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ABSTRACT \\"‘

World developments have led the armed forces of many countries to become more
aware of how their increasingly stringent financial budgets are spent. Major expenditure
for military authorities 1S upon aero-engines. Some in-service deterioration in any
mechanical device, such as an aircraft’s gas-turbine engine, 1s inevitable. However, its
extent and rate depend upon the qualities of design and manufacture, as well as on the
maintenance/repair practices followed by the users. Each deterioration has an adverse
effect on the performance and shortens the reliable operational life of the engine thereby
resulting in higher life cycle costs. The adverse effect on the lite-cycle cost can be reduced
by determining the realistic fuel and life-usage and by having a better knowledge of the
effects of each such deterioration on operational performance. Subsequently improvements
can be made in the design and manufacture of adversely-affected components as well as
with respect to maintenance / repair and operating practices.

For a military aircraft’s mission-profiles (consisting of several flight-segments),
using computer simulations, the consequences of engine deterioration upon the aircraft’s
operational-effectiveness as well as fuel and life usage are predicted. These will help in
making wiser management decisions (such as whether to remove the aero-engines from the
aircraft for maintenance or to continue using them with some changes in the aircraft’s
mission profile), with the various types and extents of engine deterioration. Hence
improved engine utilization, lower overall life-cycle costs and the optimal mission
operational effectiveness for a squadron of aircraft can be achieved.
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GLOSSARY

o An aircraft’s configuration is the physical appearance and weight disposition of

the aircraft: 1t includes a description of the gross weight at take-off, aerodynamic
characteristics during the flight as well as such information as to whether the aircraft is
loaded with external weapons such as bombs, rockets and missiles for the purpose of air
interception/ground attack.

. Attrition replacement aircraft are the additional aircraft procured to preserve a

desired number of aircraft in a squadron or a fleet of squadrons. A replacement aircraft is
kept 1n storage and put into service only when an existing aircraft has been destroyed.
Typically an attrition rate of 2% per year is considered reasonable for military aircraft.

o A clean engine is one that, at this time, is not suffering from any performance
deterioration.

o Compressor-washing or cleaning means washing or cleaning the blades of the

compressor in order to remove deposits (e.g. dust, dirt, ash, soot and carbon particles)
using techniques such as with jets of pressurized water (i.e. washing) “or blasting (i.e.
cleaning) with sand or walnut seeds.

. The engine’s design-point describes the expected values of the influential

parameters or characteristics (such as the turbine’s entry-temperature and net thrust) under
specified conditions (such as when the aero-plane is stationary and at sea level).

. A flight-cycle is the total flight covered by the aircraft starting from rolling out the

aircraft for take-off until its landing back, taxiing and finally switching-off the engines. A
flight cycle consists of all the flight-segments.

° The aircratt’s flight envelope indicates the limiting boundaries (mainly in terms of
Mach number and altitude) of the flight path followed during the mission.

. A flight-phase 1s the flight path covered by the aircraft for two or more

consecutive flight-segments and/or phases partially or in full, besides the flight path
covered between first and last two points on the mission profile. The path covered between
first two points 1s the take-off phase, whereas between last two points is the landing phase.
Chimbing, to a pre-selected altitude (e.g. 6000 metres) while accelerating to a pre-selected
Mach number (=0.7), followed by cruising at a Mach number of 0.7 for 30 seconds, is a
thight-phase. Here both the consecutive flight-segments climbing and cruising are covered
in full. Whereas, touch-and-go is another flight-phase: in this case the aircraft covers the
landing and take-off phases partially. For the landing phase, the first two segments (i.e.
approach and flare) are completed, whereas only a very small part of the third segment (i.e.
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taxi back) is covered. For the take-off phase, only the latter part of the ground-roll segment
is covered, whereas the remaining two segments (1.e. transition and climb to clear obstacle
height) are satisfied fully.

. A flight-segment is the flight path between two consecutive points on the mission
profile, except for the first two and last two points on the mission profile. The first two
specify the take-off phase, which itself consists of three flight segments (i.e. ground-roll,
transition and climb to clear obstacle height). The last two points specify the landing
phase, which itself consists of three flight-segments (i.e. approach, flare and taxi-back
flight-segments). During a flight-segment, the aircraft’s flying attitude remains constant
and is governed by the values of the characteristics of consecutive points. For example,
climb to a pre-selected altitude (=6000 metres) while accelerating to a pre-selected Mach
number (=0.7) is the first flight-segment in the assumed mission profile. This flight-
segment is defined by the values of the characteristics for respective points of the mission
profile (as specified by the user through the input file).

