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Closed-form equations for flange force and maximum deflection of box-beams of 

fiber reinforced polymer with partial shear interaction between webs and flanges  

M. C. Evernden1 and J. T. Mottram2 

 
Abstract 

Presented in the paper is the formulation of a governing second-order differential 

equation for the moment distribution along the length of a beam having two interfaces 

with partial shear interaction where two flange and two web components join to form 

the box shaped section. For practical applications such a closed-section beam of Fiber 

Reinforced Polymer (FRP) can be assembled from individual pultruded profiles using 

mechanical fasteners. This assembly approach can be used to construct deeper section 

sizes than can be achieved with a single pultrusion, and which can be transported in 

flat-pack units. In developing the governing equation for flexural response account is 

made of the finite connection stiffness at the web/flange interfaces by applying 

conventional elastic beam theory. The differential equation for the partial interaction 

problem is solved to formulate closed form equations for the flange force and the 

maximum deflection of a simply supported beam under four-point bending. A 

numerical parametric study is presented to show changes in beam performance 

indicators with the degree of shear interaction between the upper and lower bounds of 

full- and non-interaction. Results from a series of load tests using a three-layered 

prototype FRP beam are shown to be in good agreement. The theoretical predictions 

for maximum deflection are however found to be directly linked to the 

appropriateness of the measured connection stiffness entered into the closed-form 

equation.  
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1.0 Introduction  

Pultrusion is an economical process for Fibre Reinforced Polymer (FRP) material that 

produces profiles of E-glass fibre and, often, a matrix of polyester or vinyl ester resin 

(Anon, 2010a; Anon, 2010b). Profiles are thin-walled and prismatic, and standard 

(structural) profiles mimic those sections used in steelwork (Bank, 2006). The largest 

stocked pultrudate of I-shape is 360 mm deep, 180 mm wide, and has 12.7 mm thick 

walls. Being lightweight and resistant to corrosion pultruded Fiber Reinforced 

Polymer (FRP) profiles are used in construction applications when their property 

portfolio adds value to the engineered solution. Larger sized I- and H-shaped profiles 

are available only to order, and the American pultruder Strongwell offers a I-profile of 

size 609 x 9.53 x 190.5 x 19.05 mm (24 x 3/8 x 7.5 x 3/4 in.), having a second 

moment of area about the major axis of 7.9x10-4 m4. For a span to depth ratio of 12 a 

simply supported beam of this beam profile can carry a uniformly distributed load of 

5 kN/m for an initial mid-span deflection of span/360. Because there is not an 

extensive range of standard profiles to choose from (see Anon, 2010a; Anon 2010b; 

Anon 2010c), the next down in size has a second moment of area only 28% of the 

maximum. In response to this limitation, and specifically for simply supported bridge 

girder applications (and without composite action with the road deck), Strongwell 

developed a non-standard double web profile (Anon, 2003), having a second moment 

of area eight times the largest I-section size. This unique pultruded profile (envelop is 

914 x 907 mm (36 x 18 in.)) has an even higher relative flexural rigidity because the 

fiber reinforcement is a hybrid of E-glass and a higher modulus carbon.  

 

Given the choice limitation imposed by the current available range in standard profile 

shapes and sizes, and recognizing that, when compared to the open-sections, a closed 

box-section shape gives superior structural properties other approaches to achieving 

second moment of areas > 7.9x10-4 m4 are attractive. This paper presents a partial 

interaction analysis for one promising approach that uses two identical flange profiles 

and two identical web profiles to assemble a box-shaped beam from four pultruded 
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FRP components. Figure 1 shows an experimental beam, based on this ‘flat-pack’ 

concept, which is 400 mm deep. It is fabricated from four thin-walled components 

that are connected along their full lengths with mechanical (‘blind’) fasteners. As 

Figures 1(a) and 1(b) show the two webs are 380 mm deep and have a nominal wall 

thickness of 6.4mm. The webs were cut from standard flat sheet material (Series 

1625) supplied by the American pultruder Creative Pultrusions Inc. Although the 

depth of web can be changed it is envisaged that there is only to be one size of flange 

profile, comprising of the flange panel with two outward facing channels that will 

accept the blind fixings to assemble the box-section. For the test beam in Figure 1(a-

b), Figure 1(c) shows that the flange is 203 x 9.53 mm (8 by 3/8 in.) and that the 

pultruded channel is for the M10 size of Unistrut connector. To fabricate the test 

beam the flange panel was cut from a standard wide-flange section (Series 1525) of 

203 x 203 x 9.5 mm (8 x 8 x 3/8 in.) from Creative Pultrusions Inc. and adhesively 

bonded (toughened epoxy) to specialized Unistrut channels pultruded by Fibreforce 

Composites, UK (now part of EXEL Composites). As can be seen in Figures 1(a) to 

1(c) the web and flange components are joined together with four rows (there are two 

rows for the rear web not in view) of the Unistrut connectors that can be individually 

spaced at 50 mm along the complete length of the assembly. Each mechanical fastener 

is a Unistrut connector with its M10 bolt installed through a 10.5 mm diameter hole 

and subjected to a tightening torque of 20 Nm. In the PhD thesis by the first author 

(Evernden, 2006) the specimen in Figure 1(a) is referred to as the ‘prototype beam’. 

