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Abstract
Approaches to describe the exposure of non-target aquatic organisms to agricultural pesticides

can be limited by insufficient knowledge of the environmental conditions where the

compounds are used. This study analysed information from national and regional datasets

gathered in the UK describing the morphological and physico-chemical properties of rivers,

streams, ponds and ditches. An aggregation approach was adopted whereby the landscape

was divided into 12 hydrogeological classes for agricultural areas and a 13th class that

comprised non-agricultural land. The data describe major differences in the abundance,

dimensions and chemistry of water bodies in the different landscapes. There is almost an

order of magnitude difference in the total input of pesticide per unit area between the different

landscapes. Ditches are shown to be most proximate to arable land, streams and rivers

intermediate and ponds the least proximate. Results of the study have implications for the

development of standard scenarios for use in protective screening steps within the risk

assessment. Data can be used to produce more realistic estimates of the exposure to

pesticides and to examine how that exposure varies across the landscape.



1 Introduction

The use of pesticides on agricultural land may result in contamination of adjacent surface

waters and thus pose a potential risk to a range of aquatic organisms. The predominant routes

of entry arising from diffuse applications of pesticide include spray drift, surface runoff and

leaching to field drains. Systems of regulation for pesticides prior to approval for use include

a demonstration that unacceptable risk will not be posed to the aquatic environment. An

assessment is undertaken which often uses models to predict concentrations of a particular

compound in different water bodies and combines this with ecotoxicological information to

derive a measure of risk.

The environmental fate of pesticides is influenced by a large number of factors including the

inherent properties of the chemical, the timing and pattern of use of the product, the behaviour

of the farmer and the performance of farm equipment. Fate is also determined by a range of

environmental parameters related to soils, hydrogeology, topography, crop physiology,

weather and irrigation. Given the complexity of these interacting factors, the most common

approach to modelling fate has been to derive a limited number of environmental scenarios

which are then used as the basis for predicting the behaviour of individual pesticides and

comparing between different compounds. A standardised modelling approach for the

calculation of exposure of surface waters in Europe has recently been established by FOCUS

(2003). A modelling tool was developed which combines mechanistic models with 10

standard environmental scenarios selected to represent the European agricultural area. The

approach is designed to produce a generalised expression of exposure whose conservatism

derives from worst-case assumptions built into the calculation. For example, the FOCUS tool

assumes that water bodies adjacent to agricultural land are either ditches, streams or ponds

and that each of these categories can be described with a single set of dimensions throughout

Europe. Thus the FOCUS stream is 1 m in width, 0.3 to 0.5 m in depth, 100 m in length and

has an average residence time of 0.1 day; there is a 5 cm layer of sediment at the base which

has 5% organic carbon; the stream is situated 1 m away from a 1 ha treated field; and it

receives water and pesticide from a 100 ha upstream catchment which has the same

characteristics as the treated field, but only 20 ha are treated with pesticide (FOCUS, 2003).

Predictive modelling based on scenarios has several advantages in that it is relatively simple

and quick to undertake, there is a high degree of standardisation between chemicals and,

provided scenarios are appropriately defined, the approach can provide a conservative

assessment of exposure and thus a high level of environmental protection. Unfortunately, as



there are many interacting factors, it is not usually possible to quantify the likely level of

conservatism. For example, it is not simple to quantify the likely impact on exposure and

ecological effects of a stream which is shallower (i.e. less immediate dilution potential) but

faster running (i.e. greater advective losses from the system) than the standard scenario.

In practice, there is a sparcity of readily-available data on the properties of aquatic habitats.

This creates two problems. First, the definition of assessment scenarios becomes a rather

subjective process which is not underpinned by detailed analysis of the true range of

environmental conditions. There is a tendency to introduce overly protective assumptions in

the absence of detailed information, but it is very difficult to assess the realism of the scenario

and the degree of protection afforded. Secondly, there is no solid basis on which to proceed

to more realistic assessments of exposure.

A number of workers have reported predictions of the spatial and temporal variation in

pesticide concentrations at the watershed level (Bach et al., 2001; Cryer et al., 2001;

Dabrowski et al., 2002; Verro et al., 2002). The approaches combine mathematical models

with a geographical information system and address the variation in exposure arising from

differences in soil type, topography, land use and climate. Variability in the properties of the

receiving water bodies cannot be considerd at this scale. There have also been significant

advances in using remote or aerial imaging technologies to investigate the way that

agriculture interacts with the landscape (Hendley et al., 2001; Padovani et al., 2004). These

generally consider a specific location and have tended to concentrate on determining

proximity and density of arable cropping adjacent to water bodies. Information on a broader

range of properties of water bodies is collected in surveys by groups from government, nature

conservation agencies and the research community. However, the surveys are often only

reported within the grey literature and the resulting databases are disparate in terms of format,

parameters held and physical location.

In this paper, data from major national freshwater datasets in Britain are used to present an

initial characterisation of the physico-chemical and morphological properties of aquatic

habitats in the agricultural landscape. A hydrogeological classification of landscape is used to

group water bodies into broadly similar types and to allow comparison between landscapes.

