-dimensional scaling is used to project the solution onto this new co-ordinate
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system. The eigenvectors of this new co-ordinate system are then used to find the

approximate pre-image in the original input space. It is reported that although the method

uses a couple of approximations for reconstruction, the results are impressive. In this

work these techniques were not implemented since the fixed point iteration method was

found to be more than adequate. However, it may be the case that such algorithms are

useful for more involving problems.

8.3.5 kPOD Algorithm outline

The kPOD algorithm implemented in this work is the following:

1. Given a set of m-dimensional training data {xk }, k = 1,….. l, the kernel matrix is

computed K lxl = ),(
ji

k xx .

2. Centering is carried out in the feature space for  


l

k k1
0)(x according to

llll
KKKKK 1111

~


where

























1...1

...

...

...

1...1

1
1

l
l

3. Solve the eigenvalue problem αα Kl  λ and normalize
k

α such that

k

kk
λ

1
,  .

4. For a test pattern x, the nonlinear basis functions are extracted via





l

i

i

k

ik
k

1

),()(, xxxV 

5. An inverse mapping procedure mentioned earlier (either section 8.3.1 or 8.3.2 or

8.3.3) is adopted to map the solution from the feature space back to the input

space.
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8.4 Kernels derived from the training data

Weinberger and Saul introduced a technique called semi-definite embedding (SDE) [136]

which is essentially a variation on kernel PCA in which the kernel matrix is also learned

from the data. This is in contrast with the classical kernel PCA in which one has to

choose a kernel function a priori. To derive this technique, Weinberger and Saul

formulated the problem of learning the kernel matrix as an instance of semi-definite

programming. Since the kernel matrix K represents inner products of vectors in a Hilbert

space it must be positive semi-definite. Also the kernel should be centred,

i.e., 0ij ijK . In addition, the technique imposes constraints on the kernel matrix to

ensure that the distances and angles between points and their neighbours are preserved

under the neighbourhood graph  . That is, if both
i

x and
j

x are neighbours that is 1
ij



or are common neighbours of another input that is   0ij

T , then the distance should be

preserved

22

)()(
jiji

xxxx  Eq. (8-19)

In terms of the kernel matrix, this constraint can be written as:

2

2 jijjijii xxKKK  Eq. (8-20)

By adding an objective function to maximize the trace of the kernel matrix )(KTr which

represents the variance of the data points in the learned feature space, the technique

constructs a semi-definite program for learning the kernel matrix K . The last detail of

SDE is the construction of the neighbourhood graph ijη . This graph is constructed by

connecting the k nearest neighbours using a similarity function over the data,
ji

xx  . In

its last step, SDE runs kernel PCA on the learned kernel K. The algorithm of SDE is

summarised in the following section.
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8.4.1 SDE Algorithm outline

1. Construct neighbours, η , using k-nearest neighbours.

2. Maximize Tr(K) subject to ,0,0  ij ijKK and

0ij ij     2
20ηη jijjijiiij

T xxKKK 

3. Perform the kernel PCA with the learned kernel K.

In the next section the techniques described in section 8.3 were implemented into a

FORTRAN code and used to model the transonic flow over the RAE 2822 aerofoil.
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8.5 Application of kPOD-based reduced-order modelling

8.5.1 Transonic flow over the RAE 2822 aerofoil

One of the significant challenges in the use of POD for high-speed flow fields is to

capture moving shock waves as the flow parameters or boundary conditions change.

Techniques that generate POD-based reduced-order models (POD/ROM) for subsonic

and supersonic flows do not generate a useful ROM for a high-speed case with moving

shocks. Excessive data and time are required for modelling this accurately. As it has

already been stated in the literature review, for this problem Lucia [44] proposed and

used a technique to exploit POD for accurately treating moving shock waves. This

technique involves the decomposition of the solution domain to isolate regions that

contain shocks. The main idea behind this is to use the POD modes for a global

approximation of the flow-field and to use a standard finite volume scheme in the region

where shocks occur. A reduced-order model for each region is developed independently

and the solution for the entire domain is formed through a linking of the boundaries of

each region. This technique was applied to a one-dimensional quasi-steady nozzle flow-

field by Lucia [44] for demonstration. However, LeGresley and Alonso [45] applied this

technique for the shape optimisation of a two-dimensional aerofoil. The results attained

are good though some discrepancy could still be detected between the high-fidelity

solution and the POD/ROM with domain decomposition POD/ROM/DD.