We shall use this descriptor in the remainder of the paper.   

 

The method of connection for the prototype beam uses the M10 Unistrut connector 

shown in Figure 1(d). It comprises a nut with a spring on one side. To insert the nut 

into its channel, as shown in Figure 1(b), its longer sides are aligned with the 

channel’s opening. The nut is then pushed into the opening so that the spring is fully 

compressed. Rotating the nut through 90◦ and releasing the pressure allows the spring 

to uncoil and the two lips of the channel seen in Figure 1(b) mated with the matching 

ribbed-grooves in the nut (Figure 1(d)). The recoiled compressed spring provides 

sufficient pre-load to prevent the connector from moving in the channel while a M10 

steel bolt is pushed through the hole in the adjoining plate, threaded into the nut and 

tightened to the required bolt torque. The Unistrut connector provides a quick and 

simple connection method for blind fixings. Whilst method of connection is common 
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in the metal framing industry it can also be used with FRP materials through the 

specific pultruded channel profile seen in Figures 1(b) and 2(a).  

 

Under the action of shear force it can be expected that there will be some give within 

this mechanical fastening and so it is necessary to know the connector’s shear 

stiffness when we account for partial shear interaction in beams deforming under 

vertical loading. Evernden and Mottram (2006) used a non-standard pull-out test 

method to determine the shear force-slip behaviour of the M10 Unistrut in its specific 

pultruded FRP channel. The specimen, with back-to-back channels bonded together, 

is shown on its own in Figure 2(a) and in the load testing machine in Figure 2(b). 

Tensile loading is applied using a constant stroke rate of 0.3 mm/s and the slip 

between connector and channel was taken to be the stoke displacement recorded by 

the testing machine (Evernden and Mottram, 2006). Figure 2(c) shows a typical plot 

of the force (kN) against slip (mm) and the linear curve to a slip of 0.5 mm that is 

used to characterise the constant connection stiffness for the test conditions employed.  

 

The prototype beam assembly introduced above has been thoroughly studied through 

a series of four-point bending load tests and the test results and findings are fully 

reported in Evernden (2006). Later in this paper results from the test programme will 

be compared with numerical predictions using new closed-form equations derived to 

take account of the partial interaction at the two planes with the shear connectors.  

  

Because the prototype beam has connector interfaces at the top and the bottom, where 

the flanges and webs join, it consists of three distinct layers. To derive a closed form 

solution for deflection requires the development of a modified Newmark method 

analysis, based on the seminal work of Newmark, Siess and Viest (1952). In what 

follows the theoretical treatment will be presented, and new expressions for the 

resultant flange force and maximum mid-span deflection will be obtained for the case 

of four-point bending. A parametric study is presented to show the performance of the 

new deflection equation in terms of changing the relative shear stiffness given by the 

method of connection.   

 
For a box-beam comprising two or more longitudinal components, which are joined 

along their lengths, a state of full-interaction (no relative slip between these individual 
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components) gives the section its maximum flexural rigidity. A state of non-

interaction will exist if the connections exhibit zero shear stiffness and the assembly 

acts as individual elements bending around their own neutral axes. When components 

are joined together using a method of connection with finite shear stiffness a state 

approaching full-composite action (Johnson, 2004) is rarely achieved and the 

deflection response of the beam lies between the upper and lower bound limits of full- 

and non-interaction, respectively. 

 

Under the more common state of partial interaction the strain difference e, and the 

associated relative slip, s, between the connected components has to be taken account 

of when formulating expressions to calculate the deflection under service loading 

(Oehlers and Bradford, 1995), and the strain profile through the depth of the section 

cannot be determined simply from knowledge of the bending moment distribution 

alone (Yam, 1981).  

     

The first theoretical model for the partial shear interaction response of a two-layered 

beam was published in 1952 by Newmark, Siess and Viest, following the need to 

establish the deformation response of T-beams consisting of a steel girder and a 

concrete slab connected by shear studs (Yam, 1981; Johnson, 2004). Owing to the 

more recent application of bonding plates or strips of FRP (often with carbon fibers) 

to strengthen existing structures contributions to the partial interaction problem have 

been made in order to analysis the effect of bond-slip behavior (Rasheed and Pervaiz 

2002; Lee et al., 1999).   

 

Previous theoretical work, when the method of connection is by individual 

mechanical fasteners, has had two distinct solid layers with the ‘shear’ connectors 

providing relatively high level of shear stiffness. Stiffness values in the range 33-97 

kN/mm at ultimate failure have been reported for combinations of through deck 

welded studs and profiled sheeting with concrete slab (Mottram and Johnson, 1990). 

