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Near field enhancements from angled surface defects; a comparison of scanning laser 

source and scanning laser detection techniques 
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b.dutton@warwick.ac.uk 

Abstract. Enhancement of the Rayleigh wave signal amplitude at a surface defect, due to 

interference of incident, reflected and mode converted waves, has been reported by several 

authors, and it has been suggested that this could be used as a fingerprint of the presence of 

such cracking. The scanning laser line source technique in particular, where signal amplitude 

is enhanced as the laser generating the Rayleigh waves is in the region of a surface defect, has 

been reported as a suitable detection tool. However, the previous work has looked primarily 

at defects propagating normal to the surface, which may not always be a suitable 

approximation, and the enhancement measured when a detection laser rather than a 

generation laser is near a crack may, in some cases, be more significant. This work explores 

near field effects for both laser generation and laser detection points near a defect, and 

compares the enhancements for defects which are angled relative to the surface. We use a 

combination of finite element method models and experimental results, and probe 

enhancements of both the amplitude and frequency signals, and show that scanning the 

detection point may be a better method for locating surface defects if they are inclined at an 

angle to the surface. 
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1 Introduction 

Surface crack detection and characterisation are very important in industry; cracks in 

materials can lead to failure, and it is important to both detect and characterise cracking 

before it grows deep into the material. Ultrasound is in common use, as testing can be 

performed in a non-destructive manner, and recent advances in understanding the interaction 

of surface waves, such as Rayleigh waves, with surface cracking is leading to new techniques 

for characterisation [1-7]. Recent work has investigated the reflection and transmission of 

waves following interaction with surface defects which are oriented normal to the sample 

surface, a geometry which is typical of calibration samples [1,5-8]. It has been seen that a 

surface defect will act like a filter to an incident wave, hence the transmitted signal for a 

broadband Rayleigh wave, typical of that generated using non-contact techniques such as 

electromagnetic acoustic transducers (EMATs) or laser ultrasound, drops off approximately 

exponentially with depth [9, 10]. 

Enhancement of the ultrasonic signal in the near-field of a defect has been reported 

[2,11,12], again only for defects oriented normal to the surface. For a detection point close to 

a defect, interference between the incident Rayleigh wave with the reflected Rayleigh wave, 

plus the mode-converted surface skimming longitudinal wave, leads to constructive 

interference a short distance before the defect, and a significantly larger signal than the 

incident wave amplitude away from the defect [2,11]. This has been modelled and 

experimentally confirmed using EMATs [11]. 

When using laser generation of ultrasound, the shape of the source and the boundary 

conditions play a large role in determining the amplitude and frequency content of a signal 

[13]. If the laser generation point is over a defect, part of the beam is truncated and the 

boundary conditions change significantly, and research has shown that this leads to a similar 



signal amplitude enhancement during scanning of a sample [2,5-7,12,14]. This enhancement 

has been the subject of much recent research [2,5-7,12,14] and is known as the scanning laser 

source (SLS) technique, or scanning laser line source (SLLS) if the generation laser is 

focussed into a line. Frequency enhancements have also been reported before, with 

researchers investigating changes in the frequency at which the fast Fourier transform (FFT) 

shows a maximum magnitude [2]. This technique has been suggested as a useful method for 

fingerprinting the position of a defect, and measurements of partially closed defects show a 

non-linear frequency enhancement [12].  

It is essential to understand fully how ultrasound interacts with surface cracks, in order to 

gain an optimal characterisation of the crack geometry. The work highlighted above has used 

primarily simulated defects, such as machined slots, which have been machined normal to the 

sample surface. This will not necessarily be a suitable approximation for all defects, for 

example rolling contact fatigue in rails which grows at an angle to the surface, or branched 

defects such as stress corrosion cracking. It is therefore important to understand if there are 

differences between the Rayleigh wave interaction with defects normal to the surface and 

those at an angle to the surface normal. There has been limited work on this; Kinra et al. 

performed initial investigations of the interaction of Rayleigh waves with angled defects [15]. 

Several researchers in diverse areas including geophysics have studied the interaction of a 

Rayleigh wave incident on a wedge [16,17], but have not considered a finite depth defect. We 

have recently studied the changes in reflection and transmission coefficients with angle for 

several different defect depths, using a combination of models and experiments using laser 

generation and detection of ultrasound [18-20]. These results show an angle dependence both 

in the reflection and transmission of Rayleigh waves, and furthermore a variation with angle 

in the arrival time for various bulk wave modes generated by mode conversion of the incident 



Rayleigh wave at the crack [18,20], and these effects could be exploited for identifying the 

angle of the defect. 