It is thought that by combining POD-based ROMs with conventional spatial

discretization schemes, more efficient multi-scale algorithms for the analysis of some

parameter dependent PDEs can be developed. The idea of multi-scale modelling is to use

two models at least – one to represent the global features of the solution and a detailed

model to capture the local features. The main issues involved in designing a multi-scale

scheme are (1) the numerical method employed to identify the localized regions where a

full-order model should be used and (2) the approach used for handling the coupling

between the two models in order to arrive at consistent values for the field variables in

the interface region. Thus, while it is recognised that this domain-decomposition
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technique is reasonably good, it does offer some challenging issues. It would be very

interesting if a comparison is made between the computational time of the technique

proposed by Lucia, that is, the POD/ROM/DD and one which does not involve any

domain decomposition methods (so avoiding the subsequent challenging issues) but

simply a technique that globally approximates the solution using the POD methodology,

which solution is in turn used to initialize the high-fidelity computation. It would be

expected that this latter technique would entail some more computing time but definitely

would be as accurate as the high-fidelity solution. The computational time should not be

excessively large compared with the previous one, even because the global

approximation would be very accurate outside the shock region and consequently would

require hardly any iterations to reach the converged solution outside the shock region.

In this section an investigation is conducted to establish whether it is possible to model

this highly challenging problem by a more practical method, because it is much more

straightforward to implement. This is the kernel POD method. In this case an attempt is

made to model both the weak and strong non-linear features in the fluid flow by kPOD-

based reduced-order modelling.

8.5.1.1 Snapshots generation

Snapshots of viscous steady flow over the RAE 2822 aerofoil at an angle of incidence

of 3.19º were generated at various Mach numbers within the range [0.30, 0.72] to create a

Lagrangian subspace. In this case, the commercial software Fluent [53] was used to

generate the snapshots. The turbulence modelling was conducted by using the Spalart-

Allmaras turbulence model [57]. A wall function was considered.
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8.5.1.1.1 Computational grid

One of the computational meshes used is shown in figures (8-3) and (8-4). An O-type

mesh with 291 x 61 grid points was utilised in this case.

Figure (8-3) – O-type mesh with 201 x 61 grid points used to compute the flow over
the RAE 2822 aerofoil

Figure (8-4) – A close-up of the O-type mesh with 201 x 61 grid points used to
compute the flow over the RAE 2822 aerofoil
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8.5.1.1.2 Flow solutions

Initially, snapshots were generated within the Mach number range [0.30, 0.70] with

uniform intervals of 0.1. Note that the square brackets imply that both boundary values

are included. Therefore a total of five snapshots were considered. This data set was

considered as this is the same set of snapshots LeGresley and Alonso [45] have used to

demonstrate their POD-based ROM with domain decomposition method. An example of

the pressure flow-field at a Mach number of 0.4 is shown in figure (8-5). The surface

static pressure distributions of all the snapshots under consideration are shown in figure

(8-6). The absolute values of the static pressure were plotted so that one can survey the

precise relative changes between one snapshot and the other. In the latter figure a profile

of the aerofoil is included for a better comprehension of the changes that are taking place

and where these changes are occurring.

Figure (8-5) – Pressure contours over the RAE 2822 aerofoil at M = 0.4 and an angle
of incidence of 3.19º
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Figure (8-6) – Surface pressure distributions over the RAE 2822 aerofoil at an angle
of incidence of 3.19º and at various Mach numbers

8.5.1.2 POD-based ROM predictions with 5 snapshots only

In the following cases, linear interpolation was considered for prediction purposes.

POD predictions at two different Mach numbers one at M = 0.35 and one at M = 0.67

were considered in this work, just like in [45]. The former one was considered mainly to

investigate how the weak non-linearity in the aerodynamic flow is modelled, while the

latter one was considered to investigate how the strong non-linearity in the aerodynamic

flow is modelled ie. the moving shock wave over the surface of the aerofoil.

The POD predictions at M = 0.35 and M = 0.67 are shown in figures (8-7) and (8-8).

The POD method predicts a pressure which is reasonably accurate at M = 0.35 with only

two POD modes. One may observe however some discrepancy between the POD

predicted and the CFD result over the upper surface. At M = 0.67, the prediction is

accurate over the bottom surface of the aerofoil and over the trailing one-third of the

chord of the upper surface. However, over the leading two-thirds of the chord of the
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upper surface, the prediction is bad due to the development of the shock wave which

moves over the surface of the aerofoil with changes in the flow condition. This is a strong

non-linear feature which definitely makes it difficult for the POD method to model this

characteristic with a few number of snapshots. In this case all the POD modes are used.
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Figure (8-7) – Comparison of the surface pressure distributions at M = 0.35 and an
angle of incidence of 3.19º between the POD predicted and the CFD solution.
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Figure (8-8) – Comparison of the surface pressure distributions at M = 0.67 and an
angle of incidence of 3.19º between the POD predicted and the CFD solution

Figure (8-9) shows plots of the static pressure at various places on the surface of the

aerofoil (as marked by the arrows) against the Mach number of each snapshot. Each node

is denoted by a number. For nodes 223 and 264 it is evident that the pressure variation

with the Mach number is non-linear, while for nodes 19, 38, 64 and 137 the variation is

very close to a linear relationship throughout. The static pressure values determined by

CFD at M = 0.35 and M = 0.67 are also indicated as red and green diamonds respectively.