In this paper new closed form expressions are developed for the analysis of box-

section beams of FRP, having three-layers and two interfaces with metallic (M10 

Unistrut) connectors that possess relatively a much lower relative level of shear 

stiffness per unit length.  
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2.0 Development of a modified three-layered Newmark solution 

In order to analyze the three-layered system for the partial interaction problem it is 

necessary to modify the solution for two-layers given by Newmark et al. (1952). It is 

convenient in the theoretical treatment to let the bending moment at a section be the 

resultant of sectional forces acting on the individual beam (web and flange) 

components. This modeling simplification is shown in Figure 3, which also defines 

the variables that appear in the analytical treatment. Note that the depth of the two 

parallel webs is less than the height of the cross-section H, but this need not be 

adhered to. In Figure 3(a) the beam’s cross-section is shown. Its two flanges are to be 

identical in shape and size, each having thickness d and cross-sectional area Af. For 

the four-point bending arrangement shown in Figure 1 (Evernden 2006), the top 

flange is the one in tension and the bottom is in compression, and this gives the 

resultant flange couple (F (H  – d)) illustrated by the model in Figure 3(d).  

 
To formulate the governing second-order differential equation the following 

assumptions are made: 

 Discretely spaced shear connectors can be replaced, over the length of the 

beam, by an equivalent continuous medium with a linear elastic response 

(constant shear stiffness) when subjected to longitudinal shear force. 

 The affect of frictional force at the interfaces does not provide a contribution 

to the shear stiffness of the method of connection. 

 Shearing deformation can be ignored so that sections initially plane, remain 

plane after bending. The strain distribution apposing the bending moment 

M(x) therefore varies linearly through the depth, as illustrated by the separated 

parts in Figures 3 (b) and 3(c).  

 There is no vertical separation between the flange and web components; there 

is full displacement continuity along the four interfaces that possess partial 

shear interaction. 

 

When establishing the total deflection it shall be necessary to add to the bending 

deformation the deflection contribution due to shear deformation. Because the 

presence of shear deformation has no influence on how the three-layered beam 

responds to flexure it is not considered in the analytical treatment leading to Equation 
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(27). The deflection determined from using this expression is therefore only for the 

bending contribution. To form Equation (28) for the total vertical deflection the 

standard shear deformation term from Timoshenko’s beam theory (Timoshenko, 

1955) for the case of four-point bending is added.  

   

Two assumed strain distributions through the depth of the box-beam section are 

shown in Figures 3(b) and 3(c). The first of these figures shows the actual strain 

condition for a state of partial interaction. For the same curvature k the distribution 

can be assumed to be equal to the combination of the deformation occurring when 

there is no interaction (this is Figure 3(c)), and a uniform strain distribution through 

flange depth d, from the resultant flange forces F, which is shown in Figure 3(d).  

 

In Figure 3(a) the two distances *d  are from the upper and lower outer flange 

surfaces to the level of the interface plane with the web/flange connectors. The value 

of *d is not necessarily equal to the distance from the upper (or lower) outer flange 

surfaces to the plane where the resultant flange force (F) acts. This force is known as 

the longitudinal shear force and is the force (i.e. the longitudinal shear force) that 

must be resisted by the mechanical fasteners joining the webs and flanges together. 

The couple generated from the existence of the two Fs is sufficient to impose the state 

of partial interaction in the box-beam assembly. 

 
Because the modeling does not allow for vertical separation at an interface, the 

curvature k, for elastic deformation, does not change with depth y, and so the classical 

flexural expression M(x)/EI (= k) remains valid. As Figure 3(b) shows y is taken to be 

the distance from the neutral axis. M(x) is the bending moment distribution at a 

distance x from the left hand end, and the product EI is the section flexural rigidity 

based on the major second moment of area and longitudinal modulus of elasticity, 

which are both assumed to be constant along the span. Flexural rigidity has limits 

EIfull and EInon for the full- and non-interaction conditions described in the previous 

section.  

 

In accordance with Euler-Bernoulli beam theory when the bending moment is a 

function of x so must the curvature vary likewise. As Figure 3(b) shows the strain 

distributions through the depth of the web and the flange components are linear, but 



 

  8 

 

offset. The neutral axis for the web is at its mid-depth, because the beam section is 

symmetrical for major-axis flexure. In Figure 3(b) n1 is for the distance from the outer 

surface of the flange to where the flange strain distribution is theoretically taken to be 

zero. As shown in Figure 3(b) the presence of the partial interaction offsets the strain 

distribution for webs and flange sections horizontally giving rise to a strain difference 

e at the interface between the flanges and webs.  

 

The resultant force F in a flange, can be expressed by 

 





 

21ff

d
nAEkF      (1) 

where Ef and Af are for the flange the longitudinal modulus of elasticity and cross-

sectional area. The moment distribution M(x) along the length of the beam is given by 

      



3

1i
i dHFEIkxM     (2) 

where the summation (i = 1 to 3) is for the flexural rigidities of the web and flange 

components (the two identical webs used to form the closed box-section can be 

combined as a single component) assuming a state of non-interaction.  