. Fouling occurs when foreign matter, e.g. carbon, 1s deposited on a surface.
* The gas-path is the track through the engine via which air travels from the engine’s

entrance from the atmosphere into the engine until it emerges once again to the
atmosphere. All the engine parts through which air flows, such as the intake, compressor,
combustor and turbine are called gas-path components.

. The handle is a set operating parameter, whose value is held constant, relative to

which all other parameters are measured. The parameters are normally the measured
dependent variables, which influence the engine’s performance. They typically include
pressure, temperature, and fuel flow.

. Hard-time maintenance is a programme in which maintenance actions are

performed at pre-stipulated dates irrespective of how well an engine or its components are
functioning. In particular, an engine or an engine’s part 1s periodically overhauled or
removed from service 1in accordance with the schedule stated in the operator’s manual.

. On-condition _maintenance is not undertaken at regular time intervals or after

prescribed periods of operation, but on the basis of the actual condition of the engine, i.e.
“as and when” required.

o An outage 1s the breaking down of a component and thereby stopping the further

use of machine (i.e. an engine in this case) until an appropriate replacement or repair is
undertaken.

. The relative severity of the thermal-fatigue means the ratio of any considered
thermal-cycle (e.g. EFTC) to a reference thermal-fatigue cycle. The reference thermal-
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cycle 1s typically taken as induced by a temperature cycle from engine start-up to idling
rpm to engine shut-down.

. Reliability-centred maintenance (RCM) plans and manages maintenance /

servicing activities. RCM tries to match the characteristics and consequences of failure to a
maintenance programme that will ensure that the considered component is maintained at
the desired performance most economically and effectively. RCM is directed at either
preventing or reacting to the failure, and so is dependent upon the consequences.

° The spool is the shaft connecting a turbine with its compressor (i.e. HPT with HPC,

or LPT with LPC). Spool speed means the speed (normally expressed in revolutions per
minute) at which the stipulated shaft rotates.

. The compressor’s surge margin is the tolerance between the compressor’s
equilibriumn running line and the surge line. The surge margin becomes zero if the
equilibrium running line intersects the surge line: then the engine will not be capable of
being brought up to full speed without some remedial action being taken. Even when clear
of the surge line, if the running line approaches it too closely, the compressor may surge
when the engine 1s accelerated rapidly. Among other things to minimize the tendency of a
compressor to surge, it can be “unloaded” during certain operating conditions by reducing
the pressure ratio across it for any given airflow. One method of doing this is by bleeding
air from the middle or towards the rear of the compressor.

. The take-off phase consists of the following three flight-segments: (i) the ground-
roll flight-segment, i.e. the distance travelled by the aircraft before the wheels leave the
ground; (11) the transition flight-segment, during which the aircraft accelerates from the
take-off speed (1.1 times the stall speed) to climb speed (1.2 times the stall speed); and (iii)
the climb to clear surrounding obstacles. The required obstacle clearance is typically 15.24
metres for military and 10.67 metres for commercial aircraft.

. Touch-and-go practice is the activity whereby the aircraft comes in for landing
but, just after touch down, it accelerates and takes off again, instead of slowing down
gradually and finally switching off.



CHAPTER 1

INTRODUCTION

1.0 Background

High-performance aircraft, as used in modern aviation, especially for military
purposes, are complex 1n design and required to operate under severe stresses and
temperatures [1]. Thus users of these aircraft continually search for greater reliability and
availability, improved performance and safety as well as low LCCs. In-service costs

consist mainly of those associated with [2]:

(1) the fuel consumed during the operation; and
(11) the replacement of the system’s components.

Therefore, any extensions of life expectations or reductions in fuel-usage of an
aircraft’s gas-turbine engines directly lower the LCC and depend upon the types of
operation or mission undertaken, operating conditions experienced and rate of in-service
engine deterioration. Each type of the latter [3] has an adverse effect on the performance
and reliable operational-life of the aircraft and therefore contributes to an increased LCC

[2]. The factors involved are the:

. aircraft’s integrity and safety, which depend upon each engine’s life;
. economy of operation, which is dictated by the SFC; and
. aircraft’s performance and mission operational-effectiveness: a reduced

thrust, with all other factors remaining unchanged, would lead to a lower thrust-to-
weight ratio; a higher SFC would lead to more fuel consumption, so resulting in
either a reduced range or a lower weapon-carrying capability or some combination

of these two.

