
 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap 

 

This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  

To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

Author(s):  Alex Noel Joseph Raj and Richard C. Staunton 

Article Title: Rational filter design for depth from defocus 
Year of publication: 2012 

Link to published article:  
http://dx.doi.org/10.1016/j.patcog.2011.06.008 
Publisher statement: “NOTICE: this is the author’s version of a work 
that was accepted for publication in Pattern Recognition. Changes 
resulting from the publishing process, such as peer review, editing, 
corrections, structural formatting, and other quality control mechanisms 
may not be reflected in this document. Changes may have been made 
to this work since it was submitted for publication. A definitive version 
was subsequently published in Pattern Recognition, VOL:45, 
ISSUE:1,January 2012,  DOI: 10.1016/j.patcog.2011.06.008 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/1387613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


 Page 1  

Rational Filter Design for Depth from Defocus 
 
 
Alex Noel Joseph Raj1 and Richard C. Staunton2 

 
1School of Engineering, University of Warwick, Coventry CV4 7AL, UK. 
Email: A.N.Joseph-Raj@warwick.ac.uk 
2School of Engineering, University of Warwick, Coventry CV4 7AL, UK.  
Email: R.C.Staunton@warwick.ac.uk 
Corresponding author: R.C. Staunton. Phone: +44 2476 523980, Fax: +44 2476 418922 
 
 
 
This paper was published in the Journal: Pattern Recognition. The full reference is:- 
Alex Noel Joseph Raj and Richard C. Staunton, (Jan. 2012) Rational Filters Design for Depth from 
Defocus. Pattern Recognition, Vol. 45 (No. 1). pp. 198-207. 
 
 
 
Abstract 
 
The paper describes a new, simple procedure to determine the rational filters that are used in the 
depth from defocus (DfD) procedure previously researched by Watanabe and Nayar [4]. Their DfD 
uses two differently defocused images and the filters accurately model the relative defocus in the 
images and provide a fast calculation of distance. This paper presents a simple method to determine 
the filter coefficients by separating the M/P ratio into a linear and a cubic error correction model. 
The method avoids the previous iterative minimisation technique and computes efficiently. The 
model has been verified by comparison with the theoretical M/P ratio. The proposed filters have 
been compared with the previous for frequency response, closeness of fit to M/P, rotational 
symmetry, and measurement accuracy. Experiments were performed for several defocus conditions. 
It was observed that the new filters were largely insensitive to object texture and modelled the blur 
more precisely than the previous. Experiments with real planar images demonstrated a maximum 
RMS depth error of 1.18% for the proposed, compared to 1.54% for the previous filters. 
Complicated objects were also accurately measured.   
 
Key Words: Depth from defocus, M/P ratio, Rational filters, 3D imaging. 
 
 
 
1. Introduction 
 
This paper reports improvements to the accuracy of a well known Depth from Defocus (DfD) 
recovery algorithm. The algorithm is particularly suited to applications that require high-speed 
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processing. DfD is a technique in which the ‘defocus’ at a pixel in an image is used to estimate the 
distance from the lens to the corresponding point on an object. The method requires two differently 
focused  images acquired from a single view point using a single camera, and the relative blur 
between the images is used to determine the in-focus axial points of each pixel and hence depth. In 
this way it differs from the allied method of depth from focus which may use several images [1,2]. 
Most approaches consider blurring as a linear shift invariant process either in the frequency or 
spatial domain. The defocused image is modelled as the convolution of the focused image with the 
point spread function (psf) of the lens [3-8]. The blur information is retrieved by the deconvolution 
process either in the frequency or spatial domain, and then related to the actual distance using the 
appropriate depth model. These methods offer an advantage in terms of computation and simplicity 
in the implementation of the algorithm. An accuracy of 1.2% has been reported from experiments 
using images of real scenes [4], however it can be difficult to compare the techniques as the 
accuracy depends on the range over which the measurements were made, with a narrow range close 
to the camera giving better results. Additionally some researchers use local smoothing operators to 
remove noise from the final depth map that improve their accuracy figures. Other methods (often 
statistical) consider the blurring as a shift variant process and retrieve a unique depth value not only 
along the optical axis but also along the x and y directions of the scene under investigation. These 
methods can be accurate (1%) and are efficient since they simultaneously retrieve depth and the 
radiance of the scene, but may not be suitable for practical, real-time, purposes since they are based 
on error minimisation techniques which require extensive computations [9-14]. Video-rate 
processing is a requirement for 3D TV, and fast processing extends the use of DfD for robotics and 
production line applications. Efficient DfD computation methods have been proposed [4,15,16], 
however in this paper, since we are concerned with video-rate depth estimation for every pixel in 
the image, and passive illumination, we have chosen an approach based on rational filters [4] as 
detailed more fully below. 
 