This suggests that the POD predicts the static pressure very well at M = 0.35, in fact all

red diamonds are located on the prediction line. Moreover, the prediction at M = 0.67 is

fine at nodes 19, 38, 64 and 137, while it is not so adequate for prediction at nodes 223

and 264. By coincidence the green diamond for node 264 happens to be very close to the

point where the POD predicted and CFD static pressures coincide, and so this explains

why for node 264 the CFD value is close to the POD prediction. In view of this, an

investigation is conducted to study the effects that it would have by kernelizing the linear

POD method.
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Figure (8-9) – Surface pressure distributions over the RAE 2822 aerofoil at an angle
of incidence of 3.19º and at the Mach numbers considered. The CFD results at M =

0.35 and M = 0.67 are indicated as red and green diamonds respectively

8.5.1.3 kPOD-based ROM predictions with 5 snapshots only

Predictions using various types of kernels, namely, polynomial, Gaussian RBF and

Sigmoid kernels were considered to model this non-linear flow problem. The same

number of snapshots (ie. 5) considered earlier was used. The results obtained are the

following:

8.5.1.3.1 Polynomial kernel

In this case a polynomial kernel with p1 = 3 and p2 = 1.0 in Eq. (8-4) was considered.

The following results were obtained.

At M = 0.35, the same result was achieved with the POD and the kPOD although the

former is with 2 POD modes while the latter is with 3 kPOD modes. See figure (8-10)

This observation is explained by looking at the variances captured by the respective
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modes. The total variance captured with the 2 POD modes is 99.97 %, while the total

variance captured with the 3 kPOD modes is 99.31 %. The variance captured with 2

kPOD modes is 91.65 %. In this case the linear POD result converges with fewer POD

modes for the simple reason that the problem is pretty much linear.
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Figure (8-10) – Comparison of the surface pressure distributions over the RAE 2822
aerofoil at M = 0.35 and an angle of incidence of 3.19º

At M = 0.67, the results obtained by the two methods are identical with 5 modes

although it is very far away from the high-fidelity CFD solution over the upper half of the

aerofoil surface where the shock development occurs. See figure (8-11).
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Figure (8-11) – Comparison of the surface pressure distributions over the RAE 2822
aerofoil at M = 0.67 and an angle of incidence of 3.19º

No significant changes in the pressure distribution were observed by changing p1 and

p2 in the polynomial kernel.

8.5.1.3.2 Gaussian RBF kernel

The results obtained from a Gaussian RBF kernel are shown in figures (8-12) and (8-

13). In this case the constant in the RBF kernel which is equivalent to twice the variance,

was considered to be equal to 0.125.
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Figure (8-12) – Comparison of the surface pressure distributions over the RAE 2822
aerofoil at M = 0.35 and an angle of incidence of 3.19º

In this case, with 2 kPOD modes a result which is more accurate than with 2 POD

modes was observed. Refer to figure (8-12). In fact, the total percentage RMS error in

pressure of the kPOD prediction is 0.039 % while that of the linear POD is 0.134 %. Note

that these RMS values are representative of the term ∆p/p at a chord length of 0.2. Note 

that no significant further improvement was noticed with the linear method when more

modes were taken into consideration, after all the variance or energy captured with 2

POD modes was over 99.9 %. It was also noticed that further kPOD modes worsen the

result and consequently these can be considered as noise. So in practice a question arises

how can one decide upon stopping with a result depending on certain kPOD modes while

neglecting the rest. In reality this is a problem of contemporary research in machine

learning [137].

The discrepancy between the POD-based ROM method and CFD is due to the global

nature of the linear POD method with its result being contaminated by snapshots at high

Mach number. In kPOD with a Gaussian kernel at this value of variance this does not

happen due to the fact that this kernel essentially classifies the snapshots and the
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interpolation is therefore conducted with respect to the two most important kPOD modes.

In fact, there exists very slight difference in the variance captured by the kPOD modes in

the feature space. The variance captured by 2 kPOD modes is 40.53 %.