Biological data from these habitats are presented in an accompanying paper (Biggs et al.,

200x).

2 Methods



2.1 Derivation of landscape classes

Working definitions were developed for the four waterbody types included within the

analysis: ditches, ponds, streams and rivers (Table 1). Definitions were based on hydrological,

morphological and biological criteria, particularly considering: (i) the range of existing

definitions in common usage; (ii) practical constraints imposed by pre-existing datasets

analysed for the study; and (iii) criteria that could be derived or calculated from Ordnance

Survey maps.

Landscape classes were defined to capture broad differences in types, properties and

abundance of waterbodies, potential for exposure to pesticides (i.e. agricultural land use) and

routes of movement of water (and thus potentially pesticide) from agricultural fields to water.

First, the extent to which hydrogeology, soils, topography and cropping patterns co-vary

across the landscape was assessed visually using the legend attributes from the 1:250,000 soil

maps of England, Wales and Scotland (Mackney et al., 1983; MISR, 1984). Next,

descriptions of landscapes were set out using broad types of soil parent material as a link

between topography and hydrogeology (expressed as the likelihood of presence of different

types of waterbody) and including elements of a classification of soil types according to their

hydrological response (Lilly et al., 1998). A digital dataset was generated using the national

soil maps of England and Wales and of Scotland (both polygon datasets at scales of

1:250,000). Non-agricultural areas (defined as those unlikely to receive significant

agricultural inputs of pesticide) were identified by combining urban and inland water

polygons with all soil association map units with no significant agricultural usage given on

the map legend. All remaining soil associations were assigned to one of 12 agricultural

landscape classes using soil parent material as the classifier. Digitised boundaries for

landscape classes were generated from soil association linework. The resulting map was

rather fragmented where soil parent material is locally heterogeneous. A smoothed map was

generated by merging small polygons wholly contained within larger polygons and by

removing long, thin polygons with a resolution of ca. 500 m.

2.2 Data collection and processing

2.2.1 Abundance of water bodies

The spatial abundance of waterbody types was described using a variety of datasets. The

length of river within each landscape class was estimated using the ESRI ArcView GIS

software. Two databases were used: (i) the polygon shape data file for the aquatic landscape



classes; and (ii) the line layer ‘River’ data files from the Ordnance Survey “STRATEGI”

dataset. The six river line layer files were updated to create a single river line file which was

then clipped within each of the polygons for the landscape classes to produce a separate shape

file for each landscape class. Each of these shape files was then converted to an arc coverage

and the length queried to derive an accurate river length estimate within each landscape class.

For streams, ditches and ponds, data were derived from the Countryside Survey 2000

(Firbank et al., 2003). The 569 squares (each 1 km2) of the Countryside Survey were

reclassified into the 13 landscape classes. The mean length of ditch and stream per km2 and

the mean density of ponds per km2 was calculated for each class.

2.2.2 Morphological and physico-chemical properties of water bodies

Pre-existing datasets were accessed and merged where possible to describe the morphological

and physico-chemical properties of the different waterbodies (Table 2). Datasets were filtered

to exclude monitoring sites potentially impacted from urban or industrial situations. For each

of the available datasets, the physico-chemical and morphological features of waterbody types

were described for each agricultural landscape class. This included, where available,

assessment of values for attributes relevant to pesticide risk assessment (e.g. waterbody size,

morphology, flow characteristics, pH, permanence, sediment characteristics, abundance of

aquatic vegetation, bankside vegetation, distance to crop) and ecosystem driving variables

(e.g. nutrient status, substrate composition). Categorical data were summarised as proportion

of sites falling into specific categories. All numeric data were described by mean, median,

standard deviation and range.

Additional field data were collected to address a lack of adequate information describing

ditches in agricultural landscapes. New ditch data were gathered within a 10 x 10 km area at

four field study sites in contrasting agricultural landscapes. The sites and grid reference of the

north-west corner of the experimental area were: Spalding, Lincolnshire (LC2; ****),

Morpeth, Northumberland (LC4; ****), Whitchurch, Cheshire (LC5; ****), and Kington, ***

(LC7; ****). From each area, physico-chemical field data were collected from 10 randomly

located ditch sites including ****. Need grid references and further details of ditch survey

work

2.2.2 Land use and potential for exposure to pesticides

A spatial dataset for agricultural land had previously been produced by combining

Agricultural Census data for Great Britain for 1995



(http://datalib.ed.ac.uk/EUDL/agriculture/) with a remotely-sensed Land Cover Map of Great

Britain (Fuller et al., 1994). This dataset was overlaid onto the spatial dataset for landscape

classes to identify cropping patterns in the different landscapes. Cropping varies significantly

on an east to west axis across England and Wales, so regional analyses based on the eight

Environment Agency regions were also undertaken.

Field size – need methodology for this

The distance between a water body and the nearest cropped land receiving inputs of pesticides

is a key determinand for potential exposure, especially for the more localised transport

processes such as spray drift. Many of the datasets contained fields descriptors for land use

adjacent to water bodies, although the actual measure varied greatly. The area extending

50 m from rivers and streams was characterised as to whether different land uses were

‘absent’, ‘present’ or ‘extensive’. The proportion of different land uses was measured for a 5

and 100 m radius around ponds. Ditches are the most intimately associated with agriculture

and here the distance to the nearest arable field was available. The data were collated to give

a crude comparison of the density of arable cultivation around water bodies in the different

landscapes.