Several publications describe engine-performance deterioration and engine
diagnostics using gas-path-analysis techniques: a pertinent generic computer-program,
called ‘PYTHIA’, has been developed [4]. For the JT9D engine, Sallee [5] and Sallee et al
[6] devised mathematical models to predict the reductions in flow capacity and efficiencies
of engine components, such as the LPC, HPC, LPT and HPT, arising due to faults such as
increased tip-clearance or airfoil erosion. However, as a result of a comprehensive
literature review concerning engine-performance deterioration and diagnostics, as well as
the author’s personal experience of using aero-engines in the Pakistan Air Force, it was
realised that the in service deterioration of any mechanical device, such as an aircraft’s
engine, 1s inevitable. However, the extents to which such deteriorations adversely affect (i)



the fuel and life-usage as well as (ii) the aircraft’s operational-effectiveness, all remain to
some extent esoteric. Hence this investigation was undertaken.

There are several types of engine employed in present-day aircraft. Military engines
are designed for exposure to much more severe extremes of steady state and cyclic usages
than are experienced by engines in commercial aircraft, as illustrated by the power-setting
variations during flight in Figure 1.1. The manoecuvres, generally experienced by combat
aircraft, impose during flight far larger stresses on the engines than encountered normally
by either commercial or military transport planes. Consequently, the ability to predict
realistically the resulting associated active-life shortening (i.e. life consumption) for these
types of engines is desirable from a management viewpoint and it affects the life-cycle
costing.

Gas-turbine engines may be subjected to severe operating conditions, which
eventually lead to costly and catastrophic failures if a run-to-failure philosophy is adopted.
Therefore, military gas-turbines are operated on a safe-life principle, whereby the engine is
withdrawn from service for maintenance well before failure is likely to ensue. Early
attempts to predict the safe operating life of an engine were primarily undertaken by
assessments of engine failure, and upgraded as more engine-usage experience was gained.
However, it soon became obvious, for engines experiencing a wide range of, and frequent,
changes in operating conditions, that predictions of the residual life based solely on the
engine operating time (EOT) were often highly inaccurate. Each resulting anticipated life
was consistently underestimated because the prediction was based on a worst-case
scenario, regardless of the actual engine usage. The end result was an excessive financial
expenditure as a consequence of the associated unnecessarily high maintenance and
employed spares costs.

There are many components in a gas-turbine engine, but its performance is highly
sensitive to changes in only a few and so only these are considered in this life-usage
analysis. The majority of these potentially critical parts are the rotating components: the
failures of these are principally due to cyclic and steady-state stresses. Modern aero-gas-
turbines are required to produce extremely high thrusts or shaft powers as well as to
withstand the severe thermal conditions and high mechanical loads that arise during
military operations. The high-pressure turbine (HPT) blades are the most critical -
components, because they are subjected to both the highest rotating speeds and gas
temperatures, and so have been selected for investigation in this project.

The failure mechanisms, resulting from engine usage, may be considered singly or
in combination. Within each mechanism, there is a multiplicity of influential variables. To
include all of these that could affect the life prediction is beyond the scope of this
investigation, whose aim is to highlight the most important variables and failure
mechanisms resulting from the application of mechanical loads at high temperatures. The



processes to which high-temperature structural components are subjected are time-
dependent (creep) and cyclic-dependent (fatigue) deformations.

1.1 Role of Engineering Analysis

The literature concerning aero-engines is expanding rapidly---see e.g. Fig 1.2,
Simultaneously, the complexity of aero-engines has also escalated due to the requirement
for improved performance. Among the major achievements are lower rates of fuel
consumption, decreased emissions, reduced engine size-and-weight, improved reliability
and the development of electronic engine-controls [7]. Our current knowledge of engine
phenomena consists of:

(1) a vast experimentally-derived data base, largely empirical, which has
evolved (and continues to develop at rapid rate), and

(1i)  an ever-broadening array of theoretical analysis-tools based on our steadily
increasing fundamental understanding of engine phenomena and processes.