 
Figure 1. Telecentric DFD system 

 
 
The optical arrangement is as shown in Figure (1), where a point on an object Q would be in-focus 
at point q in an image plane if . However for DfD two out-of-focus images are taken, i1 and i2, that 
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are 2e apart with if lying in between. Thus on the object side a working range is defined by the lens 
law. Previous DfD methods that were based on the frequency domain approach [3-5] estimated the 
depth by considering the amplitude ratio of two defocused images at a particular radial frequency. 
Watanabe and Nayar [4] provided an improvement with the M/P ratio curve set that effectively 
models the lens defocus performance for particular working conditions at different texture 
frequencies. They considered the amplitude ratio between the difference (M) of the defocused 
images to their sum (P), and developed a set of broadband filters that modelled the curves (Figure 
2a). Although the filters were designed in the frequency domain, the algorithm was implemented in 
the spatial domain by employing 2D convolutions. Only 7x7 filter kernels were required and the 
algorithm enabled the filters to be applied in parallel resulting in efficient hardware implementation. 
The main advantages of this method were: (1) Higher accuracy in depth estimation. The RMS error 
reported was 1.2% with respect to distance (which was better than any comparable methods [17]); 
(2) Invariance to scene texture and illumination (the depth detection error was less than 1% with 
respective to texture frequency [4]); and (3) The feasibility of high speed calculation using a 
hardware implementation. Additionally they researched telecentric optics [18] to enable the near 
and far-focused images to be optically registered by removing the magnification caused by 
refocusing the lens. In Figure (1) the telecentric aperture is labelled T and is at the front focal point 
of the lens. We have used telecentric optics with a Phase Correlation technique [19] to measure the 
radial shifts due to magnification, and also to optimally position the external aperture.  
 
Despite the efficient algorithm, the main drawback of the previous method was the complicated 
design procedure based on an iterative minimisation technique to model the rational filters for any 
given defocus condition, and texture frequency. Watanabe [4] has published filter coefficients for 
the single defocus condition of 2.307 pixels, and subsequent researchers have only published work 
which used these and no other. In this paper we report a new, simple procedure for rational filter 
design, the Two Step Polynomial Approach [17]. We have compared our model with Watanabe and 
Nayar’s, for the defocus condition of 2.307 pixels, for the accuracy with which the filters 
approximate the M/P ratio curves, and for the overall depth estimation accuracy. For the Two Step 
Polynomial Approach we have also provided the overall depth estimation accuracy for a range of 
defocus conditions, using both simulated and real images.  
 