The average input of herbicides, insecticides and fungicides per unit area of each landscape

(i.e. averaged over the whole area including non-agricultural) was calculated from the land

use information and statistics from pesticide usage surveys for the various crops (Reference).

2.2.3 Database construction
A relational database was constructed as a repository for the processed (aggregated) data on

the properties of the landscape classes. Data tables were imported into a single MS Access

database comprising 22 tables. A graphical user interface (GUI) was written in Visual Basic

to allow users to display information, interrogate the database and extract data from the

database into comma separated value files. Within the GUI, the ESRI MapObjectsLT

software library was used to enable the display and interrogation of the map of landscape

classes. The database and GUI are Windows-based software designed for use with either

Windows 2000 or Windows XP platforms. The database is available for free download at:

ftp://ftp.silsoe.cranfield.ac.uk/public/aquatic/.

2.3 Statistical analysis



Statistical tests used for hypothesis testing were performed using the statistical software

program Statistica, version 6.1 (Tulsa, OK). The exception was for χ2 tests, which were

calculated longhand using significance tables given by Kanji (1999). Differences between

sample means were analysed using t-tests or 1-way ANOVA, with post-hoc Tukey HSD tests

used to identify significantly different sample means. Where data were non-normal

(determined by the Kolmogorov-Smirnov test for normality) or the variances of the sample

data differed significantly (determined by F-tests), non-parametric methods were used to look

for differences between sample medians. Kruskall-Wallis tests were used as an equivalent to

one-way ANOVA, with post-hoc testing performed using Mann-Whitney U-tests. Correlation

analysis between non-normal datasets was performed using Spearman’s rank correlation.

Differences between distributions were assessed using χ2 tests. Statistical tests were

considered significant at the 95% level (p < 0.05), and these probability levels are implied

unless otherwise stated. As the distinction between streams and rivers is operational, these

two types of waterbody were not differentiated for any of the chemical and morphological

analyses.

2.3.1 Waterbody morphology

River and stream (combined) water width and depth measurements were analysed to assess

whether morphological differences existed between landscape classes. As the datasets for

each landscape class were strongly skewed towards zero (determined using Kolmogorov-

Smirnov normality tests), non-parametric statistics were used. Where significance (p < 0.05)

was found following Kruskall-Wallis tests, landscape classes were ordered according to width

or depth rankings, and pair-wise comparisons made between landscape classes using Mann-

Whitney U-tests.

As raw width and depth data were identified for each sample site, it was possible to perform

correlation analysis between these data using Spearman’s ranked correlation test. Where

significant (P < 0.05) correlation between width and depth was demonstrated for a landscape

class, determination of a cross-sectional shape parameter (depth / width × 100) for each

landscape class could be justified. Large values for this parameter indicate a deep, narrow

water body. Differences between medians for each landscape class were determined as for

width and depth.

Pond surface area and average depth measurements were statistically analysed to determine

whether morphological differences existed between landscape classes. Surface area and depth



were correlated using Spearman’s rank correlation, and medians of pond volume (surface area

× depth) were analysed using a Kruskall-Wallis test.

Ditch width measurements were statistically analysed for differences between waterbodies.

As the raw data were categorical, a χ2 test was used to look for differences in category

distribution between landscape classes.

2.3.2 Bed substrata of rivers and streams

Detailed information on stream/river-bed material was analysed to look for differences in

distributions of bed material between landscape classes.

2.3.3 Waterbody chemistry

Water chemistry data for streams and rivers (combined), ponds and ditches were analysed for

differences between landscape classes (within waterbody groups), and differences between

waterbody types using one-way ANOVA tests. Comparisons between all waterbody types are

presented for pH and conductivity.

3 Results

3.1 Identification of landscape classes potentially exposed to
pesticides

A total of 12 agricultural landscape classes was identified for England, Scotland and Wales,

with a thirteenth class comprising all non-agricultural land (including urban, forestry, non-

maintained grassland and amenity uses). Table 3 summarises the properties of the classes and

their spatial distribution is shown in Figure 1. The number of sampling sites for each

waterbody in each landscape class is shown in Table 4. Physico-chemical data relating to the

specific Scottish landscape classes (11 and 12) are limited and these classes are not

considered further within this study. However, these classes are included within an

accompanying analysis of the biology of freshwater habitats (Biggs et al., 200x). Many of the

other landscape classes are also present in Scotland.

