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Abstract 

The effective ‘viscosity’ for ice slurry containing more than say 30 to 40% ice fraction is many orders 

of magnitude higher than that for water. However, this work suggests that such slurries, when flowing 

through constrictions, can incur lower pressure drops than water flowing at the same rate through the 

same topology. This paradoxical finding is explored, studied and reported in this paper. It is thought that 

this reduction in pressure drop is the result of ice particles inhibiting the onset of turbulence in the ice 

slurry. Other researchers have previously observed this phenomenon in slurries of lower ice fractions. It is 

also suggested that the relatively low pressure drops observed for high ice fractions may be due to 

complex heat transfer and phase change phenomena, which are likely to occur at the ice-wall interface. 

 

Keywords: Ice slurry; pressure drop; ice pigging; turbulence inhibition; drag reduction. 

 

 

1. Introduction 

Ice slurries are used extensively for cooling although their use has spread to other application areas, 

some of which are given by Davies (2005) and by Bellas and Tassou (2005). Ice slurries exploit the latent 

heat of the ice, making them more efficient heat carriers than single-phase fluids. Their large thermal 

capacity and lower operating temperatures allow larger temperature differences to be maintained, 
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providing desirable heat sink characteristics. Studies into the behaviour of ice slurries have tended to 

concentrate on the heat transfer characteristics of low ice fraction slurries. Work carried out to measure 

the pressure drops of flowing ice slurries has investigated the flow behaviour of ice slurries with ice 

fractions of less than about 45% where:  

Ice fraction = s = Vol.solids ∕ Vol.slurry (1) 

Kaushal et al. (2005) have worked on slurries with volumetric solid fractions of up to 50%. However, 

this and the earlier work of Kaushal et al. (2002) have tended to focus on observations of the flow regime 

and concentration profile of slurries with a significantly denser solid phase. Kaushal et al. (2005) 

observed interesting pressure drop behaviour, which were attributable to the different flow regimes that 

occur with changing solid fraction, flow velocity and particle diameter. In general, Kaushal et al. (2002) 

found that thicker slurries of smaller particles flowing at higher velocity are more homogeneous. This is 

also supported by the work done by Kitanovski and Poredoš (2002) on the particle distribution in flowing 

ice slurry. 

The behaviour of ice slurries with ice fractions over 45% is less well known and the data and opinions 

of authors are divergent (Frei and Egolf (2000); Ayel et al. (2003); Cheng and Law (2003)). The most 

commonly used model for the viscosity of ice slurries was formulated by Thomas (1965) but this equation 

is seen to over-predict the viscosity of slurries with an ice fraction of more than 15% (Hansen et al. 

(2000)). This paper details work that has been carried out to investigate the pressure drops in flowing ice 

slurries with ice fractions greater than 40%. 

 

2. Background 

The University of Bristol has been carrying out work into the development of a novel system of 

clearing product pipelines. The concept, patented by Quarini (2001), involves using thick ice slurry to 

form a “pig”. The slurry ice has properties that are ideally suited to this application: it presents a ‘solid’ 

piston-like profile in constant diameter ducts and yet deforms like a thick fluid if the topology demands it. 

Hence slurry ice can be used to ‘separate’ one specific food product from another in the same pipe whilst 

they are being pumped (Quarini (2002)). Ice pigs have been used in many applications in the food 

industry (Quarini (2002)) and have been found to be ‘pumpable’ even with very high ice fractions 

(Quarini (2003)). Visual observations of the ice pig travelling through glass pipes provide evidence of its 

self-healing properties and its ability to remain relatively stiff, even after melting has occurred. Shire et al. 
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(2005) have proposed a simple theoretical model, which is in qualitative agreement with the experimental 

results.  

 

3. Experimental facility 

3.1. Slurry ice formation 

The ice slurries used in all the tests were generated using a Ziegra ice machine. The ice fraction is 

controlled by adjusting the residence time of the brine/slurry in the freezer section of the machine. The 

crystals produced are of a finger-like, prolate form such as ellipsoids (Hansen et al. (2002)) or 

spherocylinders (Sari et al. (2000)). Typically a crystal may be 20-50m wide and perhaps 100-200m 

long. These fine crystals give the slurry ice a paste-like feel and soft texture.  