Section 2 describes how the Two Step Polynomial Approach was employed to model the rational 
filters for any given defocus condition. Step1 involved modelling the linear filters by fitting a linear 
model to the theoretical M/P ratio for each radial frequency, and Step2 determined a correction 
filter by computing the error between the theoretical and the linear models, and fitting a cubic 
function to it. Section 3 contains a comparison between the previous filters and the new ones. This 
has been done firstly with an analysis of the errors between the theoretical M/P curves and those 
modelled by the two sets of filters, and secondly by measuring the Fourier domain characteristics of 
each filter. Section 4 begins by outlining the depth estimation algorithm used. Then both simulated 
and real images have been used to estimate the accuracy of the depth estimation. The results show 
that the new filters estimate the depth map with a higher accuracy than the previous filters. 
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2. Filter design using the Two Step Polynomial Approach 
 
This section describes the new procedure that uses a discrete M/P space and polynomials to 
determine the filter coefficients that were used in the DfD calculations. Three filters, Gm1, Gp1 and 
Gp2 were designed to model the lens defocus M/P ratio curves, and two pre-filters were used to 
remove dc (mean) values from the M and P input images. Since the model was based on the M/P 
ratios, these were calculated for a range of frequencies using the psf of the defocused lens. Various 
models of the psf exist where an impulse (delta) function can model a perfect lens in focus; a 
Gaussian function has been used for a lens in near focus [20]; and a pill box (cylindrical) function 
for a lens that is more defocused [3]. A single generalized Gaussian has been used to model all three 
regions [21], but to provide a meaningful comparison with Watanabe’s filters [4] their pill box 
model has been used here. The psf was pre-computed using the Pillbox model for a range of 
normalized depth values, α from 0 to 0.99. So based on [4], the psf was modelled in the frequency 
domain using the equation 
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Where, referring to Figure (1), ( )ez α±= 1  denotes the distance between the sensor plane and the 

focused image if . For a telecentric setup [17,18], dfFe /=  represents the f-number of the lens, 
where d is the diameter of the aperture. J1(r) denotes the first order Bessel Function, and u, v are the 
frequencies in the horizontal and vertical directions respectively. In this case H(u,v) is circularly 

symmetric so we define the radial frequency 22 vufr += . For the proposed filter design a discrete 
M/P space was required. To construct this for each lens, firstly α was discretized to take one of 11 
equally spaced values within its positive range, and a psf was calculated for each of these. The 
continuous M/P ratio was as defined in [4]: 
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Where ),(),(),( 11 vuHvuIvuI f= , ),(),(),( 22 vuHvuIvuI f= and If(u,v) is the Fourier transform 

of the in-focus image. I1 and I2 are therefore different images of the same scene that have been 
defocused by the transformed psfs H1 and H2 respectively. A set of 32 equally spaced texture 
frequencies, fr, were considered in the range from minus to plus the folding frequency of 0.5 pixel-1. 
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is no longer a function of the image data. An 11x32 set of discrete M/P values were calculated for 
each of the values of α and fr considered. Within this set the samples were equally spaced 
horizontally, but not vertically. An illustration of continuous M/P characteristics have been shown 
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in Figure 2(a), but the aim here was to construct a discrete set M/P samples as shown in Figure 2(b). 
The discrete M/P data set was central to the new filter design procedure presented below. 
To proceed with the filter design, the discrete M/P ratio was modelled as a linear combination of the 
three 2D filters, Gm1, Gp1 and Gp2 using a discrete version of the equation described by Watanabe 
[4].   
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This was then simplified to be a linear model plus an error correction model.  
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Figure 2. (a) Continuous M/P curves, (b) Discrete M/P ratio space 
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Examining the example in Figure 2(a), the curves for the lowest two radial frequencies can be 
satisfactorily modelled by the linear model, but those for the higher frequencies diverge from this 
and so the cubic error term is included to enable a wider band of texture frequencies to be used in 
the depth calculation. The error term is described in Section 2.1. To proceed with the proposed 
design method a discrete set of M/P gradient functions were defined and used to calculate a 
prototype 1D FIR filter, GP

m1. The Linear Model requires knowledge of:- (1) The gradient 
functions, ( )rA f , for each radial frequency; and (2) The given response of either GPm1 or  a 