 

The strain difference e at the interface between web and flange is given by 

 e  k
H

2
 d*






 k n1  d*  k

H

2
 n1







.   (3) 

Rearranging Equation (1) for unknown variable n1 and substituting into Equation (3) 

the curvature is given by  

 
























dH

AE

F
e

k ff2 .      (4) 

Substituting this new expression into Equation (2) gives, on rearranging, the 

following expression for the bending moment distribution   

  
 

   
 

e
dH

EI
FdH

dHAE

EI
xM i

i
i

i















































3

1

ff

3

1

22
.   (5) 
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Let us now consider an element of length dx of the flange, as shown in Figure 4. The 

illustration shows a small length dx of the beam with the shear flow q (for 

convenience q in the figure includes the other half of the shear flow transfer from the 

second web). In reality the spacing Spx of the discrete connectors is many times 

bigger than dx; but for convenience we assume in the analytical treatment that the 

shear stiffness is uniformly smeared out. On the left side the resultant flange force is F 

and this has increased on the right side to F + dF. Because the element is in static 

equilibrium the longitudinal shear force per unit length is given by  

 
x

F
q

d

d
 .      (6) 

To make a link to the shear stiffness provided by the method of connection we 

introduce the elastic shear stiffness of an individual connector. Stiffness K is defined 

as the force to cause unit slip between two components (e.g. flange and web) joined 

by a connector. Letting the connection spacing have distance Spx and the relative slip 

at the connection level be s, the elastic shear stiffness can be expressed as  

  K 
qSpx

s
.       (7) 

Substituting Equations (7) and (6) into the relationship between slip s, and strain 

difference e, gives  

  









2

2

d

d

d

d

d

d

x

F

K

Sp

x

q

K

Sp

x

s
e xx .    (8) 

 
Equation (8) is substituted into Equation (5) to derive the governing second-order 

differential equation for M(x) of a three-layered beam possessing partial shear 

interaction from having uniform spaced connector at two interfaces linked to the 

upper and lower flanges. 

 
 

   
 

2

2

3

1

sff

3

1

d

d
22

x

F

dH

EI

K

Sp
FdH

dHAE

EI
xM i

i
xi

i













































   (9) 

Specific analytical solutions for different loading and end displacement cases can be 

developed from Equations (2) and (9) to obtain expressions for the flange resultant 

force F and the mid-span (vertical) deflection.  
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Our theoretical model will now be developed for the case of four-point bending, using 

the model shown in Figure 5. When loading and end boundary conditions are 

symmetrical the mid-span deflection is the maximum vertical deflection, which we 

shall defined as v(total) for the combination of deflection contributions from bending 

(v(bending)) and shear.  The co-ordinate system has the x-axis coincident with the beams 

longitudinal centroid axis and the y-axis is in the vertical plane (and positive is 

downwards); the variable for the beam’s deflection is therefore v(x). Similar solutions 

for other load cases (e.g., uniformly distributed and three-point bending) and simply 

supported ends can be readily derived using the same solution methodology. The 

justification for presenting the derivation of the equations for the case of four-point 

bending is that this was the loading case used by Evernden (2006) to characterize the 

partial shear interaction of the prototype beam introduced earlier in this paper.  

 

For the beam in Figure 5 of total span length L, and having a load P at distance a from 

each free end, the bending moment M(x) in Equation (9) is Px for 0  x  a and a + b  

 x   L, and Pa in the mid-span constant moment region, given by a  x  a + b. To 

simplify the solution’s algebra we define the two new parameters of 

 


        (10) 

and 


 P
        (11) 

with   
 

























dH

EI

K

Sp i
i

x

3

1

2
   and  

 

   dH
dHAE

EI
i

i








ff

3

1

2
 .  

Substituting in Equation (9) for the parameters  and  (with Equations (10) and 

(11)), the second-order differential can be expressed as  

 0
d

d
22

2

2

 xF
x

F
  for x   a.     (12) 

This differential equation has the solution  

     xxBxAF   sinhcosh .   (13) 
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From inspection we can apply the boundary condition that F = 0 at x = 0, to establish 

A  = 0. Over the mid-span length region the moment is constant and, at x = a, we 

have the continuity boundary condition that 0
d

d


x

F
. It follows that B  

=  L


cosh
 . Introducing the constants into Equation (13) the flange resultant 

force varies along the left-hand length, to x = a, as 

 
 
 









 a

x
xF ax 


cosh

sinh
 .     (14) 

For x from a to a + b there is no change in F and it takes the constant value given by  

 
 









 

 a
aF baxa

tanh
.     (15) 

To obtain an expression for the vertical deflection we use Equations (14) and (15) to 

eliminate F from Equation (2) for the two different moment distributions existing 

along the beam’s length. The resulting moment curvature equation for 0  x  a is  

 
    xPdH

a

x
x

x

v
EI 








 


cosh

sinh

d

d
2

2

.           (16) 

Integrating Equation (16) once with respect to x gives  

 
    C

x
PdH

a

xx

x

v
EI 








 2cosh

cosh

2d

d 2

2

2


   (17) 

and integrating again with respect to x gives  

 
 
    DxC

x
PdH

a

xx
vEI 








 6cosh

sinh

6

3

3

3


 .  (18) 

Equations (16) to (18) are valid only for x  a.  For the mid-span section of the beam 

(a  x  a + b) the constant moment is Pa and this leads to Equation (16) having the 

terms   

     aPdHF
x

v
EI baxa   2

2

d

d
     (19) 

To simplify the presentation, substitution of the expression for the constant F will be 

made after the integration process. Integrating twice with respect to x gives   

    md

d
CxaPxdHF

x

v
EI baxa      (20) 

 and  
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mm

22

22
DxC

x
aP

x
FvEI baxa       (21) 

for the slope and deflection expressions, respectively. The subscript m to the constants 

of integration is given because the mid-span constants cannot, respectively, be the 

same as C  and D  in Equations (17) and (18). Equations (19) to (21) are valid only 

for x  a + b.  