Many gas-turbine improvements (e.g. increased power outputs, higher efficiencies
and reduced emissions) have occurred during the past three decades. There is always an
“appropriate” engineering-analysis methodology, which aids a particular development and
design process. This methodology has evolved because a sufficiently quantitative
understanding of the phenomenon or process considered has been obtained. The resulting
understanding helps the practising engineer to further organize what would otherwise be an
empirical data base, and thereby facilitate extracting and using the pertinent information
that it contains much more effectively, especially when faced with a new challenge.

1.2 Analysis Strategy

A step-by-step approach via the following four phases (1) — (iv) has been adopted:-

. generic computer modelling for simulating:
(1) the engines’ performance; and
(i1) the aircraft’s flight-path, and subsequently

. computer modelling for:
(111)  describing the worsening engines’ performance; and
(tv)  to predict the implications of engine deterioration upon the aircraft’s
mission operational-effectiveness as well as fuel and life usage.

1.3 Thesis Structure

As this thesis considered several topics, it has been divided in such a manner as to
afford maximum understanding of all the elements involved. To achieve this goal,



following this introductory chapter, this thesis is structured into two main parts reflecting
the two main tasks of the project.

The first part describes the important aspects / overview regarding the engine
deterioration, life usage and aircraft’s aerodynamic characteristics. These are covered in
chapter 2, 3 and appendix A respectively.

The second part describes the computer modelling/simulation, the implications of
engine deterioration upon the aircraft’s operational-effectiveness, aircraft’s fuel usage, and
a HPT blade’s life usage (creep, low-cycle fatigue and thermal fatigue lives). Sample input
and output data files for the computer programs (used in this investigation) are also
included. These subjects have been covered in chapters 4, 5, 6, 7, 8, and 9 and appendices
B-F respectively. Because of their large volumes, the complete listings of the computer
programs have not been included in this thesis. Instead these are given as a separate
ancillary volume entitled “The listings of computer programs as used for the prediction of
the implications of engine deterioration for a military aircraft’s performance”.

Finally a discussion and summary of the predictions are presented in chapter 10 and
the conclusions and recommendations in chapter 11.



CHAPTER. 2

ENGINE DETERIORATION

2.0 Introduction

In an ideal world, an engine would operate with the same performance from the
time it enters service until it 1s removed. This of course does not happen as the engine will
deteriorate. Additionally, if the engine is considered as a number of components, then the
deterioration in any one will atfect adversely the engine’s overall performance. Therefore,
it 1s desirable to try to understand the processes leading to each individual component’s
deterioration [8]. To estimate the levels of performance and deterioration, behaviour
simulation programs are used [2].

2.1 Performance Deterioration of Gas Turbines

During its operating life, a gas turbine is subjected to various environmental and
operating conditions resulting 1n erosion, corrosion, wear, buckling, etc. of its components
in the gas path [2].

Performance deterioration varies from one engine type to another and even between
engines of the same type [2, 8, 9]. There is very little reliable quantitative data, on the
magnitudes of performance deterioration of engine components as their service lives are
extended, except for that in the papers written by Grewal [10], Sallee [5], Kruckenberg et
al. [6], and Saravanmutto et. al. [11, 12]. Also evident was the anticipated general trend,
that the levels of deterioration were least for industrial engines and significantly higher for
aero-engines. Sallee’s [§] paper pertains to studies conducted on the JT9 family of engines.
In the absence of sufficient data available for F404 (used for the purpose of analysis), in
this investigation JT9D was referred to for the purpose of illustration only. The F404
engine 1s significantly different from the JT9D. However, the trends established in these
papers may be applied to most turbofan engines. For a fighter engine, one would expect
even greater rates of performance deterioration than that experienced by the JT9s, as a
fighter engine spends a major part of its life operating under severe transient condition [2].
Additionally, it 1s believed that deterioration would occur much earlier in the life of the
engine, due to the higher number of transient alterations to which the engine is subjected

[8].

Even under normal engine operating conditions, the engine’s gas-flow path
components will become fouled, eroded, corroded, covered with rust scale, damaged, etc.



[13-16]. The result will be deterioration in performance, which will become progressively
worse with increasing operating time, unless appropriate maintenance occurs.

2.2 Types of Deterioration

Types of engine performance deterioration may be classified under the following
main headings [17]:

. Recoverable, with cleaning or washing.
. Non-recoverable, despite cleaning or washing.
. Permanent deterioration, which 1s not recoverable, even after an overhaul

and the refurbishment of all clearances, replacement of damaged parts, etc.