 

3.2. Ice fraction measurement 

Ice fraction was estimated using a coffee press (mesh plunger) to separate the liquid and solid fractions 

of slurry samples. The technique has been found to produce quick and repeatable (to within 3%) results 

for this type of ice slurry. However, measuring ice fraction is notoriously difficult and there is no 

universally accepted method for doing so (Hansen et al. (2002)). Recent work by Ayel et al. (2005) 

provides a method for direct measurement of freezing point and solution concentration from the sub-

cooling of glycol solutions, which would allow for more accurate use of temperature: ice concentration 

relationships.  The work of Lottin et al. (2004) also considers the enthalpy and heat capacity of glycol ice 

slurries to allow optimisation of transport properties and definition of an operational envelope. Further 

literature and discussion of ice fraction measurement are given by Evans et al. (2007).  

 

3.3. Experimental flow sections 

The experimental flow sections were constructed using sections of borosilicate glassware with an 

internal diameter of 25mm. The use of these glass pipe sections allows the flow to be observed and also 

allows different topologies to be set up simply by connecting different pipe sections to the flow test 

section. Two different topologies were investigated: a 1m long straight pipe and a similar section 

containing a 12.7mm diameter orifice plate at its mid-point. Flush fitting gaskets and tapping plates for 

transducers were used to connect the sections of pipe work. This was done to ensure that the flow and 

pressure readings were not disturbed by discontinuities in the pipe wall. 
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3.4. Instrumentation 

The pressure drop across each section was measured using piezo-resistive gauge pressure transducers. 

Before each test the transducers were simultaneously zeroed and then calibrated for the range of pressures 

experienced during the tests. After calibration the transducers were checked under dynamic pressure 

loading with a no-flow condition to ensure that their responses were equal.  

Calibration of the measuring system (transducers and amplifiers) demonstrated that the system gave 

reproducible results with no hysteresis and an accuracy of 100Pa. This gave an accuracy of better than 

5% for the range of pressure drops experienced by the ice slurries. The calculated pressure drop across 

the test section was found by averaging data for the entire period of each flow setting. 

The flow rate of each experiment was calculated by measuring how long it took for 4 litres of ice to 

flow through the test section. During each experiment the slurry ice was directed into an agitated 

measuring vessel. This measurement was repeated twice and the average of the three times recorded in 

order to calculate the flow rate. It was estimated that this technique was accurate to within 5%. 

 

4. Experimental procedure 

Approximately 80 litres of slurry ice was produced from a brine solution of 4.76% NaCl by weight and 

loaded into the tank on the experimental rig (see Fig. 1). This relatively large volume of ice allowed the 

ice fraction to be maintained during the course of each experiment. The tank has a cylindrical shape and 

the outlet is positioned in the bottom at the sidewall of the tank. The slurry ice in the tank was agitated 

using a paddle mixer during all experiments and whilst the ice slurry was being pumped from the tank in 

order to achieve an homogeneous slurry. 

Fig. 1. Experimental set-up. 

 

Flexible hose 

Test section 

Insulated slurry 

storage tank 

Flexible 

impeller pump 

P1 P2 
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Before each test was carried out, ice was circulated through the test section for several minutes to 

reduce the temperature of the components and ensure quasi-static conditions for the experiments. The ice 

fraction was then measured and recorded. 

The pump was set to a low speed setting and the ice slurry was circulated through the test section and 

measurements taken of flow velocity and pressure drop. After approximately 1 minute, the pumping 

speed was increased and readings taken for the new flow rate and pressure drop data. This procedure was 

repeated for several flow speed settings in order to obtain data for pressure drops over a range of flow 

speeds. At the end of the tests, the ice fraction of the slurry was again checked using the coffee press in 

order to establish any change in ice fraction. 