On the other hand, again the results attained at M = 0.67 with the two different

methods are identical with 5 modes.
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Figure (8-13) – Comparison of the surface pressure distributions over the RAE 2822
aerofoil at M = 0.67 and an angle of incidence of 3.19º

8.5.1.3.3 Sigmoid kernel

The transonic flow over the RAE 2822 aerofoil was also modelled using the sigmoid

kernel and the previous number of snapshots. In this investigation it was observed that the

kPOD results are very similar to the linear POD results. Up to a certain extent this

observation was expected since the hyperbolic tangent function ie. the sigmoid can be

considered as a piecewise-linear function and therefore weak non-linearities are not

captured appropriately in contrast with the Gaussian kernel.
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8.5.1.4 kPOD-based ROM predictions with more snapshots

In the previous section it has been noticed that the kPOD-based ROM with a Gaussian

kernel modelled the weak non-linearities better than the linear POD method.

Nevertheless, the strong non-linear feature such as the moving shock wave at M = 0.67

was not modelled appropriately. Consequently, a similar investigation was conducted

using more snapshots over a smaller Mach number range to create a richer set of basis so

that the behaviour of the model is studied.

In this example eight snapshots were generated within the Mach number range [0.64,

0.71] with uniform intervals of 0.01. The surface static pressure distributions of all the

snapshots under consideration are shown in figure (8-14). The absolute values of the

static pressure were plotted so that one can survey the relative changes between one

snapshot and the other, particularly at the shock. A profile of the aerofoil is included for a

better visualization of the changes that are taking place and where these changes are

occurring.
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With this set of snapshots, two predictions were made one at M = 0.645 and the other

at M = 0.675. The results acquired are shown in figures (8-15) and (8-16) respectively.

The CFD results are also included in the same figure for a comparison.
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Figure (8-15) – Comparison between the kPOD-based ROM prediction and CFD at
M = 0.645 and an angle of incidence of 3.19º
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Figure (8-16) – Comparison between the kPOD-based ROM prediction and CFD at
M = 0.675 and an angle of incidence of 3.19º
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Thus, while the shock prediction at M = 0.645 is reasonable, the shock prediction at M =

0.675 is poor, since the model predicts two smaller shocks in series rather than a strong

one. The reason behind this is explained by observing the series of snapshots considered.

The shock at M = 0.65 is slightly downstream of the shock at M = 0.64, thus the shock

movement between the Mach number variation is small. Consequently, the shock at M =

0.645 is sensibly predicted by the snapshots’ shock in that vicinity. At M = 0.68, the

shock occurs almost 10 % of the chord way down from the shock at M = 0.67. Thus, the

shock movement between these two snapshots is considerable and therefore this explains

why the prediction using the kPOD-based ROM is so poor. For a reasonable prediction at

a Mach number of 0.675, further snapshots are required within the Mach number range

0.67 < M < 0.68. Predictions at Mach numbers over 0.68 require further snapshots as the

shock movement is considerably larger, which makes the applicability of the ROM in

such a circumstance almost impractical. It is to be pointed out that no significant

difference was noticeable between the predictions obtained from the linear POD-based

reduced-order model and the kernel POD-based one with these number of snapshots.
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8.6 Concluding remarks

In this work three types of apriori chosen kernels were considered, namely the

Gaussian kernel, the polynomial kernel and the sigmoid kernel. These were used to

kernelize the linear POD algorithm.

In signal and image processing, it has been reported by various researchers in the field

that the kPOD produces some significant improvement over the linear POD method in

image reconstruction [138] [139]. In this work it has been observed that the kPOD-based

ROM method using a general purpose kernel like the Gaussian, modelled adequately the

weak non-linear features in the flow over the RAE 2822 aerofoil. This shows that the

weak non-linear features in the flow are analogous with the non-linearity observed in

image processing. However, it must be accentuated that the highly non-linear features

such as the moving shock wave on the surface of the aerofoil is not modelled by few

snapshots using kPOD-based ROM.

Therefore, weak non-linearity is indeed modelled better with the kPOD method. It was

also observed that fewer kPOD modes are sometimes sufficient to describe some problem

of interest compared with the number of linear POD modes required. However, this

depends to a great extent on various factors such as problem formulation, kernel types

and their various parameters.

Also, it has been shown that the kPOD although it is a generalization of the POD

method, it does not really inherit all the abilities of the linear technique because (i) the

inverse mapping process is quite intricate when compared with data reconstruction from

the linear method as it strictly requires to solve an optimization problem to get back the

inverse (ii) the ROM procedure is much more complex.