3.2 Abundance of water bodies

Relative distributions of rivers, streams, and non-road ditches (defined as average length of

waterbody (m) per km2) and the number of ponds per unit area are shown in Figure 2. The



frequency distribution of rivers, streams and ditches was shown to be highly significant using

a χ2 test (χ2
test = 7044 > χ2

critical (p = 0.05) = 31.5; 18 degrees of freedom). The greatest contributor

to the large χ2 value was from Landscape 1 (floodplains) which explained 34.8% of the

overall difference between observed and expected values. Landscape 1 is by definition the

most dominated by rivers, whereas streams are more evenly distributed amongst the

landscapes. Streams and rivers are least abundant in chalk and limestone areas. Ditches are

the dominant feature in landscapes 2 and 6 (fenlands and clay areas) and they are also

particularly numerous in non-agricultural areas, presumably in parts that are too wet to

support agriculture. The number of ponds per unit area varied six-fold between landscape 5

(low base tills) and landscape 6 (clays). Average pond size varied between 0.07 and 0.37 ha,

with the largest ponds in landscape 10 (hard rock).

Data from Countryside Surveys undertaken in 1990 and 2000 indicate that the area of

streams, rivers, ditches and lakes did not change significantly during this period. There was a

small increase in pond numbers during this time, reversing a long period of decline over the

previous 50 years (Haines-Young et al. 2000).

3.3 Land-use and potential for exposure to pesticides

Agricultural land-use across the 11 landscape classes is shown in Table 5 alongside average

field sizes for the different landscapes. A simplified characterisation of land-use is provided

in Figure 3. Field size is closely related to land use. A correlation analysis indicated a positive

correlation between field size and proportion of land under arable cultivation (Spearman’s

R=0.915; p<0.05).

Figure 4 shows the different measures for extent of arable cultivation around water bodies.

Results for rivers and streams were almost identical, with only slightly denser arable land use

around streams compared to rivers; these two datasets were thus combined. Across all

landscapes, arable land use was ‘present’ or ‘extensive’ within 50 m of the river or stream for

less than 50% of the sites surveyed. Arable cultivation tended to be either ‘absent’ or

‘extensive’ with few sites categorised at the intermediate level of arable land use ‘present’.

The land use around rivers and streams followed that in the broader landscape with the

greatest amount of arable land in landscapes 2, 4 and 7 (cf. Figure 3). Other land uses such as

orchards which receive inputs of pesticides accounted for less than 1% of land within 50 m of

rivers and streams.



Arable fields were almost never located within 5 m of ponds, with the greatest exception

being in landscape 4 (eutrophic tills) where surface-fed ponds within fields are a feature of the

landscape. There was large variability in the amount of arable cultivation within 100 m of

ponds, but on average this accounted for between 1 and 27% of the area for the different

landscapes. Ditches tend to be intimately related with agricultural production. The average

distance to an arable field was in the range 1.5 to 3.2 m, although the survey size was very

limited.

Information on cropping patterns can be used with knowledge of any geographical or soil-

related factors influencing use of a pesticide to estimate the variation in use within the

different landscapes. Table 6 provides the average input of different types of pesticide to

different landscapes as derived from pesticide usage statistics (reference). Landscape 2

(fenlands and warplands) receives the highest loading of pesticides because it is largely

intensive arable land and several crops receiving high inputs of pesticide (e.g. sugar beet and

potatoes) are widely cultivated. There is almost an order of magnitude difference in the total

input of pesticide per unit area between the different landscapes.

3.4 Waterbody characteristics

Analyses are presented for those chemical and morphological characteristics of waterbodies

in the British agricultural landscape which have a bearing on the ecological risk from

pesticides. The datasets are not equally extensive across all landscape classes for all

parameters and for all water bodies. Therefore, data are presented only for landscape classes

sufficiently represented (determined as sample sites > 10). For ditch data, where surveys were

relatively constrained, coverage across the range of landscape classes is especially limited.

Landscapes 11 and 12 (specific to Scotland) are not included in these results (therefore, a total

of 11 landscape classes are considered). Note that other landscape classes are inclusive of

Scotland (see Figure 1).

3.4.1 Waterbody morphology

Streams and rivers

Kolmogorov-Smirnov normality tests were performed on width and depth data for all

landscape classes. For both datasets, all the data distributions differed significantly (p < 0.01)

from the normal distribution. Kruskall-Wallis tests identified significant differences in median

values between landscape classes for width data (H(N = 8942) = 1626; p < 0.001) and for depth

data (H(N = 8911) = 1253; p < 0.001), enabling the classes to be ranked. Mann-Whitney U-tests



were then used to differentiate individual landscape class medians. The relative rankings,

median values and sample numbers are shown in Figures 5a and 5b. Landscapes 1

(floodplains), 2 (warplands / fenlands) and 3 (sandlands) include some of the widest and

deepest streams and rivers, with landscapes 6 (clays) and 8 (loams) containing some of the

narrowest and shallowest.

Spearman’s rank correlation analysis was performed for width versus depth at each sample

site, and in each landscape class. There was a highly significant (p < 0.001) correlation

between width and depth for all landscape classes. It is thus reasonable to consider a river-bed

shape parameter (S) defined as:

S = depth (m) / width (m) × 100

These data were analysed as for width and depth. Kruskall-Wallis tests identified significant

differences in median values between landscape classes for steepness data (H(N = 8906, d.f. = 10) =

460, p < 0.001), and Mann-Whitney U-tests were used to differentiate individual landscape

class medians as before. The relative rankings, median values and sample numbers are shown

in Figure 5c. Landscape 2 (warplands / fenlands) showed the greatest depth:width ratio, with

landscapes 9 (rock & clay) and 5 (oligotrophic till) the shallowest. This analysis clearly

separates landscape 2 from landscapes 1 and 3. The shape parameter is likely to be correlated

with topography with larger values for S in the flatter landscapes such as that of the

warplands and fenlands.