2.2.1 Recoverable deterioration

Normal operation of an engine results in the accumulation of dirt, dust, pollen, etc.
on the compressor airfoils and gas path surfaces [11, 18]. These particles, in addition to
soot particles produced in the combustor, can also accumulate on the tlow-path surfaces ot
the turbine. Oil leaks into the compressor inlet or the presence of oily hydrocarbons or
other sticky chemicals in the atmosphere exacerbate the situation. The oil or “oily”
substances in the incoming air tend to act as glue, so that dirt particles adhere to the
compressor’s airfoils and shroud surfaces. At the back end of the compressor, where the
temperatures are high enough, these “oils” bake on to the surfaces to produce thick non-
uniform coatings. Such “fouling” of the flow-path surfaces results in varying degrees of
performance deterioration in the different components and hence in the overall engine
performance. Compressor fouling results 1n a reduction of (1) the rate of inlet mass flow
and (ii) compressor efficiency. Hot-end fouling results mostly in a reduction in the
turbine’s overall efficiency and in a reduction in the engine’s firing-temperature, but, this
deterioration is recoverable to a great extent through cleaning or washing.

2.2.2 Non-recoverable deterioration despite cleaning and washing

Even with such regular maintenance, some surface deposits will persist and so
detract from the performance of the affected component. Any tlow-path damage, surface
erosion or corrosion, tip and seal clearance increase, cylinder distortion, etc. will not be
affected by cleaning or washing and the resulting performance deterioration will remain

and probably get worse with time.

2.2.3 Permanent performance deterioration



During an engine overhaul, the flow-path components are usually thoroughly
cleaned, damaged parts replaced or damaged areas repaired, tip and seal clearances
restored to the “as new” condition, any obvious leakage paths sealed and eroded airfoils re-
coated. These actions ensure that the engine is restored as closely as possible to the “as
new and clean” condition. After completion of a major overhaul, the engine performance
would be expected to be as per the initial performance-acceptance test. However, because
of cylinder distortion (and hence changed eccentricities and wider leakage paths),
increased surface roughness of flow-path components (due to erosion or rust-scale deposits
on compressor discs and annulus surfaces), distortion of component’s surfaces (causing
loss of aerodynamic performance and increased leakage and airfoil untwist), the
performance is not restored to “as new”. Fortunately, under normal circumstances, the
unrecoverable performance deteriorations are relatively small.

A typical performance curve — see Fig 2.1 [17] — shows the results of frequent

compressor cleaning and also the non-recoverable with cleaning, performance deterioration
line; the latter applying equally to power or heat rate. This is because, once the etfect of
compressor fouling (which has a more significant influence on air flow and hence power,
than on compressor efficiency and heat rate) has been removed, then the deteriorations of
power and heat rate will be approximately similar.

2.3 Rate of Deterioration

Prior to an engine entering service, the manufacturer or user will subject the engine
to a break-in run and acceptance test. These runs allow the engine to slowly adjust its
clearances without damaging components. However, once 1t enters service, it will be
exposed to demands to which it would not have been subjected previously. The associated
new loads will lead to component and engine performance deteriorations. The rate of
engine deterioration is not constant, as the deterioration versus time curve is characterized
by a steep slope initially, a much lower slope for a long middle period followed by a high
rate of deterioration near the end of the life of a component [8].

2.4 Causes of Deterioration

These can be analysed under the following categories [2, 8]:

. Flight loads

* Thermal distortions

. ‘Erosion of airfoils

. Engine fouling due to deposits within the engine
o In-service damage and abuse

. The type of engine operation or duty cycle implemented



. The maintenance practices employed for the engine

Corrosion of the engine components is also a cause of engine deterioration: for the
purpose of this report, engine corrosion will be considered in conjunction with erosion.
There are several other factors, e.g. foreign-object ingestion and engine surge that can also
lead to mechanical damage and performance deterioration of the engine. However, as the
levels of damage from these phenomena can vary (experienced from zero to engine failure
according to the particular situation), it is difficult to provide general, quantifiable
guidance concerning their effects and so realistically simulate their impact on the engine’s
life [8]. So each case 1s analysed, in retrospect, on its merits.