From this work it is also evident that the kPOD with the apriori chosen kernels

considered is far from adequate to model the strong non-linear features such as a moving

shock wave. A considerable number of snapshots are required for an accurate prediction
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and so the technique is not an alternative to multi-scale modelling. Notwithstanding,

these apriori chosen kernels failed to effectively and efficiently model strong non-linear

features in aerodynamic flows, it is thought that it would still be worthwhile to investigate

the behaviour of kernels derived from the data itself rather than choosing a kernel

beforehand and using it to map the data from the input space to the feature space. In

particular, the method proposed by Weinberger and Saul [136] mentioned in section 8.4,

deserves some attention.
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Chapter 9

9.0 Conclusions

In this research work a high-fidelity low-cost surrogate of a computational fluid

dynamics analysis tool namely the IMPNS software was developed and its results

presented. This computational tool is composed of general and physics-based

approximation methods by which three dimensional high-speed aerodynamic flow-field

predictions are made with high efficiency and an accuracy which is comparable with that

of CFD. This makes the tool potentially suitable for analysis of complex aerodynamics

flow problems.

The tool makes use of reduced-order modelling and hence reduced-basis methods that

are suitable for both linear and non-linear problems, whereby the basis vectors are

computed via the proper orthogonal decomposition (POD) of a set of observations or

snapshots. The decomposition produces an optimal linear set of orthogonal basis vectors

or POD modes that best describe the ensemble of snapshots. These solutions are then

projected onto this set of basis vectors to provide a finite set of scalar coefficients that

represent the solutions. A pseudo-continuous representation of these projection

coefficients is constructed for each of the basis vectors, which allow predictions to be

made of parameter combinations not in the original set of observations. Response surface

construction methods based on parametric and non-parametric models for the pseudo-

continuous representation of the projection coefficients were evaluated. Also, an
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exploration of the performance of a few design-of-experiment approaches for the

generation of the initial ensemble of computational experiments was accomplished.

The model was applied to two flow problems related to high-speed weapon

aerodynamics;

 inviscid and viscous flow about a flare stabilized hypersonic projectile and

 supersonic turbulent flow around a fin stabilized projectile with drooping nose

control.

Comparisons of the solutions derived from the surrogate model with high-fidelity CFD

simulations suggest that the POD provides a reliable and robust approach to the

construction of reduced-order models (ROMs). The utility of POD-based ROMs was

demonstrated by showing that the complete solutions for the snapshots which formed part

of the original dataset of observations were reconstructed by using a few POD modes.

This procedure provides a data compression methodology by retaining the most energetic

modes (those capturing the most variance) while discarding the rest without any

significant loss of detail, thus offering an effective data management system for both

storage and handling of data.

Comparisons of surrogate model predictions with high-fidelity CFD simulations

suggest that POD-based reduced-order modelling together with response surface methods

provide a reliable and robust approach for efficient and accurate predictions. In contrast

to the many modelling efforts reported in the literature, this surrogate model provides

access to information about the whole flow-field.

A number of different approaches to the construction of a response surface of the

projection coefficients were investigated, a linear regression based method and three

interpolation techniques employing linear spline, cubic spline and radial basis functions.

The computed data suggest that interpolation based techniques provide a significant

advantage over the regression method. This is attributed to the fact that the interpolation

schemes pass through all of the sample points providing an improved representation of
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local minima and maxima, while the global fit of the regression technique produces some

unnecessary smoothing. This observation was supported by studies of data localization

that suggest the regression method can provide similar accuracy to the interpolation

schemes when employed over a reduced parameter space. In general, the radial basis

function scattered interpolation method offered the most accurate predictions.

Moreover, the use of optimised sampling methods was found to offer improved

accuracy for a given number of sample points. For problems involving large numbers of

parameters the latin-hypercube sampling (LHCS) may provide a practical approach to

reduce the number of samples required to populate the design space. However, for

problems involving geometric variation the LHCS requires a means of automatically

generating high-quality grids. For this reason a more practical tool may incorporate a

hybrid approach, a design-of-experiment technique in which the geometry variables are

prescribed at specific levels and an LHCS technique which is used for other parameters.