 

Boundary conditions for slope and deflection are required to establish the four 

constants of integration. At x = 0 the vertical deflection v(0) is taken to be zero (for a 

suitable datum), and from Equation (18) this enforces D  = 0. The slope at mid-span 

is zero and slope in the mid-span section is given by Equation (20). Inserting x = L/2 

into this expression gives 

   
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



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




  22

L
FdH

aL
PC baxam .    (22) 

Next the slope continuity at x = a is used to equate Equations (17) and (20), and this 

gives 
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that on rearranging establishes  
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To determine the fourth constant, mD , we consider the continuity of vertical deflection 

at the supports (x = a), and equate Equations (18) and (21), to obtain  
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On rearranging Equation (21) and substituting for C  and mC the unknown integration 

constant in Equation (24) is  

   
62

tanh

3

1 32

3

3

2m

a
PdH

a
F

aaa
PD baxa 

























 




.            (25) 

The expression for the vertical deflection at mid-span (x = L/2) is given by 
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.          (26)  
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Substituting for, and expanding the terms C m , D m  and Faxa+b, we obtain the 

expression for Equation (27), which is found to degenerate to the pure bending 

vertical displacement upper limit solution when parameter  tends to infinity.  
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To calculate the total mid-span deflection the term for shear deformation is included. 

Finally, the equation for the maximum deflection is  

 
    


































































 vxy AG

Pa

L

a

L

aL
PdH

aLaaaLaP

EI
v

33

2

2232

2total 4

3

6

1

28

tanh

68

1





    (28) 

where Gxy is the in-plane shear modulus of elasticity of the web material and Av is the 

area of the section assumed to be resisting the shear force (Mottram, 1991; Bank, 

2006). 

 

2.1 Analytical study  

Having solved the partial interaction problem for a three-layered beam subjected to 

four-point bending a numerical study is presented to indicate how beam performance 

indicators change with the degree of shear interaction achieved by using the same 

mechanical fasteners spaced equally at distance Spx. The pultruded FRP beam 

specimen shown in Figures 1(a) to 1(c) was assembled by Evernden (2006) from four 

pultruded components and Unistrut M10 fasteners. It has a total depth of 400 mm (H) 

and a total span (L) of 2846 mm and the nominal area of a flange (Af) is 5540 mm2. 

Properties of this experimental beam will be used to evaluate the closed form 

expressions (14) and (15) for the flange force F, and Equation (27) for the bending 

deflection v(bending). For convenience the calculations are made with the vertical 

loading set to 2P = 20 kN.  Table 1 gives the notation and the values of the physical 

properties (Evernden, 2006) used to obtain the numerical prediction plotted in Figures 

6 to 7.  

 

Figure 6 presents F from Equations (14) and (15) for various levels of connection 

flexibility to full-interaction (as defined by parameter Spx/K), against distance x from 

the left support to mid-span. It is evident from the curves in the figure that F increases 

from very low values, akin to the non-interaction state, to values close to that those 

for full-interaction, as Spx/K increases from 0.0001 to 1.0 mm2/N. As required the 
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curves from the analytical solution give continuity in F at the internal support (at x = 

a = 1016 mm).   

 

Plotted in Figure 7 is the change in maximum bending deflection, v(bending), with 

increasing connection flexibility Spx/K between the lower and upper bound bending 

deflection limits of vnon and vfull. It is evident from the characteristics of the non-linear 

curves that the predictions from Equation (27) will tend to the upper limit as the state 

of complete non-interaction is approached. The finding raises the question, What 

value of Spx/K would be optimum in practice? Clearly, for the optimum design 

solution it is necessary to consider all relevant limit states towards both ultimate and 

serviceability modes of failure. The required states will, of course, depend on the 

chosen geometry and FRP material for the flange and web components, the type of 

connector, and the beam’s displacement boundary conditions and design loading 

cases. Considering the low longitudinal modulus of elasticity of pultruded FRP 

(typically 23 GPa (Anon, 2010a)) compared to traditional construction materials (e.g. 

210 GPa for structural steels and 70 GPa for Aluminium alloys), deflections are more 

likely to be the critical limit state, followed by an buckling instability and, maybe, yet 

less probable, material rupture (Bank and Mosallam, 1991; Mottram, 1991; Mottram, 

1993; Bank, 2006). 