prototype GPp1.  To compute ( )rA f  the discrete ratio space was utilised since it provided a unique 
(within the allowable frequency range) M/P ratio for each normalized depth sample corresponding 
to a particular radial frequency. Hence to determine ( )rA f at a radial frequency, frj, a linear 
function, y=Ax was fitted to the M/P ratio for this frequency over the 11 discrete values of α. 
Thus by considering the 32 radial frequencies, ( )rA f  was computed for each discrete frequency in 
the M/P space. A(fr) was then reduced to a 1D vector as the gradient for each frequency was 
constant for all values of α. A(fr) was then re-sampled to give 32 equally spaced samples. As A(fr) is 
the ratio of GPp1 to GPm1 it was possible to design prototype 1D versions of these filters. However, 
the frequency response of either GPm1 or GPp1 must be predefined. Since the required filter needs to 
posses a band-pass filter characteristic together with rotational symmetry [4], the response of GPp1 
was fixed as a Laplacian of Gaussian (LOG) [22] based on the equation  
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where spreadf = 0.4 fnyquist. The constant 0.4 was used to ensure an acceptable width of the LOG 

filter. Note: to avoid any divide by zero problems, the second filter, GPm1 was modelled as low-
pass. Given GPp1  and ( )rA f , the frequency response of the prototype GPm1 was determined with 

ease as 𝐺𝑃𝑚1 = 𝐺𝑃𝑝1(𝑓𝑟) 𝐴(𝑓𝑟)⁄ . Now Gm1(fr) is circularly symmetric, and so can be interpolated 
and reformulated from GPm1(fr) as a 32x32 response:  Gm1(u,v). To obtain the 7x7 filter coefficients 
gm1(x,y),  Gm1(u,v) was smoothed, re-sampled to 8x8, and then inverse Fourier transformed. The 
central 7x7 non-redundant coefficients were retained for the filter. The smoothing was performed 
by fitting a 12th order 2D polynomial to the 32x32 response. The same procedure was performed to 
obtain the coefficients of gp1(x,y) from the prototype GPp1(fr). Thus by employing just the linear 
model, the frequency responses of the filters Gp1 and Gm1 were found.  
The pre-filters that prevent depth uncertainties due to dc propagation and depth ambiguity from 
high fr M/P curves which peak within the range of α, needed to be band-pass, 2D, and rotationally 
symmetric. From [4] it was found that the LOG filter design of Gp1 can also be used to design the 
pre-filters. To provide a smooth transition a spread factor of peakf = 0.74 fmax was used, where fmax 

=0.264 pixels-1. The next section discuses the error correction model, and the frequency response of 
filter Gp2. 
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2.1. Error Correction Model 
 
An additional filter: Gp2 is required in the calculation of the cubic term in Equation (3). Gp2 
requires the same support as Gm1, Gp1 and each pre-filter, and so increases the computational load 
by 25%. However as the cubic term allows the inclusion of high texture frequencies without 
compromising accuracy, it was incorporated in the DfD system described here.  
In this section the response of the filter Gp2 has been modelled by considering the error between the 

discrete theoretical M/P ratio, 
( ; )
( ; )

r

r

M f
P f

α
α

 and the Linear Model, 
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.  As with GPm1, the 

proposed design uses the discrete M/P space, and a 1D prototype GPp2 was initially designed using 
the coefficient values of a cubic function. So, 
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It can be inferred that 𝐺
𝑃𝑝2(𝑓𝑟)

𝐺𝑃𝑚1(𝑓𝑟)𝛽
3 can be modelled as a cubic function: 3Cxy = , where the gradient 

C at a particular discrete radial frequency fr corresponds to the ratio 𝐺
𝑃𝑝2(𝑓𝑟)

𝐺𝑃𝑚1(𝑓𝑟), hence by computing 

C(fr), and knowing the prototype GPm1(fr),the frequency response of a 1D prototype GPp2 can be 
determined. To compute the gradient, 3Cxy =  was fitted to the absolute error function and the 
prototype modelled as GPp2(fr) = C(fr) GPm1(fr). The 2D response and the filter coefficients, gp2(x,y) 
were then found in the same way as for the other filters. 
 