2.4.1 Flight Loads

Designers of engines have tried to achieve improved performances by increasing
the respective mass flows, pressure ratios, operating temperatures, efficiencies, as well as
decreased clearances and weight [8, 19]. The increased mass flows have frequently meant
a corresponding increase in engine size. This, coupled with the reduction of clearances, has
enhanced the engine’s sensitivity to the imposed flight-manoeuvre load. These loads will
influence each of the engine modules, with the greatest effects usually occurring in the
rotating components, with high rates of wear being experienced between the blades and the
engine seals [8].

When experiencing rapid changes in behaviour, i.e. transients, it is likely that the
engine will exhibit its greatest distortions [19]. During an engine’s acceleration, the
rotating components will expand to their largest size, so resulting in maximum interaction
and larger blade clearances than would be expected if the engine was allowed always to
operate under a constant load [8]. An example of the large effects of clearance change,
caused by flight loads, was described by Sallee [5], who identified that a 0.254 mm
Increase in clearance for the LPT results in a 0.5% decrease in adiabatic efficiency and a
0.83% decrease 1n flow capability.

There have been several attempts to reduce the effects of flight loads on the rate of
engine deterioration. One recent advance for commercial engines involved the active
control of the turbine’s casing temperature by forced cooling using air bled from the
compressor. Thus clearances are maintained small when the engine is in a stable flight-
regime. However, when the flight loads are higher, such as during take-off and landing, the
casing temperature 1s allowed to increase and so the casing expands. The resulting greater
clearance leads to less wear of the seals, and hence to less deterioration of the turbine [8].

2.4.2 Thermal Distortion



The combustor, turbines and exhaust nozzles become distorted as a result of their
prolonged operation in a high-temperature and high-stress fluctuating environment [2].
Thermal distortions are primarily seen as the twisting, bowing and welding together of the
turbine’s vanes [10]. Changes in the turbine’s entry conditions (for the same power or
thrust requirement) are caused by alterations in both the compressor’s and combustor’s
performances. Variations in the combustor lead to differences in the radial temperature-
distribution at the entry to the turbine. This can result in localized elevated temperatures,
flow-area alterations, greater leakages, increased clearances and distortions. These will
reduce the efficiency and remaining life of the turbine [8].

Thermal distortions, in the other hot sections of the engine, such as the combustor
and the afterburner, often result in their premature failures and increased life-cycle costs

[8].

2.4.3 Erosion

This, in the present context, is the abrasive removal of material from the flow-path
components by hard particles (e.g. sand, volcanic ash, combustion-produced carbon
fragments and salt particles) suspended in the gas stream. As a result, the gas-turbine’s
acrofoil blades become eroded, some of the leading edges blunted, the trailing edges
thinned and the surface roughness increased. It also causes losses of the blades’ camber
and length, as well as of the seal material. These effects will be felt primarily at the tips of
the rotor blades, so resulting in increased blade-tip leakages [20], aerodynamic changes in
the behaviour of the blades, increases In pressure losses, permanent performance
deterioration and even blade failure [8]. The erosion of each aerofoil’s profile leads to
changes 1n the aerofoil’s inlet angle and throat opening. The consequent widenings of the
tip and seal clearances result in increased air-leakage losses [2].

Erosion of the aerofoils will also occur as a result of the engine’s ingestion of
foreign particles, arising from ground debris or detritus, such as hail, volcanic ash, soot and
pollution. The rate of foreign particle entry will be greatly influenced by the engine-intake
design. This is particularly evident with A/C such as the General Dynamics F-16 whose
intake acts as a large air scoop and is located below the belly of the A/C. This is in contrast
to some Russian fighter A/C, such as the MIG 29, where precautions have been taken to
reduce the possibility of incurring FOD. When the MIG 29 is on the ground, the main
intakes are blocked off and flow is directed to the engines through open doors located on
top of the A/C [8]: these doors are shut after take-off.

Because of the ingestion of particles, the engine’s performance can be reduced
dramatically. This is often exhibited during formation flying, where the ingestion of hot
exhaust-gases and pollutants from the preceding A/C has been known to result in an engine
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stalling. A second effect is that the particles erode seals and blade material [8]. Grewal [10]
describes the effects of erosion in both the compressors and turbines for various engines.

Sallee [S] concluded that a ten percent increase in the average overall aerofoil’s
surface-roughness correlates with a one percent drop in fan efficiency, and Grewal [10]
suggests that the typical erosion encountered can result in up to a 5% loss of performance
of the compressor or turbine. In addition, the erosion of the blades can have a noted
adverse effect on the blade-cooling effectiveness due to changes to the cooling holes. This
has the potential to lead to excessive blade-metal temperatures and premature failure [8].
The reduction in blade-cooling effectiveness has not been simulated in the present study.