The tests were repeated for slurries with different ice fractions, again logging data for the pressure 

drops over a range of flow rates. 

 

5. Results 

5.1. Straight horizontal pipe 

The pressure drop across the test section was plotted against the flow rate for each ice fraction (Figure 

2a). Trend-lines have been added to the plots to give a better indication of the general behaviour of the 

slurries flowing through the test sections. 

 

  a). Pressure drops for 1m straight section.    b). Pressure drop ratios for 1m straight section. 

Fig. 2. Flow through a straight 1m long pipe. 

 

The plot in Figure 2a for the straight pipe shows that the pressure drop increases with increasing flow 

rate and also with increasing ice fraction. The pressure drop has been modelled as a function of the flow 

rate by the superimposed trend-lines.  
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The pressure drop for water has been modelled using a power relationship in the form of equation 2 

below. For the straight section, the best-fit value for b was found to be 2, suggesting a turbulent flow 

regime, which is expected for or U>0.16m/s (Re>4000). 

P = a.U 
b
  (2) 

where P is the pressure drop, U is the flow velocity and a and b are fitting parameters (constants). 

The pressure drop across each section for flowing ice slurry has been modelled using a linear fit of the 

form of equation 3 below. 

P = a.U+b  (3) 

The choice of fit depends upon the model of viscosity being taken to represent the behaviour of the ice. 

Ice slurries of low ice fraction are thought to behave like Newtonian fluids but slurries of higher ice 

fraction exhibit Bingham behaviour (Hansen et al. (2000)). These thick slurries exhibit a critical yield 

stress, which is not a fundamental fluid property but dependent upon the means of measurement (Nguyen 

and Boger (1983)). The straight lines fitted here comply with a Bingham model for the viscosity of the ice 

slurry. A power law fit to the data for the ice slurries would result in a power of less than 1, corresponding 

to a shear thinning fluid. This type of fit would suppose an Ostwald type model for the viscosity and 

would not model the yield stress of the ice slurry. Possibly better, would be to produce a fit based on the 

Herschel-Buckley model for viscosity, which includes both the power law relationship and a non-zero 

yield stress. The Herschel-Buckley model would help avoid the over-estimation of yield stress, which is a 

consequence of using the Bingham fluid model. The difficulty in producing extensive data sets, and 

resultant dearth of points upon which to base any fits, renders complex modelling pointless. Despite this, 

it is apparent that the pressure drop for ice slurries of high ice fraction is more dependent upon any critical 

yield stress. 

The relative difference in pressure drop between flowing water and each of the flowing ice slurries is 

seen to be greatest at lower flow rates. As the flow rate increases, the difference in pressure drop is 

reduced; this is illustrated in Figure 2b above. The figure shows the ratio of pressure drop for each of the 

slurries to the pressure drop exhibited by water plotted against flow rate. The pressure drop ratio is 

calculated by taking the pressure drop measured for each of the ice slurries and dividing by the pressure 

drop exhibited by water at the same flow rate. The pressure drop for water is calculated for each flow rate 

from the fit given in Figure 2a (ie. Pw=278.5U
2
).  This equation represents the best fit to the 



 

 7 

experimental data for water flowing through the same relatively short length of pipe in the same 

experimental set-up.  

Grandum and Nakagomi (1997); Snoek et al. (1995) and Inaba (2000) have made these same 

observations and the present results are in qualitative agreement with almost all of their findings. Of all 

the previous work, Lee et al. (2003) performed experiments on pipe sections most similar to those used in 

the present study. Lee’s work focussed on ice slurry flow through pipes with an internal diameter of 

24mm for slurries with an ice fraction of up to 30%. Some of their findings are presented in Figure 3 

along with results from the work presented here. 

 

 

  a). Pressure drop ratios for 1m straight sections.  

 

  b). Pressure drop ratio vs  for flow at 1m/s. 

Fig. 3. Comparison of results for flow through a straight 1m long pipe. 