2.2. Model Verification 
 
The designed model was verified by working backwards to determine how well the designed filters 
fitted the theoretical M/P ratio. To enable an accuracy comparison with Watanabe’s filters, the 
kernel size (7x7) and the number of frequency samples (32x32) were chosen as in [4]. As Watanabe 
[4] have not published a verification of their designs, and the numerical results for their 32 x 32 
frequency responses were not available, direct comparison of the results was not feasible at this 
stage. Full comparisons can be made only on the estimated depth maps as described later. However 
a rough comparison with their filters was done by transforming their 7x7 spatial kernels into 32 x 
32 frequency characteristics. These results have been presented in Section 3.  
In the verification process, the frequency band up to which the M/P ratio remained monotonic was 
determined. In this section, the results have been based on the defocus condition: 

pixels
Fe
e 307.2= , that was used by Watanabe [4] when they obtained their filters. Using the 

equations in the Appendix, the following constants were calculated for the experiment:- e = 17.746 
pixels,  Fe = 7.6923, maximum blur diameter = 4.1614 pixels, focal length, f = 50mm, kernel size, ks 
= 7 pixels, and aperture, d = 6.5mm. Again, by using the equations in the Appendix, the pattern 
frequency range used by the DfD calculation was 0.2857 ≤ fr ≤ 0.3164 pixels-1. A Matlab program 
was written to plot the theoretical M/P ratio, and the linear and error corrected models for a range of 
frequencies and normalised depth values, as shown in Figure (3). The mean square error estimate 
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between the theoretical M/P ratio and both the linear and the error corrected models have been 
provided in Table 1. It can be inferred that the filters devised by the new method fit well with the 
theoretical ones. More results for both simulated and real images have been presented in later 
sections. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1. Comparison of MSE between the Linear and Error Corrected Models 

 
 

 
 

Figure 3. Model verification 
 
 
 
3. Comparison with the Previous Filters 
 
This section provides a comparison between the filters designed by the Two Step Polynomial 
approach presented in Section 2 with those designed by Watanabe [4]. The 7x7 filter coefficients of 

Radial 
frequency  
(pixels-1) 

MSE 
between M/P 

ratio and 
Linear 
Model 

MSE between 
M/P ratio 
and Error 
Corrected 

Model 
0.3141 0.0703 0.0636 

0.3125 0.0630 0.0533 

0.3078 0.0499 0.0397 

0.2965 0.0296 0.0266 
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both models were transformed into their equivalent 32x32 sample frequency responses, and verified 
as to how well they fit the theoretical M/P ratio. Figure (4a) shows the theoretical M/P ratio, 
Watanabe’s Model [4], and the Two Step Polynomial results. The maximum texture frequency 

applicable for the defocus condition pixels
Fe
e 307.2=  has been shown as it was the most curved. 

Visually the proposed filters have provided a better fit. For a quantitative comparison figure (4b) 
shows the accumulated RMS errors for Watanabe’s [4], and the Two Step Polynomial filters for all 
the frequencies within the applicable range. The RMS error was significantly lower for the Two 
Step Polynomial method particularly for normalised depths approaching one. 
 