Erosion of the aerofoils in addition to reducing the engine’s performance will
shorten its life. Each blade will be subjected to corrosion due to chemical attack and high-
temperature oxidation. Corrosion will have qualitatively similar adverse impacts on
performance. However, the effects of corrosion can be more severe: once corrosion is
started, it cannot be stopped easily and will lead to premature failure [8].

2.4.4 Fouling

In the present context, this 1s the deterioration of flow capacity and efficiency
caused by the adherence of material to the gas-turbine’s aerofoils and annulus surfaces [2].
The 1mpurities 1n the air, in addition to the engine-oil leakages, abradable coating wear and
fuel impurities, can all stick to the surface of stators, guide vanes and blades [21]. This will
influence the aerofoils’ aerodynamic-behaviour and reduce the flow area. The result will
be reduced power achieved, loss of efficiency and an increased rate of fuel consumption
[17]. Fouling, which normally can be eliminated by cleaning, occurs both in the
compressor and the turbine [2]. However, compressor fouling is recognized as one of the
most common causes of engine deterioration [2, 8]. Typically about 70 to 85 % of all gas-
turbine-engine performance losses ensuing during operation are attributed to compressor
fouling [2]. Acker et al. [22], using a compressor-stacking technique, observed that
compressor fouling could result in turbine temperatures increasing by as much as 15° C: in
addition, 1t can result in flow reductions of up to 8% and efficiency drops of 1 % [11].

Gas turbines are particularly susceptible to fouling because of the high flow rates
through them. Leaked o1l can act as glue and worsen the fouling problem, particularly in
the high-temperature regions near the rear of the compressors, where oils may become
‘baked-on’ and difficult to remove. Fouling deposits alter the aerofoils’ profiles of the gas-
turbine blades. Fouling may change the aerofoils’ inlet angle and reduce their throat
openings. The surface roughnesses of the flow path surfaces (i.e. of the aerofoils and
casings) are increased due to the effects of fouling [2].
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All compressors are susceptible to fouling. The degree and rate of fouling, and the
effect on engine performance, depend on the following principal factors [2]:

. compressor’s design

° compressor’s atrfoil loading

. acrofoil’s incidence

* aerofoil’s surface-smoothness and coating-material

o type and condition of airborne pollutant

. operational environment (e.g. a high humidity increases the rate of fouling)

The cleanliness of the compressor can have a significant effect on both the
performance and the specific fuel-consumption. The increases in TET and spool-speed
give rise to both creep and fatigue [8]. The compressor’s surge margin is significantly
reduced due to compressor fouling [23)], thus increasing the likelihood of introducing
surges and stalling. Grewal [10] emphasized that fouling is not only evident in the
compressor, but 1s a major problem in the turbine. The pollutants that cause compressor
fouling enter the compressor with the inlet air. Those that cause turbine fouling enter the
turbine with the inlet air, fuel, fuel additives and water [2]. The effect on the turbine is
qualitatively similar to that on the compressor in that the fouling will decrease the flow
area and the efficiency of the turbine [8].

The overall decreases in efficiency and mass flow area will result in reductions of
the engine’s performance. These in turn will lead to increases in the rotational speed and
TET 1n order to maintain the required output. Together these two factors will result in a
shorter engine life and increased operating cost [8].

2.4.5 In-Service Damage and Abuse

Gas-turbine components may be damaged by a variety of factors during the
engine’s operation. Foreign objects (e.g. birds, stones and tools) may be ingested through
the engine’s intake and damage its components. Carbon deposits which have built up on
the combustor’s fuel injectors, may subsequently break loose and damage downstream
components, as would dislodged engine components. Wear and tear associated with
normal engine operation will also result in performance deterioration. Engine abuse may
occur when the engine is operated outside the specified operating limits: for example, the
engine’s TET or power output may be accidentally raised above the specified operating

limits [2].

2.4.6 Type of Engine Operation or Duty Cycle

The manner in which an engine is operated will influence both the rate that it
degrades and the lives of its components. If the engine was able to be operated in the
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steady-state, then the components will pass over each other with very little rubbing, and
once this initial rubbing occurred there would be no further deterioration. However, for
most gas turbines and in particular military engines, rapid throttle movements are required.
These rapid throttle movements will cause unequal growths of hot end parts and hence

additional rubbing [8].