In the POD analysis, the training period comes at a computational cost. This up-front

cost is a significant disadvantage of the POD-based reduced-order modelling and the

trade-off can be favourable only when, after the initial computational investment, a

compact ROM is constructed which can be used many times, and is valid over a useful

range of parametric values. In this work, a methodology which limits the time duration in

generating the training dataset has been proposed. In this methodology a hierarchical type

model which fuses together variable-fidelity computational data while using POD-based

ROMs is proposed for the first time. In this model, the scalar coefficients which are

obtained by projecting the solution vectors onto the basis vectors, are mapped between

spaces of low and high fidelities, to achieve predictions with complete flow-field

information. In general, this technique offers an automatic way of fusing variable-fidelity

data through interpolation and extrapolation schemes together with reduced-order

modelling (ROM). The model was applied to a cone-cylinder-flare projectile at

supersonic and hypersonic speeds. Two problems with different boundary conditions

were considered. In particular, it has been observed that this model behaves much alike

the variable-fidelity model of Reisenthel et al. [125], that is, the prediction follows very
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closely the trend of the low-fidelity training data points and so it relies to a great extent

on it, most especially when the high-fidelity training data is sparse. However, the

predictions tend to follow more the high-fidelity training data points as their number is

increased. Besides this, the POD-based reduced-order modelling limitations do subsist

within the proposed methodology. Nevertheless, it was shown that this model works

reasonably well for the high-speed aerodynamics problems considered.

In this work a study of the behaviour of a kernel POD algorithm to model the flow

about an aerofoil in the transonic flow regime was also undertaken. Three types of

apriori chosen kernels were considered, namely the Gaussian kernel, the polynomial

kernel and the sigmoid kernel. In signal and image processing, it has been consistently

reported by various researchers in the field that the kernel POD produces some

improvement over the linear POD method in image reconstruction [138] [139]. In this

work it has been observed that the kPOD-based ROM method using the general purpose

Gaussian kernel, modelled accurately the weak non-linear features in the flow over the

RAE 2822 aerofoil with a small number of snapshots. It therefore seems that the non-

linearity encountered in images is analogous to the weak non-linear features of the

transonic flow over the aerofoil. Furthermore, it was noticed that the behaviour of kPOD-

based ROM and POD-based ROM is similar for modelling strong non-linear features

such as the moving shock wave on the surface of the aerofoil as the boundary conditions

change. Both require a large number of snapshots for the adequate and appropriate

modelling of moving shock waves.

9.1 Future work

 In this work no big effort was spent in developing a very efficient

computational tool in terms of computational time and consequently further

significant improvements from this perspective can be made. In particular, the

code can be parallelised and faster numerical algorithms implemented. For

example, the preconditioning matrix P mentioned in section 3.2.2.2.1 can be
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chosen conveniently by using the Householder transformation or Givens

rotation [10] for instance to generate orthogonal matrices instead of using

direct methods. On the same line of thought the tool can be further developed

for industry’s use, that is, for use in a productive environment.

 Potentially, such a computational tool can be used for both design and analysis.

If the computational tool is intended to be used in a design environment then it

may be appropriate that a Hermitian subspace is considered instead of a

Lagrangian one. This should considerably enhance the response surface

representation of the projection coefficients. In a design setting, it is of utmost

importance to accurately calculate the sensitivities with respect to parametric

changes for an accurate approximation of the path between states, hence the

importance of a Hermitian subspace.

 The variable-fidelity/POD-based ROM method was used to fuse (i) low-order

accurate and high-order accurate viscous flow data and (ii) inviscid and viscous

flow data. This modelling tool can be further developed to model and fuse

computational data between coarse and fine grids. This problem can be very

easily implemented. In this case the data fusion can be applied for all variables

at common grid points between the coarse and fine grids. Intermediate grid

points in the fine grid can be determined by some linear form of interpolation.

Furthermore, other ways of fusing inviscid and viscous data may be sought.

 In this work it was deduced that the kernel POD method with the apriori

chosen kernels taken into consideration, is far from adequate to model the

strong non-linear features in an aerodynamic flow such as a moving shock

wave with varying boundary conditions. Notwithstanding, these apriori chosen

kernels failed to effectively and efficiently model highly non-linear features in

aerodynamic flows, it is thought that it would still be worthwhile to investigate

the behaviour of kernels derived from the data itself rather than choosing a

kernel beforehand and using it. In particular, the method proposed by
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Weinberger and Saul [136] which was mentioned in chapter 8 deserves some

attention.
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Appendix A

A.1 Shift parameter optimisation in
multi-quadric response surface
approximation

In this appendix, the shift parameter h of a multi-quadric RBF is introduced and

considered instead of the shape parameter mentioned earlier. It is to be noted that the

difference between the two parameters is only in the place where they appear in the

multi-quadric RBF.

An efficient method of computing the optimal shift parameter based on the leave-one-

out cross validation technique is proposed by Wang [92]. In the same work Wang also

proved that the condition number of the multi-quadric coefficient matrix is an increasing

function of the shift parameter h. This same technique proposed by Wang has been

adopted and implemented in this work.