During this research, interesting effects in the signal and frequency enhancement in the 

near-field have been observed. This paper reports these effects, considering both amplitude 

and frequency enhancement behaviour during scanning across cracks which have different 

angles to the surface. We compare the effect of scanning the laser line source (SLLS) or the 

detector (SLD, scanned laser detector) across the defect, and show that scanning the detector 

may have significant advantages over a scanned generation point if defects are angled, rather 

than normal to the surface. We also investigate frequency enhancements with angle, to 

highlight further potential measurement techniques when using a scanning detection system 

and the benefits over scanning the generation point. 

2 Model and experimental details 

This paper considers laser generation and detection of ultrasound. Laser generation will 

typically generate a broadband Rayleigh wave, and can be used in either the thermoelastic 

regime (causing no damage to the surface) or the ablative regime, where the surface of the 

sample suffers some damage [21]. For detection, we consider laser detection using a two-

wave mixer interferometer system, which is sensitive to the out-of-plane (OP) component of 

the Rayleigh wave. Both experiments and models are used, and Figure 1 shows the 

measurement configuration and the sample geometry, including the surface defect. 

To explore near field amplitude and frequency enhancement behaviours as crack angle 

varies, two different 3D finite element method (FEM) models were generated with a software 

package, PZFlex [22].  

2.1 Scanning laser detection 



The SLD model was generated using loading forces derived from a laser pulse duration of 10 

ns to give a good comparison with the experimental laser pulse used; these forces were 

applied onto the sample in the form of dipoles [14,23]. The model configuration was set up as 

shown in Figure 1, with results taken for different detection positions to simulate a scan. 

Samples had defects with angles ranging from 10º to 170º and a normalised length of 

d/λ=1.11, with other depths investigated and reported in the studies of transmission of the 

Rayleigh wave [18-20]. The sample top surface and the crack faces of both models were 

assigned to be ‘Free’. All other surfaces were assigned to be ‘Absorbing’ to simulate a larger 

sample, saving computational memory and processing time. Symmetry was also applied to 

improve model efficiency. 

2.2 Scanning laser line source 

For the SLLS technique, consideration must be made of the changes in boundary conditions 

and source truncation near a defect, which leads to complications when using a dipole force 

model. In this case, the heat-mechanical bridge mode in PZFlex was used, with the crack 

walls free to expand [22]. For this model the laser line source spatial and temporal 

temperature profile, based on the experimental line source [12,23], were used, with the heat 

model creating a material expansion which in turn generated ultrasound waves in the 

material. For SLLS the detection and generation positions shown in Figure 1 were 

exchanged, therefore it is the generation line source that is scanned across the crack surface. 

These models had defect angles, θ, ranging from 10º to 170º and a normalised length of 

d/λ=1.11, with a limited number of models produced when compared to the SLD model due 

to much longer processing times. 

2.3 Experimental scans 



To validate the models, experimental scans were performed on aluminium samples with 

dimensions 150x150x50mm using non-contact laser-ultrasound to both generate and detect, 

and the near field enhancement behaviour was investigated. To generate the surface waves in 

a thermoelastic manner a Nd:YAG laser with 10 ns rise time was used. The laser beam was 

focused into a line with dimensions 6 mm by 500 µm, which generated ultrasound in a 

direction perpendicular to the laser line; this method also has the effect of increasing the 

frequency bandwidth of the generated surface waves [24,25]. Detection of the ultrasound 

waves was performed using a two-wave mixer from IOS, which is capable of measuring the 

out-of-plane surface displacement without the need for surface preparation such as polishing 

[26]. Unpolished fabricated aluminium samples possessed crack angles, θ, from 30º to 150º, 

with a normalised length of d/λ=1.11. 

3 Results: amplitude enhancements 

The signal enhancements reported previously and described above, observed as a scan is 

performed across a crack, have been reported for cracks which are normal to the surface only 

[2,11,12]. One paper [11] reports the detection point passing over a crack, whereas the SLS 

technique with the laser source scanned over the crack has received much recent attention 

[2,5-7,12,14]. The crack angle dependence of the enhancement has previously been ignored. 

Here we report measurements of this behaviour as the crack angle varies, comparing both 

SLD and SLLS techniques.  