 

When specifying the details for a ‘flat-pack’ box-beam it is reasonable that we should 

not want to specify a connection performance that causes the vertical deflection to be 

significantly higher than when the beam is in a state of full-interaction. The curve in 

Figure 7 shows that such a theoretical state of full-interaction is only achievable when 

Spx/K → 0, and to provide such a joint flexibility by using mechanical fasteners is 

going to be neither economical nor practical. To be pragmatic, it is going to advisable 

to set an upper limit to the degree of shear interaction, accepting a certain loss in 

beam stiffness due to the method of connection employed. It should be noted that a 

small increase in connection flexibility Spx/K, from zero, can produce a dramatic 

increase in maximum bending deflection. It is likely that the flat-pack concept would 

not be fit for intended use if the deflection exceeded double the full interaction 

minimum. This condition will be achieved with the prototype beam when Spx/K   

0.0061.  
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We have therefore discovered that in order to have a box-section, using mechanical 

fasteners to connect the components for the closed shape, we will have to balance the 

needs for maximum flexural stiffness, against cost and buildability. It should further 

be understood that there are going to be limits set upon connector spacing Spx, the 

lower value specified to avoid group connector interaction and the upper value of 

connector spacing to prevent a local buckling failure between two fastener positions 

in the compression zone. 

 

3.0 Comparison of analytical modeling with experimental results  

To be able to compare the performance of the closed form equations from the 

analytical treatment with what can occur in practice there are the measured values of 

interface slippage and vertical beam deflections from a series of tests by Evernden 

(2006), using the prototype beam specimen shown in Figure 1. Span L is 2846 mm 

and the distance (a) from a load P to a simple supports is 1016 mm. To vary the 

degree of interaction between the flange and web components changes were made to 

the number M10 Unistrut connectors and their spacing distances (via Spx) along the 

length of the four interfaces. Symmetry in the connector layout about the mid-span 

was maintained and so the number of Unistruts and their spacings are the same along 

the four web/flange interfaces. 

 

Evernden and Mottram (2007) have presented an evaluation of the flexural behaviour 

of the prototype beam in Figure 1, covering four different connection layouts from the 

PhD study. For purposes of this paper the experimental responses of these four 

assemblies, given the labels BA-A50-AP, BA-A100-AP, BA-A200-AP and BA-

A400-AP (Evernden, 2006; Evernden and Mottram, 2007), will be considered. For 

identification of a beam the term ‘BA’ refers to Beam Assembly, ‘A50’ indentifies 

that the specimen is tested with load Arrangement A (shown in Figure 5) and has 

connections at a constant spacing (Spx) of 50 mm, and ‘AP’ indicates that both active 

and passive connections are present (i.e. connectors are uniformly spaced along the 

entire interface lengths). If connections were confined to the side shear spans the last 

term would be given as (A) indicating only active connections.  
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An expression for the theoretical total deflection of a shear deformable beam 

(Timoshenko, 1955) has the general form of 

vxy AG

PL
C

EI

PL
v 2

3

1(total) C  .                         (29) 

The mid-span deflection (total) depends upon the total applied load P, the span length 

L, the section flexural modulus of elasticity E, the second moment of area about the 

axis of bending I, the shear area Av and the section shear modulus of elasticity Gxy. 

Constants C1 and C2 depend upon the load and displacement boundary conditions. For 

the specific case of four-point bending under a total load of 2P (see Figure 5) the total 

deflection involves distance a measured from a loading location to the simple end 

support. For the prototype beam the total deflection using Timoshenko beam theory is  
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3
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1 .                                 (30)  

By taking values of EI that represent the states of full-interaction (in which all 

element in the assembly act as a single element without slip) and the state of non-

interaction (in which the elements act individually) into Equation (30) the theoretical 

upper and lower bounds of the beam’s mid-span deflection are obtained. From Table 

1 these flexural rigidities are EIfull = 5.6×1012 N/mm2 and EInon = 9.6×1011 N/mm2, 

respectively. In the calculation of EIfull a transformed section is required to account 

for the difference in longitudinal tensile modulus of the web and flange materials 

being 16.2 GPa  (Lutz, 2004) and 24 GPa (Lane, 2002), respectively. The in-plane 

shear modulus Gxy for flat sheet material resisting the shear force may reasonably we 

taken to be 4 GPa, following the evaluation by Mottram (2004). For the properties of 

the prototype beam given in Table 1 or reported elsewhere in this paper it is found 

that the contribution of shear deformation to the total deflection (v(total)) is 26% and 

6% for full- and non-interaction, respectively.   

 

These bounding flexural rigidities give the linear curves in Figure 8, with the bold 

solid line for the full-interaction case and the bold dashed line for the non-interaction 

situation. The experimental P v v(total) plots, lying between the bounds, enable us to 

compare the beam’s relative stiffness for the four different connection layouts, which 

can be established from the gradients to the curves. 
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It is important to understand that, from a critical evaluation of his test results, 

Evernden (2006) discovered that secondary effects, such as out-of-plane deformations 

resulting from geometric imperfections, interacted with the primary vertical 

deformations (v(total)) that the equation presented herein predict. This finding is 

supported by research results from Roberts and Masri (2003) and Hayes and Lesko 

(2004), who independently identified that ‘so-called’ secondary effects can be 

significant (and difficult to extricate) when the purpose of experiments is to establish 

the flexural properties of a FRP beam. It is therefore not feasible to compare the PhD 

measurements for v(total) (Evernden, 2006) directly with analytical predictions using 

Equation (28).  