Ponds

Kolmogorov-Smirnov tests for normality showed pond volume data to be significantly

different from the normal distribution (p < 0.01) for all landscape classes with the exception

of landscape class 2 which had a small sample size (n = 11). A Kruskall-Wallis test showed

no overall significant difference in pond volume between landscape classes (H (N = 271, d.f. = 9) =

8.35, p < 0.001). Mean pond volume varied between 461 and 3528 m3 in sandland and hard

rock landscapes, respectively.

Spearman’s rank correlation was performed for surface area versus average depth data for

each landscape class. There was no significant correlation between pond surface area and

depth for any landscape class apart fron LC7 (chalk & limestone plateaux; R = 0.58, p =

0.008).

Ditches



The dataset for ditch width had a limited spread across the landscape classes, with only four

landscape classes sufficiently represented in the data (n > 9). Figure 6 shows the distribution

of width categories between these four landscape classes (raw data for ditch width were

categorical). A χ2 analysis was performed to determine whether differences in width

distributions between landscape classes were significant. The four categories shown in Figure

9 were combined into two groups for the analysis: 0 to 3 m and over 3 m. The frequency

distribution of ditch width between landscape classes was shown to be significant

(χ2
test = 17.7 > χ2

critical (p = 0.05) = 9.95; 3 degrees of freedom). The biggest difference between

observed and expected values (79.6% of overall difference) lies with landscape class 1

(floodplains), where more ditches fall within the narrower width category than for the other

landscape classes.

3.4.3 Bed substrata of rivers and streams

The distribution of stream / river bed material types across landscape classes is shown in

Figure 7. A χ2 analysis showed that differences in bed material between landscape classes

were highly significant (χ2
test = 3069 > χ2

critical (p = 0.05) = 83; 60 degrees of freedom). The

biggest difference between observed and expected values (27% of overall difference) lies

with landscape 2 (warplands / fenlands), where a high proportion (64%) of bed material is silt

or mud.

3.4.4 Waterbody chemistry:

The mean values for pH and conductivity (showing associated error) for each waterbody are

shown in Figures 8 and 9 for all landscape classes considered. Comparisons for streams and

rivers were made for landscape classes 1, 2, 3, 10 and 13 only. One-way ANOVA on six key

chemical determinants showed that there were no significant differences between landscape

classes for conductivity, or for concentrations of suspended solids and Na. There were,

however, significant difference for pH (F = 14.9; n = 167; p < 0.001), nitrite concentration (F

= 5.6; n = 164; p < 0.001) and nitrate concentration (F = 7.0; n = 167; p < 0.001). Tukey’s

HSD post-hoc test for pair-wise comparisons between landscape classes for pH showed that

the only significant individual difference between landscape classes was for landscape class

10 (hard rock), where mean pH was lower than for the other classes (pH = 7.1; see Figure 11).

Comparisons for ponds were made for pH, conductivity and Na concentration between all

landscape classes except class 5 (insufficient data). One-way ANOVA showed that there were

significant differences between landscape classes for pH (F = 4.6; n = 240; p < 0.001),



conductivity (F = 6.5; n = 253; p < 0.001) and Na concentration (F = 3.0; n = 241; p = 0.002).

However, there was no overall significant difference for pH when LC 13 (non-agricultural)

was excluded from the analysis. The mean pH of 6.4 for LC13 was considerably lower than

for the other classes. Tukey’s HSD post-hoc test for pair-wise comparisons between

landscape classes for conductivity showed that landscape class 13 (non-agricultural; lowest

conductivity, 224 μs cm-1) could be separated from classes 4, 3, 6 and 7 at the 95%

significance level; landscape class 10 (hard rock; 252 μs cm-1) could be separated from 2 and

4, and landscape 8 (loam; 299 μs cm-1) could be separated from class 2. Landscape class 2

(warplands / fenlands) had the highest conductivity (769 μs cm-1).

Comparisons for pH and conductivity of ditches were restricted to landscape classes 2, 4, 5

and 8. One-way ANOVA analysis showed that there were significant differences between

landscape classes for pH (F = 3.4; n = 47; p = 0.027) and conductivity (F = 27.6; n = 46; p <

0.001). Tukey’s HSD tests for pair-wise comparisons between landscape classes for pH

showed that, although the ANOVA result for all landscape classes was significant, there were

no individual landscape class pairs that were significantly different. It should be noted that

Tukey’s HSD is more conservative than a Student’s t-test. The same pair-wise test applied to

conductivity showed that landscape class 2 (warplands / fenlands) was significantly different

(p < 0.001) from the other three landscape classes.

Although water pH varied significantly between landscape classes for all four water bodies,

absolute differences in mean pH were relatively small. Mean pH varied by less than one unit

across the different landscape for any single water body and by 1.5 pH units across

landscapes and different water bodies. In general, the pH of ponds was lower than that of

rivers, streams and ditches.