3.1 Amplitude enhancement for scanned laser detection  

The first scanning technique presented is SLD. As the detection point passes close to the 

defect, constructive interference between the incident and reflected Rayleigh waves and the 

mode converted surface skimming longitudinal, lead to the enhancement for a 90° defect 

[11]. For these experiments, as the detection point was scanned across the surface crack, 



changes in the amplitude of the windowed Rayleigh wave were monitored. A typical B-scan 

from modelled results is shown in Figure 2(a) for a 40º crack (angle defined in Figure 1), 

where the out-of-plane amplitude of the signals is shown by the grey-scale. The windowed 

Rayleigh wave is shown by the dashed lines. Within this time window, the maximum peak-

to-peak amplitude was measured and is plotted in Figure 2(b). The defect was at a scan 

position of 45.5 mm. 

To calculate the enhancement of the signal, firstly the amplitudes before the crack were 

considered. Attenuation of the Rayleigh wave as the separation between generation and 

detection points is small over these distances; however, it was taken into account when 

calculating the no-defect signal amplitude at the enhancement position. The enhancement 

factor was then calculated as the ratio of the amplitude of the enhanced signal to that which 

would have been measured without a defect. For this particular orientation of crack (40°) the 

signal was enhanced by a factor of 10.8 above the signal amplitude when no defect is present. 

This amplitude enhancement calculation was performed for each crack angle using the 

model data, and is shown in Figure 3 for both out-of-plane (OP, open squares) and in-plane 

(IP, open circles) displacements. In addition, the out-of-plane experimental data for several 

crack angles between 30º and 150º are also displayed on the same figure as solid squares and 

show a very good agreement with the model data. Experimental data is limited to out-of-

plane displacements only due to the interferometer technique used, however, the use of 

EMATs allows measurement of the velocity components in both the out-of-plane and in-

plane, and will be the subject of a later publication. The reduced experimental enhancement 

at some angles is mainly due to focussing issues, leading to a larger detection point size when 

compared with the model [11]. Nevertheless, the out-of-plane enhancement for this depth of 

defect for both model and experimental data show an approximately exponential dependence 



on crack angle, shown as a solid line in Figure 3. The data point at 10º was not included in 

this fit; at this angle the vertical depth of the defect is very small compared to the wavelength, 

and the majority of the waves are able to penetrate beneath the defect [9,27]. 

The modelled and experimental enhancements for a 90° crack agree well with previously 

published work [11], and each of the enhancements measured (out-of-plane and in-plane for 

the model, out-of-plane for the experiments) exhibits an general trend of increasing 

enhancement as the crack angle decreases, to a maximum at a certain angle. This 

enhancement is known to be an excellent fingerprint of the defect, and clearly becomes more 

so as the angle decreases. 

The enhancement for angles other than 90° is again due to constructive interference of 

Rayleigh and mode-converted waves close to the defect, with the reflected Rayleigh and 

mode-converted surface skimming longitudinal wave dominating for angles around 90° 

[1,11]. The exact mechanism for the enhancement at lower angles warrants further 

investigation; we must consider the effect of the waves which have been mode-converted 

from Rayleigh waves at the crack tip and have arrival times close to those of the incident 

Rayleigh wave, and constructive interference between incident and reflected Rayleigh waves 

and these mode-converted waves. It is clear from a comparison of the in-plane and out-of-

plane enhancements, and the difference in their behaviour, that these mode-converted waves 

play an extremely important role [28].  

3.2 Amplitude enhancement for scanned laser generation 

We now compare these enhancements with the SLLS method, which has received much 

recent attention [2,5-7,12,14]. In this case, the laser source passes over the crack, generating 

an incident Rayleigh wave which can be reflected and mode-converted at the defect. 

However, attenuation of the mode-converted surface skimming longitudinal wave means that 



by the time the signals reach the detection point its effect will be minimal. Enhancement for 

the SLLS method therefore considers interference of the incident and reflected Rayleigh 

waves, but also the changes in the laser generation shape and boundary conditions as the laser 

passes over the crack [2,5-7,12,13]. 