 

Figure 3a shows the same data as Figure 2b, combined with Lee’s data for ice slurries of 10, 20 and 

30% ice fraction. Figure 3b shows the pressure drop ratio data plotted against ice fraction for a flow 

velocity of 1m/s. It can be seen that the results presented here extend the work of Lee et al. (2003) to 

higher ice fractions. The data from this work closely follow the trends identified by Lee of rapid increase 

in pressure drop ratio for ice fractions above 20% and the tendency to unity at high flow rate. 

 

5.2. Straight pipe with orifice 

Figure 4a shows the pressure drop through the 1m straight section of pipe containing an orifice. The 

diameter of the orifice was half the diameter of the pipe, giving a 4:1 reduction in cross-sectional area. 

There was a much higher pressure drop across this test section; typically it was 5-6 times higher than for 

the straight test section. Again, the pressure drop has been modelled using an equation of the form of 
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equation 2. As might be expected, for water b≈2 and P u
2
, which is a well known result for situations 

in which the hydrodynamic characteristics of a system are dominated by inertial losses.  

 

  a). Pressure drops for 1m orifice section.    b). Pressure drop ratios for 1m orifice section. 

Fig. 4. Flow through a straight 1m long pipe containing an orifice at its midpoint. 

 

The pressure drop increases with flow rate and b (in equation 2) is lower for higher ice fractions. The 

flow regime appears to be different here and the pressure drop is more dependent upon flow rate. The 

difference in pressure drop between the water and the ice slurries is less apparent and the pressure drop 

ratio is seen to be much lower than for the straight section (see Fig. 4b.). The trends observed for the 

straight pipe are also apparent here, with the pressure drop ratio higher for higher ice fractions and 

converging around unity for all ice fractions at high flow rates. In fact, at higher flow rates, the water 

required a slightly higher pressure differential to drive a given flow than the slurries with 40% ice 

content. This is contrary to most other researchers, who suggest that for a given pipe topology, Pslurry ≥ 

Pwater for all ice fractions and flow rates. 

 

6. Discussion 

Thick (high ) ice slurries tend to exhibit slightly lower pressure drop characteristics than might be 

expected by simply studying the models of viscosity. Ice slurries with high ice fraction are highly viscous 

fluids with viscosities several orders of magnitude greater than water. These thicker ice slurries tend to 

exhibit a homogeneous, plug flow even at low velocities (when slurries with a lower ice fraction exhibit 

heterogeneous, moving bed flow). This plug flow characteristic is made possible by a lubricating liquid 

layer that forms at the pipe wall, as proposed by Vand (1948). 
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This layer is primarily formed because of topological limitations that prevent ice crystals coming to 

within their own radius of the wall. However, almost all of the heat transfer to the ice slurry occurs 

through the wall of the pipe and this causes crystals near the wall to melt, further enhancing this effect. 

The effect is well known to rheologists studying slurries where it is termed ‘glide’ or ‘slip’ and hinders 

easy assessment of a slurry’s viscosity when using a rotational viscometer (Barnes (2000); Ayel et al. 

(2003)). 

One might suppose, as Vand (1948) did, that if the ice crystals cannot exist over the entire cross 

section of the pipe then this might force more crystals into the centre of the pipe, where they would reach 

a higher ice fraction and make the slurry correspondingly more viscous. However, because of the 

presence of the lubricating liquid layer and the plug flow nature of the flow, the crystals are actually 

forced to travel through the pipe in the central core at a higher relative velocity (Maude and Whitmore 

(1956)). Hence, the residence time of the ice crystals is reduced and thus also the effective ice fraction of 

the slurry within the pipe. Higginbottom (1958) showed that this effect is most noticeable where the pipe 

diameter is small (relative to the size of suspended solids) and the lubricating liquid layer occupies a 

relatively large proportion of the flow area (eg. at the orifice). This relatively deep lubricating layer of 

liquid provides greater slip and further reduces the residence time of the ice crystals in the orifice. The 

combined glide effects and reduced residence time of ice crystals at the orifice lead to a reduction in the 

apparent solid fraction and effective viscosity of the slurry at the orifice. 