  

It is instructive to summarize the findings from the theoretical and experimental 

results plotted in Figure 8. The shape of a load-deflection (P v v(total)) curve from 

testing appears to be dependent on the spacing of the Unistruts. For the two layouts 

BA-A50-AP (----) and BA-A100-AP (--x--) with connection spacing Spx set at 50 

and 100 mm specimens, the P-v(total) relationship may be taken to be approximately 

linear, while it should be approximated to a bi-linear response for the two lay-outs 

BA-A200-AP (----) and BA-A400-AP (----) when the constant connection 

spacings is higher, at 200 and 400 mm, respectively. It is noteworthy that the test 

results in Figure 8 for the spacing of 100 mm indicate that the prototype beam is 

giving an acceptable degree of interaction. For the reason given later the value of 

Spx/K remains unknown. When P is 20 kN the total deflection was measured to be 

20% higher than for the theoretical full-interaction situation. An in-depth assessment 

and evaluation on the behavior of the prototype beam shown in Figure 1 is given in 

Evernden (2006). One observation from the plots in Figure 8 of an increase in the 

apparent flexural stiffness with increasing number of connections is to be expected. 

 

It is possible to make an assessment of the theoretical solution given by Equation (28) 

through the process of back substitution utilising the load-slip (P v s) results presented 

in Figure 9. The slip displacement in this figure is the relative movement between a 

flange and web measured at a beam’s end. Using any curve in Figure 9 for a beam 

lay-out the mean shear force per connector can be determined, from which an 

effective stiffness K per unit length can be estimated at each load increment (load 

sates are given by the symbols on the four experimental curves). By now substituting 
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this K into Equation (28), by way of parameter , we can obtain the mid-span bending 

deflection that accounts for a state of partial interaction. The mid-span contribution 

due to shear deformation is given by the last term in Equation (28). 

 

Plotted in Figure 10 are these total vertical deflections (v(total)) for the four constant 

connector spacings of 50, 100, 200 and 400 mm. The general trend shows an increase 

in flexural stiffness with increasing number of connectors and the four semi-empirical 

curves all fall within the theoretical upper and lower bounds for full- (EIfull) and non-

interaction (EInon). With the exception of the single case, having Spx = 400 mm, the 

other three load-deflection curves exhibit a highly non-linear response, each with an 

initially relatively high stiffness, followed by an ever decreasing stiffness that tends 

towards the lower stiffness for the lower bound condition of non-interaction. Upon 

initial loading the shear deformation contribution to the total defection is calculated to 

be 25 and 20 percent for the upper and lower bounds of interaction. These percentages 

reduce to lie within the range of 22 to 10 percent as the assemblies are loaded to P = 

20 kN, as they exhibit a state of growing partial interaction. As K for a connection 

lay-out is derived from the experimental results in Figure 9 the equivalent connection 

lay-out curve in Figure 10 follows a similar shape. However the analytical predictions 

in Figure 10 show an increase in v(total) of between 10 and 38 percent. This finding 

may be accounted for by considering the reliability of the experimentally determined 

deflections and slippages. As noted above these displacements had to be derived from 

measurements that included significant secondary effects that cannot easily be 

extricated to obtain, in isolation, the ‘theoretical’ beam response that the analytical 

modelling assumes. 

 

As found by Evernden and Mottram (2007) the assumption of a constant K for the 

M10 Unistrut (at 2.5 kN/mm for a tightening torque of 20 Nm) is inappropriate 

because the slip measurement used to determine this connector shear stiffness 

(Evernden & Mottram, 2006) is different to that experienced in the prototype beam. K 

= 2.5 kN/mm was calculated using the mean load-slip response, from a batch of six 

non-standard pull-out test specimens, shown in Figure 2, to a slip of 1.0 mm. Given 

the lower values of s in Figure 9, its maximum is 0.5 mm, the choice by Evernden and 

Mottram (2006) to take more than double this practical slip when determining K is 



 

  19 

 

one plausible reason why we have significantly underestimated the actual shear 

stiffness when the prototype beam is deformed.   

 

The shear force with slip curve given in Figure 2(c) is representative of a Unistrut 

connector’s behaviour in the pull-out test to slips up to 0.5 mm (Evernden and 

Mottram, 2006). Stiffness K can be taken as its secant gradient, at the level of slip 

required to correspond to the slip in testing. The family of P v v(total) curves in Figure 

11 are calculated using the representative K for each load step determined from the 

pull-out test results in Figure 2(c). The general trend for the four connection lay-outs 

is non-linear with the expected increase in flexural stiffness with reduced connector 

spacing from 400 to 50 mm. The four curves are again bounded by the full- and non-

interaction theoretical limits given by the bold solid and bold dashed lines, 

respectively. Each curve exhibits an initially higher beam stiffness that, with 

deflection, decreases non-linearly until the final stiffness (for v(total)/L > 1/300) is 

similar to the non-interaction stiffness. As the flexural stiffness of the assemblies 

decrease with P so does the shear deformation contribution to the total deflection 

reduce from initial between 13 and 10 percent to, at P = 20 kN, between 10 and 6 

percent. More importantly, it is observed that the analytical deflections for v(total) in 

Figure 11 are higher than the measured deflections for v(total) given in Figure 8. This 

comparison suggests that the representative mean connector load-slip curve from the 

pull-out test method (Evernden and Mottram, 2006) provides a significant 

underestimate to the real longitudinal shear stiffness that exists in the four prototype 

beam assemblies.   