The engine’s duty-cycle can have a significant effect on both the type of engine
deterioration and the rate at which the performance reduction ensues. Engines, which
experience many start cycles or which undergo transient operations, are more susceptible
to performance deterioration. Severe temperature gradients are experienced during the
engine start cycle. Oxidation and corrosion of hot end-components can be severe during
the start cycle. Engine rotors may pass through critical speeds during the start-cycle
acceleration and excite rotor vibrations: blade tip and seal wear are accelerated as a
consequence. Under transient conditions, the differing thermal masses of the engine rotor
and stationary assemblies (e.g. the engine casing) will lead to different expansion rates
between components and cause blade tip and seal rubs. Subsequent increased tip and seal
clearances will cause performance deterioration because of the increased leakages [2].

2.4.7 Maintenance Practices

The maintenance that an engine will receive will affect its performance and rate of
deterioration. The standards of repair_and tolerances will vary greatly between users
manufacturers and repair facilities. These differences will have significant impacts upon
the amounts of deterioration recovery achieved [8]. Poor engine-maintenance practices can
result 1n reduced engine performance. For example, a faulty engine-control system may
cause the engine to operate outside recommended limits. Incorrect operation of the bleed-
air valves results in a lower performance. Poorly-maintained fuel nozzles can result in
inappropriate fuel-spray patterns. The combustor temperature traverse pattern can be
altered as a result and cause accelerated turbine-wear [2]. Sallee [5] identified that the
differences 1n deteriorations of engines, based on various employed maintenance practices,
could be as great as 13%, and that compressor cleaning and dressing of blades has the
capability of improving the engine efficiency by over two percent. The turbine’s durability
and performance losses could be related to changes in combustor-repair practices. Sallee
further observed that the practices used when repairing gas-turbine components also
influence the rate of performance deterioration.

2.5 Component Degradation

This 1s caused by the combined effect of (some or all of) the flight loads, thermal
distortions, erosion of airfoils, engine fouling due to internal deposits, in-service damage
and abuse, the type of engine operation or duty cycle implemented and the maintenance
practices employed for the engine. The following sub-sections will outline the causes of
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component degradation and provide a quantitative assessment of the amount of
degradation that may be experienced. The representative degradation values were based on
the JT9D turbofan-engine family as analysed by Sallee [§, 24]. In the absence of sufficient
data available for F404 (used for this analysis), those for JT9D have been referred to for
the purpose of illustration. The aim is to develop a qualitative (not quantitative) assessment
of how a typical turbofan-engine deteriorates with time. However, it is anticipated for a
low by-pass two-spool engine, as used in fighter aircraft, that the degradations and the
rates at which they occur will be greater than those suggested in the present illustration [8].

2.5.1 Fan or Low-Pressure Compressor Performance-Deterioration

Fan or LPC deteriorations are caused by increases In tip clearances, rising
aerofoil’s surface roughness and through the blunting of the fan-blade’s leading edges. Fan
blade’s tip clearance increases with engine usage due to blade tip and casing wear. Most
casings are equipped with wear strips to allow break in wear and prevent damage to the
blades; however, additional blade growth occurs due to flight loads and transient
operations producing gap larger than required for steady state operations. In addition, the
wear strip experiences erosion and thereby further increase in the clearances. Engine
testing [6] established that tip-clearance increases caused a reduction in both compressor
flow capacity and in compressor efficiency. This reduces the compressor’s surge margin.
Surface roughness, caused by the 1mpact of erosive particles, also adversely affects
compressor performance. The study showed that a 10 percent increase in aerofoil
roughness resulted a one percent loss in compressor efficiency. It was further established
that the roughness builds up rapidly (within the first 1000 cycles) and then remains
relatively constant. Particulate matter, entrained into the engine, also causes blunting of the
leading edges of the compressor blades: the resulting change in aerofoil shape leads to a
decrease in compressor efficiency [2, 9].

In summary, for the JT9D, compressor deterioration is dictated primarily by tip-
clearance increases, surface roughening and aerofoil contour changes. The combination of
these loss mechanisms results in both a decrease 1n compressor flow capacity and
efficiency [9]. '

2.5.2 High-Pressure Compressor Performance-Deterioration

This 1s qualitatively similar to those for the fan and LPC. Performance loss is
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