 
 

Figure 4. (a) Normalised depth vs. Theoretical M/P ratio for both models, (b) RMSE between 
theoretical M/P ratio and filter models 

 
 
Next the normalised gain magnitude response of the filters was compared. Taking 1D slices through 
the 2D responses, as shown in Figure (5), filters Gm1 and Gp1 are similar for each model. However, 
there is a considerable dissimilarity in the response of the correction filter Gp2. It is noted that Gp2 
designed by the new model has a sharper transition between pass and stop bands, and a higher DC 
magnitude compared to Watanabe and Nayar’s. This DC does not propagate in the depth estimation 
since the pre-filter suppresses any frequency response below the minimum cut-off frequency. 
Moreover the pre-filter designed by the new method has a smooth roll-off in the transition band 
compared to a sharp transition for Watanabe’s. A sharp transition can propagate a ringing effect 
[23].  
For a planar object that is perpendicular to the optical axis, the DfD should calculate a 2D depth 
map in which the depth estimates to each point on the plane are identical. This will be the case if the 
responses of the 2D filters are circularly symmetric. To compare the responses of the DfD systems 
constructed using both sets of filters a 2D image of an 8 bit sinusoidal intensity image of 400x400 
pixels was simulated. The pattern was circular, centred on pixel (200,200), and of wavelength λ = 
3.2 pixels. By smoothing the test image by convolution with the psfs of the lens in two stages of 
defocus, a pair of defocused images were obtained with which to test the DfD systems. The psfs 
were chosen to set a normalised depth α = 0.99. The depth maps generated using both the models 
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have been shown in Figure (6). The mean depth error and standard deviation for the Two Step 
Polynomial model was 0.0454 and 0.0128, and for Watanabe’s model 0.3615 and 0.2008 
respectively. From Figure 6 and the standard deviation results it can be inferred that the depth map 
generated by the new filters is smoother and more planar than Watanabe’s. This is because 
Watanabe’s filters are not as circularly symmetric as the new set. 
 

 
 

Figure 5. Magnitude responses of (a) Gm1, (b) Gp1, (c) Gp2 and (d) Pre-filter 
 
 
 

 
 

Figure 6. Depth map estimated using (a) The proposed filters, (b) Watanabe’s filters 
 
 



 Page 11  

4. Depth Estimation Experiments 
 
This section describes the results from a series of experiments designed to measure the depth 
accuracy of the DfD calculation when the new filters are used, and to compare them with 
Watanabe’s published set [4]. The DfD algorithm described in [4] was coded and used to estimate 
the depth in each case. A full description of the algorithm can be found in [4]. For our particular 
implementation we smoothed the recovered depth map from each calculation using a 9x9 median 
filter as a post-process. 
The experiments used both simulated and real images, each with 256 grey levels and a resolution of 
400x400 pixels. They were selected to enable estimates of both the depth accuracy over a range of 
distances, and the dependence of the depth accuracy on the characteristics of the surface pattern of 
the object being measured. To enable a comparison the same input images were used in testing both 
the proposed filters and Watanabe’s. Section 4.1 concerns simulated images. Firstly single spatial 
frequency patterns were used to render the surface of a 3D staircase object and the depth accuracy 
estimated for each step. Then a more complex and spatially varying pattern was used to render each 
step. In Sections 4.2 and 4.3 tests on naturally occurring textures and a range of actual objects from 
flat planes to composite objects have been reported. 
 
4.1. Experimental Results with Simulated Images  
 
In order to verify the DfD calculations for each of the two sets of filters used, sinusoidal brightness 
patterns with a single spatial frequency and different normalised depth values were developed. To 
enable a comparison with Watanabe [4] a defocus condition of 2.307 pixels was used, which limited 
the usable spatial frequency range to 10.2857 0.3160fr pixel−≤ ≤  and therefore the wavelength 
to3.2 3.5pixelsλ≤ ≤ . The normalised depth range used was from 0.1 to 0.99. To simulate a depth 
staircase, the single frequency test pattern was defocused using a sequence of pillbox psfs in a way 
that every 40 pixel along the horizontal axis there was a step change in depth. This simulation 
enabled the estimated depth map to be viewed as a 3D staircase structure. Experiments were 
performed on two pairs of test images with pattern wavelengths of λ =3.2 and 3.5 pixels. The 
linearity of the depth estimated by the two sets of filters has been compared in Figure (7a) and 
Figure (7b). It can be inferred that for wavelength λ = 3.5 pixels, the depth map estimated by both 
sets are reasonably linear but for the lower wavelength (higher frequency) of 3.2 pixels the filter 
coefficients designed by the Two Step Polynomial approach provided a smoother and more accurate 
fit to the actual depth than Watanabe’s. This increase in accuracy can be attributed to the new two 
step polynomial model which fits more closely to the theoretical M/P ratio as demonstrated in 
Figure (4). The statistics presented in Figure (7b) were calculated from local areas of 17x371 pixels 
which fitted well along each individual depth step. The standard deviation of the depth estimates 
was much lower when the new filters were used. 
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Figure 7. (a) Actual vs. Estimated depth at various normalised depths using the proposed and 
Watanabe’s filters, (b) Standard deviation at these depths for both filter models 