4. Discussion

For risk assessment to function correctly, it is essential that screening analyses are

appropriately selected in order to distinguish low, intermediate and high risk situations and

prioritise issues requiring more complex investigation. Preliminary assessment of exposure

of aquatic ecosystems to pesticides in Europe relies on standard modelling scenarios

(FOCUS, 2003). The data presented in this paper can be used to evaluate the scenarios for the

areas considered. For example, British streams are generally wider than assumed in the

standard scenarios (1 m) but are somewhat shallower than the assumption (0.3 m). There are

two landscapes (clays and loams) where stream volume is on average smaller than the

regulatory scenario, leading to a lesser potential for dilution of any pesticide loadings. The

FOCUS scenarios assume that ponds exposed to pesticides have a total volume of 900 m3.

This is within the range of mean values for the twelve agricultural landscapes (461-1794 m3),

but average volumes are smaller in four of the landscapes (fenlands, sandlands, eutrophic tills

and loam landscapes).

Of the waterbodies examined, ditches were the most intimately related with agricultural land

and ponds were the least. The regulatory scenarios assume that waterbodies are surrounded

by agricultural land with only a 1- or 3-m margin to the nearest arable crop for

ditches/streams and ponds, respectively. This assumption significantly overestimates the true

proximity between water and crop. This is important because proximity influences both the

level of contamination of water by pesticides and the potential for recovery of an impacted

population through recolonisation from unaffected stretches of water. Impacts of pesticides

on organisms in ponds may cause particular concern because of the relative isolation of these

systems and the reduced potential for rapid recolonisation and recovery. However, data

clearly show that most ponds are not directly proximate to arable land and that potential for

direct impacts from pesticides in Britain is likely to be over-stated by current risk

assessments.

Direct comparison of measured data with current assessment scenarios can help to place the

assumptions into context. However, there is a need to compare exposure calculated using

standard scenarios with the distribution of concentrations that results from considering the

distribution of environmental conditions. Examples of such comparisons have been reported

by Travis and Hendley (2001) and Brown et al. (2003) for the aquatic compartment and by

Hart (2003) for birds. In each case, the screening-level estimate of pesticide exposure lay

within the upper 5% of the distribution of exposure obtained using the range of measured data



as input. Further work of this kind will help to quantify the level of protection afforded by

screening assessments and ensure that modelling assumptions are appropriately selected.

The risk assessment carried out for non-target aquatic organisms is predominantly

deterministic, taking single point estimates for both toxicity and exposure. The exposure

value is often based on a point from a distribution so that, for example, deposition from spray

drift is selected as the 90th percentile value from a database of measurements. The

deterministic expression of risk is coupled with arbitrary safety factors and leads to a

qualitative final output which tends to describe the risk in terms of ‘margin of safety’,

‘adequate protection’ or by reference to a higher tier study or studies. Such assessments do

not provide an indication as to the magnitude or frequency of effects or to the level of

certainty associated with the risk analysis. There is increasing interest in the use of

probabilistic techniques within risk assessment for pesticides (Hart, 2001). These approaches

explicitly quantify variability and uncertainty in the assessment and produce outputs with

more ecological meaning, such as the probability and magnitude of effects. The analysis of

information presented here is suitable for inclusion within probabilistic modelling of exposure

with summary statistics to support definition of probability distribution functions or the

potential to sample directly from the raw data. Inclusion of correlation between input

parameters is an important consideration within probabilistic risk assessment (e.g. Cullen and

Frey, 1998). To some extent the issue is reduced by the grouping of waterbodies into

relatively homogeneous landscape classes. Relationships between parameters can be

incorporated through detailed correlation analysis or by sampling individual water bodies into

the analysis.

EU legislation on pesticides dictates that registration is only possible where “no unacceptable

effects” on non-target aquatic organisms are expected to occur (EC, 1991). However, the

Directive stops short of defining “acceptable” and “unacceptable” effects (Anon, 2002), even

though a clear understanding of the protection target is a prerequisite for well-founded risk

assessment (ref). One way to formalise this will be through the definition of reference images

which describe the water bodies and their associated species assemblages which are to be

considered in risk assessment (Giddings et al., 2002). Definition of reference images needs to

be based on knowledge of regional variation in structure and function of aquatic ecosystems.

Coupled with the analysis of the biota of British waterbodies described by Biggs et al. (200x),

the data presented will help to inform the debate on what it is that we are trying to protect.
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Table 1. Definitions for the four waterbody types considered

Waterbody Definition

Ponds Waterbodies between 25 m2 and 2 ha in area which may be permanent or seasonal (Collinson
et al. 1995). Includes both man-made and natural waterbodies.

Ditches Man-made channels created primarily for agricultural purposes, and which usually: (i) have a
linear planform; (ii) follow linear field boundaries, often turning at right angles; and (iii) show
little relationship with natural landscape contours.