 

Comparing the equivalent load-deflection curves in Figures 10 and 11 it is apparent 

that the representative K is lower than that determined from the measured interfacial 

slip. This is an interesting result given that the latter method of determination should 

give the higher value, since it involves the effect of frictional forces between the 

contacting flange and web components. In other words this study finds that the actual 

connection flexibility (Spx/K) is not solely due to the number and spacing of the M10 

Unistruct connectors. From the study reported in this paper it is shown that the non-

standard test method by Evernden and Mottram (2006) for the determination of K is 

not ideal. Finally, it can be noted that for the purpose of demonstrating that the 
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analytical model developed in this paper can be used (see Figure 11) the 

representative stiffness of the connector (from Figure 2(c)) is found to be acceptable.  

 

4.0 Concluding Remarks 

Modifying the well-known Newmark method for partial shear interaction in two-

layered beams (Newmark et al., 1952) the authors formulate new closed formed 

expressions for analyzing box-beams having shear interaction at the two interfaces 

between two parallel webs and the upper and lower flanges they are connected to. 

Expressions for the resultant flange force and mid-span vertical deflection are 

presented for the single load case of four-point bending. 

 

Using properties for a prototype box-beam fabricated of pultruded fiber reinforced 

components and having M10 Unistrut connectors for the method of connection, the 

closed form solutions for the flange force and vertical deflection are shown to 

converge to the upper and lower bound limits given by the interaction states of full- 

and non-interaction. The analytical treatment is found to provide us with predictions 

of beam performance towards establishing the connection flexibility needed to 

achieve a given level of interaction. Knowing the shear stiffness from different 

methods of connections it will be feasible to use the closed form equations in this 

paper to aid in the design of ‘flat-pack’ box-beams with higher flexural rigidities 

(deeper sections) than can be sourced today from the range of single pultruded 

profiles (see Anon, 2010a; Anon 2010b; Anon 2010c).  

 

Through the comparison of results from the analytical modeling and prototype beam 

testing (Evernden 2006) it has been shown herein that Equation (28) for the total 

vertical deflection can be used providing the connection shear stiffness is that present 

at the interfaces in the beam assembly. Because this stiffness has been found not to be 

what is measured by using the non-standard pull-out test method created Evernden 

and Mottram (2006) it is concluded that a suitable test methodology for determining 

connector shear stiffness is required.   
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Table 1. Physical properties of prototype box-beam studied by Evernden (2006). 

Physical Property Notation Value and units 

Longitudinal Modulus of 

Elasticity of Flange 

material  

(from Lane, 2004) 

Ef 24.0 kN/mm2 

Longitudinal Modulus of 

Elasticity of Web material 

(from Lutz, 2005) 

Ew 16.2 kN/mm2 

Second moment of Area 

(full-interaction) 
Ifull 2.32108 mm4 

Second moment of Area 

(non-interaction) 
I

i1

3

  4.00107 mm4 

Area of flange section Af 5540 mm2 

Shear area (two webs) Av 4826 mm2 

Vertical separation of the 

two flange centriods 
H-d 310 mm 

Simply supported span  L 2846 mm 

Shear span a 1016 mm 
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Figure captions  

Figure 1. (a) Prototype box-beam assembly with the Warwick University four-point 

bending test arrangement (from Evernden, 2006); (b) Prototype beam in assembly  

(c) Cross-section of prototype beam giving key dimension in millimeters;  (d) M10 

Unistrut steel connector.  

Figure 2. (a) Load-slip test specimen and steel loading yoke; (b) Load-slip specimen 

in Dartec 9500 testing machine and subjected to tension loading; (c) Plot of 

representative slip (s) in mm with shear force for a M10 Unistrut connector.   

Figure 3. Strain distributions in a three-layered cross-section with partial interaction. 

Figure 4. Forces for a flange element of length dx. 

Figure 5. Load case for four-point bending with lengths a and b defined. 

Figure 6. Plots of resultant force in flanges with distance x for various joint flexibility 

Spx/K, with a = 1016 and b =814 mm in the four point bending experiments. 

Figure 7. Plot of bending deflection with joint flexibility Spx/K. 

Figure 8. Plots of total deflection with average load P for the prototype beam and with 

different connection stiffnesses.  

Figure 9. Plots of connection slippage with average load P and with different 

connection stiffnesses. 

Figure 10. Plots of load against total deflection from Equation (28) based on 

experimentally recorded interface slips from Figure 9.  

Figure 11. Plots of load against total deflection from Equation (28) based on 

connector stiffness using the pull-out test results in Figure 2(c).  
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Figure 2 
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Figure 3  
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8  
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Figure 9 
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Figure 10 
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Figure 11 
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