 
To verify the invariance of the filter coefficients to the image texture, a pattern set devised by 
Watanabe [4] that contained several differently texture stripes was used. Seven stripes had patterns 
with narrow spectral densities (PSD) centered on differing frequencies, and the remaining three had 
wide PSD patterns. The original pattern set was defocused using the pillbox psf to simulate a 3D 
staircase structure.  
 

 
Figure 8. (a) 3D view of the estimated depth, (b) 1D plot of the estimated depth, (c) Actual vs. 

estimated depth for filters designed by both the models, (d) Standard deviation at different depths 
for both the models 
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Figure (8a) shows the estimated depth in 3D of the staircase using the new filters, and Figure (8b) 
shows a randomly section through the staircase for the filters designed by the new method and for 
those designed by Watanabe’s. The linearity of the depth estimates for both the filter sets has been 
compared in Figures (8c) and (8d). It can be inferred that the filters designed by the new method are 
invariant to texture and provide a slightly better fit to the actual depth than Watanabe’s. The 
relatively poor results from the higher steps are due to the use of the lower frequency section of the 
pattern there. In the following sections, experiments have been reported using real images and the 
accuracy of the depth estimated using both sets of filters has been compared. 
 
4.2. Experiment with a random textured natural pattern: Abrasive Paper  
 
This section provides depth estimation results using defocused images of a sheet of glass paper in a 
plane perpendicular to the optical axis.  Eventually this pattern also served as the reference pattern 
used to calibrate the system since the PSD was wide within the working frequency range for the 
defocus condition. To enable a useful accuracy comparison with Watanabe [4], the defocus 

condition was again set to pixels
Fe
e 307.2= . Using the equations in the Appendix, the working 

range was calculated to be 56mm, this was quite short but was limited by the pixel size of the 
camera and the aperture used. A larger pixel size or a narrower aperture would have provided an 
increase in the range [17].  
 

 
Figure 9. (a) Actual vs. Estimated distance (mm), (b) RMSE vs. Actual distance (mm) 

 
 
To determine the accuracy of the setup, the glass paper pattern was moved along the optical path 
over the range 744mm to 800mm, with a pair of defocused images recorded and processed at every 
10mm interval. The normalised mean depth was mapped to real world coordinates using the lens 
law.  The depth estimation results for the two sets of filters were compared and are shown in Figure 
(9a). The RMS error plot at each distance has been presented in Figure (9b). From the plots it can 
be seen that the depth estimates using both the filter sets are reasonably linear. The RMS errors for 
the new filters were 6.8717mm and 9.489mm at the nearest and furthest distance respectively. This 
corresponds to an error of 0.9236% and 1.186% with respect to the centre of the lens to far-focus 
distance compared to 1.258% and 1.547% for Watanabe’s filters.  From these results it can be 
inferred that the filters designed using the Two Step Polynomial approach provided an improved 
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accuracy over Watanabe’s for these natural textures. The next section provides depth results for 
actual 3D objects with natural textures. 
 