Streams Small lotic waterbodies created mainly by natural processes. Marked as a single blue line on
1:25,000 Ordnance Survey (OS) maps and defined by the OS as being less than 8.25 m in
width. Streams differ from ditches by: (i) usually having a sinuous planform; (ii) not following
field boundaries, or if they do, pre-dating boundary creation; and (iii) showing a relationship
with natural landscape contours e.g. running down valleys.

Rivers Larger lotic waterbodies, created mainly by natural processes. Marked as a double blue line
on 1:25,000 OS maps and defined by the OS as greater than 8.25 m in width.



Table 2. Datasets used to describe the morphological and physico-chemical
characteristics of agricultural aquatic habitats

Waterbody type Surveys No. of sites1 Data included in characterisation

Environment Agency River
Habitat Survey (1994-96)

4500 20 channel and bank physical structure
descriptors on 500 m survey lengths

DEFRA Countryside Survey
(2000)

420 20 channel and bank descriptors

Rivers and
streams

Environment Agency
General Quality
Assessments2

12 chemical parameters (pH,
conductivity, BOD, COD, TON, NO2,
PO4, Ca, Na, Mg, Cl, K)

DETR Lowland Pond Survey
(1996)

290 25 physical structure descriptors; 4
chemical parameters (pH, conductivity,
alkalinity, Ca)

Ponds

Ponds Conservation Trust
National Pond Survey
(1989-98)

271 15 chemical parameters (pH,
conductivity, Al, Zn, SS, Pb, Ni, Fe,
Cu, TON, PO4, Ca, Na, Mg, K)

ADAS ditch surveys in
Environmentally Sensitive
Areas (ESAs) (1999)

1591 9 physical structure descriptorsDitches

Ponds Conservation Trust
targeted surveys (see
Section 2.2.2)

48 3 physical structure descriptors; 7
chemical parameters (pH, conductivity,
total P, NO3, dissolved O, COD and
BOD)

1 Some parameters were not recorded from all sites, so site number varies for some parameters for
certain surveys
2 For chemical data, streams and rivers were not differentiated, so data jointly refer to both waterbody
types



Table 3: Physical characterisation of British landscape classes

No. Landscape Description Total area
(km2)

Dominant water
bodies

Groundwater Dominant water
flow

1 River floodplains
and low terraces

Level to very gently sloping river floodplains and
low terraces

7,781 Rivers, streams, ponds
& some ditches

Normally present
at <2 m depth

Vertical

2 Warplands, fenlands
and associated low
terraces

Level, broad ‘flats’ with alluvial very fine sands,
silts, clays and peat

9,017 Ditches and rivers Normally present
at <2 m depth

Vertical or
saturated lateral

3 Sandlands Level to moderately sloping, rolling hills & broad
terraces. Sands and light loams

10,871 Rivers (and some
ponds & streams) in
low lying areas

Normally present
at >2 m depth

Vertical

4 Till landscapes
(eutrophic)

Level to gently sloping glacial till plains. Medium
loams, clays and chalky clays, with high base status
(eutrophic). Some lighter textured soils on outwash

22,151 Ditches, streams, ponds
& rivers

Generally none
present

Predominantly
saturated lateral

5 Till landscapes
(oligotrophic)

Level to gently sloping glacial till plains. Medium
loams and clays with low base status (oligotrophic).
Some lighter textured soils on outwash

15,449 Ditches, streams, ponds
& rivers

Generally none
present

Predominantly
saturated lateral

6 Pre-Quaternary clay
landscapes

Level to gently sloping vales. Slowly permeable,
clays (often calcareous) and heavy loams. High
base status (eutrophic)

19,706 Ditches, streams, ponds
& rivers

None present Saturated lateral

7 Chalk and limestone
plateaux and
coombe valleys

Rolling ‘wolds’ & plateaux with ‘dry’ valleys.
Shallow to moderately deep loams over chalk &
limestone

14,197 Rivers, and possibly
seasonal streams

Present at >2 m
depth

Vertical



Table 3: continued…

No. Landscape Description Total area
(km2)

Dominant water
bodies

Groundwater Dominant water
flow

8 Pre-Quaternary
loam landscapes

Gently to moderately sloping ridges & vales &
plateaux. Deep, free-draining & moderately
permeable silts & loams

10,072 Streams, ponds &
rivers; possibly some
ditches locally

None present Saturated lateral

9 Mixed, hard,
fissured rock and
clay landscapes

Gently to moderately sloping hills, ridges and vales.
Mod. deep free draining loams mixed with heavy
loams and clays in vales

12,259 Streams and rivers with
ponds in clay areas

Either none or
present at >2 m

Saturated lateral;
some vertical over
groundwater

10 Hard rock
landscapes

Gently to moderately sloping hills and valleys.
Mod. deep free draining loams over hard rocks.
Some slowly permeable heavy loams on lower
slopes and valleys

23,342 Streams & rivers None Lateral along rock
boundaries

11 SCOTLAND
ONLY: Moundy
morainic &
fluvioglacial
deposits

Gently & moderately sloping mounds, some
terraces. Free draining morains, gravels & sands
on mounds, poorly draining gleys in hollows

2,270 Streams & rivers Variable Vertical over
groundwater; some
saturated lateral