Some results from theory for multi-quadric RBFs :

When a set of data (xj, Fj) is composed of distinct data points, the multi-quadric

coefficient matrix A

  hxxA jiij 
2

A 0, h Eq. (A-1)
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has the following properties:

1. Matrix A is always invertible, that is, it has a rank N. This was proved by Michelli

[91]. This property guarantees the existence and uniqueness of multi-quadric

approximation for a given set of data and a shift parameter h.

2. Matrix A has one positive eigenvalue and N-1 negative eigenvalues. Again this

was proved by Michelli [91].

3. Matrix B = 






ijA
1 that is the elements of the matrix B are the reciprocal of the

elements in matrix A, is strictly positive definite. Again from Michelli [91].

4. The condition number of matrix A increases monotonically with the parameter h.

This implies that an upper bound for the value of h must be imposed. Wang [92]

showed that the derivative of the eigenvalue of A with respect to the shift

parameter h is always positive.

The proof that 0
dh

d i is as follows:

Considering the eigenvalue problem

vAv  Eq. (A-2)

Since the matrix A is symmetric all the eigenvalues i are real. Choosing a real

orthonormal eigenvector iv , i.e., 1i

T

i vv .
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Let )(A = n ,......,,, 321 = Eigenvalues of A in ascending order of i and property

(2) guarantees that n 0, all other .0i Then the eigenvalue derivative can be

calculated using the formula

i

T

i
i v

dh

dA
v

dh

d



Eq. (A-3)

From Eq. (A-1) we have

ijij Adh

dA 1

2

1









Eq. (A-4)

Thus, from property (3) we have









B

dh

dA

ij 2

1
a positive definite matrix

It follows the quadratic form

i
T
i v

dh

dA
v is positive definite

Thus, 0
dh

d i

Now, proceeding with the proof that the condition number increases monotonically with

the parameter h, for a symmetric matrix A, the condition number C can be defined as

 
  1min

max










 n

A

AC ,
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where 1 and n are the minimum and maximum eigenvalues of A respectively.

Thus we have,

 1
''

12

1

1



nn

dh

dC


Recalling that the eigenvalues are ordered in ascending order of their magnitude; thus

,0n ,0' n ,01  0'
1  .

Therefore, we have

0
dh

dC

This property explains why the multi-quadric approximation deteriorates rapidly when h

becomes too large. This is simply due to the increase in the condition number of the

multi-quadric coefficient matrix.

The shift parameter can be optimized using the leave-one-out cross validation technique.

The problem can be formulated as:

Find h to minimize E(h), where

   
2

1





N

i
ii ffhE Eq. (A-5)

and if is the function value predicted at the i-th data point using multi-quadric

approximation based on the database that excludes the i-th data.
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Note that the direct evaluation of Eq. (A-5) would require solving the multi-quadric

approximation N times for each trial value of h.

Alternatively, E(h) can be calculated from the following efficient method

2

1

)/( ii

n

i
i BCE 



 Eq. (A-6)

where

iC coefficient of the multi-quadric approximation for all the data,

1 AB ,

A multi-quadric coefficient matrix,

iiB the i-th diagonal element of B

A proof for Eq. (A-6) can be found in [92].
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Appendix B

B.1 Hermite interpolation using RBFs

To illustrate the idea of Hermite interpolation, consider and denote a training dataset

by

)](y),(y,[ )()()( iii xxx  , i=1,2,......,n

where p
p Rxyxyxy  ]/,......,/,/[(y 21x)

which denotes the first derivative of the output y(x) with respect to the components of the

input vector. Then, a Hermite interpolant can be written in terms of a set of RBFs as

follows:

   

  




n

i

p

j j

i

ij
i

n

i
i

x

xx
xxxy

1 1

)(

)(

1

)(ˆ


 Eq. (B-1)

where i and ij , i = 1,2, ......, n, j = 1,2,........, p are undetermined weights.
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Since the training dataset contains y(x) R and pRy  )(x at n points, a total of n(p

+ 1) linear algebraic equations are required to ensure a unique solution. The first set of n

equations using the function values at the points )(ix , i = 1, 2,........., n can be written as

   
),( )(

1 1

)()(

)()(

1

k
n

i

p

j j

ik

ij
ik

n

i
i xy

x

xx
xx 




 

 


 Eq. (B-2)

where k = 1, 2,....., n.