4.3. Experiments with 3D objects and Natural textures 
 
To complete the evaluation of the new set of filters, two real 3D objects with natural textures were 
measured. The objects were a multi-step staircase structures made from 3 pieces of mild steel on a 
background and a “T” structure made from natural wood. Figure (10) shows an original image of 
each structure, and Figure (11) the estimated depth maps. The shapes of the staircase and “T” can be 
identified easily in the depth maps. However, there were gaps between the steps on the staircase that 
were in deep shadow and this has resulted in large errors along the edges of each step. The objects 
and background were illuminated by a large area light source that has resulted in some specular 
reflections from their surfaces and hence less smooth depth maps than those obtained for the 
abrasive paper. As with human and stereo vision, that also require texture patterns for depth 
recovery, the shadows and specular reflections have resulted in some problems for DfD. Image 
noise introduced in the sensors or by the camera electronics has been identified as a source of errors 
for some image processes [24], but for DfD such noise is rejected by the algorithm as there is no 
correlation between the noise in each of the differently defocused images captured. To prove this 
noise was reduced in each input image by averaging several images for each defocus condition. The 
noise in the depth map was found to be independent of image noise.   
 

 
Figure 10. Near-focused images of (a) Staircase, and (b) “T” 

 
 

 
 

Figure 11. Estimated depth maps from (a) Staircase, and (b) “T” 
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5. Conclusion 
 
The proposed design procedure based on the Two step polynomial model was simple to perform, 
and provided a better fit to the theoretical M/P ratios than Watanabe’s filters [4] (Sections 2 and 3). 
Tests with simulated textures described in Section 3 proved that the two step polynomial filters 
were texture invariant and that they were more circularly symmetric than Watanabe’s. The tests 
described in Section 4 showed that the filters designed by the new model provided a better fit to the 
actual depth than those of the previous design. Generally, tests with real images of arbitrary natural 
textures (glass paper) resulted in slightly higher errors than for simulated images (Section 4.2) as 
the actual lens psf was defocusing the images as opposed to the theoretical cylindrical shaped psf 
that was used to model the M/P ratios. For the filters designed by the Two Step Polynomial 
approach the RMS error with respect to the distance was 0.9236% at the near-focused plane and 
1.186% at far-focused, compared to 1.258% and 1.547% for Watanabe’s filters. From these results 
it can be inferred that the new filters estimated the depth at a higher accuracy than the previous 
filters. Moreover, the design procedure explained in Section 2 can be effectively applied for any 
defocus conditions by simply modelling the psf.  
 
 
 
Appendix: Setting up and verifying the Working Distance for the 
Rational Filters designed by the Two Step Polynomial Approach 
 
Referring to Figure 1, given the defocus condition, D, and the far-focused object distance uf, the 
working distance is uf - un, where un is the near-focused image distance. The f-number of the lens, 

d
fFe = . Where f is the focal length of the lens and d is the diameter of the aperture. The distance 

between the near and far-focused images, 2 2* * *e D Fe pixsize= , where pixsize refers to the 
camera CCD element size which was 7.4μm for our camera and 13μm for Watanabe’s. The far-

focused image distance,
*f

f
f

u f
v

u f
=

−
, and the near-focused distance vn = vf + 2e. Now 

*n
n

n

v fu
v f

=
−

. 
 
In practice the working distance will be known and then the defocus condition can be calculated and 

verified. Determine e = 
2*

n fv v
pixsize
−

pixels and 
eF

eD =  pixels. Now D must satisfy the following 

constraints:- (a) The maximum frequency that can be resolved, max fr =
*0.73* Fe pixsize

e
 pixel-1; 

(b) The minimum frequency that can be resolved by the filter, 
s

r k
f 2min =  pixel-1, where ks is the 
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size of the kernel (7 pixels); The factor of 0.73 comes from the maximum blur circle diameter, 

s
e

k
F
e 73.02
≤ pixels and ensures a monotonic M/P ratio. 
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