12 SCOTLAND
ONLY: Footslopes
with loamy drift

Concave slopes or depressional sites, often with
springlines

1,081 Streams & rivers,
occasional ditches

13 Non-agricultural All areas not cultivated with arable (including
orchards, soft fruit and horticultural) or maintained
grassland

79,690 Ditches, streams, ponds
& rivers

Variable Variable



Table 4. Number of sampling sites for different water bodies in the 13 landscapes
(parentheses indicate that the water body is little found in that landscape)

Number of sites aNo. Landscape class

Rivers Streams Ponds Ditches

1 River floodplains and low
terraces

2457 – 4926 153 – 306 28 259

2 Warplands, fenlands and
associated low terraces

679 – 1360 98 – 196 11 1259

3 Sandlands 415 – 830 77 – 154 17 (5)

4 Till landscapes (eutrophic) 642 – 1284 241 – 482 32 30

5 Till landscapes (oligotrophic) 232 – 464 85 – 170 (6) 10

6 Pre-Quaternary clay landscapes 773 – 1548 348 – 696 55 11

7 Chalk and limestone plateaux
and coombe valleys

307 – 614 96 – 192 20 0

8 Pre-Quaternary loam landscapes 421 – 842 319 – 638 22 9

9 Mixed, hard, fissured rock and
clay landscapes

508 – 1016 109 – 218 16 (0)

10 Hard rock landscapes 818 – 1636 204 – 408 14 (0)

13 Non-agricultural 1123 – 2246 432 – 864 57 (8)

a The number of sites from which data was obtained varied according to the survey taken, and sometimes for
specific parameters within each survey (i.e. certain parameters may have been included at some survey sites and
not others); bankside properties were reported for each bank of rivers, streams and ditches.



Table 5: Agricultural land use across different landscape classes

Average land use (% of total area)No. Landscape Average
field size

(ha)
Total

agricultural
Cereals Oilseed

rape
Potatoes Sugar beet All fruit Maintained

grassland

1 River floodplains and low
terraces

6.6 69.9 20.4 2.3 1.3 1.9 0.3 34.7

2 Warplands, fenlands and
associated low terraces

23.9 80.8 33.5 2.6 3.7 6.1 0.4 18.4

3 Sandlands 5.5 65.7 20.6 1.2 2.3 4.4 0.3 27.8

4 Till landscapes
(eutrophic)

7.2 76.1 31.2 3.5 1.1 2.1 0.2 27.4

5 Till landscapes
(oligotrophic)

3.9 67.0 11.3 1.4 0.3 0.1 <0.1 50.5

6 Pre-Quaternary clay
landscapes

5.1 70.8 22.4 3.2 0.6 0.7 0.5 32.7

7 Chalk and limestone
plateaux and coombe valleys

8.7 73.7 33.9 4.1 0.7 1.4 0.3 19.6

8 Pre-Quaternary loam
landscapes

4.1 66.3 20.9 1.9 1.0 0.6 1.6 30.4

9 Mixed, hard, fissured rock
and clay landscapes

2.8 67.1 7.5 0.5 0.3 0.1 <0.1 56.0

10 Hard rock landscapes 2.7 62.4 4.8 0.2 0.4 <0.1 <0.1 54.4
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Table 6. Summary of loading of pesticides for the different landscapes

Landscape class Average input of pesticide across whole landscape (kg/ha)

Herbicides Insecticides Fungicides Total

1 River floodplains and low terraces 0.729 0.048 0.333 1.111
2 Warplands, fenlands and associated low terraces 1.428 0.126 0.747 2.302
3 Sandlands 0.803 0.063 0.402 1.268
4 Till landscapes (eutrophic) 0.981 0.051 0.398 1.429
5 Till landscapes (oligotrophic) 0.384 0.015 0.123 0.522
6 Pre-quaternary clay landscapes 0.756 0.044 0.308 1.108
7 Chalk and limestone plateaux and coombe valleys 1.012 0.052 0.398 1.462
8 Pre-quaternary loam landscapes 0.713 0.072 0.398 1.182
9 Mixed, hard, fissured rock and clay landscapes 0.294 0.012 0.085 0.391

10 Hard rock landscapes 0.233 0.011 0.075 0.319
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Figure 1. Distribution of British landscape classes
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Figure 2. Length or number of water bodies per unit area of the different
landscapes
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Figure 3. Major divisions of land use for the different landscapes in England
and Wales
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Figure 4. Measures of the density of arable cultivation around a) rivers and
streams and b) ponds, or c) of the distance between ditches and the
nearest arable field
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Figure 5. Ordering of streams and rivers in different landscape classes
according to a) width, b) depth and c) shape parameter.
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Figure 6. The categorical distribution of ditch widths between landscape classes
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Figure 7. Bed material in the streams and rivers of different landscape classes
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Figure 8. Mean pH values for different waterbodies in the different landscapes
(error bars are sample standard deviations)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

1 2 3 4 5 6 7 8 9 10 13
Landscape class

pH

Ponds
Rivers
Ditches

Figure 9. Mean conductivity values for different waterbodies in the different
landscapes (error bars are sample standard deviations)
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