Similarly to the analysis of the SLD data, the Rayleigh wave peak-to-peak amplitude was 

monitored during a scan and the ratio of the enhanced signal to the incident amplitude 

calculated for each crack angle. Figure 4 shows the out-of-plane amplitude enhancement 

calculated from the experimental data for crack angles of 30º, 45º, 90º, 145º and 150º, and 

both the out-of-plane and in-plane enhancements calculated from the modelled data. Due to 

time limitations running the SLLS model, results from fewer crack angles than for SLD are 

displayed, however, results again show very good agreement between modelled and 

experimental data. In this case, the out-of-plane and in-plane enhancements from the model 

data show a very similar variation with angle, with a much less significant angle-dependence 

to the enhancements than measured when using a scanned detection system. 

The fit to the out-of-plane enhancement from the scanned laser detection measurements is 

shown in Figure 4 as a solid line. This shows clearly that the measured enhancement as the 

angle reduced is much larger when the detection point is scanned over the crack than when 

scanning the laser generation point over the defect. It is clear that for SLLS, the main 

contribution to the enhancement is the change in the generation conditions, which will affect 

both the in-plane and out-of-plane components in a similar manner, and lead to much less of 

an angle dependence. 

4 Results: frequency enhancements 

Previous measurements have looked at the effect of a surface defect on the frequency content 

of a signal, for example by measuring changes in transmitted frequency content [9]. With the 



SLLS technique, the frequency content in the region of the enhancement has been considered. 

Kromine et al. showed that the frequency at which the FFT had a maximum magnitude 

showed some variation in the region of a defect, changing by a measurable amount [2]. Other 

measurements have shown interesting non-linear effects when measuring partially closed 

cracks, and have shown that enhancement at higher frequencies may be beneficial when 

detecting surface defects [12]. Here we consider the changes in frequency content with angle 

when scanning using SLD and SLLS.  

4.1 Frequency enhancement for scanned laser detection 

For each position of a scan, the out-of-plane Rayleigh wave displacement (shown in the B-

Scan in Figure 2) was windowed and an FFT performed. These FFTs were then stacked into a 

frequency B-Scan in a similar manner to producing B-Scans from time-domain data [12], 

with examples shown in Figure 5(a) and (d) for modelled data with d/λ = 1.11, for a 40º and a 

90º crack. The crack is at a position of 45.5 mm on the scan. Enhancement of the signal is 

clear near the defect (shown as a dotted line), and a measurement of the maximum magnitude 

of the FFT at each position would yield very similar results to the amplitude enhancement 

measurements. However, there are also other interesting frequency effects which require 

investigation. 

Figures 5(a) and (d) show a near-constant frequency content when the generation and 

detection points are away from the crack, as expected, but the enhancement is clear in the 

larger magnitudes (shown by the colour scale) close to the defect. The bands near the defect 

at higher frequencies are due to windowing effects, whereby the separation between the 

incident and reflected Rayleigh waves leads to a second frequency content within the time 

window. It is clear, however, that there are certain differences between the two frequency B-

scans; at 40º, Figure 5(a), there is a large enhancement at higher frequencies, whereas for 90º 



this higher frequency enhancement is less significant. This is shown more clearly in Figure 

5(b), where the FFTs are shown for generation and detection away from a defect (dotted  

line), and for the detection point close to a 40° (solid black line) or 90° (dashed line) defect. 

These have been normalised to the peak value of the FFT taken away from a defect. 

From Figure 5(b), it is clear that in the region of frequency content of the incident 

Rayleigh wave (around 0.2-1.2 MHz) the magnitude enhancement on comparing 90º and 40º 

defects follows a similar pattern to that for the signal amplitude, with a higher enhancement 

for shallower angles. There also appears to be enhancement to higher frequencies for the 

shallower defect, although variations in this frequency content are overshadowed by 

windowing effects and an alternative frequency analysis tool may be beneficial here. Figure 

5(c) shows similar results in the experimental measurements, where again the enhancement is 

much larger for the 40° crack and persists to higher frequencies; the frequency content here is 

higher than for the models, however the defect depth was scaled to the central wavelength in 

the ultrasound pulse. 

This frequency-dependent behaviour is, to some extent, expected, considering the filtering 

action of a crack. As shown in reference [9], when a broadband Rayleigh wave is incident on 

a surface-breaking defect the higher frequencies tend to be blocked (reflected), while the 

lower frequencies tend to be transmitted. When considering enhancement due to only 

interaction of incident and reflected Rayleigh waves it is therefore to be expected that the 

enhanced signal will contain significant higher frequency content. The addition of mode-

converted waves will complicate matters, but these are also likely to tend towards higher 

frequency content [1]. 