An additional set of np equations can be derived by matching the surrogate derivatives

with the derivative information available in the training dataset as follows:

)(ˆ )(iy x = )( )(iy x , i = 1, 2,.........., n Eq. (B-3)

Note that to apply Eq.(B-3) the Hermite interpolant in Eq. (B-1) needs to be differentiated

with respect to xl, which yields

lx

y



 )(ˆ x
=

   
jl

in

i

p

j
ij

l

in

i
i

xxx 








 

)(2

1 1

)(

1

xxxx 



 Eq. (B-4)

It can be noted from the preceding equation that in order to construct a Hermite

interpolation model, the radial basis function must be differentiable at least twice. The

system of linear algebraic equations arising from Eq.(B-2) and Eq.(B-3) can be

compactly written as ggg yαK  where

  )1(
21113111 ,....,,,,....,,....,,,  pnT

npnnnpg Rα Eq. (B-5)

and
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y Eq. (B-6)

The coefficient matrix )1()1(  pnpnRK can be written in partitioned form as follows
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22221
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K Eq. (B-7)
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Eq. (B-8)

This set of equations can be solved to compute the weights of the Hermite RBF

interpolant. In comparison to the standard RBF approximation technique presented

earlier, the size of the system of equations to be solved in the Hermite interpolation

approach is a function of p since )1()1(  pnpnRK . As a result, the computational cost and

memory requirements of Hermite interpolation become significant when the number of

training points and design variables is increased. However, one way to reduce the

computational effort and memory requirements is to use sensitivity information only at

those training points that are of particular interest.
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Appendix C

C.1 Robinson’s variable-fidelity model
using POD mapping

In this method a set of q snapshots or column vectors x1, x2, x3,…., xq each with

different solutions in time or space is computed. A matrix X is then formed as follows

    ,........21














  xxxxxxX
q

Eq. (C-1)

where x is the mean of the snapshots. From the SVD of matrix X, the left singular

vectors correspond to the POD modes or basis vectors jφ , j = 1, 2,…., q and a low

dimensional representation of a solution x is given by

i
r

j
iφ

1



 xx Eq. (C-2)

where i is the coefficient which quantifies the contribution of the i th POD mode to the

solution x.

The gappy POD method makes it possible to reconstruct data from a ‘gappy dataset’

that is a set of data in which some of the data is missing. As a first step towards the
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solution of this problem, a mask vector is defined which describes for a particular

solution vector where data is available and where data is missing. For the solution x, the

corresponding mask vector n is defined as follows:

n i = 0 if xi is unknown

n i = 1 if xi is known

where xi denotes the ith element of the vector x. The dot product multiplication is defined

as (n,x)i = ni xi. and the gappy product multiplication is defined as (u,v) n = ((n,u),(n,v)),

and the induced norm is    nn
vvv ,

2
 .

Now for some vector x that has some unknown elements, it is assumed that the

repaired vector x


can be represented by Eq. (C-2). In this, the projection coefficients are

chosen to minimize the error between the available and reconstructed data. This error can

be defined as

2

n
xx


 Eq. (C-3)

where only the original existing data elements in x are compared. The coefficients which

minimize the error  can be found by differentiating Eq. (C-3) with respect to each of the

i in turn. This will then lead to the linear system of equations

Mα = f Eq. (C-4)

where the ijth component of M is given by

Mij =  nji φ,φ Eq. (C-5)

and the ith component of f is given by
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fi =  niφ,x Eq. (C-6)

Solving Eq. (C-4) for , the missing elements of x can be obtained using the expansion

of Eq. (C-2).

This method can be used to map data between high- and low-fidelity space data, with the

high-fidelity treated as the unknown data and the low-fidelity as the known. In this

mapping application, the basis vectors must span both low- and high-fidelity spaces and

this is achieved by generating a set of r training pairs, for which the low- and the high-

fidelity vectors describe the same physical system. These training pairs are combined in

the following way to form the snapshot matrix:

     

     























xx...xxxx

...

x̂x̂...x̂x̂x̂x̂

r21

r21

X Eq. (C-7)

where the ith column of X contains both the ith low- and the ith high-fidelity snapshots, and

x̂ denotes the mean of the low-fidelity snapshot set. Again the left singular vectors of

this matrix give rise to the POD basis vectors, which are partitioned in the same way as

the snapshot vectors. Thus, Eq. (C-2) can be decomposed into two equations

i
q

i
iφ

1



 xx Eq. (C-8)

i
q

i
iφ̂ˆˆ

1



 xx Eq. (C-9)

Eq. (C-9) can be solved in a least squares sense to find the coefficients  that best

represent the low-fidelity vector. These coefficients are then used in Eq. (C-8) to

calculate the high-fidelity vector.
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