 

 

a) 0s 

 

b) 0.1s 

 

c) 0.2s 

Fig. 5. Passage of 60 % ice slurry through an orifice at a flow velocity of 0.4 m/s. 

 

Figure 5 demonstrates the plug flow profile and laminar flow regime exhibited by these thick ice 

slurries. The slurry is flowing from right to left and is coloured white and red for visualisation purposes. 

Figure 5c shows that the profile remains undisturbed by the orifice plate. 

It is believed that the ice crystals inhibit the development of turbulence in the ice slurries and that this 

could explain the reduction in pressure drop as compared to water. The ice crystals at the core of the pipe 

Flow direction 
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help to maintain a laminar flow, reducing inertial pressure losses. This is a characteristic of the ice slurries 

that has previously been observed by Quarini (2002). Knodel et al. (2000) and Liu et al. (1997) have 

observed a re-laminarization phenomenon but their studies considered ice slurries of less than 10% solids 

and with particle sizes greater than 1mm in constant diameter pipes. 

The orifice plate causes a constriction, which increases the pressure upstream. This pressure is still 

relatively low in the fluid as a whole but locally the shear and impact induced pressure on some portions 

of some ice crystals may be much higher. As ice crystals impact upon the orifice plate, there may be very 

high pressure and shear forces generated locally where the tip of a crystal comes into contact with the 

wall. This localised high pressure will cause the crystal to melt where it contacts the pipe wall or orifice. 

This localised melting will lubricate the flow further, allowing the slurry to negotiate particularly tortuous 

topologies where other slurries may be expected to require especially high driving pressures or block the 

pipe entirely. As the pressure is released, the ice/water refreezes, returning the slurry to its original 

equilibrium and stiffening the slurry again when the flow path becomes easier. 

 

7. Conclusions 

The results of this work have shown that thick ice slurries (more than 40% solids) continue the trends 

in behaviour observed by other researchers for ice slurries with lower solid fraction. For constant 

diameter pipes, the pressure drop has been shown to increase both with ice fraction and mean flow rate. 

The pressure drop is seen to be more dependent upon a critical yield stress for ice slurries of higher ice 

fraction. The pressure drop ratio of ice slurries to water was less at higher flow rates. 

The heat transfer and topological constraints present for ice slurry flows allow the slurry flow to 

remain well lubricated by a liquid layer at the wall. This liquid layer provides slip at the wall and results 

in the low pressure drop ratios that were recorded for the very thick slurries studied here. 

Study of the ice flow through an orifice highlighted a previously unseen phenomenon. A slight 

pressure drop reduction was observed for ice slurries of over 40% solids when compared with the 

pressure drop for water at the same mean flow rate. This phenomenon had only been observed in ice 

slurries with ice fraction below about 10%. The drag reduction phenomenon is thought to result from the 

particles in the slurry preventing or reducing the development and effects of turbulence in the flow. This 

hypothesis is supported by observations made of the ice slurries flowing through orifice plates, where the 

ice crystals provide an inherent flow visualisation aid. These visualisation studies suggest that little or no 

stochastic mixing occurs within the ice slurry and a laminar flow regime is maintained. 
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There are also thought to be some other more localised effects resulting from heat and mass transfer at 

very localised regions of high pressure. The localised melting and refreezing of ice crystals at the orifice 

may also account for the very low pressure drop ratios exhibited by these thick slurries. This is a 

characteristic unique to slurries of a single material (ice slurries) in which the material can change 

state/phase. 
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Figure Captions 

Fig. 1. Experimental set-up. 

Fig. 2. Flow through a straight 1m long pipe. 

Fig. 3. Comparison of results for flow through a straight 1m long pipe. 

Fig. 4. Flow through a straight 1m long pipe containing an orifice at its midpoint. 

Fig. 5. Passage of 60 % ice slurry through an orifice at a flow velocity of 0.4 m/s. 

 