Both model and experimental data confirm that the enhancement in the frequency content 

is also an excellent fingerprint of the presence of an angled defect. As shown for partially 



closed defects, a measure of the signal at a higher frequency than is generally present in the 

generated pulse may give a very clear indication of the defect [12]. 

4.2 Frequency enhancement for scanned laser line source 

Finally, to compare the two techniques, FFTs were produced for the scanned laser line source 

for two cases; 45º and 90º crack angles, for both model and experimental data. These are 

shown in Figure 6(a) (model) and (b) (experiment). The SLLS model and experimental data 

have similar bandwidth and the Rayleigh central frequencies are close, with experimental 

peak frequency shifts due to focussing issues. Similarly to the amplitude enhancement 

technique, Figures 6(a) and (b) show larger enhancements for shallower angles, but the 

differences are much less significant than those found using a scanned detector. In contrast to 

the SLD measurements, Figure 6 shows no significant frequency enhancement at higher 

frequencies. 

5 Conclusion 

Previous work has shown that the Rayleigh wave signal enhancement for a surface defect 

oriented normal to the sample surface, when using either scanned detection or a scanned laser 

line source to generate signals, can be an excellent fingerprint of the position of a defect. We 

have shown here that the enhancements in both the amplitude and frequency content, and for 

both techniques, show promise for use in identifying surface defects and in finding their 

orientation to the surface and position.  

The out-of-plane amplitude enhancements have been compared with those from 

measurements, where laser detection techniques were used to measure the out-of-plane 

surface displacement on the sample surface during a scan, and show very good agreement. 

For SLD measurements both model and experiment show an approximately exponential 



dependence on crack angle, apart from for very shallow angles where the wave is able to pass 

underneath the defect due to the small vertical depth. From the modelled data, the in-plane 

and out-of-plane enhancements showed a difference in size, with a cross-over at angles below 

40°. This change in behaviour is due to the mode-converted wavemodes present close to the 

defect, which interfere with the incident and reflected Rayleigh waves [1]. 

For SLLS measurements some angle dependence is seen, however, it is not as pronounced 

as that for the SLD measurements. For this case the OP and IP components show a similar 

dependence on angle, confirming that the majority of the enhancement comes from changing 

generation conditions, as expected. 

Measurements using SLD techniques showed large frequency enhancements for shallow 

cracks, and exhibited enhancement at higher frequencies than were present prior to 

enhancement. For the SLLS measurements, some angle dependence to the frequency 

enhancement was observed, but it was much less significant than for SLD measurements. 

This angle dependence of both the amplitude and frequency content could potentially be 

used to identify different angled cracks in real samples. It is clear for these measurements that 

for defects which are inclined at an angle to the surface, such as rolling contact fatigue in 

rails, which initially propagates at an angle of around 25° to the surface, SLD may be the 

more beneficial technique for identifying and characterising defects when compared with 

SLLS. It must be remembered that a defect with an angle of greater than 90° to the 

propagation direction of the Rayleigh wave will have an angle of less than 90° if the 

generation and detection points are switched, and hence the large enhancements at shallow 

angles can again be exploited. 
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Figure list 

Fig. 1 Model and experimental sample scanning details. The scanning detection point case is 

shown, and for SLLS the source and detection were reversed. All dimensions in mm. 

Fig. 2 Results from a modelled scanned detection out-of-plane measurement of a 40º crack. 

(a) is the B-Scan with dashed window around the Rayleigh-wave arrival time; (b) is the peak-

to-peak Rayleigh wave amplitude vs. scan position. 

Fig. 3 Scanned laser detection: out-of plane and in-plane amplitude enhancements vs. crack 

angle, for d/λ=1.11. The horizontal line shows no enhancement (factor=1). 

Fig. 4 Scanned laser line source: signal enhancement factor vs. crack angle for out-of-plane 

and in-plane modelled data and out-of-plane experimental data. The fit to the out-of-plane 

SLD data is shown as a solid line. All data is for d/λ = 1.11.  

Fig. 5 Magnitude FFT B-scan of modelled out-of-plane displacement data using a scanned 

laser detector for (a) 40º crack and (d) 90º crack, and the corresponding normalised FFTs (b). 

(c) shows experimental normalised FFTs for 40º and 90º cracks. 

Fig. 6 Out-of-plane SLLS normalised FFTs for 45º and 90º cracks from, (a) model and (b) 

experimental.  
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